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Abstract. This paper presents an on-the-fly and symbolic technique for efficiently checking timed automata
emptiness. It is symbolic because it uses the simulation graph (instead of the region graph). It is on-the-fly because
the simulation graph is generated during the test for emptiness. We have implemented a verification tool called
PROFOUNDER based on this technique. To our knowledge, PROFOUNDER is the only available tool for checking
emptiness of timed Büchi automata. To illustrate the practical interest of our approach, we show the performances
of the tool on a non-trivial case study.
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1. Introduction

Formal methods provide a rigorous framework for modeling and analyzing the behavior
of critical systems. Formal specifications of the system’s behavior and the requirements,
using suitable description languages, permit to formally prove that the requirements are met.
The development of efficient software tools supporting the use of formal methods in system
design is an active area of research. Many of these tools follow the so-called model-checking
approach, which is based on the exploration of the system’s state-space, yielding a yes/no
answer to the verification question “does the system meet its requirements?”, and providing
a counter-example whenever the answer is no. The main problem with model checking is
the so-called state-explosion problem, that is, the fact that the size of the state-space of most
realistic systems grows prohibitively large with the number of system variables and system
components.

Two techniques, among others, have been proven useful in practice for tackling the state-
explosion problem: symbolic and on-the-fly model-checking. Symbolic model-checking
algorithms reason in terms of sets of states, which are represented implicitly by means of
predicates. This is in contrast to enumerative algorithms, which reason in terms of single
states, represented explicitly by listing the values of all variables composing the state.
The advantage of symbolic techniques is that the number of states in the state-space is
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not directly related to the size of the symbolic (predicate) representation, which therefore
results in significant gains in space as well as time complexity.

On-the-fly model-checking algorithms check the property during the generation of the
state-space, as opposed to non-on-the-fly techniques, where the entire state-space needs
to be generated before-hand. The advantage of on-the-fly techniques is that sometimes
the property is found true or false early enough during the search, with only part of the
state-space having been generated.

Many formal frameworks that have been proposed to reason about real-time systems
are based on timed automata [5]. These automata are equipped with clocks, continuous
variables used to measure time, ranging over the positive reals. Consequently, the state-
space is infinite and cannot be explicitly represented by enumerating all states. Fortunately,
there exists a finite partition of the state-space (called the region graph) into equivalence
classes (called regions). The region graph preserves the properties of the infinite state space
that can be expressed formally: region-equivalent states satisfy the same properties. Thus,
from the point of view of the developer of verification algorithms for timed automata, the
region graph is the finest possible finite representation of the state-space. Consequently, we
can classify algorithms based on the region graph as enumerative.

Unfortunately, the size of the region graph is exponential in the size of the timed automaton
(this blow-up adds to the exponential blow-up of the discrete state space by composing many
automata in parallel). In order to tackle this problem, symbolic or on-the-fly approaches
have been proposed:

1. A symbolic model-checking algorithm which computes backwards a fixpoint over unions
of regions rather than individual regions [14].

2. An on-the-fly algorithm which works on the region graph [13].
3. Algorithms working on the quotient graphs of time-abstracting bisimulations [4, 22, 28],

which can be generated using a partition refinement technique [17, 20].

One drawback of the fixpoint technique is that the fixpoint is calculated over the entire set
of potential states, which means also states which are unreachable from the set of initial
states. Another drawback is that it uses non-convex polyhedra to represent general unions
of regions. Non-convex polyhedra do not have an efficient canonical representation, which
results in expensive operations. The second technique uses the region graph, thus, it is viable
only in case a counter-example is found quickly, so that only a small part of the region graph
has to be generated. The third technique also suffers from state explosion, since the quotient
graph is usually too big (there is a trade-off between the abstraction power and the class
of properties that are preserved). Moreover, refinement is costly, since the same node must
generally be refined many times.

Another approach, which is both symbolic and on-the-fly, is based on the so-called
simulation graph. The nodes of this graph are unions of regions which can be represented
in an efficient manner. Moreover, the simulation graph can be generated forward and on-
the-fly, using standard depth-first or breadth-first search. Although the simulation graph can
be exponentially large in the worst-case, in practice, it is orders of magnitude smaller than
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the region graph. Until now, the simulation graph has been used only for the verification of
simple safety properties, which can be reduced to reachability [11, 16].

In this paper, we show that the simulation graph can also be used for on-the-fly verification
of liveness properties, and in particular, in order to check language emptiness of timed Büchi
automata (TBA). The algorithms we propose can be classified as both symbolic and on-
the-fly in the following sense. They are symbolic, because they use the simulation graph
(instead of the region graph). They are on-the-fly, because the simulation graph is generated
during the test for emptiness. Thus, if the language of the TBA is not empty, a witness can
be generated as soon as one is found, without having to generate the entire simulation graph.
Our contribution is both theoretical and practical.

At the theoretical level, we establish a correspondence between abstract runs (corre-
sponding to cycles in the simulation graph) and concrete runs of the TBA. More precisely,
we show that every infinite run of the automaton is inscribed in a cycle in the simulation
graph and that every cycle contains an inscribed run. The second part of the theorem is
non-trivial, since the simulation graph does not have the pre-stability property of the region
graph, that is, an edge S → S′ between two symbolic states S and S′ does not imply that
every state in S has a successor in S′.

Having established the above correspondence, we study the problem of acceptance.
Timed Büchi automata introduce two types of acceptance conditions, namely, discrete
(standard Büchi acceptance conditions), as well as timed (implicit in the requirement of
time divergence). In region graph algorithms like the ones in [5, 13] time divergence is
reduced to checking some kind of fairness or generalized Büchi acceptance condition
which actually results in even more expensive algorithms.

To avoid the problem of timed acceptance whenever possible, we use the notion of strongly
non-zeno timed automata, introduced in [26]. Strong non-zenoness ensures that discrete
acceptance conditions imply time divergence. We show that the complexity of checking
language emptiness for a strongly non-zeno TBA is linear in the size of its simulation
graph. A sufficient condition for strong non-zenoness is structural non-zenoness [26]. A
TBA A is structurally non-zeno if every accepting structural loop of A spends a strictly
positive amount of time. Structural non-zenoness holds in practice more often than not. It
is both syntactic and compositional (i.e., preserved by parallel composition), and therefore,
it is easy to check it, even for large systems.

In the general case, where strong non-zenoness does not hold, we provide two alternatives
for checking emptiness. First, we show that any TBA A can be transformed into a strongly
non-zeno TBA snz(A) by adding one extra clock, such that the language of A is empty iff
the language of snz(A) is empty. Second, we show that for a special class of TBA, namely,
automata with persistent acceptance conditions (once an accepting state is entered, only
accepting states can be visited), emptiness can be checked by examining only the simple
cycles, that is those where each node appears only once. We also show that exploring simple
cycles is not sufficient in the general case. That is, there exist TBA (having non-persistent
acceptance conditions) whose language is non-empty, yet no simple cycle in their simulation
graph is both accepting and lets time progress.

At the practical level, we justify the interest of our work by analyzing a non-trivial case
study. The case study has been treated using a prototype implementation of our techniques
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in a tool called PROFOUNDER. The case study involves verifying an asynchronous circuit
which is a component of the Post Office communication co-processor [23].

2. Timed Büchi automata

Let N denote the set of natural numbers and R the set of non-negative real numbers. Let
X be a finite set of variables taking values in R. An X -valuation is a function v : X → R
that assigns to each variable in X a value in R. 0 denotes the valuation assigning 0 to all
variables in X . Given a valuation v and δ ∈ R, v + δ is defined to be the valuation v′ such
that v′(x) = v(x) + δ for all x ∈ X . Given a valuation v and X ⊆ X , v[X := 0] is defined
to be the valuation v′ such that v′(x) = 0 if x ∈ X and v′(x) = v(x) otherwise.

An atomic constraint on X is a constraint of one of the forms x ≤ c, x < c, x − y ≤ c,
x − y < c, where x, y ∈ X and c is an integer. A valuation v satisfies an atomic constraint
α, denoted v |= α, if substituting the values of the clocks in the constraint yields a valid
inequality. For example, v |= x ≤ 5 iff v(x) ≤ 5. A boolean expression on atomic constraints
defines a set of X -valuations, called an X -polyhedron. For example, x ≤ 5 ∧ y > 3 defines
the set of all valuations v such that v(x) ≤ 5∧v(y) > 3. A conjunction of atomic constraints
or negations of atomic constraints defines a convex X -polyhedron.1

Definition 2.1 (Timed Büchi automata). A timed Büchi automaton (TBA) [5] is a tuple
A = (X , Q, q0, E, invar, F), where:

• X is a finite set of clocks.
• Q is a finite set of discrete states, q0 ∈ Q being the initial discrete state.
• F ⊆ Q is a finite set of accepting states.
• E is a finite set of edges of the form e = (q, ζ, X, q ′), where q, q ′ ∈ Q are the source

and target discrete states, ζ is a convex X -polyhedron, called the guard of e, and X ⊆ X
is a set of clocks to be reset upon crossing the edge.

• invar is a function associating with each discrete state q a convex X -polyhedron, called
the invariant of q .

Given an edge e = (q, ζ, X, q ′), we write source(e), target(e), guard(e) and reset(e) for
q, q ′, ζ and X , respectively. Given a discrete state q, we write in(q) (resp. out(q)) for the
set of edges of the form ( , , , q) (resp. (q, , , )). We assume that for each e ∈ out(q),
guard(e) ⊆ invar(q).

A state of A is a pair s = (q, v), where q ∈ Q and v ∈ invar(q). We write discrete(s) to
denote q . The initial state of A is s0 = (q0, 0).

An edge e = (q1, ζ, X, q2) can be seen as a (partial) function on states. Given a state
s = (q1, v) such that v ∈ ζ and v[X := 0] ∈ invar(q2), e(s) is defined to be the state
s ′ = (q2, v[X := 0]). Whenever e(s) is defined, we say that a discrete transition can be
taken from s to s ′.

A number δ ∈ R can also be seen as a (partial) function on states. Given a state s = (q, v),
if v + δ ∈ invar(q) then δ(s) is defined to be the state s ′ = (q, v + δ), otherwise δ(s) is
undefined. Whenever δ(s) is defined, we say that a time transition can be taken from s to s ′.
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Figure 1. A TBA with zeno runs (left) and a strongly non-zeno TBA (right).

An infinite sequence of pairs (δ0, e0), (δ1, e1), . . . , where for all i = 0, 1, . . . , δi ∈ R
and ei ∈ E , defines a run of A starting at state s, if s is a state of A and the sequence of
states s0 = s, si+1 = ei (δi (si )) is defined for all i = 0, 1, .... The run is called accepting if
there exists an infinite set of indices J ⊆ N, such that for all i ∈ J , discrete(si ) ∈ F . The
run is called zeno if the sequence δ0, δ0 + δ1, δ0 + δ1 + δ2, ... converges, that is, if ∃δ ∈ R,
∀k = 0, 1, . . . , �i=0,...,kδi < δ. Otherwise, the run is called non-zeno.

Example 2.2. Consider the two TBA shown in figure 1. Circles represent discrete states,
double circles represent accepting states, and arrows represent edges. Labels a, b, c refer
to edges. A run of A1 starting at state (q0, 0) is (0.5, a), (0.25, a), (0.125, a), ...: this run is
zeno. In fact, any run of A1 taking a-transitions forever is zeno. On the other hand, the run
(0, b), (1, c), (1, c), · · · of A1 is non-zeno. Finally, every accepting run of A2 is non-zeno.

Definition 2.3 (Language and emptiness problem for TBA). The language of A, denoted
Lang(A), is defined to be the set of all non-zeno accepting runs of A starting at the initial
state s0. The emptiness problem for A is to check whether Lang(A) = ∅.

The emptiness problem for TBA is known to be PSPACE-complete [5]. More precisely,
the worst-case complexity of the problem is linear in the number of discrete states of the
automaton, exponential in the number of clocks, and exponential in the encoding of the
constants appearing in guards or invariants.This worst-case complexity is inherent to the
problem: as shown in [10], both the number of clocks and the magnitude of the constants
render PSPACE-hardness independently of each other.

Parallel composition of TBA. In most practical applications, the system to be verified is
composed of many components executing in a concurrent fashion. Each of these components
can be modeled as an automaton (timed or untimed, with or without acceptance conditions),
and a composition operator can be used to define a product automaton, which captures the
concurrent execution of the components. Many choices exist for the definition of parallel
composition. We will briefly describe the most popular one for timed automata. We omit
the formal details, referring the reader to [30].

The usual parallel composition operator for timed automata is based on the interleaving of
a set of their discrete transitions and the synchronization of another set of discrete transitions.
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Interleaving means that only one automaton takes the transition, while the rest do not change
state. Synchronization of a set of transitions means that the guards of all corresponding
edges must be satisfied, all transitions are taken simultaneously, and all clocks reset in the
corresponding edges are reset in parallel. This composition operator, which will be denoted
‖, corresponds semantically to the intersection of the timed languages that each individual
timed automaton defines. The product automaton can be generated on-the-fly, given the
component automata and the synchronization sets.

Example 2.4. Two examples of TBA are shown in figure 2. The examples also serve
to illustrate how common properties can be verified by reducing the problem to a TBA
emptiness problem. Automaton A1 can be used to verify the so-called bounded-response
property “every p is followed by a q within at most 3 time units”. A1 expresses the negation
of this property, namely, existence of a run where p is followed by a time elapse of more
than 3 time units during which q does not hold. A system A satisfies this bounded-response
property iff Lang(A‖A1) = ∅ (we assume that in the parallel product A and A1 synchronize
on every discrete transition). Automaton A2 can be used to verify the (untimed) property
“p holds forever after some point on”. A2 expresses the negation of this property, namely,
existence of a run where ¬p is true infinitely often. A system A satisfies the above untimed
property iff Lang(A‖A2) = ∅.

Definition 2.5 (Strong non-zenoness). A TBA A is called strongly non-zeno if all accepting
runs starting at the initial state of A are non-zeno.

A structural loop of a TBA A is a sequence of distinct edges e1 · · · em such that target(ei ) =
source(ei+1), for all i = 1, . . . , m (the addition i +1 is modulo m). We say that the structural
loop is accepting if there exists some i = 1, . . . , m such that target(ei ) is an accepting
state. We say that the structural loop spends time if there exist a clock x of A and indices
0 ≤ i, j ≤ m such that:

1. x is reset in step i , that is, x ∈ reset(ei ), and
2. x is bounded from below in step j , that is, (x < 1) ∩ guard(e j ) = ∅.

Definition 2.6 (Structural non-zenoness). We say that a TBA A is structurally non-zeno
if every accepting structural loop of A spends time.

Figure 2. Two timed Büchi automata.
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For example, in figure 1, automaton A1 is not structurally non-zeno, while automaton A2

is. A2 would not be structurally non-zeno if any of the guards x ≥ 1 was missing.

Lemma 2.7. If A is structurally non-zeno then A is strongly non-zeno.

Proof: Let ρ = (δ0, e0)(δ1, e1) · · · be an accepting run of A starting from s0 = (q0, 0).
Since A has only a finite number of edges, there exist some i1, i2, . . . , im such that ei1 ei2 . . .

eim form a structural loop andρ takes infinitely often every transition ei j . Sinceρ is accepting,
the structural loop must also be accepting. Thus, by hypothesis, the structural loop spends
time. That is, there exist a clock x and indices j1, j2 ∈ {i1, i2, . . . , im} such that x ∈ reset(e j1 )
and (x < 1) ∩ guard(e j2 ) = ∅. Now, each time ρ takes an e j1 -transition, clock x is reset to
0. The next time ρ takes an e j2 -transition, at least 1 time unit has passed, since x must be
greater or equal to 1 for e j2 to be taken. Since e j1 - and e j2 -transitions are taken infinitely
often, an infinite number of one-unit delays are accumulated, thus ρ is non-zeno. Hence, A
is strongly non-zeno.

Remark 2.8. Structural non-zenoness is compositional, in the sense that, if automata
A1, . . . , An are structurally non-zeno, then so is their composition, A1‖ · · · ‖An . This result
is formalized and proven in [25]. The result holds also in case some of the components Ai

are untimed (untimed components can be considered structurally non-zeno by convention).

Theorem 2.9. Any TBA A can be transformed into a strongly non-zeno TBA snz(A), such
that Lang(A) = ∅ iff Lang(snz(A)) = ∅.

Proof: The transformation is depicted in figure 3. Let X be the set of clocks of A and t
be a new clock, not in X . The set of clocks of snz(A) will be X ∪{t}. Let q be an accepting
discrete state of A. Let in(q) = {e1, . . . , em} and let source(ei ) = qi , guard(ei ) = ζi

and reset(ei ) = Xi , for i = 1, . . . , m. For each such situation, snz(A) will contain the
following:

Figure 3. Transforming a TBA into a strongly non-zeno TBA.
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• a new accepting state q ′, with invariant invar(q ′) = t ≤ 0,
• m new edges e′

i = (qi , ζi ∧ t ≥ 1, Xi ∪ {t}, q ′), for i = 1, . . . , m,
• m new edges e′′

i = (qi , ζi ∧ t < 1, Xi , q), for i = 1, . . . , m,
• a new edge e = (q ′, true, ∅, q).

Moreover:

• q will not be accepting in snz(A),
• the edges e1, . . . , em will not exist in snz(A).

Now, suppose ρ ∈ Lang(A), ρ = (δ0, e0), (δ1, e1), . . .. By definition, ρ is accepting and
non-zeno. We build a run ρ ′ of snz(A) as follows. Let i ≥ 0 be the first index such that ei

is an edge leading to an accepting state of A. The run ρ ′ will be identical to ρ up to point
i . The pair (δi , ei ) will be replaced by: either (δi , e′′

i ), if � j≤iδ j < 1; or (δi , e′
i ), (0, e), if

� j≤iδ j ≥ 1. Indeed, notice that t has not been reset up to point i , therefore its value right
before ei is equal to � j≤iδ j . If this value is smaller than 1, then e′′

i can be taken, otherwise,
e′

i and e can be taken. Since time does not pass between e′
i and e, the values of all clocks of A

after e are the same as after ei . Therefore, the remaining transitions of ρ are still possible and
the construction can be continued ad infinitum. The resulting run ρ ′ will be non-zeno, since
it contains the same time-passing transitions δi as ρ. It will also be accepting, since edges
ei which lead to an accepting state have to appear infinitely often in ρ. These edges have to
be replaced infinitely many times by e′

i and e in ρ ′, otherwise, t must remain bounded by 1
without being reset, which would contradict the hypothesis that ρ is non-zeno.

In the other direction, suppose there is an accepting run ρ ′ of snz(A). Since ρ ′ visits
accepting states of snz(A) infinitely often, it must take edges of the form e′

i and e infinitely
often, therefore it is non-zeno, which means that snz(A) is strongly non-zeno. Moreover,
since no time is allowed to pass in states q ′

i (because of the invariant t ≤ 0), ρ ′ can be
transformed into a run ρ of A by simply replacing e′

i , e and e′′
i edges by the corresponding

ei edges. Run ρ will also be accepting and non-zeno, since it will contain the same time-
passing transitions δi as ρ ′.

Notice that the transformed automaton, snz(A), has one more clock than A. Also note
that snz(A) can be easily generated on-the-fly, even in the case where A itself is generated
on-the-fly, as the parallel composition of many components.

We distinguish a sub-class of TBA based on the structure of the acceptance conditions.

Definition 2.10 (Persistent acceptance conditions). We say that a TBA A with set of accept-
ing discrete states F has persistent acceptance conditions if ∀q ∈ F, ∀e ∈ out(q), target(e)
∈ F.

The above condition says that once A enters F it never exits. TBA with persistent acceptance
conditions are interesting, because checking emptiness of such automata is easier than in
the general case. TBA with persistent acceptance conditions arise often in practice, as the
following example shows.
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Figure 4. TBA with persistent (A1 and A2) and non-persistent (A3) acceptance conditions.

Example 2.11. Automata A1 and A2 of figure 4 have persistent acceptance conditions,
whereas automaton A3 has non-persistent acceptance conditions. A1 can be used to check
the reachability property “eventually p”. A2 can be used to check the property “after some
point on, p1, p2, p3 alternate, starting from p1 or p3”. Other properties, such as the bounded-
response property expressed by automaton A1 of figure 2, are also expressible by TBA with
persistent acceptance conditions.

3. The simulation graph

In this section we define the simulation graph essentially as an abstraction of the region
graph. First, we recall the definition of the region graph and its properties of interest.

3.1. The region graph

The region graph is the finite quotient of the infinite state-space of a timed automaton,
with respect to the so-called region equivalence [2, 3, 5]. Although finite, the region graph
preserves many interesting properties of the infinite state-space, such as linear-time and
branching-time properties [15], expressed, respectively, as TBA emptiness problems or
using logics such as TCTL [3].2

Consider a TBA A with set of clocks X and let (q, v) and (q, v′) be two states of A.
Let c be a natural constant. The states (q, v) and (q ′, v′) are region equivalent, denoted
(q, v) �c (q ′, v′), if they satisfy the following conditions:

1. q = q ′,
2. for any constraint α ∈ ⋃

x∈X (
⋃

i=0,...,c−1{x = i, i < x < i + 1} ∪ {x > c}), v |= α iff
v′ |= α,

3. for any constraint β ∈ ⋃
x,y∈X (

⋃
i=0,...,c−1{x − y = i, y − x = i, i < x − y < i +1, i <

y − x < i + 1} ∪ {x − y > c, y − x > c}), v |= β iff v′ |= β.

It can be checked that �c is an equivalence relation, for any c. The equivalence classes
induced by �c are called regions. It can be seen that, for a given timed automaton, the
number of regions is finite and in the order of O(m · cn), where m is the number of discrete
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Figure 5. A partition of the clock space into 78 regions.

states and n the number of clocks of the automaton. Although many of these regions may
not be reachable, in general, the number of reachable ones is still too large in realistic
applications. As an example, the region space for two clocks x, y and c = 2 is shown in
figure 5.

Assuming that c is the greatest constant appearing in a guard or invariant of the timed
automaton, �c induces a finite graph, called the region graph. The nodes of the region graph
are regions. The edges are of two types:

• Time-passing edges: r
ε→ r ′, if there exist s ∈ r and δ ∈ R such that δ(s) ∈ r ′.

• Discrete-jump edges: r
e→ r ′, if e ∈ E and there exists s ∈ r such that e(s) ∈ r ′.

Notice that the
ε→ is reflexive (r

ε→ r ) and transitive (if r
ε→ r ′ and r ′ ε→ r ′′ then r

ε→ r ′′).
The essential property of the region graph is pre-stability, namely, the fact that for each

region r :

• if r
e→ r ′ is an edge in the region graph, then for each state s ∈ r , e(s) ∈ r ′,

• if r
ε→ r ′ is an edge in the region graph, then for each state s ∈ r , there exists δ ∈ R,

such that δ(s) ∈ r ′.

Thanks to pre-stability, an infinite run can be easily extracted from every infinite path
r0 → r1 → · · · in the region graph, by choosing some state s0 ∈ r0, then letting s1 be a
successor of s0 in r1, and so on, ad infinitum.

An infinite path π = r0 → r1 → · · · in the region graph of A is called accepting if there
is an infinite set of indices J ⊆ N, such that for all i ∈ J , for all (qi , vi ) ∈ ri , qi is accepting.

Definition 3.1 (Progressive paths in the region graph). An infinite path π = r0 → r1 →
· · · in the region graph of A is called progressive3 if for each clock x
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• either x is reset and grows strictly positive infinitely often in π , that is, ∀i, ∃ j, k, (k >

j > i) ∧ (r j |= x = 0) ∧ (rk |= x > 0),
• or x remains unbounded in π after some point on, that is, ∃i, ∀ j > i, r j |= x > c,

where r |= α is defined as ∀(q, v) ∈ r, v |= α (notice that, by definition of the region
equivalence, this is equivalent to ∃(q, v) ∈ r, v |= α).

Recall that c in the definition above is the greatest constant appearing in a guard or
invariant of A.

It is easy to see that a non-progressive path contains only zeno runs. The converse is also
shown to be true in [2], that is, a progressive path contains non-zeno runs (it might contain
zeno runs as well). Therefore, we have the following result:

Theorem 3.2 [2]. Lang(A) is non-empty iff there exists an accepting progressive infinite
path in the region graph of A.

In other words, checking emptiness of a TBA A can be reduced to a problem of model
checking the following linear temporal logic (LTL) [21] formula on the region graph of A:

� accepting ∧
∧

x∈X
(� x > c) ∨ ( � (x = 0 ∧ �x > 0))

where x = 0, x > c and accepting can be seen as atomic propositions labeling the nodes
of the region graph. The complexity of LTL model checking is known to be linear in the
size of the model and exponential in the size of the formula [18].

3.2. The simulation graph

Consider a TBA A = (X , Q, q0, E, invar, F). A symbolic state S is a finite set of regions
ri = (q, ζi ), i = 1, . . . , k, all having the same discrete state q. We will sometimes denote
S by (q, ζ ), where ζ = ∪{ζ1, . . . , ζk}.

Given a symbolic state S, let e(S) be the set of all regions r ′ for which there exists r ∈ S
such that r

e→ r ′. Similarly, let ε(S) be the set of all regions r ′ for which there exists r ∈ S
such that r

ε→ r ′.
Given an edge e ∈ E and a symbolic state S, we define

post(S, e) = ε(e(S)).

Definition 3.3 (Simulation graph). The simulation graph of a TBA A, denoted SG(A), is a
graph whose nodes are non-empty symbolic states of A and edges represent post operations.
More precisely, the set of nodes S of SG(A) is defined to be the least set of symbolic states
of A, such that:
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Figure 6. A TBA and its simulation graph.

1. (q0, ε({0})) ∈ S is the initial node of SG(A)),
2. if e ∈ E , S ∈ S and S′ = post(S, e) is non-empty, then S′ ∈ S.

The set of edges of SG(A) is defined as follows. SG(A) has an edge S
e→ S′ iff S, S′ ∈ S

and S′ = post(S, e).

Since the number of regions is finite and each node of the simulation graph is a union of
regions, the simulation graph is also finite.

An example of a TBA and its simulation graph is shown in figure 6. This simulation
graph was automatically generated using the tool KRONOS [11].

4. Properties of the simulation graph

Theorem 3.2 is based on the correspondence between runs of a TBA and paths of its region
graph: each run is contained in a unique path, and each path is guaranteed to contain at
least one run. The objective of this section is to “lift” this correspondence to the simulation
graph. We then prove a number of results similar to Theorem 3.2, distinguishing classes of
TBA where checking emptiness becomes simpler.

The essential property which induces the correspondence of runs and paths in the case
of the region graph is pre-stability. However, pre-stability does not hold in the simulation
graph. Indeed, if S

e→ S′ is an edge of the simulation graph, then there might exist a region
r ∈ S such that r has no successor in S′. For example, let S = (q, x ≤ 2) and e be an edge
with guard(e) = x ≤ 1. Then, post(S, e) = (target(e), x ≤ 1), however, no state (q, v) ∈ S
with v(x) > 1 can take the transition e.

Even though the simulation graph is not pre-stable, we can still prove that each run of
the TBA is contained in a simulation-graph path, and that each simulation-graph path is
guaranteed to contain a run. We first introduce some concepts that will lead us to this result.

By definition, the simulation graph is post-stable. That is, if S
e→ S′ is an edge in the

simulation graph, then: (a) for every region r ′ ∈ S′, there exists a region r ∈ S and a
region-graph path from r to r ′; and (b) for every region r ∈ S, every successor of r by the
relation

e→ ε→ is in S′.
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We say that a region-graph path r0
e0→ ε→ r1

e1→ ε→ · · · is inscribed in an infinite sequence
of symbolic states π = S0

e0→ S1
e1→ · · ·, if for all i = 0, 1, . . . , ri ∈ Si .

Lemma 4.1. Every infinite path of the region graph is inscribed in an infinite path of the
simulation graph.

Proof: Let r0
e0→ ε→ r1

e1→ ε→ · · · be a path of the region graph. By definition, r0 ∈ S0. By
post-stability, for all i = 0, 1, . . . , since ri

ei→ ε→ ri+1, if ri ∈ Si then ri+1 ∈ Si+1.

Let π = S0
e0→ S1

e1→ · · · be an infinite path in SG(A), where Si = (qi , ζi ). We say that
π is accepting if there are infinitely many i ≥ 0 such that qi is accepting. We say that π

is ultimately periodic if there exist i ≥ 0, l ≥ 1, such that for all j ≥ 0, Si+ j = Si+ jmod l .
This means that π consists of a finite prefix S0

e0→ · · · Si−1
ei−1→, followed by the “infinite

unfolding” of a cycle Si
ei→ · · · Si+l−1

ei+l−1→ Si . The node Si is called the root of the cycle
and l is its length. The cycle is called simple if for all 0 ≤ j �= k < l, Si+ j �= Si+k , that is,
the cycle does not visit the same node twice.

Let π = S0
e0→ S1

e1→ · · ·. A sub-path of π is an infinite sequence π ′ = S′
0

e0→ S′
1

e1→ · · ·,
such that, for all i ≥ 0, S′

i �= ∅ and S′
i ⊆ Si . We say that π ′ is pre-stable if for all i ≥ 0, for

all r ∈ S′
i , there exists r ′ ∈ S′

i+1 such that r
ei→ ε→ r ′. A sub-path π ′ of π is called maximal

if for any other sub-path π ′′ of π , with π ′′ = S′′
0

e0→ S′′
1

e1→ · · ·, we have: ∀i ≥ 0, S′′
i ⊆ S′

i .

Lemma 4.2. For every pre-stable sub-path π ′ of a path in the simulation graph, there is
a region-graph path inscribed in π ′.

Proof: Let π ′ = S′
0

e0→ S′
1

e1→ · · ·. Pick some region r0 ∈ S′
0. Since π ′ is pre-stable, there

exists r1 ∈ S′
1 such that r

e0→ ε→ r1. Similarly, we can find r2 ∈ S′
2 such that r1

e1→ ε→ r2. We
can continue this process ad infinitum, building a region-graph path.

Lemma 4.3. Every ultimately periodic infinite path π in the simulation graph has a unique
maximal pre-stable sub-path π ′. The latter contains a region-graph cycle. All infinite region-
graph paths inscribed in π are also inscribed in π ′.

We first illustrate the idea of the proof of the above lemma using figure 7. The figure
shows a simple simulation-graph cycle which generates the ultimately periodic infinite path

Figure 7. Every simulation graph cycle contains a pre-stable sub-cycle.
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π = S0
e0→ S1

e1→ S2
e2→ S1

e1→ . . .. The large ellipses represent symbolic states S0, S1, S2,
while the small circles represent regions. Solid arrows represent edges of the simulation
graph, while dotted arrows represent edges of the region graph.

The proof is based on the following idea. Pick some arbitrary region r0
2 ⊆ S2. By post-

stability of the simulation graph, there exists r0
1 ⊆ S1 and a path in the region graph from

r0
1 to r0

2 . Similarly, there exists r1
2 ⊆ S2 and a region-graph path from r1

2 to r0
1 . We can

continue going backwards in the same way, until we find some r j
2 which is the same as r i

2,
for i < j (this is bound to happen, since the number of regions included in a symbolic state
is finite). At this point, we have found a cycle in the region graph. Since the region graph is
pre-stable and a cycle defines an infinite path, we have found a pre-stable infinite sub-path
of π . We now conduct the proof in the general case.

Proof: Let π = S0
e0→ · · · ei−1→ Si

ei→ · · · Si+l
ei+l→ Si

ei→ · · · be an ultimately periodic in-
finite path in the simulation graph. Si is the root of the corresponding cycle and l is
the cycle’s length. We know that Sj+1 = post(Sj , e j ), for all j = i, . . . , i + l. First,
we pick some arbitrary region r0

i+l ⊆ Si+l . Then, using post-stability, we find regions
r0

i+l−1 ⊆ Si+l−1, ..., r0
i ⊆ Si , r1

i+l , such that there is a region-graph path from r1
i+l to r0

i , to
r0

i+1, and eventually to r0
i+l−1. We continue the same way, finding r2

i+l , r3
i+l , and so on, until

we find rm
i+l = rk

i+l , for some m > k (this is bound to happen, since the number of regions
contained in a symbolic state is finite).

The path from rk
i+l to rm

i+l defines a cycle in the region graph, and consequently, an infinite
path in the region graph. In turn, an infinite path in the region graph defines an infinite path
π ′ in the simulation graph as follows: for every finite sequence r

e→ r1
ε→ r2

ε→ · · · ε→
rm

e′→ in the cycle, group together all regions r1, r2, . . . , rm into a single symbolic state.
By construction, π ′ is a non-empty sub-path of π . Since the region graph is pre-stable, π ′

is pre-stable. That is, we have found an infinite pre-stable non-empty sub-path of π . We
can extend π ′ to a maximal sub-path by adding to every symbolic state as many regions
as possible, while preserving pre-stability. The maximal sub-path is unique since pre- and
post-stability are preserved by union, that is, if S1

e→ S′
1 and S2

e→ S′
2 are both pre-stable

and post-stable, then S1 ∪ S2
e→ S′

1 ∪ S′
2 is also pre-stable and post-stable.

Theorem 4.4. Let A be a strongly non-zeno TBA. Lang(A) �= ∅ iff there exists a simple
accepting cycle in the simulation graph of A.

Proof: Suppose there is a simple accepting cycle in SG(A). This cycle defines an infinite
accepting ultimately periodic path π . By Lemma 4.3, π has a pre-stable sub-path π ′. By
Lemma 4.2, there is a region-graph path λ inscribed in π ′. Since π ′ is accepting, λ is also
accepting. Since A is strongly non-zeno, λ is progressive. By Theorem 3.2, Lang(A) �= ∅.

In the other direction, assume Lang(A) �= ∅. By Theorem 3.2, there exists a region-graph
infinite accepting progressive path λ. By Lemma 4.1, λ is inscribed in an infinite accepting
path π in SG(A). Since SG(A) is finite, π must visit infinitely often a set of nodes in a
strongly connected component C of SG(A). Since π is accepting, C contains at least one
accepting node S. From graph theory, we know that we can find a simple cycle in C which
visits S, that is, a simple accepting cycle.
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Theorem 4.4 takes care of the case of strongly non-zeno TBA. In the next section, we
use this result to show how emptiness of a strongly non-zeno TBA can be checked in time
and space linear in the size of the simulation graph.

We now turn to the case of checking emptiness of a TBA A which is not strongly
non-zeno. One possibility is to transform A into a strongly non-zeno TBA snz(A), using
Theorem 2.9, and then check whether Lang(snz(A)) = ∅. However, snz(A) contains one
more clock than A, which means that SG(snz(A)) will be in general larger than SG(A). In
the rest of this section, we explore other possibilities, working directly with SG(A). As we
shall see, this is significantly more difficult than the strongly non-zeno case. The reason is
that infinite paths in the simulation graph must satisfy two types of acceptance: “discrete”
acceptance (visiting accepting states infinitely often), as well as “time” acceptance (letting
time diverge).4 We will show that there exist cases where simple cycles in the simulation
graph cannot capture both types of acceptance. In other words, there exist automata whose
simulation graph contains accepting cycles which let time diverge, but no such cycle is
simple.

First, we need to identify conditions on paths and cycles in the simulation graph which
capture time divergence.

Let S be a symbolic state and x ∈ X a clock. We define

nonzero(x, S)
def= ∃r ∈ S, r |= x > 0,

unbounded(x, S)
def= ∃r ∈ S, r |= x > c.

Definition 4.5 (Progressive paths in the simulation graph). Let π be an infinite path in the
simulation graph and let π ′ = S0

e0→ S1 · · · be the maximal pre-stable sub-path of π . The
path π is called progressive if for each clock x ∈ X

• either x is reset and grows strictly positive infinitely often in π ′, that is, ∀i, ∃ j, k, k >

j > i ∧ x ∈ reset(e j ) ∧ nonzero(x, Sk),
• or x remains unbounded in π ′ from some point on, that is, ∃i, ∀ j > i, unbounded

(x, Sj ).

Since a cycle defines an infinite path, the notions of accepting and progressive paths naturally
extend to accepting and progressive cycles.

Remark 4.6. Definition 4.5 is different from Definition 3.1: the former refers to the max-
imal pre-stable sub-path of a path π , rather than π itself. This is because, in general, π

does not contain enough information to check time divergence. To see why, consider the
automata A1 and A2 of figure 8. As can be seen in the figure, both automata generate iden-
tical simulation graphs. However, only the pre-stable cycle of A2 satisfies the condition for
progressiveness.

Lemma 4.7. Let π be an ultimately periodic infinite path in the simulation graph.

(1) If π is progressive, then there exists an infinite progressive region-graph path inscribed
in π .
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Figure 8. Two TBA.

(2) If π is not progressive, then no region-graph path inscribed in π is progressive.

Proof: (1) By Lemma 4.3, π has a maximal pre-stable sub-path π ′ = S0
e0→ S1

e1→
· · ·. We will construct a progressive region-graph path λ inscribed in π ′. Let X ⊆ X
be the set of clocks reset infinitely often in π ′ and let Y = X \ X . By Definition 4.5:
(a) ∀x ∈ X, ∀i, ∃ j, k, k > j > i ∧ x ∈ reset(e j ) ∧ ∃r ∈ Sk, r |= x > 0 and (b)
∀y ∈ Y, ∃i, ∀ j > i, ∃r ∈ Sj , r |= y > c. If Y is empty, let r0 be any region in S0, otherwise,
we choose r0 as follows. Let y0 ∈ Y be one of the clocks in Y which is reset last in π ′. If
no clock in Y is ever reset in π ′, any clock in Y can be chosen, since all clocks start by
being reset. By condition (b) above, there exists i0 and r0 ∈ Si0+1 such that r0 |= y0 > c.
Since y0 is reset last, we have ∀y ∈ Y, r0 |= y ≥ y0. Thus, ∀y ∈ Y, r0 |= y > c. Since
no clock in y is ever reset after i0, for any region-graph path starting at r0, all clocks in Y
remain unbounded in this path. Moreover, these clocks do no longer affect the evaluation
of guards, thus can be ignored in the rest of the analysis.

To build λ, we first build a finite region-graph path λ0 inscribed in S0
e0→ · · · ei0→ Si0+1 and

reaching r0. By post-stability of the simulation graph, such a path exists. Then we extend
λ0 to an infinite path starting from r0. If X is empty, then any infinite path starting from r0

is guaranteed to be progressive.
Otherwise, we extend λ0 as follows. We pick some x ∈ X . By condition (a), there exists

j > i0+1 such that x ∈ reset(e j ). We build a finite region-graph path λx starting from r0 and
inscribed in Si0+1

ei0+1→ · · · e j→ Sj+1 (this can be done since π ′ is pre-stable). Let r1 ∈ Sj+1

be the region reached by λx . Since x ∈ reset(e j ), r1 |= x = 0. We then extend λx starting
from r1 and choosing successor regions inscribed in π ′, until a region r2 is reached such
that time can elapse from r2, that is, r2

ε→ r3 and r2 �= r3 (thus, r3 |= x > 0). We claim that
such a region r2 can always be reached. Indeed, due to condition (a), eventually all clocks
in X will be reset. If no ε transition can occur up to that point, region r is reached such that
∀x ∈ X, r |= x = 0. By condition (a) and post-stability of π ′, a region where x > 0 can be
reached from r , thus, an ε transition is eventually enabled from r . Let λ′

x be the path from
r1 to r3. The concatenation λx · λ′

x is a finite path where clock x is reset and grows strictly
greater than zero. We can repeat this process ad infinitum, for each clock in X , say, in a
“round-robin” fashion. We thus get an infinite region-graph path λ = λ0 ·λx1 ·λ′

x1
·λx2 ·λ′

x2
· · ·,

where all clocks in X are reset and grow strictly greater than zero infinitely often, while all
clocks in Y remain unbounded after λ0. Thus, λ is progressive.

(2) By Lemma 4.3, π has a maximal pre-stable sub-path π ′ = S0
e0→ S1 · · · and all infinite

region-graph paths inscribed in π are also inscribed in π ′. Since π is not progressive, there
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Figure 9. A TBA with no simple progressive accepting cycles.

must exist a clock x such that (a) x is either not reset or does not grow positive after some
point on in π ′, and (b) x is bounded infinitely often in π ′. This implies that x is bounded
after some point on in π ′ (either x remains zero or x is bounded and never reset). Thus,
every region-graph path inscribed in π ′ must be non-progressive.

Theorem 4.8. Let A be any TBA. Lang(A) �= ∅ iff there exists a progressive accepting
cycle in the simulation graph of A.

Proof: The proof is similar to the one of Theorem 4.4. If Lang(A) �= ∅ then let λ be an
accepting progressive region-graph path, inscribed in a simulation-path cycle. The cycle in
which λ is inscribed must be progressive, otherwise, by part (2) of Lemma 4.7, λ cannot be
progressive. In the other direction, part (1) of Lemma 4.7 can be used to extract a progressive
region-graph path from the simulation-graph cycle.

We now give an example that demonstrates that the cycle mentioned in Theorem 4.8
need not be simple. The TBA shown on the left of figure 9 generates the simulation
graph shown on the right. This graph contains a progressive accepting cycle, namely,
(q0, true)

a→ (q1, true)
b→ (q0, true)

c→ (q2, x ≤ 1)
d→ (q0, true). However, there is no

such simple cycle. Indeed, there are only two simple cycles in this graph, namely, (q0, true)
a→ (q1, true)

b→ (q0, true) and (q0, true)
c→ (q2, x ≤ 1)

d→ (q0, true). The first one is not
accepting, while the second one is not progressive.

Although simple cycles do not capture both discrete and time acceptance, we can still
prove that they capture discrete acceptance and time acceptance separately. The first result
comes directly from graph theory, that is, in every finite graph, the existence of a cycle
that visits an accepting state implies the existence of a simple cycle that visits an accepting
state. The fact that simple cycles capture progressiveness is not at all trivial (especially since
progressiveness is a conjunction of liveness properties, one for each clock) and is proven
in what follows.

First, we need some definitions. Let λ = S1
e1→ · · · el→ S1 be a cycle. We say that a cycle

λ′ is part of λ if there exist 1 ≤ i ≤ k ≤ l such that λ′ = Si
ei→ · · · ek→ Sk and Si = Sk .

For instance, in the example of figure 9, cycle λ1 = (q0, true)
a→ (q1, true)

b→ (q0, true)
is part of cycle λ = (q0, true)

a→ (q1, true)
b→ (q0, true)

c→ (q2, x ≤ 1)
d→ (q0, true). We

define an order < on cycles, such that λ < λ′ if λ is part of λ′ and λ �= λ′. Since cycles
are finite structures, < is well-founded, that is, there cannot exist an infinite decreasing
sequence λ1 > λ2 > · · ·. Moreover, it can be shown that for every non-simple cycle λ there
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exist two cycles λ1 and λ2 such that λ1 < λ, λ2 < λ and λ1 and λ2 have the same root S,
which is a node of λ.

Lemma 4.9. Let λ be a progressive cycle in a simulation graph. Then, there exists a simple
progressive cycle which is part of λ.

Proof: The proof can be viewed as a proof diagram.
Repeat: Is λ simple ? If yes, we are done. Otherwise, there exist two cycles λ1 and λ2

such that λ1 < λ and λ2 < λ and λ1 and λ2 have the same root S, which is a node of λ. We
distinguish two cases.

1. There exist two clocks x and y such that x is reset in λ1 but not in λ2 and y is reset in
λ2 but not in λ1. Let

e1→ S1 be the last edge before S where x is reset in λ1. Let
e2→ S2

be the last edge before S where y is reset in λ2. Since x was reset last in λ1 (in fact, y is
not reset at all), all regions in S1 must satisfy x ≤ y. Since neither x nor y are reset in
λ1 from S1 until S, the difference x − y does not change from S1 until S, therefore, all
regions in S must also satisfy x ≤ y. Reasoning symmetrically for λ2, we obtain that all
regions in S must satisfy y ≤ x . Thus, all regions in S must satisfy x = y.

Now, since λ is progressive, by part (1) of Lemma 4.7, there is a progressive region-
graph path κ inscribed in λ. Immediately after κ takes transition e1, the value of x is 0,
since x is reset in e1. By the fact that x − y does not change from S1 until S and the fact
that x = y in S, it must be the case that y = 0 right after e1. Reasoning symmetrically
on λ2, we obtain that x = y = 0 right after each appearance of e2 in κ . But then, no time
elapses from e1 until e2, since y is not reset anywhere in-between. Similarly, no time
elapses from e2 until e1, since x is not reset anywhere in-between. Thus, no time elapses
at all along the path κ . We have a contradiction since κ was assumed to be progressive.

2. The negation of case 1, that is, at least one of λ1, λ2 resets all clocks that are reset in λ.
Without loss of generality, we assume that it is λ1. Every clock not reset in λ remains
unbounded in λ, thus, also in λ1. Therefore, λ1 is progressive. Then, replace λ by λ1 and
repeat the reasoning starting from Repeat.

Since λ1 < λ and < is well-founded, the replacement process of case 2 cannot be repeated
ad infinitum. It must eventually terminate yielding a simple cycle.

Theorem 4.10. Let A be a TBA with persistent acceptance conditions. Lang(A) �= ∅ iff
there exists a simple progressive accepting cycle in the simulation graph of A.

Proof: Assume that Lang(A) �= ∅. By Theorem 4.8, the simulation graph of A has a
progressive accepting cycle λ. By Lemma 4.9, there exists a simple progressive cycle λ′

which is part of λ. Since λ is accepting and A has persistent acceptance conditions, all
nodes of λ must be accepting. Since the nodes of λ′ are also nodes of λ, they must also be
accepting, therefore, λ′ is accepting.

The other direction follows directly from Theorem 4.8.



CHECKING TIMED BÜCHI AUTOMATA EMPTINESS EFFICIENTLY 285

Table 1. Summary of results and algorithms.

Persistent acceptance conditions Non-persistent acceptance conditions

Strongly non-zeno simple accepting cycle simple accepting cycle
Simple DFS Double DFS or Maximal SCCs

Not strongly non-zeno simple accepting progressive cycle accepting progressive cycle
Full DFS or Transformation Incomplete search or Transformation

5. Algorithms

Based on the results of the previous sections, we now propose algorithms to check language
emptiness of a timed Büchi automaton. All algorithms use the simulation graph as the basic
structure to be explored. Table 1 summarizes the proposed algorithms. We distinguish four
cases, depending on whether the automaton is strongly non-zeno or not, and whether it
has persistent acceptance conditions or not. In each case, we propose an algorithm which
exploits the special characteristics of the automaton.

5.1. Algorithms for strongly non-zeno timed Büchi automata

We first consider the case where the automaton to be checked, say A, is strongly non-zeno.
The following is a direct consequence of Theorem 4.4.

Corollary 5.1. Let A be a strongly non-zeno TBA. Lang(A) �= ∅ iff the simulation graph
of A has a maximal strongly-connected component containing an accepting node.

According to Corollary 5.1, a standard algorithm for finding maximal strongly-connected
components in a graph [24] can be used to check language emptiness of a strongly non-zeno
TBA. An alternative is to use the double-DFS algorithm of [9], which is memory-efficient (a
single extra bit is added to the state space). The double-DFS algorithm conducts two DFSs,
one “embedded” into the other. Each DFS maintains a separate stack and a separate set of
visited nodes (the extra bit serves to distinguish between the two sets of visited nodes). The
outer-level DFS calls the inner-level DFS for every accepting node that it visits, and the
inner-level DFS starts exploring from that node. As it is shown in [9], if an accepting cycle
exists, then the inner-level DFS will find it the first time an accepting node of this cycle is
visited. Each node of the graph is explored at most twice, once by the outer-level DFS and
once by the inner-level DFS.

Checking language emptiness for a strongly non-zeno TBA with persistent acceptance
conditions is even easier than in the general strongly non-zeno case. Indeed, it can be done
using a simple DFS which keeps only a stack and a set of visited nodes V . The first time
a node is visited, it is added to V . The DFS stops exploring further whenever it reaches a
node that already belongs to V . Thus, the simple DFS explores each node of the graph at
most once.
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Corollary 5.2. Let A be a strongly non-zeno TBA with persistent acceptance conditions.
Lang(A) �= ∅ iff the simple DFS algorithm visits an accepting node which is already in the
stack.

Proof: If the simple DFS algorithm visits an accepting node which is already in the stack,
then a simple accepting cycle has been found, therefore, Lang(A) �= ∅.

In the other direction, suppose Lang(A) �= ∅. Then, by Theorem 4.4, the simulation graph

of A has a simple accepting cycle. Let this cycle be S0
e0→ S1

e1→ · · · el−1→ Sl
el→ S0. Since

A has persistent acceptance conditions, all nodes in this cycle are accepting. Without loss
of generality, we can assume that node S0 is visited by the DFS before any other node Si ,
i = 1, . . . , l. By the properties of depth-first search, if a node B can be reached from node
A and A is visited before B by the DFS, then the first time B is visited, A is still in the
stack. Indeed, A is not popped from the stack until all successors of A visited after A are
popped from the stack. Thus, when Sl is visited, the edge Sl

el→ S0 will be explored and the
accepting node S0 will be found in the stack.

5.2. Algorithms for general timed Büchi automata

In this section, we show how language emptiness can be checked for a TBA A which is not
necessarily strongly non-zeno. As before, we distinguish two cases, depending on whether
the acceptance conditions of A are persistent or not.

If A has persistent acceptance conditions, then, by Theorem 4.10, Lang(A) �= ∅ iff the
simulation graph of A contains a simple progressive accepting cycle. Such a cycle can be
found using a full DFS, which, contrary to the simple DFS, does not maintain a set of visited
nodes, but only maintains a stack. The full DFS stops exploring further only when it reaches
a node already in the stack. Therefore, the full DFS finds all simple cycles in the simulation
graph, and can check each one of them to determine whether it is progressive and accepting.

It is worth noting that, although Theorems 4.4 and 4.10 look similar, they give algorithms
of very different worst-case complexities: the DFS algorithms of the previous section are
linear in the size of the simulation graph, whereas the full DFS algorithm proposed above
is exponential in the worst case, since the number of simple cycles in a graph can be
exponential in the number of nodes.5 To illustrate the fact that a simple DFS does not
suffice in the general case, we give an example, shown in figure 10. The simulation graph of
the automaton in the figure is isomorphic to the automaton structure. A simple DFS would
first find the cycle 1 → 2 → 3 → 1 (which is not progressive) and then stop after exploring
the path 1 → 4 → 2, since node 2 has been already visited. In that way, the progressive
cycle 1 → 4 → 2 → 3 → 1 would be missed.

In the most general case, A is not strongly non-zeno and has non-persistent acceptance
conditions. In this case, Theorem 4.8 applies, however, it requires us to find cycles which are
non-simple in general, as the example of figure 9 shows. Since there is an infinite number
of non-simple cycles in the graph, a “blind” enumeration of them would not terminate,
unless the language of the automaton is non-empty. In any case, such an enumeration is not
efficient. Therefore, the most pragmatic choices in this case seem to be the following.
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Figure 10. A timed Büchi automaton with persistent acceptance conditions.

• Either transform A into the strongly non-zeno automaton snz(A), as shown in Theo-
rem 2.9, and apply the algorithms of Section 5.1 (notice that this option is feasible also
when A has persistent acceptance conditions).

• Or use an incomplete search, which explores only a subset of all possible cycles. Then,
if a progressive accepting cycle is found, we know that the language of A is non-empty,
otherwise, no conclusion can be made.

6. Case study

The algorithms described in Section 5 have been implemented in a prototype tool called
PROFOUNDER. PROFOUNDER takes as input a system of extended timed automata and a
boolean expression which defines the accepting states. An extended timed automaton is
a timed automaton with discrete variables of bounded domain (e.g., bounded integers,
booleans, etc.). The system of extended timed automata is described as the parallel com-
position and synchronization of the various automata. PROFOUNDER is based on the SMI
open toolbox [7].

PROFOUNDER generates C code, which is then compiled and linked with a library of
symbolic states and operations. This produces an executable which can perform two types
of analysis: (1) simple reachability, in search of a path that reaches an accepting state, or
(2) TBA emptiness, in search of a progressive cycle that visits an accepting state. In TBA
emptiness mode, the user can specify whether persistent (“almost-always”) or non-persistent
(“infinitely-often”) acceptance conditions should be used. If the analysis succeeds, an ex-
ample trace is generated: in case (1) the trace is a finite run; in case (2) the trace is symbolic
and corresponds to a finite path followed by a cycle. Three algorithms have been imple-
mented for TBA emptiness. Simple DFS, full DFS and the double DFS algorithm [9], as
discussed in Section 5. For the moment, PROFOUNDER does not perform the transformation
of Theorem 2.9. It does not check structural non-zenoness either.

In what follows, we present a case study where the verification of an asynchronous circuit
is reduced to checking emptiness of a (strongly non-zeno) timed Büchi automaton. Apart
from this example, we have used PROFOUNDER for numerous other examples, including the
FDDI protocol [6], an automated vehicle control system [27, 29] and real-time scheduling
applications [1].
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Verification of asynchronous circuits

Circuits consisting of networks of interconnected boolean gates with bounded delays can be
modeled using timed automata [19]. The behavior of the circuit is given as a set of equations
of the form

xi = bi −→ [li , ui ] fi (x1, . . . , xn)

where fi is the boolean function that defines the logical behavior of the gate xi , bi is the
initial value of xi , and [li , ui ] is the range of possible delays.

Informally, the behavior is as follows. Whenever the evaluation of fi changes, xi changes
accordingly, within some delay in the interval [li , ui ]. If, before the change in the value of
xi has taken place, fi changes back to its previous value, xi keeps its value. In other words,
as long as xi is stable (i.e., has the same value as fi (x1, · · · , xn)) no changes occur. As
soon as xi becomes unstable, it is “programmed” to stabilize within li to ui time units, by
changing value. This change is “canceled” if xi becomes again stable meanwhile, because
of a change in fi .

Formally, each equation is translated into a timed automaton whose set of behaviors
coincides with the set of solutions of the corresponding equation. The behavior of the
circuit is the set of runs of the composed automata.

As an example, we consider the equations in figure 11. These equations define the behavior
of the sbuf-ram-write asynchronous circuit, which is a component of the Post Office
communication co-processor [23]. The inputs are req, prech, done, wenin and wsldin.
The outputs are ack, prbar , wsen, wen, wsld, y1, and y0. The rest of the variables represent
internal gates.

Figure 12 shows the timed automaton for the ack equation. The automaton is depicted
graphically on the left of the figure and textually on the right, in the input format of PRO-
FOUNDER. In the textual description, the header (first line) says that there are 2 discrete
states, 3 edges and the initial discrete state is 0. The following three lines describe the
three edges. The last two lines specify the invariants of the discrete states. PROFOUNDER

allows invariants on the discrete state space as well as on clocks. For instance, the invariant
ack ≡ ¬y1 on state 0 models the fact that the automaton moves to state 1 as soon as ack
becomes unstable.

Figure 11. Equations for part of the Post Office communication co-processor [23].
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Figure 12. Timed automaton for the ack gate: graphical (left) and textual (right) format.

Figure 13. Environment of the circuit.

The model of the environment of this circuit is depicted in figure 13 (the figure has been
generated using the petrify toolbox which uses the input format STG [8]). The graph
represents the precedence relation between inputs and outputs (inputs are in red and outputs
in blue). For instance, the value of output y0 is expected to change to false (y0−) after inputs
done, req , and prech change, respectively, to false (done−) and true (req+, prech+).
The inputs switch from true to false and back, within a delay of 900 to 1111 time units. The
equations in figure 14 define the timing behavior of the inputs.

The entire system consists of 16 timed automata modeling the behavior of the circuit,
5 timed automata modeling the timing behavior of the 5 inputs, and the automaton of the
environment. The latter is untimed and has 27 states. Each of the 21 timed automata has two
discrete states, one boolean variable and one clock. Let S be the product timed automaton
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Figure 14. Input equations.

Figure 15. Observer automaton modeling the negation of the property “infinitely often ack”.

of the entire system. S is strongly non-zeno: this is because each of the 21 component timed
automata are strongly non-zeno.

One of the properties that the circuit must satisfy is that ack becomes true infinitely
often. To verify this property, we compose the system with the observer automaton shown
in figure 15. The observer is a Büchi automaton B modeling the negation of the above
property: B accepts all runs where ack remains forever false after some point in the run.
Let A be the TBA obtained by composing S with B. The circuit satisfies the property iff
the language of A is empty.

PROFOUNDER checks that the language of A is empty in about 50 seconds, on a Pentium
III running at 650 MHz with 128 MB RAM. During the search, PROFOUNDER generates
the entire simulation graph (194517 symbolic states and 428071 transitions) and explores
7335 symbolic cycles.

7. Conclusions

The contribution of the work presented in this paper is both theoretical and practical.
From a theoretical point of view, we have shown that the so-called simulation graph

of a timed Büchi automaton can be used to check language emptiness. This is not trivial,
since the simulation graph does not satisfy the basic property of the region graph (and all
time-abstracting bisimulation graphs), namely, pre-stability. Nevertheless, we show that any
cycle in the simulation graph contains a cycle of the region graph. In fact, as shown in [6],
similar techniques can be used for model-checking a larger class of properties expressed in
the temporal logic ETCTL∗

∃, which is more expressive than TCTL.
From a practical point of view, the use of the simulation graph instead of the region

graph is of great interest, since in most cases in practice, the simulation graph is much
smaller than the region graph. Still, checking emptiness for timed Büchi automata is harder
than for untimed ones. This is because both discrete acceptance conditions and timed
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acceptance conditions (non-zenoness) need to be checked. In general, cycles which satisfy
both conditions need not be simple. We have identified classes of timed Büchi automata
where emptiness can be checked more efficiently. In the case of strongly non-zeno systems,
discrete acceptance implies non-zenoness, and emptiness can be checked either by simple
depth-first or strongly-connected component searches, with complexity linear on the size
of the simulation graph. In the case of automata which are not strongly non-zeno, but
have persistent (“almost-always” type) discrete acceptance conditions, checking simple
cycles suffice. However, there is generally an exponential number of them in the size of the
simulation graph.

Finally, we have presented a prototype implementation of the above techniques in the
tool PROFOUNDER. To our knowledge, PROFOUNDER is the only available tool for checking
emptiness of timed Büchi automata.

Notes

1. Convex X -polyhedra are particularly interesting since they can be represented using space-efficient data-
structures such as difference-bound matrices [12] (O(n2), where n is the number of clocks). Standard operations
on these data-structures are also time-efficient (e.g., intersection in O(n2), test for emptiness in O(n3)).

2. In fact, the region equivalence is a time-abstracting bisimulation (although not the coarsest one, in general)
and all such bisimulations preserve both linear-time and branching-time properties [28].

3. This definition of progressiveness is slightly different from the one given in [2]. This is because in the model
of [2], the delay between two discrete transitions must be strictly greater than zero, whereas in our model we
allow this delay to be zero. Zero delays between discrete transitions are useful for capturing atomic sequences
of actions.

4. In the strongly non-zeno case, time acceptance need not be directly checked, since it is implied by discrete
acceptance.

5. Actually, the complexity of the full DFS algorithm can be improved by keeping a set of visited non-accepting
nodes. Then, exploration can be stopped whenever a node already in that set is visited. This is because such a
node cannot lead to any progressive accepting cycle, therefore, how the node is reached does not matter.
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