
Formal Methods in System Design, 27, 275–312, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

jContractor: Introducing Design-by-Contract to
Java Using Reflective Bytecode Instrumentation

MURAT KARAORMAN muratk@ti.com
Texas Instruments, Inc., 315 Bollay Drive, Santa Barbara, CA 93117, USA

PARKER ABERCROMBIE parkera@cs.ucsb.edu
College of Creative Studies, University of California, Santa Barbara, CA 93106 USA

Abstract. Design by Contract is a software engineering practice that allows semantic information to be added
to a class or interface to precisely specify the conditions that are required for its correct operation. The basic
constructs of Design by Contract are method preconditions and postconditions, and class invariants.

This paper presents a detailed design and implementation overview of jContractor, a freely available tool that
allows programmers to write “contracts” as standard Java methods following an intuitive naming convention. Pre-
conditions, postconditions, and invariants can be associated with, or inherited by, any class or interface. jContractor
performs on-the-fly bytecode instrumentation to detect violation of the contract specification during a program’s
execution. jContractor’s bytecode engineering technique allows it to specify and check contracts even when source
code is not available. jContractor is a pure Java library providing a rich set of syntactic constructs for express-
ing contracts without extending the Java language or runtime environment. These constructs include support for
predicate logic expressions, and referencing entry values of attributes and return values of methods. Fine grain
control over the level of monitoring is possible at runtime. Since contract methods are allowed to use unconstrained
Java expressions, in addition to runtime verification they can perform additional runtime monitoring, logging, and
analysis.

Keywords: jContractor, Design by Contract, Java, bytecode instrumentation

1. Introduction

Design by Contract (DBC) is the software engineering practice of adding semantic infor-
mation to an application interface by specifying monitored assertions about the program’s
runtime state. These assertions, collectively called a contract, must hold true at well-specified
check-points during the program’s execution. A method precondition is the portion of the
contract which specifies the state that must be satisfied by the caller of the method. Invariants
and method postconditions provide the other half of the contract, specifying the relevant
state information that holds true upon completion of the method’s execution.

A contract specifies the conditions that govern the correct usage and implementation
of a module’s interface. It is natural to express the contract as specification code that is
compiled along with the actual implementation code. The contract code can be evaluated
to ensure that the module is operating according to specification, but correct execution of a
program should not rely on the presence or checking of contract code. It is still desirable to
automatically perform contract checking during a program’s execution.

276 KARAORMAN AND ABERCROMBIE

The idea of associating boolean expressions (assertions) with code as a means to argue
the code’s correctness can be traced back to Hoare [10] and others who worked in the field
of program correctness. Meyer introduced Design by Contract as a built-in feature of the
Eiffel language [15], allowing specification code to be associated with a class which can be
compiled into runtime checks. In [16] Mitchell and McKim provide discussions on benefits
as well as potential drawbacks of Design by Contract and introduce some design guidelines
and principles for applying it to software engineering practice.

In this paper we present a detailed design and implementation overview of jContractor,
distributed freely as a pure Java library which allows programmers to add contracts to
Java programs as methods following an intuitive naming convention. A contract consists of
precondition, postcondition, and invariant methods associated with any class or interface.
Contract methods for any Java class or interface can be included directly within the class or
written as a separate contract class. Contracts also work well with Java inheritance. Before
loading each class, jContractor detects the presence of contract code patterns in the Java
class bytecodes and performs on-the-fly bytecode instrumentation to enable checking of
contracts during the program’s execution.

Figure 1 depicts a typical user scenario where the system class loader has been replaced by
the jContractor class loader to perform runtime contract monitoring. When engaged, before
loading any class to the Java virtual machine the jContractor class loader transparently
searches for the presence of jContractor DBC patterns in the compiled Java class bytecodes.
Upon finding any contract associated with a method, the class loader instruments the class
bytecodes to perform additional evaluation of the method’s contract and to throw exceptions
when a contract violation occurs during the method’s invocation.

Evaluating contracts during program execution has some performance penalties. How-
ever, runtime contract checking is most useful during testing and debugging, when runtime

Figure 1. jContractor class loader performs on-the-fly bytecode instrumentation.

jCONTRACTOR: INTRODUCING DESIGN-BY-CONTRACT TO JAVA 277

speed is usually not critical. Contract code can remain in deployed bytecode, but contracts
will only be evaluated when jContractor is invoked. Leaving contracts in deployed code
helps with troubleshooting, but has no performance penalty when contracts are not checked.

The rest of the paper is organized as follows. In Section 2 we present a brief overview
of jContractor from the perspective of a programmer using DBC in Java. In Section 3
we present details of jContractor’s design and techniques for bytecode instrumentation to
support runtime contract checking. Finally, we give a brief overview of related work, and
discuss alternative uses of jContractor to perform other runtime monitoring.

2. jContractor overview

jContractor is a 100% pure Java application library available as an open source project cur-
rently hosted at http://jcontractor.sourceforge.net. It is a pure Java application,
and will run on all platforms that support Java. In this section we provide an overview of
how jContractor facilitates writing contracts and enables contract checking at runtime.

2.1. Writing contracts with jContractor

Contracts in jContractor are expressed as pure Java methods following a simple naming
convention. jContractor provides runtime contract checking by instrumenting the bytecode
of classes that define contracts. jContractor can either add contract checking code to class
files to be executed later, or it can instrument classes at runtime as they are loaded. All
contracts are written in standard Java, so there is no need to learn a special contract speci-
fication language. Contracts can be written in the class that they apply to, or in a separate
contract class. This allows developers to add contracts to classes for which they do not
have source code (3rd party libraries, for example). jContractor understands preconditions,
postconditions, and class invariants, with full support for inheritance.

The supported constructs and their patterns are described in Table 1. All contract methods
return a boolean value, which is the result of the contract evaluation. If a contract method
returns false, an exception will be thrown. The discussion and examples in the section will
refer to the Stack class shown in figure 2.

2.1.1. Preconditions. A precondition method takes the same arguments as the method it
is associated with and returns a boolean. When contracts are monitored the precondition
associated with a method is implicitly checked immediately before the method is executed.
It is the responsibility of the caller to ensure that the precondition check succeeds.

Constructors are a small exception, since the call to the superclass constructor must be
the first statement in a constructor. If such a call is present, it gets executed before the
precondition is checked.

Preconditions for the Stackpush andsearchStackmethods can be introduced by adding
the following two methods to the Stack or Stack CONTRACT class:

278 KARAORMAN AND ABERCROMBIE

Table 1. Basic jContractor constructs.

CONSTRUCT JCONTRACTOR PATTERN

Method Signature
Standard Java class or interface public returnTypei aMethod(argListi)

method for which a jContractor design
contract is written

Precondition
Evaluated before a method is protected boolean aMethod Precondition

executed. Precondition failure (argListi)
indicates a bug in the caller

Postcondition
Evaluated before returning from a protected boolean aMethod Postcondition

method. Postcondition failure. (argListi, returnTypei RESULT)
indicates a bug in the callee The
RESULT argument holds the
method’s return value

Invariant
Evaluated at the beginning and protected boolean Invariant()

end of every public method. Invariant
failure indicates a bug in the callee

Exception Handler
Currently not implemented.
Evaluated when the actual method protected returnTypei aMethod OnException

terminates abruptly by throwing an (argListi , Exceptioni e) throws Exceptioni

exception. This method is
then checked instead of any invariant
or postconditions.

OLD
Allows postconditions to refer to the private className OLD;

state of an object at method entry return count == OLD.count + 1;

protected boolean push Precondition (Object o) {
return o != null;

}
private boolean searchStack Precondition (Object o) {
return o != null;

}

Preconditions for constructors follow the same convention:

protected boolean Stack Precondition (Object [] initialContents) {
return (initialContents != null) &&

(initialContents.length > 0);
}

jCONTRACTOR: INTRODUCING DESIGN-BY-CONTRACT TO JAVA 279

Figure 2. Stack example.

Some additional rules about preconditions:

– Contract methods may not have preconditions.
– Native methods may not have preconditions.
– The main(String [] args) method may not have a precondition.
– The precondition for a static method must be static.
– The precondition for a non-static method must not be static.
– The precondition for a non-private method must be protected.
– The precondition for a private method must be private.

2.1.2. Postconditions. A postcondition method takes the same arguments as the method
it is associated with followed by an additional RESULT argument of the same type as the
method’s return type. For void methods, RESULT is declared to be of type java.lang.
Void.

The postcondition associated with an instrumented method is checked immediately before
the method returns back to the caller. jContractor’s instrumentation logic implicitly assigns
the actual result that is about to be returned by the method’s execution to the RESULT
argument. This allows postconditions to make assertions about a method’s result. It is
the responsibility of the class implementing the method to ensure that the postcondition
holds.

280 KARAORMAN AND ABERCROMBIE

An example postcondition method for the Stack push and size methods are shown
below:

protected boolean push Postcondition (Object o, Void RESULT){
return implementation.contains(o) &&

(size() == OLD.size() + 1);
}
protected boolean size Postcondition (int RESULT) {

return RESULT >= 0;
}

Postconditions for constructors follow the same convention. The return type for construc-
tors is Void.

protected boolean Stack Postcondition (Object [] initialContents,
Void RESULT) {

return size() == initialContents.length;
}

Postconditions may refer to the state of the object at method entry through the OLD
instance variable as shown in the push postcondition. The actual mechanism is discussed
in more detail below.

Finally, jContractor imposes the following rules about postconditions:

– Contract methods may not have postconditions.
– Native methods may not have postconditions.
– The postcondition for a static method must be static.
– The postcondition for a non-static method must not be static.
– The postcondition for a non-private method must be protected.
– The postcondition for a private method must be private.
– Postconditions for constructors cannot refer to OLD.

2.1.3. Invariants. An invariant method is similar to a postcondition but does not take
any arguments and is implicitly associated with all public methods. It is evaluated at the
beginning and end of every public method. It is the responsibility of the implementation
class that the invariant checks succeed.

Our approach differs slightly from Eiffel’s invariant checking in that Eiffel invariants are
only checked for method calls that originate outside of the class, as in foo.bar(). The
invariant is not checked on the bar() method when it is called from another method in
the same class. This distinction frees an Eiffel class from having to maintain the invariant
during its internal operations.

jCONTRACTOR: INTRODUCING DESIGN-BY-CONTRACT TO JAVA 281

An example invariant for the Stack class:

protected boolean Invariant () {
return size() >= 0;

}

Following rules apply to jContractor invariants:

– Invariants are not checked for contract methods.
– Invariants are not checked for static methods.
– Invariants are not checked for native methods.
– Invariants are checked only at the exit of a constructor.
– The Invariant() method must be declared protected and non-static.

2.1.4. OLD references. jContractor allows postconditions to refer to the state of an object
at method entry. To enable this feature, a class must declare an instance variable named OLD
of the same type as the class. Postconditions can then access attributes or execute methods
by referencing OLD. Bytecode instrumentation routes all references to OLD to a clone of
the object created at method entry. The clone is created using the clone() method, so the
class must implement the java.lang.Cloneable interface and define this method. When
execution enters the method, if there are any references to OLD in the method postcondition
a clone of the object will be created and stored in OLD.

2.2. Exception handling

Exception handling support in Design By Contract is a controversial topic. The original
jContractor proposal [11] outlined a practical mechanism to express contracts to handle
method exceptions, however, the jContractor implementation does not yet support this
feature. Plans and discussion to implement it are discussed in 4.2, in this section we outline
the basic construct and the motivation.

A method’s postcondition describes the contractual obligations of the method only when
it terminates successfully. When a method terminates abnormally due to some exception,
it is not required to ensure that the postcondition holds. It may still be desirable, however,
for the method to specify what conditions must still hold true in these situations, and to get
a chance to restore the state to reflect this, and controversially offer a hook to allow retry
and rescue from the conditions that led to the exception.

jContractor defines a pattern for associating an exception handler with any class method.
The exception handler method’s name is obtained by appending the suffix OnException
to the method’s name. The exception handler method has the same signature as the original
method except for the addition of a single argument, of an exception type. The body of the
method can include arbitrary Java statements and refer to the object’s internal state using
the same scope and access rules as the original method. When an exception is thrown in
the original method, the exception handler will execute and attempt to correct the error and
return a result or re-throw the exception.

282 KARAORMAN AND ABERCROMBIE

If an exception handler is defined for a particular method, the exception handler must
either re-throw the handled exception or compute and return a valid result. If the exception
is re-thrown no further evaluation of the postconditions or class-invariants is carried out.
If the handler is able to recover by generating a new result, the postcondition and class-
invariant checks are performed before the result is returned, as if the method had terminated
successfully.

2.3. Contract violations

When a contract is violated, an error is thrown, usually ending in program termination with
an informative error message. The error classes are:

edu.ucsb.ccs.jcontractor.PreconditionViolationError,

edu.ucsb.ccs.jcontractor.PostconditionViolationError, and
edu.ucsb.ccs.jcontractor.InvariantViolationError.

While nothing prevents the caller of the method from catching and handling these errors,
this practice is not recommended. A contract violation usually points to a bug that should
fixed before release, not handled at runtime.

2.4. Separate contract classes

jContractor allows contracts to be written in separate contract classes. Contract classes
follow the naming convention classname CONTRACT. When instrumenting a class, jCon-
tractor will find its contract class and copy all the contract code into the non-contract class.
If the same contract is defined in both classes (both classes define a precondition for a
method, for example), the two are logical and-ed together. Defining a contract in a separate
class allows jContractor to add contracts to classes for which source code is not available.
Figure 3 shows a separate contract class written for the Stack example.

The separate contract class methods can reference the variables and methods of the
class with which it is associated. However, to get the compiler to accept the code, it is
sometimes necessary to provide fake variables and methods, such as implementation
and searchStack(Object) in the contract class in figure 3. When jContractor instru-
ments a class, the code for contracts defined in the separate contract class is inserted into
the non-contract class. Once there, it will have access to any members and variables of
the non-contract class. A convenient way to get access to non-private fields and methods
in the non-contract class is to make the contract class a subclass of the non-contract class.

2.5. Contracts and inheritance

jContractor’s implementation of Design by Contract works well with both class and interface
inheritance. Contracts are inherited, just like methods. When a method is overridden in a
subclass, that class may specify its own contracts to modify those on the superclass method.

jCONTRACTOR: INTRODUCING DESIGN-BY-CONTRACT TO JAVA 283

Figure 3. Separate contract class for stack.

jContractor instruments each method to enforce contract checking based on the following
operational view.

A subclass method’s contract must:

– Allow all input valid for its superclass method.
– Ensure all guarantees of the superclass methods.

Put another way, the method may “weaken the precondition and strengthen the postcon-
dition”. What this means is that during run-time evaluation of contracts the preconditions

284 KARAORMAN AND ABERCROMBIE

for the subclass method are logical or-ed with the superclass preconditions, and the post-
conditions are logical and-ed. This ensures that the subclass accepts all input valid to the
super class method, and may accept more that is invalid to the superclass. However, it must
abide by the guarantees made by its parent. Like postconditions, class invariants are logical
and-ed. Additional design and implementation details can be found in Section 3.6.

Interfaces may also have contracts (provided in separate contract classes), so contracts
are subject to multiple inheritance. Contracts from interfaces are logical or-ed with the
superclass and subclass contracts in the case of preconditions. For post-conditions and
invariants they are logical and-ed.

2.6. Predicate logic support

Contracts often involve constraints that are best expressed using predicate logic quantifiers.
jContractor provides a support library for writing expressions using predicate logic quan-
tifiers and operators such as Forall, Exists, suchThat, and implies. The supported
quantifiers operate on instances of java.util.Collection, and are outlined in Table 2.
These quantifiers offer a high level of abstraction and greatly improve readability when
writing contract specifications.

For example, in a graph structure there might be an array of nodes, each of which can have
connections to other nodes. An implementation using this structure might want to ensure
that each node in the graph is connected to at least one other. In mathematical notation,
such a constraint could be written as

∀n ∈ nodes | n.connections >= 1

jContractor allows a contract to be any function that evaluates to a boolean, so the graph
constraint could be written using a loop, as shown below

java.util.Collection nodes;
...
java.util.Iterator i = nodes.iterator();
while (i.hasNext()) {

if (((Node) i.next()).connections < 1)
return false;

}
return true;

Using a loop works, but it requires the programmer to rewrite the quantifier’s logic for
each use. jContractor offers high level programming abstractions for common predicate
logic expressions using a simple Java library. jContractor’s quantifiers are summarized in
Table 2, and can be applied to any instance of java.util.Collection, which includes all
standard Java data structures. This library is completely isolated from the main jContractor
code, and can be used independently.

jCONTRACTOR: INTRODUCING DESIGN-BY-CONTRACT TO JAVA 285

Table 2. jContractor’s logic constructs.

CONSTRUCT PATTERN and USAGE

ForAll Collection aCollection;
Assertion anAssertion;

Check if all elements of
a collection meet an assertion. ForAll.in(aCollection).ensure(anAssertion)

Exists
Ensures that at least one Exists.in(aCollection).suchThat(anAssertion)

element of a collection
meets an assertion.

Elements
Returns a java.util.Vector Elements.in(aCollection).

containing all the elements of a suchThat(anAssertion)
collection that meet an assertion.

Implies boolean A, B;
Evaluates true if A and Logical.implies(A, B)

B are both true, or if A is
false. The logical equivalent
of ∼ A ∨ B.

Assertion
Standard interface for designing public interface Assertion {

assertions, by implementing public boolean eval (Object o);
eval method which takes }
an object param to evaluate.

Operator
Standard interface for an public interface Operator {

object that transforms other public void execute (Object o);
objects. Using the ForAll }
quantifier, Operators allow
easy application of some
function to all the elements
in a Collection.

The graph invariant can be expressed using jContractor’s syntax as follows

java.util.Collection nodes;
...
Assertion connected = new Assertion () {

public boolean eval (Object o) {
return ((Node) o).connections >= 1;

}
};
return ForAll.in(nodes).ensure(connected);

This version is the same length as the version using a loop, but it makes the contract more
explicit. Some commonly used assertions are provided in the package, and are summarized

286 KARAORMAN AND ABERCROMBIE

Table 3. Standard jContractor assertions.

Assertion Description

InstanceOf Asserts that objects are of a certain runtime type.

Equal Asserts that objects are equal. The programmer specifies if the comparison
should be by reference or by value.

InRange Asserts that a number fall between minimum and maximum bounds.

Not Used to negate another assertion, as in new Not(new Equal(Foo)).

in Table 3. For example, it is very simple to ensure that every element of a collection
conforms to certain runtime type, as shown in the code snippet below

ForAll.in(elements).ensure(new InstanceOf(Integer.class));

This type of assertion is useful for controlling the type of objects that can be stored in a
data structure.

2.6.1. Using operators. The Assertion interface describes a test that evaluates to a
boolean, but evaluating the Assertion should not modify the elements of the collec-
tion. We define the standard Operator interface to design operators to apply to and
transform other objects. An Operator can be used with the ForAll quantifier for im-
proved syntax as in the following example which defines and uses a new ‘initialize’
operator.

java.util.Collection elements;
// define new Operator
Operator initialize = new Operator () {
void execute (Object o) {
((Node) o).init();

}
};
...
// apply initialize Operator to all elements
ForAll.in(elements).execute(initialize);

2.7. Checking contracts with jContractor

Two utility applications are provided to instrument and run Java applications with runtime
contract checking: jContractor and jInstrument (see Table 4.) The jContractor util-
ity replaces the standard Java class loader and performs on-the-fly bytecode instrumentation
to enable contract checks at runtime. The jInstrument utility on the other hand can be

jCONTRACTOR: INTRODUCING DESIGN-BY-CONTRACT TO JAVA 287

Table 4. Standard jContractor utilities.

jContractor [options] classname [cmdLineArgs]
Usage jInstrument [options] classname

Options:
-d directory Specifies the directory in which instrumented class files

should be saved (jInstrument only).
-f file Specifies a file that holds instrumentation levels.
--none <class or package> Suppresses instrumentation of the given class(es).
--pre <class or package> Instruments the given class(es) for preconditions checks.
--post <class or package> Instruments the given class(es) for precondition and

postcondition checks.
--all <class or package> Instruments the given class(es) for all contract checks.
--verbose Prints the names of classes as they are instrumented.
--version Prints the program version and exits.
--help Prints this table and exits.

used to perform the same bytecode instrumentation to individual Java class files without
running the Java application.

2.7.1. Using jContractor utility. The easiest way to run a Java program with runtime
contract checking is to use the jContractor application and pass the class name with its
command line arguments to the jContractor program. For example, a program containing
jContractor contracts can be run with no runtime contract checking by

% java Foo arg1 arg2 arg3 ...

To run the same application with full contract checking one might enter

% java jContractor Foo arg1 arg2 arg3 ...

jContractor will replace the system class loader with a specialized class loader that will
instrument class bytecodes as they are loaded, and execute the Foo program. Any command
line arguments that appear after the class name are passed to the main(String [] args)
method of that class.

2.7.2. Using jInstrument utility. In some cases, it is not possible to replace the system
class loader. For example, the class loader used by a web browser to load Java applets
is beyond the programmer’s control. In cases like these, the jInstrument utility makes
it possible to add contract checking code to class files so that they may be run with any
Java runtime environment. The instrumented classes then can be executed without a full
jContractor distribution.
jInstrument takes the name of the class file as an argument and writes the instrumented

file to the directory specified by the “-d” option, or the current directory by default, creating
a set of instrumented classes that parallel the original uninstrumented classes. For example,
issuing the following command:

288 KARAORMAN AND ABERCROMBIE

% java jInstrument Foo.class

overwrites the Java class file, Foo.class, with a jContractor instrumented version. Run-
ning the modified Foo.class results in execution with runtime contract checks:

% java Foo

2.7.3. Controlling the instrumentation level. jContractor allows the user to specify the
level of instrumentation (preconditions only, preconditions and postconditions, or all con-
tracts) for each class in the system. For example, to execute the Foo program checking only
preconditions, but preconditions and postconditions in the bar package, and all contracts
in class FooBar, one would enter

% java jContractor --pre * --post bar.* --all bar.FooBar
Foo arg1 arg2 arg3 ...

jContractor supports wild cards similar to those used in Java import statements, allow-
ing the user to concisely specify the instrumentation level. The instrumentation levels may
also be read from a file. The instrumentation levels (pre, post, and all) are those sug-
gested by Meyer in [17, p. 393] and [15, p. 133]. The supported instrumentation levels
are:

– none - No contracts are checked.
– pre - Preconditions are checked.
– post - Preconditions and postconditions are checked.
– all - Preconditions, postconditions, and invariants.

The rationale is that for a method’s postcondition to be satisfied, the precondition must
have been satisfied. The invariant can only be satisfied if both preconditions and post-
conditions have been met. It is senseless to check the postcondition without checking the
precondition, or the invariant without the precondition and the postcondition.

3. Design and implementation of jContractor

jContractor’s basic operation involves discovering contracts associated with each class or
interface just before the class bytecodes are loaded, and performing code transformations
to enable contract checks at runtime.

jContractor instruments classes at the bytecode level, but the discussion in Sections 3.1
through 3.6 uses Java source code models to illustrate code transformations. Bytecode
implementation details are discussed in Section 3.9.

In Section 3.1 we will discuss simple instrumentation techniques. In subsequent sections
we will build upon the basic foundation to develop a robust Design by Contract implemen-
tation.

jCONTRACTOR: INTRODUCING DESIGN-BY-CONTRACT TO JAVA 289

3.1. Implementing simple contract checks

The basic instrumentation technique used by jContractor is to execute the following steps
on each class just before it is loaded. For each non-contract method m with signature s in
class C

– Search for a method named m Precondition with signature s in C or a separate contract
class, C CONTRACT, and prepend a call to m Precondition to m.

– Search for a method named m Postcondition with signature s, with an additional ar-
gument RESULT, in C or C CONTRACT, modify the method to have a single exit point and
append a call to m Postcondition to m.

– If m is public, search C and C CONTRACT for a method named Invariant. Insert calls to
the invariant method at the beginning and end of m.

Checking a contract at runtime involves calling the contract method and throwing an
exception if the result is false. At first glance, checking a contract is quite straightforward.
One need only add a call to the contract method at the beginning or end of the method,
and throw an exception if the contact evaluates false. jContractor throws the following ex-
ceptions: PreconditionViolationError, PostconditionViolationError, and In-
variantViolationError.

To illustrate the instrumentation process, we use the push(Object) method of a Stack
class, shown in figure 4. A naive code transformation may result in the instrumented
push(Object) method shown in figure 5. This is almost correct, but overlooks an im-
portant point, which will be discussed in the next section.

Figure 4. Listing of Stack.push (Object).

Figure 5. Simple instrumentation of Stack.push (Object).

290 KARAORMAN AND ABERCROMBIE

3.2. The assertion evaluation rule

Checking contracts at runtime usually helps find bugs and verify correctness. However,
care must be taken to prevent contract checking itself from introducing bugs. Consider
what happens when the invariant is checked in this simple example

class Stack {
...
public int size () { ... }
protected boolean Invariant () {

return size() >= 0;
}

}

When the invariant is checked, the size() method is executed to ensure that the size is
non-negative. size() is a public method, so the sample invariant should be checked at its
entry point. But checking the invariant requires a call to size(), which leads to an infinite
recursion of contract checks. To avoid situations like this, Design by Contract includes the
Assertion Evaluation Rule [17, p. 402], which states that only one contract may be checked
at a time. In the Stack example, the invariant will call size(). Since there is already a
contract check in progress, the invariant will not be checked on size().

Implementing the Assertion Evaluation Rule requires that jContractor keeps track of
when a contract check is in progress. This information is associated with each active thread.
jContractor implements the Assertion Evaluation Rule by maintaining a shared hash table
of threads that are actively checking contracts. Before a thread checks a contract, it queries
the table to see if it is already checking one. If not, the thread inserts itself into the table,
and proceeds with the contract check. When the check completes, the thread removes itself
from the table.

The jContractorRuntime class provides static methods to determine if a thread is checking
a contract, and to manage assertion checking locks on each thread. A Java model of the
instrumented push(Object) method is shown in figure 6.

It is necessary to wrap each contract check in a try-finally block so that the lock is released
even if an exception is thrown while checking the contract. Usually, a contract violation
terminates the program, in which case it doesn’t matter if the lock is released or not. But the
error could be caught and handled. If so, contract checking would halt for the remainder of
the run if the lock were not released.

3.3. Implementing predicate logic support library

Implementing the logic for a quantifier in Java is quite easy since all common data struc-
tures implement the java.util.Collection interface, and provide iterators. The biggest
obstacle is finding a clean way of passing code into the iterator object. jContractor solves
this problem by introducing an Assertion interface, which declares the standard interface
method, eval(Object), to test the assertion. The implementation of the ForAll quantifier

jCONTRACTOR: INTRODUCING DESIGN-BY-CONTRACT TO JAVA 291

Figure 6. Final instrumented version of Stack.push (Object).

is shown in figure 7. The Exists and Elements quantifiers are implemented in a similar
way.

Finally, the static implies method of the Logical class allows programmers to write
expressions of the form A implies B, where A and B are of type boolean. Such an expres-
sion is the logical equivalent of ∼ A ∨ B. Using jContractor syntax, the expression would
be written Logical.implies(A, B).

3.4. Implementing RESULT

Postconditions often make assertions about the function’s result, which means that the post-
condition method must have a way of referring to the function’s return value. Implementing
this feature in jContractor requires that the result be captured and passed as an extra argu-
ment to the postcondition method. If the method’s return type is void, RESULT is declared
to be of type java.lang.Void. The runtime value of a Void RESULT will always be null.

The mechanics of supporting RESULT are simple. jContractor adds a new local variable to
each method with a postcondition for storing the result. Bytecode instrumentation replaces
the return instructions with instructions to save the return value to the result variable. Finally,

292 KARAORMAN AND ABERCROMBIE

Figure 7. jContractor’s implementation of the ForAll quantifier.

the instrumentation ensures that the computed result is passed to the postcondition during
contract checking. For void methods, there is no result to save, so a null value is passed to
the postcondition. A Java model of the instrumented size() method is shown in figure 8
to illustrate this transformation.

3.5. Implementing OLD

Postconditions often express how an object’s state was changed by the method’s execution.
Therefore, the postcondition must be able to refer to the state of the object just before ex-
ecuting the method. Eiffel provides the old keyword for this purpose. jContractor mimics
Eiffel’s old syntax by introducing the OLD instance variable. The syntax for both imple-
mentations is shown in figure 9.

In order to access old values in jContractor, the class must explicitly declare a private
instance variable called OLD, of the same type as the class. The variable is private because
it has meaning only in the class in which it is declared. Subclasses will declare their own
OLD variables.

There are two alternative approaches to supporting old references. The first technique is
to simply move the code from the old reference to the top of the method and save the result.
An example of this approach is shown in figure 10. This technique is used successfully
in some other Java DBC tools that rely on the presence of source code [7, 12, 14, 25].

jCONTRACTOR: INTRODUCING DESIGN-BY-CONTRACT TO JAVA 293

Figure 8. Instrumentation example to support RESULT.

Figure 9. Comparison of Eiffel and jContractor syntax for old.

294 KARAORMAN AND ABERCROMBIE

Figure 10. Implementing OLD by selectively saving data.

Figure 11. Implementing OLD with a clone.

However, it is not feasible when instrumenting bytecode. jContractor works with any valid
Java bytecode, even those that have run the gauntlet of obfuscators and optimizers. The
possibility of heavily obfuscated or optimized code makes it extremely difficult, if not
impossible, to extract the code that made up the OLD reference.

The second approach, used by jContractor, is to create a clone of the object before exe-
cuting the method body. When jContractor instruments a postcondition method, it redirects
references to OLD to the cloned copy that holds the object’s state at method entry. jContractor
uses the clone() method to create the copy, so all classes that contain OLD references must
implement the java.lang.Cloneable interface. Figure 11 illustrates this approach.

Unfortunately, simply storing the cloned state in theOLD instance variable is not sufficient,
because the value needs to be saved at the entry point of every method that uses OLD in its
postcondition. In the worst case scenario, OLD needs to be saved for every method call. This
leads jContractor to adopt a stack based variant of the solution. When execution enters a
method that needs to save OLD, jContractor creates a clone of the object, and pushes it onto
a stack. When the method exits, the object is popped from the stack, and used to check the
postcondition. jContractor’s version of push(Object) using this implementation is shown
in figure 12.

jCONTRACTOR: INTRODUCING DESIGN-BY-CONTRACT TO JAVA 295

Table 5. The four parts of a method’s contract.

Internal contract Defined in the same class as the method

External contract Defined in a separate contract class

Superclass contract Inherited from the superclass

Interface contracts Inherited from interfaces

Figure 12. Implementing OLD with a stack.

3.6. Implementing support for contract inheritance

jContractor’s implementation of Design by Contract works well with both class and interface
inheritance. A class inherits contracts from its superclass and implemented interfaces. A
method’s contract is made up of four parts, described in Table 5. Figure 13 shows how all
the pieces are combined to form the complete contract.

To ensure that the subclass method can only “weaken the precondition” and “strengthen
the postcondition.” the precondition for the subclass method is logical or-ed with the super
class precondition, and the postcondition is logical and-ed. Like postconditions, class in-
variants are logical and-ed. jContractor implements contract inheritance by instrumenting
each contract method to call the superclass contract method. Figure 14 shows an example
of this instrumentation.

Another approach to implementing contract inheritance is to copy the contract method
from the superclass into the subclass. However, we feel that this approach is not as clean
as calling the superclass method. More importantly, problems arise when contracts refer to
private members in the superclass. Copying the contract code into the subclass would cause
an illegal access error. Calling the superclass contract evaluates the contract in the context
of the superclass, and handles private members correctly.

However, the technique described above does not work for interfaces, which cannot
include contract code. Interface contracts must be written in separate contract classes,
which jContractor will find and merge into the implementing class.

Inherited contracts guarantee that when a method is called on an object, the contracts
will be met, regardless of the runtime type of the object. However, this guarantee is only

296 KARAORMAN AND ABERCROMBIE

Figure 13. How contracts are combined. Solid lines show where bytecode is copied, dotted lines show where
method calls are inserted.

meaningful for methods that behave polymorphically. Private methods, constructors, and
static methods do not behave this way, so contract inheritance does not make sense for these
methods. jContractor recognizes this, and only enforces inherited contracts for non-private,
non-static, non-constructor methods.

3.7. Supporting polymorphism

Contracts are essentially specifications checked at run-time. They are not part of the func-
tional implementation code, and a “correct” program’s execution should not depend on the

jCONTRACTOR: INTRODUCING DESIGN-BY-CONTRACT TO JAVA 297

Figure 14. An example of postcondition inheritance.

presence or enabling of the contract methods. In the rest of this section we discuss the
contravariance and covariance issues arising from the way contracts are inherited.

The inheritance of preconditions from a parent class follows contravariance: as a sub-
class provides a more specialized implementation, it should weaken, not strengthen, the
preconditions of its methods. Any method that is redefined in the subclass should be able
to at least handle the cases that were being handled by the parent, and in addition handle
some other cases due to its specialization. Otherwise, polymorphic substitution would no
longer be possible. A client of X is bound by the contractual obligations of meeting the
precondition specifications of X. If during runtime an object of a more specialized instance,
say of class Y (a subclass of X) is passed, the client’s code should not be expected to satisfy
any stricter preconditions than it already satisfies for X, irrespective of the runtime type
of the object. jContractor supports contravariance by evaluating the a logical-OR of the
precondition expression specified in the subclass with the preconditions inherited from its
parents. For example, consider the following client code snippet:

X x; // class Y extends class X
Y y = new Y(); // Y object instantiated

x = y; // x is polymorphically attached to a Y object
int i = 5;

x.foo(i); // only Precondition(X,[foo,int i]) need by met

When executing x.foo(), due to dynamic binding in Java, class Y’s the foo() method gets
called, since the dynamic type of the instance is Y. If jContractor is enabled this results in
the evaluation of the following precondition expression:

Precondition(X, [f oo, int i]) ∨ Precondition(Y, [f oo, int i])

This ensures that no matter how strict Precondition(Y,foo) might be, as long as the
Precondition(X,foo) holds true, x.foo() will not raise a precondition exception.

298 KARAORMAN AND ABERCROMBIE

The inheritance of postconditions is similar: as a subclass provides a more specialized
implementation, it should strengthen, not weaken the postconditions of its interface methods.
Any method that is redefined in the subclass should be able to guarantee at least as much as its
parent’s implementation, and then perhaps some more, due to its specialization. jContractor
evaluates the logical-AND of the postcondition expression found in the subclass with the
ones inherited from its parents.

3.8. Contract specification anomalies

jContractor prevents a subclass from strengthening an overloaded method’s precondition
by logical-OR’ing any inherited preconditions with that of the subclass. This approach
prevents program contract specification errors from violating contravariance. For example,
consider the following precondition specifications for the foo() method defined both in X
and Y, referring to the example code snippet in Section 3.7:

Precondition(X, [foo, int a]) : a > 0 (I)

Precondition(Y, [foo, int a]) : a > 10 (II)

From a specification point of view (II) is stricter than (I), since for values of a : 0 <

a <= 10, (II) will fail, while (I) will succeed, and for all other values of a, (I) and (II) will
return identical results. While perfectly accepted by jContractor, (I) and (II) illustrates an
error in the program’s contract specification. Subclass precondition, (II), is stronger than
the parent’s, (I). The call:

x.foo(5);

does not raise an exception using jContractor since it meets Precondition(X,foo,int a).
However, the implementor of class Y may perceive this as a problem since, due to Java’s late
binding, Y’s method foo(int a) will get called with no precondition violations even though
Y’s foo precondition seems to be violated. Clearly the problem lies with the design of X and
Y and their contract specifications. Theoretically these types of errors can be discovered
using formal verification, by proving that the following logical-implication holds for each
redefined method m():

Precondition(ParentClass, m) → Precondition(SubClass, m)

For the previous example, it is easy to prove that (I) does not logically-imply (II). However,
it is beyond the scope of jContractor to do formal verification for logical inference of
specification anomalies.

A different type of behavior anomaly is also present due to the logical-OR’ing with
parent’s preconditions. Consider the same example code snippet in Section 3.7, but this
time with a correct contract specification for the parent X and subclass Y:

Precondition(X, [foo, int a]) : a > 10 (I)

Precondition(Y, [foo, int a]) : a > 0 (II)

jCONTRACTOR: INTRODUCING DESIGN-BY-CONTRACT TO JAVA 299

In this example, subclass Y follows contravariance correctly and weakens parent X’s foo
precondition, allowing the additional range values for a, a : 0 < a <= 10. However, the
same call:

x.foo(5);

again does not raise an exception using jContractor. As with the earlier scenario, the
subclass Y’s precondition (II) gets evaluated since the reference x is bound to an object
of runtime type Y . Since (II) is not violated the precondition evaluates to true. This time,
however, the problem actually lies in the client’s code. Declared type of x is X , so the
client should respect the contract for class X. The client, however, calls x’s foo method
passing a value less than 10, violating X’s contract, (I). If x had been bound at runtime
to an object with the runtime type X jContractor would have caught the client’s violation
of the contract, however since the actual runtime binding is to an object whose runtime
type is of a more specialized subclass, Y , whose precondition is met, jContractor allows
the call without reporting any DBC exceptions. This can be considered a limitation of
jContractor.

Similar specification anomalies could also occur when a subclass strengthens its parent’s
invariants, or weakens one of its postconditions. jContractor, can be extended in the future
to detect and log diagnostic messages for design anomalies, say when any one of the logical-
OR’ed precondition expressions evaluates to false. In the first scenario above, jContractor
could log a diagnostic message that the precondition has been potentially illegally strength-
ened in the subclass, thus forcing the programmer to correct the precondition. In the second
scenario, the logged message could be used to highlight a client side contract violation,
which was safe for the particular runtime usage but potentially can lead to problems if a
parent instance were substituted.

3.9. Implementation of bytecode instrumentation

Our discussion of contract checking so far has illustrated code transformations using Java
source code models. The actual instrumentation, however, is done using Java class byte-
codes, and matches the logic of source code transformation. jContractor uses the Byte Code
Engineering Library (BCEL) [6] to instrument classes at the bytecode level, without re-
quiring source code or additional compilation. Figure 15 shows the source code for pop()
and its postcondition, and figure 16 shows the disassembled bytecode for these methods
(see [13] for an explanation of the instruction set). Instrumented versions of these methods
are given in figures 17 and 18. For brevity, this method has not been instrumented to check
an invariant, and does not have a precondition. The patterns for checking preconditions and
invariants are very similar.

Since a Java method can contain any number of return statements, jContractor replaces
all return instructions with a jump to the end of the method, where code is inserted to check
the postcondition and exit invariants.

jContractor uses the clone() method to allow postconditions to refer to the entry values
of members. However, this creates a dependency between postconditions and clone().

300 KARAORMAN AND ABERCROMBIE

Figure 15. Listing of Stack.pop() and postcondition.

Figure 16. Bytecode listing of uninstrumented Stack.pop() and Stack.pop Postcondition.

jCONTRACTOR: INTRODUCING DESIGN-BY-CONTRACT TO JAVA 301

Figure 17. Bytecode listing of instrumented Stack.pop().

Attempting to save an object’s state while evaluating a postcondition called from clone()
or from a method called by clone() would cause an infinite recursion. To illustrate this
recursion, we present the following example:

class Stack {
...
public void push (Object o) { . . . }
protected boolean push Postcondition (Object o,

Void RESULT) {
return size() == OLD.size() + 1;

}

302 KARAORMAN AND ABERCROMBIE

Figure 18. Bytecode listing of instrumented Stack.pop Postcondition.

public Object clone () {
Stack other = new Stack();
for (int i = 0; i < implementation.size(); i++) {
if (implementation.elementAt(i) instanceof Cloneable){
other.push(((Cloneable)implementation.
elementAt(i)).clone());

} else {
other.push(implementation.elementAt(i));

}
}
return other;

}

Suppose that a stack, S1, attempts to clone itself. The clone, S2, is created and an object is
pushed onto it. Evaluating the postcondition of push() requires a reference to OLD, which

jCONTRACTOR: INTRODUCING DESIGN-BY-CONTRACT TO JAVA 303

requires a call to clone(). S2 attempts to clone itself, which creates S3. When an object is
pushed onto S3, the postcondition will need to be evaluated, which requires a clone of S3.
And so on. To avoid cases like this, jContractor does not check contracts while executing
clone() methods. Contract checks are suppressed using the same mechanism used for
Assertion Evaluation Rule. See Section 3.2 for a discussion of this mechanism.

Statements 13–26 in figure 17 make up the original pop() method. Note that the return
instruction has been replaced with a jump to the end of the method. (This jump could be
eliminated, but jContractor does not perform such optimization.) Statement 29 saves the
result to the local variable &result, which jContractor adds to the method. Statements 30
and 33 check to see if the postcondition should be checked. If so, the the postcondition is
checked by statements 39–44. Statements 47–59 are executed when the postcondition fails,
and 60–64 are executed when the postcondition passes.

At this point, all of the major issues involved in runtime contract checking have been
discussed. The ultimate goal (adding contract checking code to a class) is acomplished
by way of small and largely independent subgoals (for example, adding code to check a
precondition or handling old references). jContractor takes an assembly line approach to
bytecode instrumentation. Each idependent operation is coded as a separate class, extending
an abstract Transformation class. Then the class file to be instrumented is processed by
each Transformation object, and at the end of the sequence it emerges fully instrumented.
Figure 19 shows the sequence of transformations applied by jContractor.

This architecture is simple, but effective. Most of the transformations are completely
independent. A few, however, need to save data for subsequent transformations. A shared
hash table is created, into which a transformation can put data to be read later by another
transformation. This solution is satisfactory for jContractor, but offers much opportunity for
improvement. A generally useful framework would provide a more controlled mechanism
to allow transformations to exchange data.

4. Future work

4.1. Factory style instantiation

The implementation described in this paper allows the user to control instrumentation
down to the class level. However, it is possible to control instrumentation on an instance-by-
instance basis, using a factory model to instrument classes. Instead of creating an object with
the new keyword, the client could invoke the jContractor.create(String, Class[],
Object[]) method, which will instantiate and return an instrumented instance of the class.

Factory style instantiation can be implemented with slight modification to jContractor’s
current bytecode transformations. First, jContractor will create a new class that is a subclass
of the base class. Then a method will be added to the subclass for each non-private method
of the superclass with an associated contract. The bodies of these methods will simply wrap
contract checking code around a call to the superclass method. Finally, jContractor creates an
instance of the instrumented class using the Java reflection API, and returns the object to the
client. Thanks to polymorphism, the client can treat the instrumented object just as if it were
the real thing, and all contracts will be checked. Figure 20 gives an example of this process.

304 KARAORMAN AND ABERCROMBIE

Figure 19. Byte code transformation.

This approach suffers from a few limitations. Private methods cannot be instrumented,
because they are not visible in the subclass. Final classes can not be instrumented, because
they cannot be subclassed. Also contracts from a separate contract class could refer to private
members that are inaccessible to the subclass. These difficulties aside, a factory approach

jCONTRACTOR: INTRODUCING DESIGN-BY-CONTRACT TO JAVA 305

Figure 20. Factory instrumentation and instantiation.

also requires the programmer to explicitly control instrumentation. However, the value of
being able to create instrumented instances using a factory outweighs these drawbacks.
Factory instantiation would give the programmer complete control over instrumentation,
and could be useful for permanently enabling contracts in an isolated part of the code, or
for programmatically controlling contract checks.

4.2. Exception handling

Meyer first introduced the rescue and retry mechanism to Eiffel Language as part of its
built-in Design by Contract features to perform exception handling and recovery which
only takes place when contract monitoring is enabled.

We proposed a jContractor pattern to support exception handling as part of an method’s
contract specification, which is outlined in Table 1 and explained in Section 2.2. We have
left it largely as an unsupported feature due to the controversial nature of the feature. If
such recovery from an exception condition is possible, it is better to incorporate this handler
into the implementation of the method itself, which forestalls throwing the exception at all.
The general support for exceptions as a language feature have been largely attributed to
Goodenough [9]. Black [2] on the other hand provided a case against exception handling.
We also refer the reader to [24] for an interesting presentation of some of the issues and
capturing some of the debate on the topic.

The pattern is kept in the jContractor design, however, to illustrate that support can be
added in the future and that this is not an inherently unsupportable Design by Contract
mechanism in the design of jContractor.

306 KARAORMAN AND ABERCROMBIE

jContractor can implement OnException handlers by instrumenting the method to add
a wrapper around the code to catch exceptions thrown inside the original method body. If
the contracts include an exception-handler method for the type of exception caught by the
wrapper, the exception handler code gets executed.

4.3. State modification support: Change lists

Many programming languages distinguish between functions, which perform a computation
and return a result, and procedures which modify the state of an object or of global variables.
Often a method’s contract will specify which fields of an object the method can modify.
The contract will fail if any other fields are modified. This feature is implemented in the
Jass tool [7].

This feature could be implemented by associating with each method a list of fields that
the method is allowed to change. The method may only write to fields in it’s “change list”.
If the list is empty, it may not write to any fields.

The first challenge to implementing this feature is devising a convenient syntax. One
solution is to introduce a class of static “dummy” methods:

class ChangeList {
public static void add (Object i) { }
public static void add (int i) { }
public static void add (short i) { }
public static void add (float i) { }
public static void add (double i) { }
public static void add (byte i) { }
public static void add (char i) { }
public static void add (boolean i) { }

public static void makeEmpty () { }
}

This class could be used in contracts as follows:

protected boolean push Postcondition (Object o, Void RESULT) {
ChangeList.add(implementation);
ChangeList.add(size);
...

}

protected boolean size Postcondition (int RESULT) {
ChangeList.makeEmpty();
...

}

jCONTRACTOR: INTRODUCING DESIGN-BY-CONTRACT TO JAVA 307

The contracts compile into the following bytecode:

protected boolean push Postcondition(Object arg1, Void arg2)
0: aload 0
1: getfield ChangeListTest.implementation Ljava/util/Vector;
4: invokestatic ChangeList.add (Ljava/lang/Object;)V
7: aload 0
8: getfield ChangeListTest.size I
11: invokestatic ChangeList.add (I)V
...

protected boolean size Postcondition(int arg1)
0: invokestatic ChangeList.makeEmpty ()V
...

As long as the add method is passed a field of the present object, jContractor can identify
the fields that are allowed to change by matching the pattern: “ GETFIELD <field>;
INVOKESTATIC ChangeList.add;”. It can also detect if add is called with an argument
that doesn’t make sense, as in ChangeList.add(foo.bar) or ChangeList.add("Hello
world!"), and throw an error accordingly. If no ChangeList directives are present in a
postcondition, then the method has an implicit change list that allows it to modify all the
fields in the object.

A full implementation of the change list concept would require jContractor to monitor the
state of fields at run-time, and compare the values before and after method invocation. This
can be done, and is the approach that Jass takes. However, creating clones of fields would
be computation and time intensive, and would also require that the data types be cloneable.
jContractor can determine whether or not a field has the potential to change as a result of
method execution before execution begins. jContractor just needs to search the method body
for PUTFIELD and INVOKEVIRTUAL instructions. While this approach does not address the
possibility that the field might be modified in an invoked method it is practical and matches
the exacting contract specification of the method in hand.

4.4. Performance

Run-time contract checking imposes some performance penalties. Instrumenting class files
as they are loaded results in a longer startup time. This time grows linearly with the number
of classes that need to be instrumented. Once execution begins, the time required for contract
checking grows linearly with the number of contracts that need to be checked.

It is difficult to present meaningful performance metrics for a tool like jContractor since
the performance impact of evaluating contracts depends greatly on the nature of the con-
tracts. To illustrate some of the issues involved, we have measured the performance of jCon-
tractor running a simple benchmark using the Stack class already discussed. The benchmark
pushes 10,000 java.lang.Integer objects onto the stack, and then pops them off. Per-
formance was measured on an 863 MHz machine with 128 MB of RAM, running Windows

308 KARAORMAN AND ABERCROMBIE

Table 6. Average execution times for Stack benchmark. All measurements in seconds.

Instrumentation level None Pre Pre & Post All

Execution time 0.40 1.63 95.68 161.72

Table 7. Average execution times for Stack benchmark without OLD references . All measurements in seconds.

Instrumentation level None Pre Pre & Post All

Execution time ——- 1.74 2.05 2.42

XP, with jContractor instrumenting classes on-the-fly. The results of this test are presented
in Table 6.

The benchmark results show that adding contract checking at the precondition level
roughly quadruples execution time, in this example. However, when the level of contract
checking is increased to preconditions and postconditions, the execution time increases
more than two hundred times. The reason for such a drastic increase is the complexity
of the contract methods. For example, the benchmark is obtained while evaluating the
following contracts:

protected boolean push Postcondition (Object o,
Void RESULT) {
return (searchStack(o) != -1) && (size() == OLD.

size() + 1);
}

protected boolean pop Postcondition (Object RESULT) {
return (RESULT != null)
&& (OLD.searchStack(RESULT) != -1)
&& (size() == OLD.size() - 1);

}

In order to evaluate the OLD references, jContractor must create a clone of the stack, using
the clone() method which has complexity of O(n) or worse. The uninstrumented push()
and pop() methods have complexity O(1). In this case we have O(1) complexity functions
that become O(n) as a result of contract evaluation.

When the references to OLD are removed from Stack, the execution time decreases dras-
tically, as shown by Table 7. The conclusion to be drawn from this examination is that
the performance impact of contract checking depends on the contracts. If the contracts are
simple, evaluating them increase execution time, but will not change the time complexity
of the program.

jCONTRACTOR: INTRODUCING DESIGN-BY-CONTRACT TO JAVA 309

5. Related work

Design by Contract originated in the Eiffel language, and has been implemented in many
others. There are several tools available that support DBC for Java. However, most require
source code availability, or use a special language to write contracts. jContractor allows
programmers to write contracts in pure Java, and can instrument classes even when the
source code is not available.

5.1. Design By Contract using java

Duncan and Hölzle describe Handshake [8], a dynamically linked library that intercepts
JVM’s file accesses, and instruments classes on the fly. Handshake does not require source
code for the classes that it instruments; the programmer specifies contracts in a separate
file, using a special, Java-like syntax. An advantage of Handshake over jContractor is that it
can add contracts to final classes and to system classes, whereas jContractor is unable to
instrument system classes, due to restrictions in the system class loader. On the downside,
Handshake does not support the OLD construct or allow postconditions to refer to the
RESULT and needs to be ported to each operating system.

Kramer’s iContract [12] is a source code preprocessor that allows programmers to embed
contracts in comments using the @pre, @post, and @invariant tags. This approach tightly
couples specification and documentation, and allows contracts to be easily extracted by
JavaDoc-style tools. iContract also supports the Forall and Exists quantifiers. iContract
offers a clean and convenient syntax, but requires source code availability.

Jass [7] is another tool that supports Design by Contract using a source code preprocessor.
In adition to preconditions, postconditions, and invariants, Jass supports loop variants and
invariants, predicate logic quantifiers, and Eiffel-style “rescue-retry” exception handling.
Jass provides a more robust mechanism to control how a class is used in an inheritance
heirarchy than most other Design by Contract implementations, and a mechanism to specify
the instance variables that a method is a allowed to change, similar to the ChangeList
class usage introduced in Section 4.3. Jass also supports “trace assertions,” which express
constraints on the order in which events occur.

JMSAssert [14], from Man Made Systems, also allows contracts to be embedded in com-
ments. However, rather than acting as a preprocessor that outputs instrumented Java code,
JMSAssert compiles embedded contracts into JMScript, a Java based scripting language.
The contracts are checked using a DLL that extends the JVM. This approach leaves the
orignal source code and bytecode unmodified. However, using a dynamically linked library
creates a dependence on the operating system, and JMSAssert is currently only available
for Microsoft Windows.

The Parasoft Corporation produces JContract [25], and a complementary unit testing
and static analysis tool called JTest. Like iContract and Jass, JContract contracts are
specified in comments. JContract includes the ForAll and Exists quantifiers. In addition
to the standard DBC constructs, JContract allows the programmer to express contracts
that control how a method is used in a multithreaded application, and provides a logging
mechanism.

310 KARAORMAN AND ABERCROMBIE

Murray and Parson introduce an interesting approach based on using OCL [26] as a
specification language to express correctness constraints and the Java Debug Interface
(JDI) as a verification API [19]. Contracts are expressed using OCL and fed separately
to an auditor application which is in charge of launching the target Java application in
a separate VM with appropriate method entry and exit breakpoints enabled. The auditor
checks the contraints associated with each entry and exit event and detects violations.

5.2. Introducing design by contract to other languages

Plosch [22] introduce Design by Contract to Python using an approach and syntax similar
to iContract. Contracts are specified as assertions in comments by using the keywords req,
ensure and inv. A modified interpreter parses the contracts and performs runtime checking
of the assertions.

Porat and Fertig propose an extension to C++ class declarations to permit specification
of pre- and postconditions and invariants using an assertion-like semantics to support Design
by Contract [23].

Cheon and Leavens [4] introduce a runtime assertion checker for the Java Modelling
Language (JML) [18]. Their approach is very similar to iContract style of supporting Design
by Contract through specifications expressed using a similar special syntax embedded in
comments. The drawback of the approach is that it requires specialized JML compiler to
produce bytecodes which checks the assertions at runtime.

5.3. Generalized contract specification and instrumentation mechanisms

An example of a specification language for expressing Design by Contract constructs such
as invariants, pre- and post-conditions is the object constraint language (OCL) [26], which
is a part of the UML standard [21]. OCL allows construction of logical expressions and
improves the precision of a UML specification.

Cheesman and Daniels describe in [3] how to specify components in an extended UML
version and OCL with contractually specified interfaces. Here the contracts consist of
invariants, preconditions, postconditions and intra interface constraints.

Sjorgen describes a method for supporting Design by Contract on the .NET platform
using UML and OCL for specifying components in Chapters 2 and 6 of [5].

Nethercote and Seward has developed Valgrind [20] as a meta-tool: a tool for making
tools. Valgrind provides a programmable framework for creating program supervision tools
for x86 Linux C/C++ developers which can be used for example for debugging, logging,
memory leaks and access violations. Valgrind is similar to jContractor in the sense that it
performs runtime monitoring based on object code instrumentation. It should be possible
to develop generalizable skins to support contract style assertion checks in C/C++ using
Valgrind.

Arnout and Simon introduce .NET Contract Wizard [1] to provide .NET developers the
ability to add contracts to a .NET assembly independently from the .NET language it is
initially written in. This tool takes contracts expressed in Eiffel syntax and in turn creates
a proxy to the original assembly (written in Eiffel) without any changes to the original
component.

jCONTRACTOR: INTRODUCING DESIGN-BY-CONTRACT TO JAVA 311

6. Conclusion

In this paper we describe the design and implementation of a pure Java library, jCon-
tractor, which requires no special tools such as modified compilers, modified JVMs, or
pre-processors to support Design by Contract. jContractor allows programmers to express
contracts using pure Java in the form of precondition, postcondition, and invariant methods.
Contract methods can be added to any Java class or interface or provided in a separately
compiled contract class. jContractor introduces a novel bytecode engineering technique
which allows it to check contracts even when the source code is not available.

Since contract methods are allowed to use unconstrained Java expressions, in addition
to runtime contract checking they can perform additional runtime monitoring, verification,
logging, and testing. For example, the code snippet below shows how jContractor could be
used as a logging tool. jContractor also allows this code to be easily enabled and disabled
by turning contract checking on and off. However, jContractor was designed to implement
Design by Contract, and some of its features (support for inheritance, for example) may not
be appropriate in other domains.

protected boolean push Precondition (Object o) {
System.out.println("Pushing " + o + "...");
return true;

}

jContractor provides a rich set of syntactic constructs useful for expressing powerful
contract specifications without extending the Java language or runtime environment. These
include support for predicate logic expressions, the ability to refer to the state of the object
at method entry (old), and the ability to refer to the computed result value for postcon-
dition evaluation. A major advantage of jContractor’s pure library based approach is that
programmers are free to use their standard development tools and environments, and can
also further extend jContractor’s capabilities.

Allowing fine grain control over the level of monitoring at runtime adds great flexibility
to the software development, testing and deployment cycles. Leaving the contract code
within deployed class bytecodes results in no extra runtime performance penalties, but can
assist greatly in field tests and troubleshooting.

jContractor has been released under the Apache Open Source License, and is available
for download from: http://jcontractor.sourceforge.net.

References

1. K. Arnout and R. Simon, “The .NET Contract Wizard: Adding Design by Contract to languages other than
Eiffel,” in Proceedings of TOOLS 39, IEEE Computer Society, 2001.

2. A.P. Black, “Exception Handling: The case against,” Technical Report TR-82-01–02, University of Washington
Computer Sciences Department, January 1982.

3. J. Cheesman and J. Daniels, UML Components—A Simple Process for Specifying Component-Based Software,
Addison-Wesley, 2000.

312 KARAORMAN AND ABERCROMBIE

4. Y. Cheon and G.T. Leavens, “A runtime assertion checker for the Java Modelling Language (JML),” in
International Conference on Software Engineering Research and Practice (SERP) 2002, Las Vegas, Nevada,
USA, June 24–27, 2002.

5. I. Crnkovic and M. Larsson (ed.), Building Reliable Component-Based Software Systems, Artech House
Publishers, July 2002.

6. M. Dahm, Byte Code Engineering with the BCEL API, Technical Report B-17-98, Institut für Informatik,
Freie Universität Berlin (1998).

7. M.M. Detlef Bartetzko, Clemens Fischer, and H. Wehrheim, “Jass—java with assertions,” Vol. 55, 2001.
8. A. Duncan and U. Hölzle, “Adding Contracts to Java with Handshake,” Technical Report TRCS98-32, De-

partment of Computer Science, University of California, Santa Barbara (1998).
9. J.B. Goodenough, “Exception Handling: Issues and a proposed notation,” Communications of the ACM,

Vol. 18, No. 12, 1975.
10. C. Hoare, “An Axiomatic basis for computer programming,” Communications of the ACM Vol. 12, No. 10,

1969.
11. M. Karaorman, U. Hölzle, and J. Bruno, jContractor: A Reflective Java Library to Support Design By Contract,”

in Proceedings of Meta-Level Architectures and Reflection, 2nd International Conference, Reflection ’99.
Saint-Malo, France. Lecture Notes in Computer Science #1616, Springer Verlag, 1999, pp. 175–196.

12. R. Kramer, iContract—The Java Design by Contract Tool, in J.G. Madhu Singh, Bertrand Meyer and
R. Mitchell, (eds.), Proceedings of TOOLS USA ’98, Santa Barbara, California, August 3-7, 1998, 1998.

13. T. Lindholm and F. Yellin, The Java Virtual Machine Specification, Addison-Wesley, Reading, 1999.
14. Man Machine Systems, “Design by contract for java using JMSAssert,” Technical report, URL

http://www.mmsindia.com/DBCForJava.html
15. B. Meyer, Eiffel: The Language, Prentice Hall, New York, 1992.
16. R. Mitchell and J. McKim, Design by Contract, by Example, Addison-Wesley, Boston, 2001.
17. B. Meyer, “Object Oriented Software Construction,” 2nd ed. Prentice Hall, Upper Saddle River, 1997.
18. G.T. Leavens, A.L. Baker, and C. Ruby, “JML: A notation for detailed design,” in H. Kilov, et al., (eds.),

Behavioral Specifications of Businesses and Systems. Kluwer Academic Publishers, Boston, 1999, pp. 175–
188.

19. D. Murray and D. Parson, “Automated Debugging in Java using OCL and JDI,” in Proceedings of Fourth
International Workshop on Automated Debugging (AADEBUG 2000), Munich, August 2000.

20. N. Nethercote and J. Seward, “Valgrind: A program supervision framework,” in Proceedings of the Third
Workshop on Runtime Verification (RV’03), Boulder, Colorado, USA, July 2003.

21. Object Management Group, “OMG Unified Modeling Language Specification,” report version 1.3, June 1999,
Object Management Group, 1999.

22. R. Plosch, “Design by Contract for Python,” in Proceedings of Asic Pacific Software Engineering Conference,
IEEE Computer Society, 1997.

23. S. Porat and P. Fertig, “Class Assertions in C++,” Journal of Object Oriented Programming, Vol. 8, No. 2,
pp. 30–37, 1995.

24. D. Thain and M. Livny, “Error Scope on a Computational Grid: Theory and Practice,” in Proceedings of the
11th IEEE Symposium on High Performance Distributed Computing (HPDC-11), Edinburgh, Scotland, July
2002.

25. “Using Design by Contract to Automate Java Software and Component Testing,” Technical report, Parasoft
Corporation. URL http://www.parasoft.com/jsp/products/Jcontract

26. J. Warmer and A. Kleppe, The Object Constraint Language, Addison Wesley, 1999.

