
Formal Methods in System Design, 26, 197–219, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Distributed Symbolic Model Checking
for µ-Calculus∗

ORNA GRUMBERG
TAMIR HEYMAN tamir.heyman@intel.com
ASSAF SCHUSTER
Computer Science Department, Technion, Haifa, Israel

Received May 2002; Revised November 2003; Accepted November 2003

Abstract. In this paper we propose a distributed symbolic algorithm for model checking of propositional µ-
calculus formulas. µ-calculus is a powerful formalism and µ-calculus model checking can solve many problems,
including, for example, verification of (fair) CTL and LTL properties. Previous works on distributed symbolic
model checking were restricted to reachability analysis and safety properties. This work thus significantly extends
the scope of properties that can be verified distributively, enabling us to use them for very large designs.

The algorithm distributively evaluates subformulas. It results in sets of states which are evenly distributed among
the processes. We show that this algorithm is scalable and therefore can be implemented on huge distributed clusters
of computing nodes. The memory modules of the computing nodes collaborate to create a very large memory space,
thus enabling the checking of much larger designs. We formally prove the correctness of the parallel algorithm.
We complement the distribution of the state sets by showing how to distribute the transition relation.

Keywords: distributed, symbolic, model checking, Mu-calculus, hardware verification

1. Introduction

In the early 1980s, model checking procedures were suggested [6, 15, 19] which could
handle systems with a few thousand states. In the early 1990s, symbolic model checking
methods were introduced. These methods, based on Binary Decision Diagrams (BDDs) [2],
could verify systems with 1020 states and more [4]. This progress has made model checking
applicable to industrial designs of medium size. Significant efforts have been made since
to fight the state explosion problem. But the need to verify larger systems is growing faster
than the capacity of any newly developed method.

Recently, a new promising method to fight the state explosion problem was introduced.
The method uses the collective pool of memory modules in a network of processes. Dis-
tributed symbolic reachability analysis is used to find the set of all states reachable from
the initial states [13]. A distributed symbolic on-the-fly algorithm was applied in order
to model check properties written as regular expressions [1]. Experimental results show
that distributed methods can reduce the average memory requirement 300 times using 500

∗This research was supported by The Israel Science Foundation (grant number 111/01-2) and by a grant from
Intel Academic Relations.

198 GRUMBERG, HEYMAN AND SCHUSTER

processes. Consequently, distributed methods find errors that were not found by sequential
tools.

This paper extends the scope of properties that can be verified for large designs. It
presents a distributed symbolic model checking algorithm for the µ-calculus, which is a
powerful formalism for expressing properties of transition systems using least and greatest
fixpoint operators. Many verification procedures can be solved by translating them into
µ-calculus model checking [4] problems. Such verification procedures include (fair) CTL
model checking, LTL model checking, bisimulation equivalence, and language containment
of ω-regular automata.

Many algorithms for µ-calculus model checking have been suggested [8, 10, 16, 20, 22].
In this work we parallelize a simple sequential algorithm [7]. The algorithm works bottom-up
through the formula, evaluating each subformula based on the value of its own subformulas.
A formula is interpreted as the set of states in which it is true. Thus, for each µ-calculus
operation, the algorithm receives a set (or sets) of states and returns a new set of states.

The distributed algorithm follows the same lines as the sequential one, except that each
process runs its own copy of the algorithm and each set of states is stored distributively
among the processes. Every process owns a slice of the set, so that the disjunction of all
slices contains the whole set. An operation is now performed on a set (or sets) of slices and
returns a set of slices. At no point in the distributed algorithm is a whole set is stored by a
single process.

The intuitive solution for a distributed computation might prove to be deceptive for some
operations. For instance, in order to evaluate a formula of the form ¬g, the set of states
satisfying g should be complemented. It is impossible for a single process to carry out this
operation locally. Rather, each process sends the other processes the states they own, which
are not in g “to the best of its knowledge.” If none of the processes “knows” that a state is
in g, then the state is (distributively) determined to be in ¬g.

While performing an operation, a process may obtain states that are not owned by it. For
instance, when evaluating the formula EX f , a process will find the set of all predecessors
of states in its slice for f . However, some of these predecessors may belong to the slice of
another process. Therefore, the procedure exch is executed (in parallel) by all processes,
and each process sends its non-owned states to their respective owners.

Memory requirements are kept low through frequent calls to a memory balancing proce-
dure. It ensures that each set is partitioned evenly among the processes. This ensures that
the memory requirements, which are usually proportional to the size of the manipulated
set, are evenly distributed among the processes. However, this also requires different slicing
functions for different sets. As a result, we may need to apply an operation to two sets that
are sliced according to different partitions. In the case of conjunction, for instance, the two
sets should first be re-sliced according to the same partition. Only then do the processes
apply conjunction to their individual slices. Narayan et al. [18] show how to preform nega-
tion, conjunction, and disjunction under the assumption that the set of window functions
does not change. However, if the set does not change, the memory requirement will be
unbalanced as explained. This will render the distributed system ineffective.

Distributing the sets of states is only one facet of the problem. The transition relation
also strongly influences the memory peaks that appear during the computation of pre-image

DISTRIBUTED SYMBOLIC MODEL CHECKING FOR µ-CALCULUS 199

(EX) operations. The pre-image operation has one of the highest memory requirements
in model checking. Even when its final result is of tractable size, its intermediate results
might explode the memory. We propose a scalable distributed method for the pre-image
computation, including slicing of the transition relation.

The rest of this paper is organized as follows: In Section 2 we briefly review the propo-
sitional µ-calculus logic and its model checking algorithm. We also briefly review the
distributed symbolic model checking elements that were developed in [13]. In Section 3 we
describe our distributed model checking algorithm for µ-calculus. In Section 4 the correct-
ness of our algorithm is proved, and in Section 5 an enhancement for pre-image computation
is described. We conclude in Section 7.

2. Preliminaries

2.1. The propositional µ-calculus

Below we define the propositional µ-calculus [14]. We will not distinguish between a set
of states and the Boolean function that characterizes this set. By abuse of notation we will
apply both set operations and Boolean operations on sets and Boolean functions. Let AP be
a set of atomic propositions and let VAR = {Q, Q1, Q2, . . .} be a set of relational variables.
The µ-calculus formulas are defined as follows:

• if p ∈ AP , then p is a formula;
• a relational variable Q ∈ VAR is a formula;
• if f and g are formulas, then ¬ f , f ∧ g, f ∨ g, EX f are formulas;
• if Q ∈ VAR and f is a formula, then µQ. f and νQ. f are formulas.

µ-calculus consists of the set of closed formulas in which every relational variable Q is
within the scope of µQ or νQ.

Formulas of the µ-calculus are interpreted with respect to a transition system M =
(St, R, L), where St is a nonempty and finite set of states, R ⊆ St × St is the transition
relation, and L : St → 2AP is the labelling function that maps each state to the set of atomic
propositions true in that state.

In order to define the semantics of µ-calculus formulas, we use an environment e :
VAR → 2St , which associates with each relational variable a set of states from M .

Given a transition system M and an environment e, the semantics of a formula f , denoted
[[f]]M e, is the set of states in which f is true. We denote by e[Q ← W] a new environment
that is the same as e except that e[Q ← W](Q) = W . The set [[f]]M e is defined recursively
as follows (where M is omitted when clear from the context).

• [[p]]e = {s | p ∈ L(s)} • [[g1 ∧ g2]]e = [[g1]]e ∩ [[g2]]e
• [[Q]]e = e(Q) • [[g1 ∨ g2]]e = [[g1]]e ∪ [[g2]]e
• [[¬g]]e = St\[[g]]e • [[EXg]]e = {s | ∃t [(s, t) ∈ R and t ∈ [[g]]e] }
• [[µQ.g]]e, [[νQ.g]]e are the least and greatest fixpoints, respectively, of the predicate
transformer τ : 2St → 2St defined by: τ (W) = [[g]]e[Q ← W]

200 GRUMBERG, HEYMAN AND SCHUSTER

Figure 1. Pseudo-code for sequential µ-calculus model checking.

Figure 2. Pseudo-code for computing fixpoint.

Tarski [21] showed that least and greatest fixpoints always exist if τ is monotonic. If τ is
also continuous, then the least and greatest fixpoints of τ can be computed by ∪i∈N τ i (False)
and ∩i∈N τ i (True), respectively. In [7] it is shown that if M is finite then any monotonic τ

is also continuous.
In this paper we consider only monotonic formulas. Since the only transition systems

we consider are finite, they are also continuous. The function fixpt in figure 2 describes
an algorithm for computing the least or greatest fixpoint, depending on the initialization of
Qval . If the parameter init is False, the least fixpoint is computed. Otherwise, if init = True,
the greatest fixpoint is computed.

Given a transition system M , an environment e, and a formula f of the µ-calculus, the
model checking algorithm for µ-calculus finds the set of states in M that satisfy f . Figure 1
presents a sequential recursive algorithm for evaluating µ-calculus formulas. For closed
µ-calculus formulas, the initial environment is irrelevant. The necessary environments are
constructed during recursive applications of the eval eval function.

2.2. Elements of distributed symbolic model checking

Our distributed algorithm includes several basic elements that were developed in [12]. For
completeness, we give a brief overview of these elements in this subsection.

DISTRIBUTED SYMBOLIC MODEL CHECKING FOR µ-CALCULUS 201

Sets of states in the transition system, as well as the intermediate results, are represented
by BDDs. At any point during the algorithm’s execution, the sets of states obtained are
partitioned among the processes. A set of window functions is used to define the partitioning,
determining the slice that is stored (we say: owned) by each process.

Definition 1 (Complete set of window functions [5,18]). A window function is a Boolean
function that characterizes a subset of the state space. A set of window functions W1, . . . , Wk

is complete if and only if
∨k

i=1 Wi = 1.

Unless otherwise stated, we assume that all sets of window functions are complete.
We use the slicing algorithm, as described in [12], to get a set of window functions. The

objective of this algorithm is to distribute a given set evenly among the nodes. Its input is a
set of states, and its output is a set of window functions. These functions slice the input set
into approximately equal subsets.

The slicing algorithm uses the SelectVar algorithm, which slices a Boolean function (a
BDD) into two by assigning a BDD variable. The SelectVar algorithm receives a BDD,
f , and a threshold, δ. It selects one of the BDD variables v and slices f into fv = f ∧ v

and fv̄ = f ∧ v̄.
The cost of such a slicing is defined as:

Definition 2 (Cost(f, v, α)). α ∗ M AX (| fv |,| fv̄ |)
| f | + (1 − α) ∗ | fv |+| fv̄ |

| f |

The M AX (| fv |,| fv̄ |)
| f | factor gives an approximate measure to the reduction achieved by the

partition. The | fv |+| fv̄ |
| f | factor gives an approximate measure of the number of shared BDD

nodes in fv and fv̄ and therefore reflects the duplication in the partition. The cost function
depends on the value of α, where 0 ≤ α ≤ 1. α = 0 means that the cost function completely
ignores the reduction factor, while α = 1 means that the cost function completely ignores
the duplication factor.

Initially, the algorithm only attempts to find a BDD variable that will minimize the
duplication factor (α = 0), while still reducing the memory requirements below the thresh-
old (i.e., max(| f1|, | f2|) ≤ | f | − δ). If such a slicing does not exist, the algorithm in-
creases α gradually, allowing a gradual increase in duplication until max(| f1|, | f2|) ≤
| f | − δ is reached. Note that even though our algorithm may compute the cost func-
tions for many different α, | f ∧ v| and | f ∧ v̄| are computed only once for each variable
v.

Maintaining an equal load while the intermediate results are being stored is essential
for the scalability of the parallel algorithm. The equal load is maintained throughout the
algorithm by means of a memory balance procedure [12]. This procedure matches those
processes that have a large memory requirement with processes that have a small one.
Each pair of processes then re-slices the union of its two window functions to obtain a
better balanced slicing. The pair uses the same procedure that is used to slice the whole
state space. Re-slicing of different pairs is performed in parallel. A process with a huge
memory requirement may be matched several times with processes that have a small one.
This algorithm defines a new set of window functions that will be used to produce further

202 GRUMBERG, HEYMAN AND SCHUSTER

intermediate results. Following the computation of the new set of window functions, the set
of states is distributed accordingly.

More formally, the ldBlnc procedure is a parallel algorithm, as follows. Let W1, . . . , Wk

be a set of window functions, and res be a set of states, so that process i owns the subset
resi = res ∧ Wi . When ldBlnc terminates, a new set of window functions W ′

1, . . . , W ′
k is

produced, and process i owns res ′
i = res ∧ W ′

i .
During the memory balance procedure, as well as during other parts of the distributed

model checking algorithm, BDDs are shipped between the processes. A compact and uni-
versal BDD representation is used, as described in [12], for the communication. To send a
local BDD structure, the process first converts it to the universal representation, then sends
it to a different process which converts the universal representation back to its local BDD
structure. Different variable order is allowed in the different processes. The size of the uni-
versal representation is independent of local variable ordering, and it is linear in the BDD
size. Converting a universal represented BDD into the receiver BDD structure (according
to the local variable order) may sometimes involve higher complexity (up to exponential in
certain cases).

3. Distributed model checking for µ-calculus

The general idea of the distributed algorithm is as follows. The algorithm consists of two
phases. The initial phase starts as the sequential algorithm, described in Section 2. It termi-
nates when the memory requirement reaches a given threshold. At this point, the distributed
phase begins. In order to distribute the work among the processes, the state space is parti-
tioned into several parts, using a slicing procedure. Throughout the distributed phase, each
process owns one part of the state space for every set of states associated with a certain sub-
formula. When a computation of a subformula produces states owned by other processes,
these states are sent out to the respective processes. A memory balancing mechanism is used
to repartition imbalanced sets of states produced during the computation. A distributed ter-
mination algorithm is used to announce global termination. In the rest of this section we
describe elements used by this algorithm.

3.1. Switching to the distributed phase

When the initial phase terminates, several subformulas have already been evaluated and the
sets of states associated with them have been stored. In order to start the distributed phase,
we slice the sets of states found so far and distribute the slices among the processes.

Each set of states is represented by a BDD and its size is measured by the number of BDD
nodes. In each process all sets are managed by the same BDD manager, where parts of the
BDDs that are used by several sets are shared and stored only once. Thus, two factors affect
the partitioning of the sets: the required storage space for the sets, and the space needed
to manipulate them. In order to keep the first factor small, it is best to partition the sets so
that the space used by the BDD manager for all sets in each process is small. To keep the
second factor small, each part of each set in each process should also be kept small. This

DISTRIBUTED SYMBOLIC MODEL CHECKING FOR µ-CALCULUS 203

is possible because the memory used in performing an operation is proportional to the size
of the set it is applied to.

In model checking, the most acute peaks in memory requirement usually occur while
operations are being performed. Thus, it is more important to reduce the second factor.
Indeed, rather than minimizing the total size of each process, our algorithm slices each set
in a way that reduces the size of its parts. As a result, the slicing criterion may differ for
different sets. We use a slicing algorithm [13] described generally in Section 2.2. Slicing
is applied to each one of the sets that has already been evaluated when phase switching
occurs.

The slicing algorithm updates two tables: InitEval and InitSet. InitEval keeps track of
which sets have been evaluated by the initial phase of the algorithm. InitEval(f) is True
if and only if f has been evaluated by the initial algorithm. Each process id has the table
InitSet, which for each formula f such that InitEval(f) = True, holds the subset of the set
of states satisfying f and owned by this process. Formally, for each process id , and for
each formula f , if InitEval(f) = True then InitSet(f) = f ∧ Wid . The distributed phase
will start by sending the tables InitEval and InitSet, as well as the list of slices Wi , to all the
processes.

3.2. The distributed phase

The distributed version of the model checking algorithm for the µ-calculus is given in
figure 3. While the sequential algorithm finds the set of states that satisfy, in a given model,
a formula of the µ-calculus logic, each process in the distributed algorithm finds the part of
this set that the process owns. Intuitively, the distributed algorithm works as follows: given
a set of slices Wi , a formula f , and an environment e, the process id finds the set of states
eval(f, e) ∧ Wid .

In fact, a weaker property is required in order to guarantee the correctness of the algorithm.
It is enough to know that when evaluating a formula f , every state satisfying f is collected
by at least one of the processes. For efficiency, however, we require in addition that every
state be collected by exactly one process.

Given a formula f , the algorithm first checks if the initial phase has already evaluated it
by checking if InitEval(f) = True. If so, it uses the result stored in InitSet(f). Otherwise, it
evaluates the formula recursively. Each recursive application associates a set of states with
some subformula.

Preserving the work load is an inherent problem in distributed computation. If the mem-
ory requirement in one of the processes is significantly larger than in the others, the
effectiveness of the distributed system is disrupted. To avoid this situation, a memory
balance procedure is invoked whenever a new set of states is created, in order to main-
tain a balanced memory requirement for the new set. The memory balance procedure
changes the slices Wi and updates the parts of the new set in each of the processes ac-
cordingly. Old sets are kept unchanged. Since each set is balanced, so is the overall memory
requirement.

Each process in the distributed algorithm evaluates each subformula f as follows (see
figure 3):

204 GRUMBERG, HEYMAN AND SCHUSTER

Figure 3. Pseudo-code for a process id in the distributed model checking.

A propositional formula p ∈ AP: evaluated by collecting all the states s that satisfy
two conditions: p is in the labelling L(s) of s and, in addition, s is owned by this
process.

A relational variable Q: evaluated using the local environment of the process. Since only
closed µ-calculus formulas are evaluated, the environment must have a value for Q
(computed in a previous step).

A subformula of the form ¬g: evaluated by first evaluating g, and then using the special
function exchnot. Given a set of states S and a partition S1, . . . , Sk of S, each process i
runs the procedure exchnot on Si . The process reports to all the other processes about
the states that do not belong to S “as far as it knows.” Since each state in S belongs to
some process, if none of the processes knows that s is in S, then s is in ¬S.

DISTRIBUTED SYMBOLIC MODEL CHECKING FOR µ-CALCULUS 205

Since each process holds only the states of ¬S that it owns, the processes only send states
that are owned by the receiver. This reduces communication.

A subformula of the form g1 ∨ g2: evaluated by first evaluating g1 and g2, possibly with
different slicing functions. This means that a process can hold a part of g1 with respect
to one slicing and a part of g2 with respect to another slicing. Nevertheless, since each
state of g1 and of g2 belongs to one of the processes, each state of g1 ∨ g2 now belongs to
one of the processes as well. Applying the function exch results in a correct distribution
of the states among the processes, according to the current slicing.

A subformula of the form g1∧g2 can be translated, using De Morgan’s laws, to ¬(¬g1∨¬g2).
However, evaluating the translated formula requires four communication phases (via
exch and exchnot). Instead, such a formula is evaluated by first evaluating g1 and
g2. As in the previous case, they might be evaluated with respect to different window
functions. Here, however, the slicing of the two formulas should agree before a conjunc-
tion can be applied. This is achieved by applying exch twice, thus reducing the overall
communication to only two rounds.

A subformula of the form EXg: evaluated by first evaluating g and then computing the
pre-image using the transition relation R. Since every state of g belongs to one of the
processes, every state of the pre-image also belongs to one of the processes. In fact, a
state may be computed by more than one process if it is obtained as a pre-image of two
parts. Applying exch completes the evaluation correctly.

Subformulas of the form µQ.g and νQ.g (the least and greatest fixpoints, respectively):
evaluated using a special function fixpt that iterates until a fixpoint is found. The
computations for the formulas differ only in the initialization, which is False for µQ.g
and is the current window function for νQ.g. The fixpt function uses a distribution
termination detection procedure, parterm, to check whether a fixpoint has been reached.
Each process calls partermwith a Boolean value. The process reports true if and only if a
fixpoint has been reached “as far as it knows.” The fixpoint is evaluated by applying exch
on both the last and current value of Q and comparing the parts that the process owns.
Since each state belongs to some process, a fixpoint is reached if none of the processes
gets a new state during the last iteration.

4. Correctness

In this section we prove the correctness of the distributed algorithm, assuming the sequential
algorithm is correct. The sequential algorithm evaluates a formula by computing the set of
states that satisfy it. In the distributed algorithm every such set is partitioned among the
processes. The union over all the partitions for a given subformula is called the global set.
In the proof we show that, for every µ-calculus formula, the set of states computed by the
sequential algorithm is identical to the global set computed by the distributed algorithm.
Note that the global set is never actually computed and is introduced only for the sake of
the correctness proof. In the proof that follows we need the following definition.

Definition 3 (Well-partitioned environment). An environment e is well partitioned by parts
e1, . . . , ek if and only if, for every Q ∈ VAR, e(Q) = ∨k

i=1 ei (Q).

206 GRUMBERG, HEYMAN AND SCHUSTER

The procedures exch are applied by all processes with a set of non-disjoint subsets Si

that cover a set res. Given a set of window functions, the procedures exchange non-owned
parts so that at termination each process has all the states from res that it owns. The set of
window functions does not change. Lemma 1 defines the relationship between the output
of the procedure exch and the current set of window functions.

Lemma 1 (exch procedure). Let W1, . . . , Wk be a set of window functions and res be
a set of states. Assume that each process id runs procedure exch with subset Sid , where∨k

i=1 Si = res. Then the set of window functions does not change and, after all procedures
terminate, each process id has resid = res ∧ Wid = ∨k

i=1 Si ∧ Wid .

Proof: At termination of procedure exch, process id has the following set:

resid = (Sid ∧ Wid) ∨
∨

j
=id

(Sj ∧ Wid) =
k∨

i=1

Si ∧ Wid = res ∧ Wid .

Let f be a µ-calculus formula and eid be the environment in process id . pevalid (f, eid)
denotes the set of states returned by procedure peval, when run by process id on f and
eid .

Theorem 1 defines the relationship between the outputs of the sequential and the dis-
tributed algorithms.

Theorem 1 (Correctness). Let f be a µ-calculus formula, W1 . . . Wk be a complete set of
window functions, and W ′

1 . . . W ′
k be the set of window functions wheneval(f ,e) terminates.

In addition, let e be a well–partitioned environment by e1, . . . ek , and e′ be the environment
when eval(f ,e) terminates. Furthermore, for all i = 1, . . . ,k, let e′

i be the environment
when pevali (f ,ei) terminates. Then e′ is well partitioned by e′

1, . . . e′
k , W ′

1 . . . W ′
k is a

complete set of window functions, and eval(f ,e) =
∨k

i=1 pevali (f ,ei).

It follows trivially from Theorem 1 that the disjunction of all the parts of a set evaluated by
the processes for a function f is equal to the entire set evaluated by the sequential algorithm.

Proof: We prove the theorem by induction on the structure of f . In all but the last two cases
of the induction step the environments do not change, and therefore e′ is well partitioned
by e′

1, . . . e′
k .

The set of window functions is modified by applying ldBlnc at the end of peval. The
procedure ldBlnc repartitions the subsets between the processes. However, their disjunc-
tion remains the same. Therefore, W ′

1 . . . W ′
k is a complete set of window functions.

Base: f = p for p ∈ AP
∨k

i=1 pevali (f, ei) =
∨k

i=1 ({s | p ∈ L(s)} ∧ Wi) = {s | p ∈
L(s)} ∧ ∨k

i=1 Wi .

DISTRIBUTED SYMBOLIC MODEL CHECKING FOR µ-CALCULUS 207

Since
∨k

i=1 Wi = 1 (the set of window functions is complete), the above expression is
equal to {s | p ∈ L(s)}, which is exactly eval(f, e).

Induction:
1. f = Q, where Q ∈ VAR is a relational variable:

∨k
i=1 pevali (Q, ei) = ∨k

i=1 ei (Q).

Since e is well partitioned, e(Q) = ∨k
i=1 ei (Q), which is equal to eval(f, e).

2. f = ¬g: pevalid (¬g, eid) first applies pevalid (g, eid), which results in Sid . It then runs
the procedure exchnot(Sid), which returns the result resid .

resid = ((¬Sid) ∧ Wid) ∧
∧

j
=id

((¬Sj) ∧ Wid) =
k∧

j=1

((¬Sj) ∧ Wid).

When exchnot terminates in all processes, the global set computed by all processes is
(recall that

∨k
i=1 Wi = 1):

k∨

i=1

(
k∧

j=1

((¬Sj) ∧ Wi)

)

=
k∧

j=1

(¬Sj) ∧
k∨

i=1

Wi =
k∧

j=1

(¬Sj) = ¬
k∨

j=1

Sj .

Since Si = pevali (g, ei), ¬ ∨k
j=1 Sj = ¬ ∨k

j=1 pevali (g, ei), which by the induction
hypothesis is identical to ¬ eval(g, e). This, in turn, is identical to eval(¬g, e). Thus,
eval(¬g, e)= ∨k

i=1 pevali (¬g, ei).
3. f = g1 ∨ g2: pevalid (g1 ∨ g2, eid) first computes pevalid (g1, eid)∨

pevalid (g2, eid). At the end of this computation, the global set is:

k∨

i=1

(pevali (g1, ei) ∨ pevali (g2, ei)) =
k∨

i=1

pevali (g1, ei) ∨
k∨

i=1

pevali (g2, ei).

By the induction hypothesis, this is identical to eval(g1, e) ∨ eval(g2, e), which is
identical to eval(g1 ∨ g2, e). Applying the procedures exch and ldBlnc changes the
partition of the sets among the processes, but not the global set.

4. f = g1 ∧ g2: pevalid (g1 ∧g2, eid) first computes the two sets resid
1 = pevalid (g1, eid)

and resid
2 = pevalid (g2, eid), then applies exch to each of them, and finally conjuncts the

results. Note that no ldBlnc is invoked between the two applications of exch. Therefore,
both use the same window functions. Let W1, . . . , Wk be those window functions. Then
the global set is

k∨

i=1

resi =
k∨

i=1

(
exch

(
resi

1

) ∧ exch
(
resi

2

))

=
k∨

i=1

((

Wi ∧
k∨

j=1

res j
1

)

∧
(

Wi ∧
k∨

j=1

res j
2

))

.

208 GRUMBERG, HEYMAN AND SCHUSTER

By the induction hypothesis,
∨k

j=1 res j
1 = eval(g1, e) and

∨k
j=1 res j

2 = eval(g2, e).
Thus,

k∨

i=1

resi =
k∨

i=1

(eval(g1, e) ∧ eval(g2, e) ∧ Wi) = eval(g1 ∧ g2, e) ∧
k∨

i=1

Wi

= eval(g1 ∧ g2, e).

Applying ldBlnc does not change the global set; thus
∨k

i=1 pevali (g1 ∧ g2, ei) =
eval(g1 ∧ g2, e).

5. f = EX g: pevalid (EXg, eid) evaluates the set of all predecessors of states in pevalid

(g, eid), using the transition relation R. The global set of all predecessors s can be
represented by the formula

∨k
i=1 ∃t[(s, t) ∈ R ∧ t ∈ pevali (g, ei)]. The global set

computed at this stage is:

k∨

i=1

∃t[(s, t) ∈ R ∧ t ∈ pevali (g, ei)].

Since disjunction and existential quantification are commutative, the above formula is
identical to

∃t

[
k∨

i=1

(s, t) ∈ R ∧ t ∈ pevali (g, ei)

]

= ∃t

[

(s, t) ∈ R ∧ t ∈
k∨

i=1

pevali (g, ei)

]

.

By the induction hypothesis,
∨k

i=1 pevali (g, ei) = eval(g, e). Thus, the global set is
identical to

∃t [(s, t) ∈ R ∧ t ∈ eval(g, e)] = eval(EX g, e).

Since the procedures exch and ldBlnc do not change the global set,∨k
i=1 pevali (EXg, ei) = eval(EXg, e).

6. f = µQ.g, a least fixpoint formula: pevalid (µQ.g, eid) evaluates the least fixpoint
formula by calling fixptid (Q, g, eid , False)). Similarly, the sequential algorithm, eval
(µQ.g, e), evaluates the least fixpoint formula by calling the sequential function fixpt
(Q, g, e, False)). As in previous cases, we would like to prove that

∨k
i=1 pevali

× (µQ.g, ei) = eval(µQ.g, e). Since ldBlnc does not change the correctness of
this claim, we only need to prove that

∨k
i=1 fixpti (Q, g, ei , False)) = fixpt(Q, g, e,

False)). In addition, we need to show that the environment remains well partitioned
when the computation terminates. The following lemma proves stronger requirements.
It shows that at every iteration, the results of the sequential algorithm are identical to the

DISTRIBUTED SYMBOLIC MODEL CHECKING FOR µ-CALCULUS 209

global results of the distributed algorithm and that both algorithms terminate at the same
iteration. This guarantees that the results at termination match. The lemma also proves
that the environment is well partitioned at every iteration. The lemma uses the following
property of procedure parterm.

Property 1. Procedure parterm is invoked by each of the processes with a Boolean
parameter. If all processes send True, then parterm returns True to all processes. Oth-
erwise, it returns False to all processes.

Lemma 2. Let Q j be the value of Qval in iteration j of the sequential fixpoint algorithm.
Similarly, let Q j

id be the value of Qval in iteration j of the distributed fixpoint algorithm
in process id. Q0 is the initialization of the sequential algorithm; Q0

id is the initialization
of the distributed algorithm. Then,
(a) At every iteration, e is well partitioned by e1, . . . , ek.
(b) For every j: Q j = ∨k

i=1 Q j
i .

(c) If the sequential fixpt algorithm terminates after i0 iterations, then so does the
distributed fixpt algorithm.

Proof: We prove the lemma by induction on the number j of iterations in the loop of
the sequential function fixpt.

Base: j = 0:
(a) At iteration 0, e is well partitioned, according to the induction hypothesis of

Theorem 1.
(b) In the case that f = µQ.g, the value of both the sequential and the distributed

algorithm at initialization is False. Hence, Q0 = Q0
id = False, which implies

Q0 = ∨k
i=1 Q0

i .
(c) Since both algorithms perform at least one iteration, they will not terminate at iter-

ation 0.

Induction: Assume Lemma 2 holds for iteration j . We prove it for iteration j + 1.

(a) Let e′, e′
1, . . . , e′

k be the environments at the end of iteration j + 1, and assume that
e is well partitioned by e1, . . . , ek at the end of iteration j . The only changes to the
environments in iteration j + 1 may occur in line 5 of the distributed and sequential
algorithms. Changes may occur for two reasons: e(Q) may be assigned a new value
Q j , or a recursive call to eval may change e. Similarly, in the distributed algorithm,
two changes may occur: eid (Q) may be assigned a new value Q j

id , or a recursive call
to pevalid may change eid .

By the induction hypothesis of Lemma 2 we know that Q j = ∨k
i=1 Q j

i . Hence,
e[Q ← Q j](Q) = ∨k

i=1 ei [Q ← Q j
i](Q). Since no other change has been made to

the environments, and since e is well partitioned, we conclude that e[Q ← Q j] is
well partitioned by e1[Q ← Q j

1], . . . , ek[Q ← Q j
k].

210 GRUMBERG, HEYMAN AND SCHUSTER

In iteration j +1, eval is now invoked with an environment that is well partitioned
by the environmentspevalid is invoked with. The induction hypothesis of Theorem 1
therefore guarantees that e′ is well partitioned by e′

1, . . . , e′
k .

(b) Q j+1 = eval(g, e[Q ← Q j]) (line 5 of the sequential algorithm) and Q j+1
id =

pevalid (g, e[Q ← Q j
id]) (line 5 of the distributed algorithm). By item (a), e[Q ←

Q j] is well partitioned. Thus, the induction hypothesis of Theorem 1 is applicable
and implies that

eval(g, e[Q ← Q j]) =
k∨

i=1

pevali

(
g, e

[
Q ← Q j

i

])
.

Hence, Q j+1 = ∨k
i=1 Q j+1

i .
(c) The sequential fixpt procedure terminates at iteration j + 1 if Q j = Q j+1. We

prove that this holds if and only if for every process id , exch(Q j
id) = exch(Q j+1

id),
and therefore parterm returns True to all processes.

Let W1, . . . , Wk be the current window functions. By item (b), Q j = ∨k
i=1 Q j

i

and Q j+1 = ∨k
i=1 Q j+1

i .

∀id
[
exch

(
Q j

id

) = exch
(
Q j+1

id

)] ⇔ ∀id

[
k∨

i=1

Q j
i ∧ Wid =

k∨

i=1

Q j+1
i ∧ Wid

]

⇔ ∀id[Q j ∧ Wid = Q j+1 ∧ Wid]

⇔ Q j = Q j+1.

The last equality is implied by the previous one because the window functions are
complete. This completes the proof of the lemma.

7. f = νQ.g, a greatest fixpoint formula: The proof for this case is almost identical to
the previous one. The only change should be made to the definition of Q0, Q0

i in the
statement of the lemma, so that Q0 = True and Q0

i = Wi . The proof of second bullet in
the base case should be changed accordingly. This completes the proof.

4.1. The processes own disjoint subsets

Theorem 1 can be extended to state that when all procedures pevalid (f, eid) terminate,
the subsets owned by each of the processes are disjoint. This is important in order to avoid
duplication of work. A set of window functions that defines disjoint ownership is presented
in the following definition:

Definition 4 [Disjoint set of window functions]. A set of window functions W1, . . . , Wk

is disjoint if and only if, for every 1 ≤ t, l ≤ k, t
= l, Wt ∧ Wl = 0.

DISTRIBUTED SYMBOLIC MODEL CHECKING FOR µ-CALCULUS 211

The distributed algorithm uses the exchange procedure to store disjoint subsets of each
set. The following lemma specifies this property:

Lemma 3 (exch procedure makes disjoint parts). Let W1, . . . , Wk be a set of disjoint
window functions and S be a set of states. Assume that each process id runs procedure
exch with a subset Sid . Then at termination of the procedures in all processes, for every
1 ≤ t,l ≤ k, t
= l, exch(St)∧exch(Sl) = 0.

Proof: By Lemma 1, at termination of procedure exch, for every 1 ≤ t, l ≤ k, t
=
l,rest ∧ resl = (

∨k
j=1 Sj ∧ Wt) ∧ (

∨k
j=1 Sj ∧ Wl). Since Wi is a set of disjoint window

functions, the last expression equals 0.

We now show that, for every µ-calculus formula, the subsets computed by the distributed
algorithm are disjoint. In the proof that follows we need the following definition.

Definition 5 (Disjoint environment). Environment parts e1, . . . , ek are disjoint if and only
if, for every Q ∈ VAR, for every 1 ≤ t, l ≤ k, t
= l, et (Q) ∧ el(Q) = 0.

Theorem 2 proves that given a disjoint set of window functions, the distributed algorithm
returns disjoint results.

Theorem 2 (The processes own disjoint subsets). Let f be a µ-calculus formula,
W1 . . . Wk be a disjoint set of window functions, and W ′

1 . . . W ′
k be the set of window func-

tions when eval(f, e) terminates. In addition, let e1, . . . ek be disjoint environment parts,
and for all i = 1, . . . , k, let e′

i be the environment when pevali (f, ei) terminates. Then
e′

1, . . . e′
k are disjoint environment parts, W ′

1 . . . W ′
k is a disjoint set of window functions,

and for every 1 ≤ t, l ≤ k, t
= l,

pevalt (f, et) ∧ pevall(f, el) = 0.

Proof: We prove the theorem by induction on the structure of f . In all but the last two
cases of the induction step the environments are not changed and therefore e′

1, . . . e′
k are

disjoint.
The set of window functions is modified by applying ldBlnc at the end of peval.

The procedure ldBlnc repartitions the subsets between the processes. However, the set
of window functions remains disjoint. Therefore, W ′

1 . . . W ′
k is a disjoint set of window

functions.

Base: f = p for p ∈ AP for every 1 ≤ t, l ≤ k, t
= l, pevalt (f, et)∧ pevall(f, el) =
{s | p ∈ L(s)} ∧ Wt ∧ {s | p ∈ L(s)} ∧ Wl .

Since for every 1 ≤ t, l ≤ k, t
= l, Wt ∧Wl = 0 (the set of window functions is disjoint),
the above expression is equal to 0.

212 GRUMBERG, HEYMAN AND SCHUSTER

Induction step:

1. f = Q, where Q ∈ VAR is a relational variable: for every 1 ≤ t, l ≤ k, t
= l,
pevalt (f, et)∧ pevall(f, el) = et (Q) ∧ el(Q). Since e1, . . . , ek are disjoint, the last
expression equals 0.

2. f = ¬g: pevalid (¬g, eid) first applies pevalid (g, eid), which results in Sid . It then runs
the procedure exchnot(Sid), which returns the result resid .

resid = ((¬Sid) ∧ Wid) ∧
∧

j
=id

((¬Sj) ∧ Wid) =
k∧

j=1

((¬Sj) ∧ Wid).

Therefore, for every 1 ≤ t, l ≤ k, t
= l, pevalt (f, et) ∧ pevall(f, el) = rest ∧ resl =

k∧

j=1

((¬Sj) ∧ Wt) ∧
k∧

j=1

((¬Sj) ∧ Wl).

Since Wt ∧ Wl = 0, the above expression is equal to 0. Applying ldBlnc at the end
of peval repartitions the subsets between the processes; however, the subsets remain
disjoint. Thus, for every 1 ≤ t, l ≤ k, t
= l, pevalt (f, et) ∧ pevall(f, el) = 0.

3. f = g1 ∨ g2: pevalid (g1∨g2, eid) first computes the disjunction of pevalid (g1, eid) and
pevalid (g2, eid), which results in Sid . Then it runs the procedure exch(Sid). Therefore,
for every 1 ≤ t, l ≤ k, t
= l, pevalt (f, et)∧ pevall(f, el) =exch(St)∧exch(Sl). By
the induction hypothesis, the window functions used by exch are disjoint. Therefore we
can apply Lemma 3, which ensures that the last expression equals 0.

4. f = g1 ∧ g2: pevalid (g1 ∧ g2, eid) first computes the two sets resid
1 = pevalid (g1, eid)

and resid
2 = pevalid (g2, eid). It then applies exch to each set and conjuncts the results.

Therefore, for every 1 ≤ t, l ≤ k, t
= l, pevalt (f, et)∧ pevall(f, el) = exch(rest
1)∧

exch(rest
2)∧ exch(resl

1)∧ exch(resl
2). Lemma 3 ensures that the last expression equals

0.
5. f = EX g: pevalid (EXg, eid) evaluates the set of all predecessors of states in pevalid

(g, eid), which results in Sid . It then runs the procedure exch(Sid). Therefore, for every
1 ≤ t, l ≤ k, t
= l, pevalt (f, et)∧ pevall(f, el) = exch(St)∧exch(Sl). Lemma 3
ensures that the last expression equals 0.

6. f = µQ.g, a least fixpoint formula: pevalid (µQ.g, eid) evaluates the least fixpoint
formula by calling fixptid (Q, g, eid , False)). As in previous cases, we would like to
prove that for every 1 ≤ t, l ≤ k, t
= l, pevalt (f, et)∧ pevall(f, el) = 0. Since
ldBlnc does not change the correctness of this claim, we only need to prove that for
every 1 ≤ t, l ≤ k, t
= l, fixptt (Q, g, et , False))∧ fixptl(Q, g, el , False)) = 0. In
addition, we need to show that the environment remains disjoint when the computation
terminates. The following lemma proves stronger requirements. It shows that at every
iteration, the results and the environment parts are disjoint. This guarantees that at
termination they are disjoint as well.

DISTRIBUTED SYMBOLIC MODEL CHECKING FOR µ-CALCULUS 213

Lemma 4. Let Q j
id be the value of Qval in iteration j of the fixpoint algorithm in

process id. Q0
id is the value of Qval at initialization. Then,

(a) At every iteration, e1, . . . , ek are disjoint.
(b) For every j ,1 ≤ t, l ≤ k, t
= l, Q j

t ∧ Q j
l = 0.

Proof: We prove the lemma by induction on the number j of iterations in the loop of
the function fixpt.
Base: j = 0:
(a) At iteration 0, e1, . . . , ek are disjoint, according to the induction hypothesis of The-

orem 2.
(b) In case f = µQ.g, the initialization of the distributed algorithm is False. Hence,

for every 1 ≤ t, l ≤ k, t
= l, Q0
t = Q0

l = 0, which implies Q0
t ∧ Q0

l = 0.

Induction step: Assume Lemma 4 holds for iteration j . We prove it for iteration j + 1.

(a) Let e′
1, . . . , e′

k be the environments at the end of iteration j + 1, and assume that
e1, . . . , ek are disjoint at the end of iteration j . The only changes to the environments
in iteration j + 1 may occur in line 5 of the algorithms. Changes may occur for two
reasons: eid (Q) may be assigned a new value Q j

id , or a recursive call to pevalid

may change eid .
By the induction hypothesis of Lemma 4 we know that for every 1 ≤ t, l ≤ k,
t
= l, Q j

t ∧ Q j
l = 0. Hence, for every 1 ≤ t, l ≤ k, t
= l, et [Q ← Q j

t](Q) ∧
el[Q ← Q j

l](Q) = 0. Since no other change has been made to the environments,
and since e1, . . . , ek are disjoint, we conclude that for every 1 ≤ t, l ≤ k, t
= l,
et [Q ← Q j+1

t](Q) ∧ el[Q ← Q j+1
l](Q) = 0.

In iteration j + 1, pevalid is now invoked with a disjoint environment. The
induction hypothesis of Theorem 2 therefore guarantees that e′

1, . . . , e′
k are disjoint.

(b) Q j+1
id = pevalid (g, e[Q ← Q j

id]) (line 5 of the distributed algorithm).
By item (a), eid [Q ← Q j

id] are disjoint. Thus, the induction hypothesis of Theo-
rem 2 is applicable and implies that for every 1 ≤ t, l ≤ k, t
= l, pevalt (g, e[Q ←
Q j

t]) ∧ pevall(g, e[Q ← Q j
l])= 0. Hence, for every 1 ≤ t, l ≤ k, t
= l,

Q j+1
t ∧ Q j+1

l = 0.
This completes the proof of the lemma

7. f = νQ.g, a greatest fixpoint formula: The proof for this case is almost identical to the
previous one. The only change should be made to the definition of Q0

i in the statement
of the lemma, so that Q0

i = Wi . The proof of the second bullet in the base case should
be changed accordingly. This completes the proof.

5. Scalable distributed pre-image computation

The main goal of our distributed algorithm is to reduce the memory requirement of the sym-
bolic model checking operations. In symbolic model checking, pre-image is one of the op-

214 GRUMBERG, HEYMAN AND SCHUSTER

erations with the highest memory requirement. Given a set of states S, pre-image computes
pred(S) (also denoted by EX S inµ-calculus), which is the set of all predecessors of states in
S. The pre-image operation can be described by the formula pred(S) = ∃s ′[R(s, s ′)∧S(s ′)].
It is easy to see that the memory requirement of this operation grows as the sizes of the tran-
sition relation R and the set S grow. Furthermore, intermediate results sometimes exceed
the memory capacity even when pred(S) can be held in memory.

Our distributed algorithm reduces memory requirements by slicing each of the computed
sets of states. This takes care of the S parameter of a pre-image computation, but not of
the R parameter. In order to make our method scalable for very large models, we need to
reduce the size of the transition relation as well.

The transition relation consists of pairs of states. We distinguish between the source states
and the target states by referring to the latter as St ′. Thus, R ⊆ St × St ′.

A reduction of the second parameter of R, St ′, can be achieved by applying the well-
known restriction operator [9]: Prior to any application of the pre-image computation, a
process that owns a slice Si of S reduces its copy of R by restricting St ′ to Si . Since
pre-image operations are applied to different sets during model checking, this reduction is
dynamic.

We further reduce R by adding a static slicing of St according to (possibly different)
window functions U1, . . . , Um . The slicing algorithm of Section 2.2 can be used to produce
U1, . . . , Um , so that R is partitioned to m slices of similar size. Each slice R j is a subset
of (St ∩ U j) × St ′. Since R does not change during the computation, U1, . . . , Um do not
change either.

Having k window functions W1, . . . , Wk for S and m window functions U1, . . . , Um for
R, we use k × m processes. All processes (i, 1), (i, 2), . . . , (i, m) have the same Wi and
hence own the same Si = S ∧ Wi . However, these processes have a different Ul . Process
(i, l) with Wi and Ul computes the pre-image of Si by pred j (Si) = ∃s ′[Rl(s, s ′) ∧ Si (s ′)].

The above figure demonstrates a pre-image computation using a sliced transition relation
with k = 2 and m = 3. Given a set S sliced into S1, S2 according to W1, W2 respectively,
the pre-image of S1 is computed by three processes. Each process uses a different slice of
the transition relation, R1, R2 and R3, according to U1, U2 and U3.

5.1. Model checking algorithm with sliced transition relation

The algorithm parevalstr(f, e) is similar to peval, but uses a sliced transition relation.
Formulas not in the form of EXg do not use the transition relation. The algorithm works

DISTRIBUTED SYMBOLIC MODEL CHECKING FOR µ-CALCULUS 215

Figure 4. Pseudo-code for exchanging non-owned states after pre-image computation using the sliced transition
relation.

the same way as peval does on these formulas, using one process (i, 1) for each window
function Wi . The exch algorithm and the ldBlnc algorithm work only with the relevant
processes (1, 1), (2, 1),. . .,(k, 1).

A formula in the form EXg is evaluated by first using the processes (1, 1), (2, 1),. . ., (k, 1)
to evaluate g. Then each process (i, 1) broadcasts its copy of gi to the processes (i, 2),. . .,
(i, m). Each process (i, l) computes the pre-image of gi using Rl . Finally, the processes
use the algorithm exchstr (given in figure 4) to complete the evaluation and update the
processes (1, 1), (2, 1), . . ., (k, 1).

The method suggested in this section applies slicing to the full transition relation if it
can be held in memory but is too big to enable a successful completion of the pre-image
operation. However, the given transition relation is often partitioned, i.e., it is given as a
set of small relations Nl , each defining the value of variable vl in the next states. The size
of the partitioned transition relation is usually small; therefore it can be constructed by one
process and then sliced using the algorithm suggested in [17]. In this case, model checking
is done directly with the partitioned transition relation [3].

5.2. Distributed construction of the sliced full transition relation

In this section we consider cases in which the full transition relation R is a conjunction
of all Nl . We consider cases where either the size of R or intermediate results during its
construction cannot fit into the memory of a single process.

Our goal is to construct slices R j of R, with none of the processes ever holding R. One
process starts the construction by computing the conjunction of partitions Nl gradually,
until a threshold is reached. The current (partial) transition relation is then sliced among
the processes, using the slicing algorithm. Each process continues to conjunct the partitions
that have not yet been handled, until all partitions are conjuncted. During the conjunction,
further slicing or balancing are applied so that the final slices are balanced.

216 GRUMBERG, HEYMAN AND SCHUSTER

5.3. Correctness of the algorithm with a sliced transition relation

In this section we prove the correctness of the distributed algorithmparevalstr. Theorem 3
proves that the output of the distributed algorithm parevalstr and the output of the
distributed algorithm peval are equal. In the proof that follows we need the following
definition.

Definition 6 (Sliced transition relation). A transition relation R corresponds to a sliced
transition relation R1, . . . , Rm if and only if for every 1 ≤ l ≤ m, Rl = R ∧ Ul , where
U1, . . . , Um is a complete set of window functions.

Theorem 3 (Correctness with sliced transition relation). Let f be a µ-calculus formula
and let R be a transition with the corresponding sliced transition relation R1, . . . , Rm. In ad-
dition, let e1, . . . ek be a distributed environment, e′

i be the environment when pevali (f, ei)
terminates, and e′′

i be the environment when parevalstri,1(f, ei) terminates. Then, e′
i = e′′

i
and pevali (f, ei) = parevalstri,1(f, ei).

From Theorems 3 and 1 we can conclude that the union over the parts evaluated by all
processes for a function f is equal to the entire set evaluated by the sequential algorithm.

Proof: We prove the theorem by induction on the structure of f . parevalstri,1(f, ei)
works the same way as pevali (f, ei) does for all formulas except those of the form EXg.
Therefore it is enough to prove the theorem only for formulas in the form EXg.
Base: f = p for p ∈ AP . Immediate, since not EXg.

Induction: f = EX g: parevalstri,l(EXg, ei) evaluates the set of all predecessors of
states in parevalstri,1(g, ei), using the transition relation Ri . The set of all predecessors
si,l can be represented by the formula ∃t[(s, t) ∈ Ri ∧ t ∈ parevalstr i,1(g, ei)]. Then each
process runs exchstr(si,l , i, l) and places the results in s ′

i,l . The result in processes (w I d, 1)
is as follows:

s ′
w I d,1 =

m∨

l=1

k∨

i=1

si,l ∧ wi

The above formula is therefore identical to:

wi ∧
m∨

l=1

k∨

i=1

∃t[(s, t) ∈ Rl ∧ t ∈ parevalstri,1(g, ei)].

Since disjunction and existential quantification are commutative, the above formula is iden-
tical to

wi ∧ ∃t

[
k∨

i=1

(s, t) ∈
(

m∨

l=1

Rl

)

∧ t ∈ parevalstri,1(g, ei)

]

.

DISTRIBUTED SYMBOLIC MODEL CHECKING FOR µ-CALCULUS 217

Since Rl are sliced transition relations, the above formula is identical to:

wi ∧ ∃t

[

(s, t) ∈ R ∧ t ∈
k∨

i=1

parevalstri,1(g, ei)

]

.

By the induction hypothesis, parevalstri,1(g, ei) = pevali (g, ei). Thus, the set re-
turned by process (i, 1) is identical to

wi ∧ ∃t

[

(s, t) ∈ R ∧ t ∈
k∨

i=1

pevali (g, ei)

]

.

The last expression is identical to:

wi ∧ pevali (EX g, ei).

Lemma 1 ensures that the set returned by procedure exch(pevali (EXg, ei)) is identical to
the above formula, and thus parevalstri,1(EXg, ei) = pevali (EXg, ei). This completes
the proof.

6. Scalability

A distributed algorithm is scalable if it remains effective for large problems when running
on a large number of nodes. The main factors that influence scalability are the memory
requirement of the algorithm at each node and the communication volume. If the memory
requirement at each node decreases as the number of nodes grows, the algorithm can
probably handle larger problems by using a large number of nodes.

Our experience in previous work [1, 13] indicates that the bandwidth of the current
standard network allows systems with a few dozen nodes to work effectively, and commu-
nication does not become a bottleneck. A very large network will need to handle larger
communication volume.

There are two sources for the memory requirements of the algorithm: the memory required
from each node to store the sets and the memory required to compute the image of a single
set. Since each set is distributed evenly among the nodes by the ldBlnc procedure, the
memory requirement from each node is expected to be balanced. Therefore, the memory
required by each node is expected to decrease when the number of nodes increases.

The memory requirement for computing the image of a set depends on the set size. Since
computation is applied to a balanced set, the size of each subset decreases linearly to the
number of nodes. Therefore, the memory requirement for the computation is expected to
decrease when the number of nodes increases.

The algorithm works bottom up through the formula, evaluating each subformula based
on the value of its own subformulas. It evaluates each subformula using a number of nodes
that work in parallel. However, the evaluation is synchronized by the call to the ldBlnc,
exch and exchnot procedures. The evaluation takes a constant number of operations for

218 GRUMBERG, HEYMAN AND SCHUSTER

all the operators except fixpoint. Lemma 2 proves that the distributed algorithm takes the
same number of steps for fixpoint operators as the sequential. Therefore, we conclude
that the complexity of the distributed algorithm is the same as in the sequential case. The
complexity of evaluating a formula depends only on the number of alternations d of the
least and greatest fixpoints [10]. A sequential [10, 16] algorithm requires nd steps where n
is the number of states in the transition system.

Our algorithm requires several standard machines, each consisting of local processors and
local memory. The communication between the machines consists of a standard ethernet.
The algorithm can be implemented using the MPI standard [11]. Therefore, it does not
require any special architecture.

7. Conclusion

This paper presents a framework for distributed symbolic model checking. It includes a
scalable distributed symbolic model checking algorithm for µ-calculus. It suggests using
a sliced transition relation for image computation of very large transition systems. Many
other model checking algorithms for subsets of µ-calculus can use this framework. Future
work should address such implementation issues as selecting window functions, selecting
order of communication during the exchange procedure, and balancing memory utilization
without forcing synchronization.

Acknowledgment

We would like to thank Ken McMillan for his time, patience and help in choosing a notation
for the µ-calculus model checking algorithm.

References

1. S. Ben-David, O. Grumberg, T. Heyman, and A. Schuster, “Scalable distributed on-the-fly symbolic model
checking,” Software Tools for Technology Transfer, Vol. 4 No. 4, pp. 496–504, 2003.

2. R.E. Bryant, “Graph-based algorithms for boolean function manipulation,” IEEE Transactions on Computers,
Vol. C-35, No. 8, pp. 677–691, 1986.

3. J.R. Burch, E.M. Clarke, and D.E. Long, “Symbolic model checking with partitioned transition relations,”
in A. Halaas and P.B. Denyer (Eds.), Proceedings of the 1991 International Conference on Very Large Scale
Integration, August 1991.

4. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang, “Symbolic model checking: 1020 states
and beyond,” Information and Computation, Vol. 98, No. 2, pp. 142–171, 1992. Special Issue: Selections
from 1990 IEEE Symposium on Logic in Computer Science.

5. G. Cabodi, P. Camurati, and S. Quer, “Improving the Efficient of BDD-bsaed operators by means of parti-
tioning,” IEEE Transactions on Computer-Aided Design, May 1999, pp. 545–556.

6. E.M. Clarke, E.A. Emerson, and A.P. Sistla, “Automatic verification of finite-state concurrent systems us-
ing temporal logic specifications,” in Proceedings of the Tenth Annual ACM Symposium on Principles of
Programming Languages, January 1983.

7. E.M. Clarke, O. Grumberg, and D.A. Peled, Model Checking, MIT press, December 1999.
8. R. Cleaveland, “Tableau-based model checking in the propositional µ-calculus,” Acta Informatica, Vol. 27,

pp. 725–747, 1990.

DISTRIBUTED SYMBOLIC MODEL CHECKING FOR µ-CALCULUS 219

9. O. Coudert, J.C. Madre, and C. Berthet, “Verifying of synchronous sequential machines based on symbolic
execution,” in J. Sifakis (Ed), Workshop on Automatic Verification Methods for Finite State Systems, Springer-
Verlag: Grenoble, France, 1989, pp. 365–373.

10. E.A. Emerson and C.-L. Lei, “Efficient model checking in fragments of the propositional Mu-calculus,” in
Proceedings of the First Annual Symposium on Logic in Computer Science, IEEE Computer Society Press,
June 1986.

11. Message Passing Interface Forum. MPI: A Message-Passing Interface standard. The International Journal of
Supercomputer Applications and High Performance Computing, Vol. 8, 1994.

12. T. Heyman, D. Geist, O. Grumberg, and A. Schuster, “Achieving scalability in parallel reachability analysis
of very large circuits,” in Proc. of the 12th International Conference on Computer Aided Verification, LNCS,
2000.

13. T. Heyman, D. Geist, O. Grumberg, and A. Schuster, “Achieving scalability in parallel reachability analysis
of very large circuits,” Formal Methods in System Design, Vol. 21, No. 2, pp. 317–338, 2002.

14. D. Kozen, Results on the propositional µ-calculus, TCS, 27, 1983.
15. O. Lichtenstein and A. Pnueli, “Checking that finite state concurrent programs satisfy their linear specification,”

in Proceedings of the Twelfth Annual ACM Symposium on Principles of Programming Languages, January
1985, pp. 97–107.

16. D. Long, A. Browne, E. Clark, S. jha, and W. Marrero, “An improved algorithm for the evaluation of fixpoint
expressions,” in Proc. of the Sixth International Conference on Computer Aided Verification, LNCS 818, 1994,
pp. 338–350.

17. A. Narayan, A. Isles, J. Jain, R. Brayton, and A.L. Sangiovanni-Vincentelli, “Reachability analysis using
partitioned-ROBDDs,” in Proceedings of the IEEE International Conference on Computer Aided Design,
IEEE Computer Society Press, June 1997, pp. 388–393.

18. A. Narayan, J. Jain, M. Fujita, and A.L. Sangiovanni-Vincentelli, “Partitioned-ROBDDs,” in Proceedings of
the IEEE International Conference on Computer Aided Design, IEEE Computer Society Press, June 1996,
pp. 547–554.

19. J.P. Quielle and J. Sifakis, “Specification and verification of concurrent systems in CESAR,” in Proceedings
of the Fifth International Symposium in Programming, 1981.

20. C. Stirling and D.J. Walker, “Local model checking in the model mu-calculus,” in Proc. of the 1989 Int. Joint
Conf. on Theory and Practice of Software Development, 1989.

21. A. Tarski, “A lattice-theoretical fixpoint theorem and its applications,” Pacific J. Math, Vol. 5, pp. 285–309,
1955.

22. G. Winskel, “Model checking in the modal µ-calculus,” in Proceedings of the Sixteenth International Collo-
quium on Automata, Languages, and Programming, 1989.

