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We develop a prequantum classical statistical model in that the role
of hidden variables is played by classical (vector) fields. We call this
model Prequantum Classical Statistical Field Theory (PCSFT). The
correspondence between classical and quantum quantities is asymp-
totic, so we call our approach asymptotic dequantization. We construct
the complex representation of PCSFT. In particular, the conventional
Schrodinger equation is obtained as the complex representation of the
system of Hamilton equations on the infinite-dimensional phase space.
In this note we pay the main attention to interpretation of so called
pure quantum states (wave functions) in PCSFT, especially stationary
states. We show, see Theorem 2, that pure states of QM can be consid-
ered as labels for Gaussian measures concentrated on one dimensional
complex subspaces of phase space that are invariant with respect to the
Schrodinger dynamics. “A quantum system in a stationary state 1”
in PCSFT is nothing else than a Gaussian ensemble of classical fields
(fluctuations of the vacuum field of a very small magnitude) which is
not changed in the process of Schrodinger’s evolution. We interpret in
this way the problem of stability of hydrogen atom. One of unexpected
consequences of PCSET is the infinite dimension of physical space on
the prequantum scale.
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1. INTRODUCTION

The problem of completeness of QM has been an important source of
investigations on quantum foundations, see, e.g., for recent debates
Ref. [1]-[8]. Now days this problem is typically regarded as the prob-
lem of hidden wvariables. This problem is not of purely philosophic
interest. By constructing a model that would provide a finer descrip-
tion of physical reality than given by the quantum wave function
we obtain at least theoretical possibility to go beyond quantum me-
chanics. In principle, we might find effects that are not described by
quantum mechanics. One of the main barriers on the way beyond
quantum mechanics are various “NO-GO” theorems (e.g., theorems of
von Neumann, Kochen-Specker, Bell,...). Therefore in considering a
prequantum classical statistical model one should take into account all
known “NO-GO” theorems.

In a series of papers [7] we showed that in principle all distin-
guishing features of quantum probabilities (e.g., interference, Born’s
rule, representation of random variables by noncommuting operators)
can be obtained in classical (but contextual) probabilistic framework.
In [8] there was proposed to represent physical contexts by special en-
sembles of classical fields. It was shown that it is possible to represent
quantum mechanics as an asymptotic projection of classical statistical
mechanics on infinite-dimensional phase space Q = H x H, where H is
Hilbert space.

By realizing Hilbert space H as the Ly(R®)-space we obtain
the representation of prequantum classical phase space as the space
of classical (real vector) fields ¥ (z) = (q(z),p(z)) on R?. We call this
approach to the problem of hidden variables Prequantum Classical Sta-
tistical Field Theory, PCSET. In this model quantum states are just
labels for Gaussian ensembles of classical fields. Such ensembles (Gaus-
sian measures p) are characterized by zero mean value and very small
dispersion:

/ / P(@) + P@)dedplap) = a, a—0. (1)
La(R3)x L2(R3) JR3

This dispersion is a small parameter of the model. Quantum mechanics
is obtained as the lim,_ of PCSFT.

Let us consider the “classical vacuum field.” In PCSFT it is
represented by the function ¥yacuum = 0. Since a Gaussian ensemble of
classical fields has the zero mean value, these fields can be considered
as random fluctuations of the “classical vacuum field.” Since disper-
sion is very small, these are very small fluctuations. There is some
similarity with SED and stochastic QM, cf. [9]-[14]. The main differ-
ence is that we consider fluctuations not on “physical space” R3, but
on infinite dimensional space of classical fields. In fact, in PCSFT the
latter space plays the fundamental role. Conventional “physical space”
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R? plays just a subsidiary role and it appears through a special rep-
resentation of the infinite dimensional space of fields. Therefore it is
more natural to consider the latter space as physical space. Thus one
of unexpected consequences of our approach is the infinite dimension
of physical space. We shall discuss this fundamental consequence and
in particular comparing with string theory in section 8.

In [8] we studied asymptotic expansions of Gaussian integrals
of analytic functionals and obtained an asymptotic equality coupling
the Gaussian integral and the trace of the composition of scaling of the
covariation operator of a Gaussian measure and the second derivative
of a functional. In this way we coupled the classical average (given by
an infinite-dimensional Gaussian integral) and the quantum average
(given by the von Neumann trace formula). In [8] there was obtained
generalizations of QM that were based on expansions of classical field-
functionals into Taylor series up to terms of the degree n = 2,4,6, ..
(for n = 2 we obtain the ordinary QM).

In the present paper we change crucially the interpretation of
the small parameter of our model. In [8] this parameter was identified
with the Planck constant A (in making such a choice I was very much
stimulated by discussions with people working in SED and stochastic
quantum mechanics, cf. [9]-[14]). In this paper we consider « as a new
parameter giving the dispersion of prequantum fluctuations. We con-
struct a one parameter family of classical statistical models M®, o > 0.
QM is obtained as the limit of classical statistical models when o — 0 :

(lxli% M* = quant (2)
where Nyyant is the Dirac-von Neumann quantum model [15], [16].

We remark that the problem of classical limit of quantum me-
chanics was discussed since the first days of quantum mechanics. There
are a few approaches showing that (in some sense) the limit of quan-
tum mechanics gives classical statistical mechanics on the phase space
0y, = R?". This problem is known as the principle of correspondence
(between quantum and classical mechanics), see, e.g., [17,18]. In that
framework the Planck constant h is considered as a small parameter:
Nyuant = N Classical mechanics on the phase-space €, = R?"is

quant*
obtained as the limy_.o of quantum mechanics and formally
. h
;1111,% Nquant = Mconv.claSS7 (3)

where M onv.class. 1S the conventional classical model with the phase-
space {25,. In contrast to this conventional correspondence principle,
we consider the quantum limit of classical statistical mechanics on the
infinite-dimensional phase space.

The main problem is that our model does not provide the mag-
nitude of . We may just speculate that there might be some relations
with scales of quantum gravity and string theory.
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In this article we pay attention to the interpretation of so called
pure states in PCSFT, especially so called stationary states. We show,
see Theorem 2, that pure states of QM can be interpreted simply as
labels for Gaussian measures concentrated on one dimensional com-
plex subspaces of phase space that are invariant with respect to the
Schrodinger dynamics. Thus PCSET implies the following viewpoint
to quantum stationarity. First of all this is not deterministic classi-
cal stationarity. Nevertheless, this is purely classical, but stochastic
stationarity, cf. [19]. “A quantum system in a stationary state "
in PCSFT is nothing else than a Gaussian ensemble of classical fields
(fluctuations of the vacuum field of a very small magnitude) which is
not changed in the process of Schrodinger’s evolution. We interpret in
this way the problem of stability of hydrogen atom, see section 7. Here
“an electron on a stationary orbit” is a stationary Gaussian ensemble of
classical fields. The structure of these Gaussian fluctuations provides
the picture of a bound state.

We analyze PCSFT by comparing it with known “NO-GO” the-
orems, in particular, the Bell theorem [20]. We also note that PCSFT
might be considered as a realization of Einstein’s dream on a purely
field model of physical reality, cf. [21].

To simplify the introduction to PCSFT, in papers [8] we consid-
ered quantum models over the real Hilbert space and only in section 5
of the second paper in [8] there were given main lines of generalization
to the complex Hilbert space. In this paper we start directly with the
complex case. Here the crucial role is played by the symplectic struc-
ture on the infinite-dimensional phase space 2. In particular, in our
model all classical physical variables should be invariant with respect
to the symplectic operator J, J? = —1.

We show that the Schrodinger dynamics is nothing else than the
Hamilton dynamics on 2. Therefore quantum stationary states can be
considered as invariant measures (concentrated on J-invariant planes
of phase space ) of special infinite-dimensional Hamiltonian systems.

In contrast to [8], in this paper we study asymptotics of classical
averages (given by Gaussian functional integrals [22]) on the mathe-
matical level of rigorousness. We find a correct functional class in that
such expansions are valid and obtain an estimate of the rest term in
the fundamental asymptotic formula coupling classical and quantum
averages.

2. ASYMPTOTIC DEQUANTIZATION

We define “classical statistical models” in the following way, see [8] for
more detail (and even philosophic considerations): a) physical states
Y are represented by points of some set 2 (state space); b) physical
variables are represented by functions f : £ — R belonging to some
functional space V(Q); c) statistical states are represented by prob-
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ability measures on € belonging to some class S(£2); d) the average
of a physical variable (which is represented by a function f € V(Q))
with respect to a statistical state (which is represented by a probability
measure p € S(€)) is given by

()= / F)do(e). (4)

A classical statistical model is a pair M = (S,V). We recall
that classical statistical mechanics on the phase space €25, = R" x R"
gives an example of a classical statistical model. But we shall not
be interested in this example in our further considerations. We shall
develop a classical statistical model with an infinite-dimensional phase-
space.

The conventional quantum statistical model with the complex
Hilbert state space €2 is described in the following way (see Dirac-von
Neumann [15], [16] for the conventional complex model%: a) physical
observables are represented by operators A : Q. — 2. belonging to the
class of continuous self-adjoint operators £, = L4(€2.); b) statistical
states are represented by von Neumann density operators [16] (the
class of such operators is denoted by D = D(€2.)); c) the average of a
physical observable (which is represented by the operator A € L4(€2.))
with respect to a statistical state (which is represented by the density
operator D € D(f,.)) is given by von Neumann’s formula [16]:

(A)p = Tr DA. (5)

The quantum statistical model is the pair Nyyant = (D, Ls).

We are looking for a classical statistical model M = (S, Ve which
will give “dequantization” of the quantum model Nyyant = (D, Ly).
Here the meaning of “dequantization” should be specified. In fact, all
“NO-GO” theorems (e.g., von Neumann, Kochen-Specker, Bell, etc.)
can be interpreted as theorems about impossibility of various dequan-
tization procedures. Therefore we should define the procedure of de-
quantization in such a way that there will be no contradiction with
known “NO-GO” theorems, but our dequantization procedure still will
be natural from the physical viewpoint. We define (asymptotic) de-
quantization as a family M* = (S*, V) of classical statistical mod-
els depending on small parameter a@ > 0. There should exist maps
T:58*— Dand T:V — L, such that: a) both maps are surjections
(so all quantum states and observables can be represented as images
of classical statistical states and variables, respectively); b) the map
T :V — L, is R-linear (we recall that we consider real-valued classical
physical variables); ¢) the map 7" : S — D is injection (there is one-to
one correspondence between classical and quantum statistical states);
d) classical and quantum averages are coupled through the following
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asymptotic equality:
(£o = {T(f))rep) +ola), a—0 (6)

(here (T'(f))r(p) is the quantum average); so

| 5@)p(w) =a T DA +o(a), A=TW.D=T(). (1)

This equality can be interpreted in the following way.

Let f(¢) be a classical physical variable (describing properties
of microsystems - classical fields having very small magnitude «). We
define its amplification by setting:

ful$) = 1) ®

Thus any micro effect is amplified in (1/a)-times. If we interpret « as
the intensity of vacuum fluctuations, then f, (1) is the relative intensity
of f() with respect to vacuum fluctuations.

By dividing both sides of the equation (8) by « we obtain:

(fadp = TPz + (1), @ — 0, or
/Q Jo(@)dp(¥) = Te DA+ o(1), A=T(H),D=T(p).  (9)

The quantum term gives the main contribution into the relative in-
tensity with respect to vacuum fluctuations. QM is the mathematical
formalism describing the statistical approzimation of the amplification
of vacuum fluctuations.

We see that for physical variables/quantum observables and
classical and quantum statistical states the dequantization maps have
different features. The map T : V — L is not injective. Different
classical physical variables f; and f; can be mapped into one quantum
observable A. This is not surprising. Such a viewpoint on the rela-
tion between classical variables and quantum observables was already
presented by J. Bell, see [20]. In principle, experimenter could not dis-
tinguish classical (“ontic”) variables by his measurement devices. In
contrast, the map 1" : S* — D is injection. Here we suppose that quan-
tum statistical states represent uniquely (“ontic”) classical statistical
states.

We recall that in the von Neumann “NO-GO” theorem, see [16],
there was assumed that the correspondence T' between classical vari-
ables and quantum observables is one-to-one. Thus our dequantization
violates this von Neumann condition. Therefore the von Neumann the-
orem could not be applied to PCSEFT. On the other hand, the map
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T:V — L, (given by (20)) is R-linear as it was postulated by J. von
Neumann in [16] (thus, e.g., T(f1 + f2) = T(f1) + T'(f2) even in the
case of noncommuting operators 7(f;) and 7'(f2)). We recall that this
?ss]umption was criticized by many authors, in particular, by J. Bell
20].

The crucial difference with dequantizations considered in known
“NO-GO” theorems is that in our case classical and quantum averages
are equal only asymptotically. We also remark that a classical variable f
and the corresponding quantum observable A = T'(f) can have different
ranges of values. In particular, the latter possibility blocks application
of Bell’s theorem to PCSFT. We recall that in Bell’s theorem classical
variables should have the same range of values, namely 41, as the spin-
observables. This condition was generalized by Clauser-Horn-Shimony-
Holt. They obtained the so called CHSH-inequality (generalizing Bell’s
inequality) under the condition that classical variables are bounded by
one. In [23] we demonstrated (as it might be expected) that if classical
variables can take values larger than one, then CHSH-inequality can
be violated.

We point out that the essence of Bell’s considerations was the
problem of quantum nonlocality. From the very beginning Bell wanted
to show that any prequantum model with hidden variables should be
nonlocal. In the complete accordance with the original Bell’s inter-
pretation experimental violation of Bell’s inequality is typically inter-
preted as the evidence of quantum nonlocality. We emphasize that such
an interpretation is oversimplified. We recall that the original Bell’s
theorem is a purely probabilistic statement and physical space is not
involved in considerations at all, see [23] for detailed analysis of this
problem. There can be presented purely probabilistic arguments block-
ing Bell’s considerations, see, e.g., [24], [6]. Nevertheless, if one chooses
the original Bell interpretation, i.e., nonlocality of any model with hid-
den variables, there can be possed the problem of locality PCSFT. As
we have already mentioned, the direct application of Bell’s theorem is
blocked, because its conditions are violated in PCSFT-dequantization.
Therefore the PCSFT-model with hidden variables might be local, in
spite Bell’s theorem. However, it seems that the problem of locality
is not well possed for PCSFT. The conventional (Einsteinian) locality
is locality in physical space given by its mathematical model R3. Sur-
prisingly this space could not be considered as basic physical space in
PCSFT, since it plays just a subsidiary role in our approach. Natu-
ral physical space of PCSFT has infinite dimension, see section 8 for
details.

Finally, we remark that the application of Kochen-Specker the-
orem to PCSFT is blocked, e.g., because in this theorem (in the same
way as in the Von Neumann theorem) there was postulated one-to-to
one correspondence between classical variables and quantum observ-
ables.
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3. PREQUANTUM CLASSICAL STATISTICAL MODEL

We choose the phase space 0 = @ x P, where Q = P = H and H is
the infinite-dimensional real (separable) Hilbert space. We consider €2
as the real Hilbert space with the scalar product (¢1,%s) = (q1,¢2) +

(p1,p2). We denote by J the symplectic operator on 2 : J = (91 é) )

Let us consider the class Lgymp(€2) of bounded R-linear operators A :
Q) — Q which commute with the symplectic operator:

AJ = JA. (10)

This is a subalgebra of the algebra of bounded linear operators £(€2).
We also consider the space of Lqymps(€2) consisting of self-adjoint op-
erators.

By using the operator J we can introduce on the phase space €2
the complex structure. Here J is realized as —i. We denote ) endowed
with this complex structure by Q. : Q. = Q @ iP. We shall use it
later. At the moment consider €) as a real linear space and consider its
complexification Q€ = Q @ .

Let us consider the functional space Vsymp(€2) consisting of func-
tions f : 2 — R such that:

a) the state of vacuum is preserved: f(0) = 0;
b) f is J-invariant: f(Jy) = f(¢);

(c) f can be extended to the analytic function f : Q€ — C

having the exponential growth

f ()] < cpersIV] (11)

for some ¢y, 7y > 0 and for all ¢» € Q€. We remark that the possibility to
extend a function f analytically onto € and the exponential estimate
on Q€ plays the important role in the asymptotic expansion of Gaussian
integrals. To get a mathematically rigorous formulation, conditions in
[8] should be reformulated in the similar way.

The following trivial mathematical result plays the fundamental
role in establishing classical — quantum correspondence: Let f be a
smooth J-invariant function. Then f"(0) € Lgymps(2). In particu-
lar, a quadratic form is J-invariant iff it is determined by an operator
belonging to Lgymps(€2).

We consider the space statistical states Sg _ ,,(€2) consisting of

measures p on ) such that: a) p has zero mean value; b) it is a Gaussian
measure; ¢) it is J-invariant; d) its dispersion has the magnitude a.
Thus these are J-invariant Gaussian measures such that

/Q $dp() = 0 and 0%(p) = / lelPdp() =0, a — 0. (12)
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Such measures describe small Gaussian fluctuations of the vacuum field.

The following trivial mathematical result plays the fundamental
role in establishing classical — quantum correspondence: Let a mea-
sure p be J-invariant. Then its covariation operator B = cov p €
Loymps($). Here (Byr,y2) = [ (y1,¥)(y2, ¥)dp(¥)).

We now consider the complex realization €2, of the phase space
and the corresponding complex scalar product (-,-). We remark that
the class of operators Lgymp(€2) is mapped onto the class of C-linear
operators L(£2.). We also remark that, for any A € Lgynps(€2), real and
complex quadratic forms coincide:

(A¢,¢) = (Ap, ). (13)
We also define for any measure its complex covariation operator B¢ =
covep by

B = [n,0) Wn)doto). (14)

We remark that for a J-invariant measure p its complex and real covari-
ation operators are related as B¢ = 2B. As a consequence, we obtain
that any J-invariant Gaussian measure is uniquely determined by its
complex covariation operator.

Remark. (The origin of complex numbers) In our approach
the complex structure of QM has a natural physical explanation. The
prequantum classical field ¥ (z) (“background field”) is a vector field,
so ¥(x) has two real components ¢(z) and p(z). And these components
are coupled in such a way that physical variables of the i-field, f =
f(g,p), are J-invariant. Second derivatives of such functionals are J-
invariant R-linear symmetric operators, f”(0) € Loymps(2). As pointed
out, this space of operators can be represented as the space of C-linear
operators L4(€2.). But QM takes into account only second derivatives
of functionals of the vector prequantum field.

As in the real case [8], we can prove that for any operator A €

Esymp,s(Q) :
[ (v 0dot) = Tr eovp (15)

We point out that the trace is considered with respect to the complex
inner product. We consider now the one parameter family of classical
statistical models:

MOZ - (Sg,symp(£2)7vsymp(g2))7 « 2 0. (16)

Lemma 1. Let f € Viymp(Q2) and let p € S§ ., (). Then the
following asymptotic equality holds:

(f), = g Te D £7(0) + o(a), a — 0, (17)
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where the operator D¢ = (cov® p)/a. Here
o(0) = 0R(a f, ), (18)

where ‘R(Oé, [ p)’ <S¢ fQ erf“w“dpDC (1/})

Here ppe is the Gaussian measure with zero mean value and
the complex covariation operator D¢. The proof of this lemma can
be found in the appendix. We point out that Lemma 1 is a purely
mathematical result giving the expansion of Gaussian integrals over
the infinite dimensional Hilbert phase space with respect to the small
parameter (dispersion of vacuum fluctuations).

We see that the classical average (computed in the model M* =
(S& symp(£2), Veymp (€2)) by using the measure-theoretic approach) is cou-
pled through (17) to the quantum average (computed in the model
Nauant = (D(€2), L:(€2)) by the von Neumann trace-formula).

The equality (17) can be used as the motivation for defining
the following classical — quantum map 7' from the classical statisti-
cal model M® = (S& ¢ nps Veymp) onto the quantum statistical model

Nauant = (D, Ls) :
T 58m(@) = D), D =T(p) = (cor® p)fa (19)

(the Gaussian measure p is represented by the density matrix D¢ which
is equal to the complex covariation operator of this measure normalized
by a);

1
T: Vsymp(Q) - LS<QC)’ Aquant = T(f) = if”(o)‘ (20)
Our previous considerations can be presented as

Theorem 1. The one parametric family of classical statisti-
cal models M = (S& iyup(2); Voymp(2)) provides dequantization of the
quantum model Nyane = (D(S2), Ls(€2)) through the pair of maps
(19) and (20). The classical and quantum averages are coupled by the
asymptotic equality (17).

4. PURE STATES

Let ¥ =u+iv € Q, s0u € Q,u € P and let ||¥|| = 1. By using
the conventional terminology of quantum mechanics we say that such
a normalized vector of the complex Hilbert space W represents a pure
quantum state. By Born’s interpretation of the wave function a pure
state U determines the statistical state with the density matrix:

Dy =V ®WV. (21)
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This Born’s interpretation of the W — which is, on one hand, the pure
state (normalized vector ¥ € €.) and, on the other hand, the statis-
tical state Dg — was the root of appearance in QM such a notion as
individual (or irreducible) randomness. Such a randomness could not
be reduced to classical ensemble randomness, see von Neumann [16].

In our approach the density matrix Dy has nothing to do with
the individual state (classical field). The density matrix Dy is the im-
age of the classical statistical state — the J-invariant Gaussian measure
pv = pp, on the phase space that has the zero mean value and the
complex covariation operator By = aD,.

PCSFT-interpretation of pure states. There are no “pure
quantum states.” States that are interpreted in the conventional quan-
tum formalism as pure states, in fact, represent J-invariant Gaussian
measures having two dimensional supports. Such states can be imagined
as fluctuations of fields concentrated on two dimensional real planes of
the infinite dimensional state phase-space.

5. SCHRODINGER DYNAMICS

States of systems with the infinite number of degrees of freedom -
classical fields — are represented by points ¢ = (¢,p) € §; evolution
of a state is described by the Hamiltonian equations. We consider a
quadratic Hamilton function: H(q, p) = (Hy, ), where H: Q — Q is
an arbitrary symmetric (bounded) operator; the Hamiltonian equations
have the form: ¢ = Hy1q + Haop, p = —(Hj1q + Higp), or

P = (g) = JHY. (22)

(Thus quadratic Hamilton functions induce linear Hamilton equations.)
From (22) we get 1 (t) = Upp, where U; = e’M. The map Uyt is a lin-
ear Hamiltonian flow on the phase space €). Let us consider an operator

H € Liynps(Q): H = (I_%T£> . This operator defines the quadratic

Hamilton function H(q,p) = 3[(Rp,p) + 2(Tp, q) + (Rq, q)], where the
operator R is symmetric and the operator T is skew symmetric. Cor-
responding Hamiltonian equations have the form

¢=Rp—Tq, p=—(Rq+Tp). (23)

We point out that for a J-invariant Hamilton function, the Hamilto-
nian flow U; € Loymp(€2). By considering the complex structure on the
infinite-dimensional phase space €2 we write the Hamiltonian equations
(22) in the form of the Schodinger equation on Q.. :

idip/dt = Hap. (24)
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Its solution has the following complex representation: (t) =
Upp, U, = e"™ We consider the Planck system of units in that
h = 1. This is the complex representation of flows corresponding to
quadratic J-invariant Hamilton functions.

By choosing H = Ly(R™) we see that the interpretation of the
solution of this equation coincides with the original interpretation of
Schrodinger — this is a classical field ¥(t, z) = (q(t, z), p(t, z).

Example 1. Let us consider an important class of Hamilton
functions

Hl4,p) = 51(Fp.p) + (Ra.q)], (25)

where R is a symmetric operator. The corresponding Hamiltonian
equations have the form:

¢=Rp, p=—Ry. (26)

We now choose H = Ly(R?), so q(x) and p(z) are components
of the vector-field ¥(z) = (¢(x),p(x)). We can call fields ¢(x) and
p(z) mutually inducing. The field p(z) induces dynamics of the
field g(x) and vice versa, cf. with electric and magnetic compo-
nents, ¢(z) = E(z) and p(z) = B(z), of the electromagnetic field,
cf. Einstein and Infeld [21], p. 148: “Every change of an electric
field produces a magnetic field; every change of this magnetic field pro-

duces an electric field; every change of ., and so on.” We can write
the form (25) as H(q,p) = 5 [go B( ()a(y) + p(z)p(y)]dzdy or
H(Y) = 3 fRG R(z, y)w(m)w(y)dxdy, Where R(z,y) = R(y,x) is in gen-

eral a distribution on R®. We call such a kernel R(z,y) a self-interaction
potential for the background field ¢ (x) = (¢(z), p(x)).We point out that
R(z,y) induces a self-interaction of each component of the i (x), but
there is no cross-interaction between components ¢(z) and p(z) of the

vector-field ¢ (x).

6. STATIONARY PURE STATES AS INVARIANT
GAUSSIAN MEASURES

All Gaussian measures considered in this section are supposed to be
J-invariant. As we have seen in section 4, so called pure states
U [|¥|| = 1, are just labels for Gaussian measures concentrated on
one dimensional (complex) subspaces 0y of the infinite-dimensional
phase-space (2. In this section we study the case of so called stationary
(pure) states in more detail. The a-scaling does not play any role in
present considerations. Therefore we shall not take it into account.
We consider a pure state U, ||[¥|| = 1, as the label for the Gaussian
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measure vy having the zero mean value and the complex covariation
operator covivy = U @ V.

Theorem 2. Let v be a Gaussian measure (with zero mean
value) concentrated on the one-dimensional (complex) subspace corre-
sponding to a normalized vector W. Then v is invariant with respect

to the unitary dynamics U, = e "™ where H : Q — Q is a bounded
self-adjoint operator, iff ¥ is an eigenvector of H.

Proof. A). Let HU = A\VU. The Gaussian measure U, v has the
covariation operator Bf = U,(¥ @ U)U; = U,¥ @ U, ¥ = e @
e~ = ¥ ® U. Since all measures under consideration are Gaussian,
this implies that U;v = v. Thus v is an invariant measure.

B). Let Ujv = v and v = vy for some U, ||¥|| = 1. We have
that U,¥ @ Uy W = ¥ ® U. Thus, for any 11,1, € , we have

<1/11, Ut‘I/><Ut‘I/7¢2> = <¢17 ‘I’><‘I’7¢2>~ (27)

Let us set ¢y = . We obtain: (¢, c(t)U,¥) = (11, ¥), where ¢(t) =
(U, W, ). Thus ¢(t)U,¥ = W.We point out that ¢(0) = ||¥|[? = 1. Thus
d(0)¥ —iHY = 0, or HV = —ic/(0)¥. Thus ¥ is an eigenvector of
H with the eigenvalue —ic’(0). We remark that ¢/(0) = —i(HV, ¥); so

@(0) = i(HW, ¥). Hence, \ = —ic(0) = (H, ¥, U).

Conclusion. Stationary states of the quantum Hamiltonian
(represented by a bounded self-adjoint operator H) are just labels for
Gaussian one-dimensional measures (with the zero mean value) that

are invariant with respect to the Schrédinger dynamics U; = e~ "H,

We now describe all possible Gaussian measures which are Uy-
invariant.

Theorem 3. Let H be a bounded self-adjoint operator with
purely discrete nondegenerate spectrum: HWY, = MUy, so {¥} is
an orthonormal basis consisting of eigenvectors of H. Then any U;-
invariant Gaussian measure v (with the zero mean value) has the co-
variance operator of the form:

B =) U ® Uy, cp > 0, (28)
k=1

and vice versa.
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Proof. (A) Let cov’v = B¢ has the form (28). Then

o0
covUjv = UBU; = Z cre M @ e = covy = B, (29)
k=1
Since measures are Gaussian, this implies that U;'v = v for any t.

(B) Let Ujv = v for any t. We remark that any covariation
operator B¢ can be represented in the form:

B =Y (BUy, 0T @ U+ Y (BUy, V)0, @ U;. (30)
k=1 k#j

We shall show that (B“¥;, ¥;) = 0 for k # j. Denote the operator
corresponding to »,; by Z. We have

(U ZUphy, ha) = Z<BC\I/167\Ilj>eit()\j_)\k)<\11ka¢2><¢la ;) = (241, 1s).

k#j
(31)
Set 1 = ¥y, 1y = ¥y; then

(U,ZU;0;, W) = (BUy, U,)e™ ™2 = (BW, U)).  (32)

Thus (B°W, ¥;) = 0,k # J.

7. STABILITY OF HYDROGEN ATOM

As we have seen, in PCSFT so called stationary (pure) states of quan-
tum mechanics are just labels for Gaussian measures (which are J-
invariant and have zero mean value) that are Uj-invariant. We now
apply our standard a-scaling argument and we see that a stationary
state ¥ is a label for the Gaussian measure py with covépy = a¥ ® W.
This measure is concentrated on one-dimensional (complex) subspace
Qg of phase space ). Therefore each realization of an element of the
Gaussian ensemble of classical fields corresponding to the statistical
state py gives us the field of the shape ¥(z), but magnitudes of these
fields vary from one realization to another. But by the well known
Chebyshov inequality probability that £(¥) = [, [¥(x)[*dx is large is
negligibly small.

Thus we have Gaussian fluctuations of very small magnitudes of
the same shape V(z). In PCSFT a stationary quantum state can not
be identified with a stationary classical field, but only with an ensemble
of fields having the same shape W(x). Let us now compare descriptions
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of dynamics of electron in hydrogen atom given by quantum mechanics
and our prequantum field theory.

In quantum mechanics stationary bound states of hydrogen
atom are of the form

Wy (1,0, 9) = ey RLY (R)e %Y (6, ¢), (33)
where R = 2r/nag, and ag = h—é is a characteristic length for the

pe
atom (Bohr radius). We are mainly interested in the presence of the
component e~ /2.

In PCSFT this stationary bound state is nothing else, but the
label for the Gaussian measure py,, Wwhich is concentrated on the
subspace )y, , . Thus PCSFT says that “electron in atom” is nothing
else than Gaussian fluctuations of a certain classical field, namely the
field W, (r, 0, @) :

Ui (1,6, §30) = () Vi (1,0, 9), (34)

where (1) is the C-valued Gaussian random variable: By = 0, E|y|? =
.

The intensiveness of the field W, (7,6, ¢,1) varies, but the
shape is the same. Therefore this random field does not produce any
significant effect for large R (since e~#/2 eliminates such effects).

Thus in PCSFT the hydrogen atom stable, since the prequantum
random fields ©,,;,,, (7, 6, ¢; 1) have a special shape (decreasing exponen-
tially R — o00).

8. INFINITE DIMENSION OF SPACE

This is a good place to discuss the role of physical space represented
by R? in our model. In PCSFT the physical space is Hilbert space. If
we choose the realization

H = Ly(R?), (35)

then we obtain the realization of H as the space of classical fields
on R3. So the conventional space R?® appears only through this special
representation of the Hilbert configuration space. Dynamics in R? in
just a shadow of dynamics in the space of fields. However, we can
choose other representations of Hilbert configuration space. In this
way we shall obtain classical fields defined on other “physical spaces.”

We remark that at first sight the situation with development of
PCSFT is somewhat reminiscent of the one confronted by Schrédinger
in his introduction of his wave equation, which “maps” waves in the
configuration space (the idea that in part derives from Hamilton’s
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mechanical-optical analogy that led Hamilton to his version of classical
mechanics, cf. section 5 of this paper). However, as is well known, in
the specific case considered by Schrodinger, the configuration space and
the physical space were both R?, which coincidence was in part respon-
sible for Scrodinger’s hope that his equation describes an actual physi-
cal (wave) process in space-time. This hope did not materialize, given
that in general the configuration space of physical systems is not R3.
The difficulties of Schrodinger’s program quickly led to Born’s inter-
pretation of the wave function in terms of probability or, as Scrodinger
himself came to call it “expectation catalogue”, which view is central
in the orthodox or Copenhagen interpretation of quantum mechanics.
Even though he had, just as did Einstein, major reservations concern-
ing quantum mechanics as the ultimate theory of quantum phenomena,
Schrodinger never went so far as to see any space other than R? as real.

The same can be said about Einstein’s attempts to go beyond
quantum mechanics. His attempts (see, e.g., [21]) to create purely field
model of physical reality did not induce rejection of the conventional
model of physical space. Nevertheless, some of his comments might be
interpreted as signs as coming rejection of the conventional model of
physical space, see [25]: “Space-time does not claim existence on its own,
but only as a structural quality of the field.” “The requirement of general
covariance takes away from space and time the last remnant of physical ob-
jectivity.” And the following Einstein’s remark is especially important
for PCSFT’s view to physical space: “There is no such thing as an empty
space, i.e., a space without field. Space-time does not claim existence on its
own, but only as a structural quality of the field.” L. De Broglie in his
theory of double solution (the first hidden variable model) emphasized
the fundamental role of physical space R3, see, e.g., [26]. Such a view-
point also was common for adherents of Bohmian mechanics (in any
case for D. Bohm and J. Bell). We can conclude that all former models
with field-like hidden variables were based on the conventional model
of physical space, namely R?.

On the other hand, string theory does introduce spaces of higher
dimensions, although not of infinite dimensions. This approach was one
of inspirations for our radical viewpoint to physical space. One could
speculate that on scales of quantum gravity and string theory space
became infinite dimensional, just as those theories the space has the
(finite) dimension higher than three. (In our approach quantum theory
is not the ultimate theory. It has its boundaries of applications. There-
fore there are no reasons to expect that “quantum gravity” should exist
at all. Thus it would be better to speak not about scales of quantum
gravity and string theory, but simply about the Planck scale for length
and time.) Starting with classical statistical mechanics on the infinite
dimensional physical space (PCSFT), we first obtain quantum mechan-
ics and then classical statistical mechanics on the finite-dimensional
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phase space:

o h
lim lim M® = lim N .00 = Meonv.class- (36)
h—0a—0 h—0

An intriguing question is what locality itself means in the phys-
ical space H, where H is the infinite dimensional Hilbert space. The
first evident remark is that in PCSFT there are present interactions
between field-systems which are not reduced to “physical potentials”
V(z,y) defined on the R?® x R?. The Hamilton function for a pair of
field-systems 1 and ¢ can contain nonquadratic terms corresponding
to interactions between fields which are not given by “physical poten-
tials” V(z,y), e.g., W(1,¢) = ||[9"¢™||>. Thus field systems ¢ and ¢
can interact even if V = 0. Hence our model is definitely nonlocal in
the sense of the conventional locality in R3. Therefore it is clear that
PCSFT-locality should be defined without direct relation to the con-
ventional physical space R3. The discussion on PCSFT-locality is really
going outside the main framework of the present paper. We postpone
it to further publications.

9. APPENDIX. PROOF OF LEMMA 1
Proof of Lemma 1. In the Gaussian integral [, f(¥)dp(1)) we make

the scaling:
v = /e (37)

We denote the image of the measure p under this change of variables by
ppe, since the latter measure (which is also Gaussian) has the complex
covariation operator D°. We have:

:Aﬂwmmmmm:géwmwwmmmWMmmem»

2
(38)
where
© an/?—?
i (39)
We point out that
[ o) =0, [ 000 0dp ) =0, @0

because the mean value of p (and, hence, of ppc) is equal to zero.
Since p € S& 4ymp(€2), we have Tr D = 1. We now estimate the rest
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term R(a, f, p). We recall the following inequality for functions of the
exponential growth:

I£f™ )| <ecr™, n=0,1,2,.... (41)

This inequality is well known for analytic functions of the exponential
growth f: C" — C. It was generalized to infinite-dimensional case in
[22].

By using this inequality we have for o <1 :

oo f: )] = Z [ HIWJH” fi"“ﬂl:ﬁ’”" — oyl (42)

n=4
Thus: |R(e, f,p)| < ¢f [ € 1Idppe (). We obtain:

(07

(Fo=5 [(F080) dppe() +ofa) a =0, (43)

By using the equalities (13) and (15) we finally come the asymptotic
equality (17).

10. APPENDIX. MAXWELL EQUATION AS A VERSION
OF SCHRODINGER EQUATION

Our formalism can easily be generalized to the case of vector ﬁelds.
We consider the configuration space: H = Ly(R™,R™) = {¢ : —

R, ¢(x) = (¢1(2), ..., dm(2)), [10]1> = [qm 22; &5 (x)dz < 00} In this

case q(z) = (q1(2),...,qm(® )_) p(z) = (pi(z ) ~--,pm( )). For exam-
ple, we can consider quadratic functionals: 'H(q17 ooy Qms D1y oy Pm) =

Jre 205 Rij (2, ) (qi(x)q;(y)

+pi(2)p;(y))d*zd®y. In our approach any smooth functional of pre-
quantum fields is represented by its second derivative — its quantum
image:

*f %f
() =3 o () o)) (44)

2 2
05 (%) 55; (0)
where all derivatives are functional derivatives.

Moreover, we need not consider the whole space H =
Ly(R™, R™) as the state space. Depending on the model we can choose
some subspace Hy of the Hilbert space H and consider the phase-space
Q = Hy x Hy. Typically such a linear subspace is defined through a
linear constraint for prequantum classical fields: Cq = 0,Cp = 0. In
this case we choose Hy = Ker C.
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We start with the derivation of an “abstract Maxwell equation”
in the Hamiltonian formalism on the infinite-dimensional phase space.
Let us consider a J-commuting operator H :  — Q, H = diag (R, R),
where R : H — H, and the corresponding Hamilton function H(¢)) =

%(de, ) = %[(Rp, p)+(Rgq, q)]. The corresponding Hamilton equations
have the form: p P
dg _p ~ dp

dt dt

Let us now consider the subspace Hy of the space Ly(R?* R?)
consisting of all functions satisfying the condition:

(V,9) =0. (46)

= —Rgq. (45)

Let us choose the phase space Q2 = Hy x Hy and let us consider the
operator
Rp =V x ¢. (47)

We remark that the Hilbert spaceH, is an invariant subspace of the
operator R, since (V,V x ¢) = 0 for any ¢.

Of course, in the rl%orous mathematical framework we should
start with a space S(R?, R?) of Schwartz’s test functions, then choose
in it the subspace SU(R3 R3) consisting of functions satisfying (46),
and complete this space with respect to the Ly-norm. The resulting
space is that one we have denoted by Ho.

We note that R : Hy — Hy is an unbounded operator. We
define it on the domain of definition Sy(R?, R?). It is easy to see that
R is symmetric on So(R? R3) :

| (o) v@nts = [ (0).V xvla)dn. ()

We consider the corresponding self-adjoint operator R : Hy — H,.
We now set in the Hamilton equations (45): g¢(z) = E(z) =
(Er(z), Es(z), Es(x)), p(z) = B(z) = (By(z), B2(x), Bs(x)). Then this
system coincides with the system of Maxwell equations in the empty
space (for the system of units in which ¢ = 1) :

oF 0B
E(tvx) =V X B(tvﬂj)v W(tvr) =-Vx E(t,.’L’), (49)

we have automatically (V,B(t,z)) = 0 and (V, E(t,z)) = 0; these
conditions were incorporated into the definition of the state space. The
corresponding Hamilton function has the form

H(E, B) = % (V x E(z), E(z)) + (V x B(z), B@))dz.  (50)

R3
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We finish this section with the remark that, as any dynamics with J-
invariant quadratic Hamilton function, the Maxwell dynamics can be
written in the form of Schrédinger equation

i0y(t)/0t = Hi(t), (51)

where ¢ (t,z) = E(t,z) +iB(t,z) and H = diag {R, R}, Rp =V x ¢.

The results of this paper were presented at seminars at Univer-
sities of Bonn and Mannheim. I would like to thank all participants of
seminars for discussions and comments and Sergio Albeverio and Ernst
Binz for hospitality.
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