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We show that the Dirac-von Neumann formalism for quantum me-
chanics can be obtained as an approximation of classical statistical
field theory. This approximation is based on the Taylor expansion (up
to terms of the second order) of classical physical variables – maps
f : Ω → R, where Ω is the infinite-dimensional Hilbert space. The
space of classical statistical states consists of Gaussian measures ρ on
Ω having zero mean value and dispersion σ2(ρ) ≈ h. This viewpoint to
the conventional quantum formalism gives the possibility to create gen-
eralized quantum formalisms based on expansions of classical physical
variables in the Taylor series up to terms of nth order and considering
statistical states ρ having dispersion σ2(ρ) = hn (for n = 2 we obtain
the conventional quantum formalism).

Key words: classical statistical field theory, Dirac-von Neumann for-
malism, Taylor expansion on the Hilbert space, small Gaussian fluctu-
ations.

1. INTRODUCTION

In Ref. [1] we demonstrated that in the opposition to a rather common
opinion it is possible to consider the Dirac-von Neumann formalism as a
natural approximation of classical statistical mechanics. In this note we
do not have any possibility to discuss different views on the problems of
interpretations of quantum mechanics and the correspondence between
classical and quantum theories, see, e.g., Dirac [2] or von Neumann
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[3]; see also, e.g., De Muynck [4], Plotnitsky [5], Marchildon [6] and
Khrennikov [7] for recent discussions.

The crucial point of our approach is that a prequantum classical
mechanics is not the conventional classical mechanics on the phase-
space Ω = R3 × R3, but on the infinite-dimensional phase-space:

Ω = L2(R
3)× L2(R

3). (1)

Thus one can save classical views to causality and realism, but the
price is the infinite dimension of the phase-space. Our result does not
contradict to various “NO-GO” theorems. For example, there is no
contradiction with Bell’s theorem, because ranges of values of classical
physical variables (functionals of classical fields) and quantum observ-
ables (self-adjoint operators) do not coincide: quantum mechanics is
only an approximate representation of classical statistical mechanics
on the infinite-dimensional phase-space (see, e.g., Khrennikov [8] and
Hess and Philipp [9] for recent debates on Bell’s inequality).

This viewpoint to the quantum formalism gives the possibility
to create generalized quantum formalisms based on expansions of clas-
sical physical variables in the Taylor series up to terms of nth order (for
n = 2 we obtain the conventional quantum formalism). In this note
we construct such generalized quantum formalisms. They give bet-
ter approximations of the prequantum classical statistical field theory
(PCSFT) than the Dirac-von Neumann formalism.

It would be very hard to obtain a direct experimental confirma-
tion of PCSFT. We should approach such a scale of measurements in
that not only h, but also hn for any n ≥ 1, would be considered as
“macroscopic parameters.” But we might approach approximations of
PCSFT of different orders (The Dirac-von Neumann formalism is the
first order approximation of PCSFT).

This paper is a natural concluding of investigations on quantum-
like representations of classical contextual probabilistic models, see
Ref. [10]. In these works it was shown that the Hilbert space prob-
abilistic formalism can be considered as a “projection” of the classi-
cal Kolmogorov model (with a contextual interpretation of conditional
probabilities). The main open question was about physical realizations
of contexts. In this note we represent physical contexts of Ref. [10]
by Gaussian ensembles of classical fields (having very small dispersion:
σ2(ρ) ≈ h, h → 0).

Our approach is quite close to Nelson’s stochastic quantum me-
chanics and SED; see, e.g., Ref. [11]-[13]. We also reproduce quantum
statistics by taking into account Gaussian fluctuations of classical fields.

This paper can be considered as a contribution to the old debate
on incompleteness of quantum mechanics that was started more than 70
years ego by Einstein, Podolsky and Rosen, see their famous paper [14]
on the “EPR-paradox”. Our investigation supports the EPR-thesis on
incompleteness of quantum mechanics. In our model both the position
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and momentum operators, q̂ and p̂, represent the ”elements of physical
reality”: not reality of particles, but reality of fields. In PCSFT the q̂
and p̂ are images of functionals of classical fields, fq(φ) and fp(φ).

Our approach is very close to attempts of E. Schrödinger [15,16]
and A. Einstein [17,18] to create purely (classical) field model inducing
quantum mechanics.

We start with a short presentation of results of Ref. [1]. To sim-
plify considerations, we consider the case of the real (separable) Hilbert
space H. In the definition of the quantum statistical model Nquant the
complex Hilbert space Hc should be changed to the real Hilbert space
H. In particular, in this paper we consider as the space of quantum
observables the space of self-adjoint (bounded) operators Ls ≡ Ls(H)
and as the space of quantum states the space of density operators
(i.e., self-adjoint positive trace-one operators) in the real Hilbert space
D ≡ D(H).

2. STATISTICAL MODELS

The crucial point of our considerations is that classical and quantum
models give us two different levels of description of physical reality. We
can say that prequantum and quantum models provide, respectively,
ontic and epistemic descriptions. The first describes nature as it is (as
it is “when nobody looks”). The second is an observational model. It
gives an image of nature through a special collection of observables, cf.
Ref. [15], [16], [19]-[22]. QM is an example of an epistemic model of
nature. In fact, this was the point of view of N. Bohr and W. Heisen-
berg and many other adherents of the Copenhagen interpretation; cf.
Ref. [23]. The only problem for us is that the majority of scientists sup-
porting the Copenhagen interpretation deny the possibility to create a
prequantum ontic model which would reproduce (in some way) quan-
tum averages. We recall that (as was pointed out by one of the referees
of this paper) it was not the whole Copenhagen school that “denied”
the possibility to create prequantum models. Pauli, for example, just
believed that such approaches would take away the efficiency of quan-
tum formalism. The complete denial of these possibilities came later,
mostly under the influence of the theorem of Bell.

In our approach the ontic description is given by a continuous
field-model, cf. E. Schrödinger [16]: “ We do give a complete description,
continuous in space and time, without leaving any gaps, confirming the
classical ideal of a description of something. But we do not claim that this
something is the observed and observable facts.”

We now discuss mathematical representations of ontic and epis-
temic models. Traditionally ontic models are represented as “classical
statistical models”: (a) physical states ω are represented by points of
some set Ω (state space); (b) physical variables are represented by
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functions f : Ω → R belonging to some functional space V (Ω); (c)
statistical states are represented by probability measures on Ω belong-
ing to some class S(Ω); d) the average of a physical variable (which is
represented by a function f ∈ V (Ω)) with respect to a statistical state
(which is represented by a probability measure ρ ∈ S(Ω)) is given by

< f >ρ≡
∫

Ω

f(ω)dρ(ω). (2)

A classical statistical model is a pair M = (S(Ω), V (Ω)).
In the Dirac-von Neumann formalism(2),(3) in the complex

Hilbert space Hc the quantum statistical model Nquant is described in
the following way: a) physical observables are represented by opera-
tors A : Hc → Hc belonging to the class of self-adjoint continuous
operators Ls ≡ Ls(Hc); b) statistical states are represented by density
operators (the class of such operators is denoted by D ≡ D(Hc); c) the
average of a physical observable (which is represented by the operator
A ∈ Ls(Hc)) with respect to a statistical state (which is represented by
the density operator D ∈ D(Hc)) is given by von Neumann’s formula:

< A >D≡ Tr DA. (3)

The quantum statistical model is the pair Nquant =
(D(Hc),Ls(Hc)).

3. QUANTUM APPROXIMATION OF CLASSICAL
MECHANICS FOR FIELDS

Let us consider a classical statistical model in that the space of states
Ω = H. One may say “states of individual systems.” But one should
not forget that systems under consideration have the infinite number
of degrees of freedom. In our classical model we choose the class of
statistical states consisting of Gaussian measures with zero mean value
and dispersion

σ2(ρ) =

∫
H

‖x‖2dρ(x) = h, (4)

where h > 0 is a small real parameter. Denote such a class by the
symbol Sh

G(H). For ρ ∈ Sh
G(H), we have Tr cov ρ = h. We recall that

the covariation operator B = cov ρ of a Gaussian measure ρ on the
σ-field of Borel subsets of the Hilbert space H is defined by the equality

(By1, y2) =

∫
(y1, x)(y2, x)dρ(x), y1, y2 ∈ H, (5)
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and it has the following properties: (a). B ≥ 0, i.e., (By, y) ≥ 0, y ∈ H;
(b). B is a self-adjoint operator, B ∈ Ls(H); (c). B is a trace-class
operator and

Tr B =

∫
H

||x||2dρ(x) (6)

The right-hand side of (6) defines dispersion of the probability ρ. Thus
for a Gaussian probability we have

σ2(ρ) = Tr B. (7)

We pay attention that the list of properties of the covariation operator
of a Gaussian measure differs from the list of properties of a von Neu-
mann density operator only by one condition: Tr D = 1, for a density
operator D.

We denote the Gaussian measure with the zero mean value and
the covariation operator B = cov ρ by the symbol ρB. We have for the
Gaussian measure ρB :

< f >ρB
=

∫
H

f(x)dρB(x). (8)

We now make the change of variables (scaling) in this integral:

y = x/
√
h. (9)

We remark that any linear transformation (in particular, scaling) pre-
serves the class of Gaussian measures. Thus∫

H

f(x)dρB(x) =

∫
H

f(
√
hy)dρD(y). (10)

To find the covariation operator D of the scaling ρD of the Gaussian
measure ρB, we compute its Fourier transform

ρ̃D(ξ) =

∫
H

ei(ξ,y)dρD(y) =

∫
H

e
i(ξ, x√

h
)
dρB(x) = e−

1
2h

(Bξ,ξ). (11)

Thus
D = B/h = covρ/h. (12)

We shall use this formula later.
Let us consider a functional space V(H) that consists of analytic

functions of exponential growth preserving the state of vacuum:

f(0) = 0 and there exist C, α ≥ 0 : |f(x)| ≤ Ceα‖x‖. (13)

641Classical Statistical Field Theory 



We remark that any function f ∈ V(H) is integrable with respect to
any Gaussian measure on H; see, e.g., Ref. [24]. Let us consider the
classical statistical model

Mh
a = (Sh

G(H),V(H)). (14)

Asymptotic expansion of classical averages: We recall that
in mathematical considerations h is not a constant, but a small param-
eter. In our calculations we shall use the symbol o(h) which is defined
by

lim
h→0

o(h)

h
= 0 (15)

(so, e.g., h2 = o(h), h → 0). Let us find the average of a variable
f ∈ V(H) with respect to a statistical state ρB ∈ Sh

G(H) :

< f >ρB
=

∫
H

f(x)dρB(x) =

∫
H

f(
√
hy)dρD(y)

=
∞∑

n=2

hn/2

n!

∫
H

f (n)(0)(y, ..., y)dρD(y), (16)

where the covariation operator D is given by (12). We remark that

∫
H

(f ′(0), y)dρ(y) = 0, (17)

because the mean value of ρ is equal to zero. It is also important
that any classical variable f ∈ V(H) preserves the state of vacuum,
f(0) = 0 : The field of the zero magnitude could not produce any
effect.

Since ρB ∈ Sh
G(H), we have

Tr D = 1. (18)

The change of variables (9) can be considered as scaling of the mag-
nitude of statistical (Gaussian) fluctuations. Fluctuations which were
considered as very small,

σ(ρ) =
√
h (19)

(where h is a small parameter), are considered in the new scale as
standard normal fluctuations. We have (see Ref. [1] for details):

< f >ρ=
h

2

∫
H

(f ′′(0)y, y) dρD(y) + o(h), h → 0, (20)
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or

< f >ρ=
h

2
Tr D f ′′(0) + o(h), h → 0. (21)

We see that the classical average (computed in the model Mh
a =

(Sh
G(H),V(H)) by using measure-theoretic approach) is approximately

equal to the quantum average (computed in the model Nquant =
(D(H),Ls(H)) by the von Neumann trace-formula).

Classical → quantum correspondence: The equality (21)
can be used as the motivation for defining the following classical →
quantum map T from the classical statistical model Mh

a = (Sh
G,V) to

the quantum statistical model Nquant = (D,Ls) :

T : Sh
G(H) → D(H), D = T (ρ) =

cov ρ

h
(22)

(the Gaussian measure ρ is represented by the density matrix D which
is equal to the covariation operator of this measure normalized by the
Planck constant h);

T : V(H) → Ls(H), Aquant = T (f) =
h

2
f ′′(0). (23)

Our previous considerations can be presented as

Theorem 1. The map T defined by (22),(23) is one to one
on the space of statistical states Sh

G(H); the map T : V(H) → Ls(H)
is linear and the classical and quantum averages are asymptotically,
h → 0, equal, see (21).

The correspondence between physical variables f ∈ V(H) and
physical observables A ∈ Ls(H) is not one to one, cf. E. Schrödinger(16):
“The gaps eliminated from the wave picture have withdrawn to the connec-
tion between the wave picture and observable facts. The latter are not in
one to one correspondence with the former.” However, if we restrict the
map T to the space of quadratic functionals of classical fields, then it
becomes one to one correspondence.

Conclusion: Quantum mechanics is an approximate statistical
description of nature based on extracting Gaussian fluctuations of the
magnitude σ(ρ) =

√
h and neglecting by fluctuations of the magnitude

o(
√
h).
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4. GENERALIZED QUANTUM MODELS

We have created the classical statistical model which induced the quan-
tum statistical model. The quantum description is the result of neglect-
ing by terms of the magnitude o(h), h → 0, in the expansion of classical
averages < f >ρ with respect to the small parameter s = h1/2, h → 0.
(Here h is the Planck constant which is interpreted in purely statistical
way as the magnitude of fluctuations of classical fields on the prequan-
tum level, cf., e.g., Nelson [11] or de la Pena and Cetto [12].)

Since classical statistical states are given by Gaussian measures
ρ with zero mean value, aρ = 0, terms of the magnitude s = h1/2 are
absent in the expansion of the average < f >ρ into a power series with
respect to the parameter s.

This viewpoint to conventional quantum mechanics implies the
evident possibility to generalize this formalism by considering higher
order expansions of averages < f >ρ with respect to the small parame-
ter s = h1/2. We remark that for a Gaussian measure ρ, aρ = 0 implies

that all its momenta of odd orders a
(k)
ρ , k = 2n + 1, n = 0, 1, . . . , are

also equal to zero1. Therefore the expansion of < f >ρ with respect to
s = h1/2 does not contain terms with s2n+1. Hence this is the expansion
with respect to hn(= s2n), n = 1, 2, . . . . We are able to create o(hn)-
generalization of quantum mechanics through neglecting by terms of
the magnitude o(hn), h → 0(n = 1, 2, . . .) in the power expansion of
the classical average. Of course, for n = 1 we obtain the conventional
quantum mechanics. Let us consider the classical statistical model

Mh
a = (Sh

G(Ω),V(Ω)), (24)

where Ω = H is the real Hilbert space. By taking into account that
a2n+1

ρ = 0, n = 0, 1, . . . , for ρ ∈ Sh
G(Ω), we have

< f >ρ=
h

2
Tr Df ′′(0) +

∞∑
k=2

hk

(2k)!

∫
H

f (2k)(0)(y, . . . , y)dρD(y), (25)

where as always D = covρ
h
.

We now consider a new epistemic (“observational”) statistical
model which is a natural generalization of the conventional quantum
mechanics. We start with some preliminary mathematical considera-
tions. Let A and B be two n-linear symmetric forms. We define their
trace by

Tr BA =
∞∑

j1,...,jn=1

B(ej1 , . . . , ejh
)A(ej1 , . . . , ejn), (26)

1We recall that momentums of a measure ρ are defined by a
(k)
ρ (z1, . . . , zk) =∫

H
(z1, x)...(zk, x)dρ(x).
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if this series converges and its sum does not depend on the choice of
an orthonormal basis {ej} in H. We remark that

< f >ρ=
h

2
Tr Df ′′(0) +

n∑
k=2

hk

2k!
Tr a(2k)

ρD
f (2k)(0) + o(hn), h → 0; (27)

here we used the following result about Gaussian integrals:

Lemma 1. Let Ak be a continuous k-linear form on H and let
ρD be a Gaussian measure (with zero mean value and the covariation
operator D). Then

∫
H

Ak(x, . . . , x)dρD(x) = Tr a(k)
ρD
Ak. (28)

Proof. Let {ej}∞j=1 be an orthonormal basis in H.We apply the
well known Lebesque theorem on majorant convergence. We set

fN(x) =
n∑

j1,...,jk=1

Ak(ej1 , . . . , ejk
)(ej1 , x) . . . (ejk

, x). (29)

We have

|fN(x)| = |Ak(
N∑

j1=1

(x, ej1)ej1 . . . ,

N∑
jk=1

(x, ejk
)ejk

)| ≤ ||Ak|| ||x||k. (30)

We therefore obtain∫
H

Ak(x, . . . , x)dρD(x) = lim
N→∞

∫
H

fN(x)dρD(x)

=
∞∑

j1=1,...,jk=1

Ak(ej1 , . . . , ejk
)

∫
H

(ej1 , x) . . . (ejk
, x)dρD(x) = Tr a(k)

ρD
Ak.

(31)
The proof is finished.

In particular, we obtained the inequality

|Tr ak
ρD
Ak| ≤ ||A||

∫
H

||x||kdρD(x). (32)

We now remark that for a Gaussian measure (with zero
mean value) integrals (28) are equal to zero for k = 2l + 1. Thus
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Tr a
(2l+1)
ρD A2l+1 = 0. It is easy to see that 2k-linear forms (momenta of

even order) a2k
ρD

can be expressed through the covariance operator D :

a(2k)
ρD

= e(k,D) =
d2k

dy2k
e−

1
2
(Dy,y)|y=0. (33)

In particular, e(2, D)(z1, z2) = (Dz1, z2) and e(4, D)(z1, z2, z3, z4)

= (Dz1, z3)(Dz2, z4) + (Dz2, z3)(Dz1, z4) + (Dz1, z2)(Dz3, z4). (34)

Thus (27) can be rewritten as

< f >ρB
=
h

2
Tr Df ′′(0) +

n∑
k=2

hk

2k!
Tr e(2k,D)f (2k)(0) + o(hn), h → 0.

(35)
This formula is the basis of a new quantum theory. In this the-

ory statistical states can be still represented by von Neumann density
operators D ∈ D(H), but observables are represented by multiples
A = (A2, A4, . . . , A2n), where A2j are symmetric 2n-linear forms on a
Hilbert space H. In particular, the quadratic form A2 can be repre-
sented by a self-adjoint operator. To escape mathematical difficulties,
we can assume that forms A2j are continuous. Denote the space of all
such multiples A by L2n(H). We obtain the following generalization of
the conventional quantum model:

N2n = (D(H), L2n(H)). (36)

Here the average of an observable A ∈ L2n(H) with respect to a state
D ∈ D(H) is given by

< a >D=
n∑

n=1

Tr e(2k,D)A2k. (37)

If one defines Tr DA =
∑n

k=1 Tr e(2k,D)A2k, then the formula (37) can
be written as in the conventional quantum mechanics (von Neumann’s
formula of nth order):

< A >D= TrDA. (38)

This model is the result of the following “quantization” procedure of
the classical statistical model Mh

a = (Sh
G(Ω),V(Ω):

ρ → D = covρ/h; (39)
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f → A = (
h

2
f ′′(0),

h2

4!
f (4)(0), ...,

hn

(2n)!
f (2n)(0)) (40)

(thus here A2k = hk/(2k)!f (2k)(0)). The transformation T2n given by
(39), (40) maps the classical statistical model Mh

a = (Sh
G(Ω),V(Ω))

onto generalized quantum model N2n = (H,D(H), L2n(H)).

Theorem 1a. For the classical statistical model Mh
a =

(Sh
G(Ω),V(Ω)), the classical → quantum map T2n, defined by (39) and

(40), is one-to-one for statistical states; it has a huge degeneration for
variables. Classical and quantum averages are equal mod o(hn), h → 0,
see (35).

We pay attention to the simple mathematical fact that the de-
gree of degeneration of the map T2n : V(Ω) → L2n(H) is decreas-
ing for n → ∞. Denote the space of polynomials of the degree 2n
containing only terms of even degrees by the symbol P2n(H). Thus
f ∈ P2n(H) iff f(x) = Q2(x, x) + Q4(x, x, x, x) + . . . + Q2n(x, . . . , x),
where Q2j : H

2j → R is a symmetric 2j-linear (continuous) form. The
restriction of the map T2n on the subspace P2n(H) of the space V(Ω)
is one-to-one. One can also consider a generalized quantum model

N∞ = (H,D(H), L∞(H)), (41)

where L∞(H) consists of infinite sequences of 2n-linear (continuous)
forms on H :

A = (A2, . . . , A2n, . . .). (42)

As a simple consequence of the expansion (35) of the classical average
for a variable f ∈ V(Ω), we obtain:

Theorem 2. Averages given by the classical statistical model
M and the generalized quantum model N∞ coincide.

5. COMPLEX HILBERT SPACE

We now briefly present a classical statistical field model for the con-
ventional Dirac-von Neumann quantum model on the complex Hilbert
space Hc. Here the most interesting problem is the establishing of cor-
respondence between classical and quantum dynamical equations(1);
however, we are not able to present such a study in this letter.

We choose the phase space Ω = Q×P, where Q = P = H and H
is the infinite-dimensional real (separable) Hilbert space. We consider
Ω as the real Hilbert space with the scalar product (ω1, ω2) = (q1, q2)+

(p1, p2). We denote by J the symplectic operator on Ω : J =
(
0 1
−1 0

)
.
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Let us consider the class Lsymp(Ω) of bounded (R)-linear operators
A : Ω → Ω which commute with the symplectic operator J : AJ =
JA. This is a subalgebra of the algebra of bounded linear operators
L(Ω). We also consider the subspace Lsymp,s(Ω) of the space Lsymp(Ω)
consisting of self-adjoint operators.

Let us consider the functional space Vsymp(Ω) consisting of real
analytic functions, f : Ω → R, such that: (a) the state of vacuum
is preserved : f(0) = 0; (b) f is symplectically invariant: f(Jφ) =
f(φ) for any φ ∈ Ω; (c) f is a (real) analytic function; (d) f has the
exponential growth.

The following trivial mathematical result plays the fundamen-
tal role in establishing classical → quantum correspondence: Let
f : Ω → R be a smooth symplectically invariant function. Then
f ′′(0) ∈ Lsymp,s(Ω). In particular, a quadratic form is symplectically
invariant iff it is determined by an operator belonging to Lsymp,s(Ω).

In our model we choose the space statistical states Sh
G,symp(Ω)

consisting of measures ρ on Ω such that: (a) ρ has zero mean value;
(b) it is a Gaussian measure; (c) it is symplectically invariant (this is
equivalent to the symplectic invariance of the Fourier transform ρ̃ of
the measure ρ) ; (d) its dispersion has the magnitude h.

The following trivial mathematical result plays the fundamen-
tal role in establishing classical → quantum correspondence: Let a
measure ρ be symplectically invariant. Then its covariation operator
B = cov ρ ∈ Lsymp,s(Ω).

We introduce on the phase-space Ω the complex structure: Hc =
Q ⊕ iP and the corresponding complex scalar product < ·, · >; here
the symplectic operator J = −i. We remark that the class of operators
Lsymp(Ω) is mapped onto the class of C-linear (bounded) operators
L(Hc).

We consider the classical statistical model

Mh
a = (Sh

G,symp(Ω),Vsymp(Ω)) (43)

and the classical → quantum map T ; see Sec. 3. We have:

Theorem 3. The map T given by (22),(23) is well defined. It
maps the space of statistical states Sh

G,symp(Ω)) onto the space of von
Neumann density operators D(Hc) (it is one-to-one on this space) and
the space of classical variables V(Ω) onto the space of quantum observ-
ables Ls(Hc). The classical and quantum averages are asymptotically,
h → 0, equal; see (21).
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