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The idea that in dynamical wave function collapse models the wave
function is superfluous is investigated. Evidence is presented for the
conjecture that, in a model of a field theory on a 1+1 lightcone lattice,
knowing the field configuration on the lattice back to some time in the
past, allows the wave function or quantum state at the present moment
to be calculated, to arbitrary accuracy so long as enough of the past
field configuration is known.
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1. INTRODUCTION

The question of the status of the state vector, Psi, in standard text-
book quantum mechanics has been a controversial issue since Bohr’s
and Einstein’s time. Is the state vector a complete description of the
physical state of a system, or is it incomplete and needing of completion
with extra information, or does it represent a state of (someone or
something’s) knowledge of the system? The class of models known
variously as “dynamical collapse models” and “spontaneous localisation
models” are observer independent alternatives to standard quantum
theory. We can ask: what happens to this question about the status
of the state vector? Is it immediately resolved by the formalism of the
collapse models or is there still a question to answer?

The general structure of all dynamical collapse models is similar:
there is a state vector, Psi, which undergoes a stochastic evolution in
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Hilbert space and there is a “classical” (c-number) entity – let’s call it
“q-bar” following Diósi [1] – with a stochastic evolution in spacetime.
The stochastic dynamics for the two entities – Psi and q-bar – are
coupled together. The stochastic dynamics in Hilbert space depends
on which q-bar is realised in such a way as to tend to drive Psi into
an eigenstate of an operator (q-hat) that corresponds to q-bar: this
is the eponymous “collapse” in these models. And the probability
distribution for the realised values of q-bar depends on Psi.

The choice of q-bar varies from model to model. In the origi-
nal GRW model [2] and a proposed relativistic version [3], q-bar is a
sequence of discrete “collapse centres” or spacetime events, in Diósi’s
model for single particle quantum mechanics [1] q-bar is a particle
position (see, however, footnote 1), in Continuous Spontaneous Lo-
calisation (CSL) models [4, 5] q-bar is a scalar field. In all cases the
c-number entity q-bar is defined on spacetime and is therefore covariant
in essence.

The Bell ontology [6] for the GRW model states that the col-
lapse centres are the beables or real variables. The analogous ontology
for collapse models in general is that the history of q-bar – whatever
it happens to be in the model – is real. Work by Diósi shows that
any prediction about results of macroscopic experiments and observa-
tions that can be made using the expectation value of operator q-hat in
state Psi, can also be made, For All Practical Purposes (FAPP), using
only knowledge about q-bar, suitably regularised and coarse grained.
Indeed, in non-relativistic theories q-bar is equal to this expectation
value plus white noise with zero mean1 [1, 7]. Put another way, sup-
pose one has run one’s computer simulations of the collapse model up
to a time well to the future of anything one is interested in and in the
computer memory is a history for Psi traced out in Hilbert space and a
(regularised) history for q-bar traced out in spacetime. If the computer
has a memory failure and loses all information about Psi, the informa-
tion about q-bar would be enough, when suitably coarse grained, to
make all the macroscopic predictions that could be made from Psi.

An example is the lattice field theory [8] that is the subject of
this paper. In [9] it was argued that a coarse graining of q-bar – in
this case q-bar is a {0, 1}-valued field on the lattice – displays the same
structure, FAPP, as the coarse grained expectation value of the field
operator in the quantum state Psi.

In taking this point of view, that q-bar is real, we are forced
to address the question of the status of Psi. Diósi takes the view that

1This raises the objection that the q-bar history is not really properly defined
at all as it contains a white noise term. One could fall back on the argument that
spacetime is widely expected to be fundamentally discrete and this discreteness
would provide a physical cutoff for the frequency of the white noise. Or turn the
argument around and say that if the Bell ontology for collapse models is desirable,
this suggests the necessity of fundamental discreteness.
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both Psi and q-bar are real [10]. In this paper we will investigate the
possibility, raised explicitly by Kent [11] for the GRW model, that Psi
doesn’t exist at all – that it is at most a convenience and conveys no
information that is not carried by the history of q-bar itself.

One can argue that there is already a way partially to demote
the quantum state in collapse models from its status as a really ex-
isting thing to that of a “dynamical law”. This view can be taken
in formalisms in which spacetime histories of the system are primary
(including for example consistent histories [12–15], Sorkin’s quantum
measure theory [16, 17] and Bohmian mechanics, see e.g. [18]). If we
consider a collapse model to be a stochastic law for the q-bar histories
then the quantum state Psi can be formally relegated to the initial
surface from which it need never evolve. The initial state gives us the
dynamical law for the future q-bar histories in the form of the prob-
ability distribution on them and is not itself real. However, we can,
if we know the q-bar history up to some spacelike surface, define an
“effective” quantum state on that spacelike surface which tells us how
to calculate the probability distribution on q-bar events to the future of
the surface conditional on the known past history. The “evolution” of
this effective quantum state from surface to surface (which is precisely
the stochastic process in Hilbert space mentioned above) is akin to a
“Bayesian” updating – on the actualisation of stochastic events – of
the rule which gives the future probability distribution and is not the
evolution of something physical. On this view, the quantum state is
something we invent in order to render the dynamics Markovian.

It would be desirable to go further than this. The initial state
on the initial surface hangs around like the smile of the Cheshire Cat
– rather insubstantial but still persistently there. Moreover, in the
quest to make a relativistic collapse model, the need to begin with a
state defined on an initial surface breaks Lorentz invariance. In this
paper we elaborate on the conjecture made in [8, 11], that in collapse
models even the initial state can be eliminated as a necessary part of
the theory (and the only information that remains from the state is
a classical distribution over superselection sectors). We suggest that
it can be replaced by an “initial period of q-bar history”. Knowing
this initial period of history would allow the calculation, FAPP, of an
effective quantum state which could be used to make predictions from
then on.

In Sec. 2 we briefly describe a collapse model for a field theory
on a 1+1 null lattice that we will use as a testing ground for our
conjecture. In this model, q-bar is a field configuration of 0’s and 1’s
on the lattice. In Sec. 3 we state the conjecture and in Sec. 4 we
describe the simulations. The results reported in Sec. 5 suggest that
if the field configuration is known to a certain depth in time Tconverge,
the state vector can be deduced FAPP from that configuration. Thus
the evolution of the field alone would be approximately Markovian on
time scales larger than Tconverge. Section 6 contains a summary and
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Fig. 1. The light cone lattice. σt is a constant time surface and σ is a
generic spacelike surface.

discussion.

2. CAUSAL COLLAPSE MODEL ON A LIGHTCONE
LATTICE

We briefly review the spontaneous collapse model [8] that we will use
to investigate the conjecture. We follow the presentation of [9] and
refer to that paper for further details. The model is a modification of
a unitary QFT on a 1+1 null lattice, making it into a collapse model
by introducing local “hits” driving the state into field eigenstates. The
spacetime lattice is N vertices wide and periodic in space, extends to
the infinite future, and the links between the lattice points are left or
right going null rays. A spacelike surface σ is specified by a sequence of
N leftgoing links and N rightgoing links cut by the surface; examples
of spatial surfaces are shown in Fig. 1. We assume an initial spacelike
surface σ0.

An assignment of labels to the vertices to the future of σ0,
v1, v2, . . . , is called “natural” if i < j whenever vi is to the causal
past of vj. A natural labelling is equivalent to a linear extension of
the (partial) causal order of the vertices. A natural labelling, v1, v2, . . .
is also equivalent to a sequence of spatial surfaces, σ1, σ2, . . . where
the surface σk is defined such that between it and σ0, lie exactly the
vertices v1, . . . vk. One can think of the natural labelling as giving an
“evolution” rule for the spacelike surfaces: as each vertex event vk oc-
curs, the surface creeps forward by one “elementary motion” across
that vertex. For any natural labelling and any k, the finite set of ver-
tices {v1, v2, . . . vk} is a stem, a finite set that contains its own causal
past.

The local field variables α live on the links. These field variables
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take only two values {0, 1}, so that on each link there is a qubit Hilbert
space spanned by these two states. We denote by {αRk

, αLk
} (αvk

for
short) the values of the field variables on the two outgoing links (to the
right R and to the left L) from vertex vk. (Note, in paper 1 we used
the hatted symbol α̂ to denote the actual value of the field variable
but here we will use the unhatted α.) One can, colloquially, consider
the field values 0 and 1 to represent the absence or presence (resp.) of
“bare particles” on the lattice.

A quantum state |ψn〉 on surface σn is an element of the 22N

dimensional Hilbert space Hσn which is a tensor product of the 2N 2-
dimensional Hilbert spaces on each link cut by σn. The basis vectors
(the “preferred basis”) of this Hilbert space are labelled by the possible
field configurations on σn, namely the 2N -element bit strings {0, 1}2N .
We will often refer to the number of 1’s in the bit string labelling an
eigenstate as the number of particles in that state. The Hilbert space
is the direct sum of 2N + 1 sectors each of fixed particle number. We
identify the Hilbert spaces on different surfaces in the obvious way using
the field basis. At each vertex vk, there is a local evolution law which
is given by a 4-dimensional unitary “R-matrix” U(vk) (4-dimensional
because it evolves from the two ingoing links the two outgoing links).
For this paper we choose these R-matrices to be uniform across the
lattice. (One can simulate external interventions by fiddling with the
R-matrices.)

In the standard text-book unitary theory, one postulates the
existence of an external measuring agent and then this formalism can
be used to predict the results of sequences of measurements of the field.
One way to do this is to identify projectors: P (αvk

) projects onto the
subspace of the Hilbert space spanned by the basis vectors in which
the field values at vertex vk are αvk

(recall there are two links outgoing
from vk and so αvk

is really two values).
Then the joint probability distribution for the agent to measure

a particular field configuration {αv1 , αv2 , . . . αvn} on the lattice between
the hypersurfaces σ0 and σn is

Pstandard QM(αv1 , αv2 , . . . αvn)

= ||P (αvn)U(vn) . . . P (αv1)U(v1)|ψ0〉||2 .
(1)

This probability rule is independent of the linear ordering of the vertices
and depends only on their causal order. The rule evades the potential
danger of violating relativistic causality described in [19] in two ways:
the causal structure of the vertices of the lattice is a partial order from
the start (no transitive completion is required) and the field variables
being measured are completely local quantities.

Inspired by the GRW model with Bell’s ontology, this unitary
quantum field theory requiring external agents can be turned into an
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observer independent theory for a closed system by replacing the pro-
jection operators for measurements in (1) by positive operators (for
“unsharp measurements”) and adopting the resulting formula as the
probability that the corresponding field configuration occurs. More
precisely, we define on each link (ı.e., on each 2-dimensional Hilbert
space associated with a link) the two operators J0 and J1 where

J0 =
1√

1 +X2

(
1 0
0X

)
, J1 =

1√
1 +X2

(
X 0
0 1

)
, (2)

with 0 ≤ X ≤ 1. Note that J2
0 + J2

1 = 1 and this is a positive operator
valued measure. Then we define the jump operator J(αvk

) on the 4-
dimensional Hilbert space on the outgoing links from vk as the tensor
product of the two relevant 2-dimensional jump operators, e.g., when
αvk

= (0, 0), J(αvk
) = J0 ⊗ J0. We promote J(αvk

) to an operator
on the Hilbert space of any spatial surface containing those two links
by taking the tensor product with the identity operators on all the
other components of the full Hilbert space. The probability of the field
configuration {αv1 , . . . αvn} is given by

P(αv1 , . . . αvn) = ‖J(αvn)U(vn) . . . J(αv1)U(v1)|ψ0〉‖2 . (3)

From this we can see the importance of the fact the jump operators
form a positive operator valued measure, which ensures consistency:

P(αv1 , . . . αvn−1) =
∑
αvn

P(αv1 , . . . αvn 4)

=
∑
αvn

〈ψ0| . . . J(αvn)J(αvn) . . . |ψ0〉 (5)

=‖J(αvn−1)U(vn−1) . . . J(αv1)U(v1)|ψ0〉‖2 . (6)

Again, (3) depends only on the (partial) causal order of the ver-
tices because any other choice of natural labelling of the same vertices
gives the same result. These probabilities of the field configurations
on all stems are enough, via the standard methods of measure theory,
to define a unique probability measure on the sample space of all field
configurations on the semi-infinite lattice.

We stress that whereas Eq. (1) is the probability for measuring
a particular field configuration in standard unitary quantum theory,
Eq. (3) is interpreted, in the Bell ontology, as the probability for the
field to be in that configuration. The full content of the theory is the
probability distribution (3) on possible field configurations, dependent
on an initial state |ψ0〉.

The state on the hypersurface σn that is reached after the
elementary motions over vertices v1, . . . vn and the field values
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{αv1 , . . . αvn} have been realised is the normalised state

|ψn〉 =
J(αvn)U(vn) . . . J(αv1)U(v1)|ψ0〉
‖J(αvn)U(vn) . . . J(αv1)U(v1)|ψ0〉‖ . (7)

Thus, the probability for state (7) on hypersurface σn is (3). In order
to make predictions about the field on the lattice to the future of σn

– conditional on the past values {αv1 , . . . αvn} – it is sufficient to know
|ψn〉. Indeed, the conditional probability of {αvn+1 , . . . αvn+m} is given
by

P(αvn+1 , . . . αvn+m) = ‖J(αvn+m)U(vn+m . . . J(αvn+1)U(vn+1)|ψn〉‖2 .
(8)

The state vector provides these conditional probabilities, and is there-
fore a convenient way of keeping the probability distribution up to date,
given past events.

3. THE STATUS OF THE WAVE FUNCTION: “AN
EXECUTIVE SUMMARY”?

We are interested in investigating the possibility of doing away with
the quantum state entirely as a fundamental concept in collapse models
and will be using the lattice model described above as a test case. As
mentioned in the introduction, we can relegate the quantum state to a
state, |ψ0〉, on an initial surface σ0 from where it acts as a “dynamical
law”, specifying the probability distribution on field configurations to
the future of σ0. Can we weaken even this status?

We make the conjecture that, if the field configuration is known
between σ0 and σn, then even if the state on σ0 is not known, the state
on σn is calculable up to a correction that goes to zero as n→∞. This
would mean that although the evolved state on σn a priori depends on
both the initial state on σ0 and on the field values that have actually
occurred in between, its dependence on |ψ0〉 dies away as time goes
on until all we need to know to make predictions, FAPP, is the field
configuration back to a certain depth in time. We would then have
an interpretation not only assigning reality to a field configuration in
spacetime but further demoting the wave function by denying it a role
as a necessary entity to the theory: the state |ψn〉 can be deduced FAPP
from the field configuration to the past of σn to some depth in time
(or exactly if the whole infinite past history is known) and becomes
an “executive summary” of the past reality containing no independent
information.

More precisely, let |ψ1
0〉 and |ψ2

0〉 be two states on σ0. Then they
give, according to (3), two probability distributions, P1 and P2 on field
configurations to the future of σ0. Choose any linear ordering of the
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vertices to the future of σ0, v1, v2, . . . . Adopt the notation α(n) for a
field configuration between σ0 and σn, and |ψa

n, α(n)〉 for the state on
σn that arises from |ψa

0〉 on σ0 after α(n) has happened (a = 1, 2).
Conjecture: There exists a complex phase λ such that

‖|ψ2
n, α(n)〉 − λ|ψ1

n, α(n)〉‖ → 0 as n→∞ (9)

for all α(n) except those which almost surely do not occur according
to both P1 and P2.

Conjecture (density matrix form):

‖
∑
α(n)

P1(α(n))|ψ1
n, α(n)〉〈ψ1

n, α(n)|

−
∑
α(n)

P1(α(n))|ψ2
n, α(n)〉〈ψ2

n, α(n)|‖ → 0 as n→∞, (10)

where ‖·‖ is the operator norm, and similarly with 1 and 2 interchanged.
Note that we already know that the conjectures cannot be true

strictly as stated because of the possible existence of “superselection
sectors” in the Hilbert space. For example, the jump operators J pre-
serve particle number and if the R-matrices do so also (this is the case
we will study in detail in the next section) then a state in the k-particle
sector can never approach a state in the l-particle sector if k /= l. If
the R-matrices preserved only particle number mod-2 (by allowing pair
creation and annihilation of particles) then there would be two super-
selection sectors (even and odd particle number). It should be noted
that even if there is a conserved quantity – particle number, say – this
quantity is conserved in the state vector but not in the realised field
configuration. We expect however that the “conservation law” will be
reflected in the probability measure in the sense that a suitable prop-
erty of the coarse grained field configuration will be predicted with
probability close to one.

When there are superselection sectors, an initial quantum state
corresponds to a classical probability distribution over the sectors and
a quantum state in each sector, in the familiar way. Without loss
of generality therefore, we will assume in what follows that we are
restricted to a single superselection sector and the conjectures apply
to each superselection sector individually becoming, effectively: two
states in the same superselection sector tend to each other up to a
phase for all histories except for a set of histories which has measure
zero in the probability measure of both states.

506 Dowker and Herbauts 



4. THE SIMULATIONS

We sought evidence for the conjecture in the following way. We chose
a unitary R-matrix, uniform across the lattice, of the form

R =


1 0 0 0
0 i sin θ cos θ 0
0 cos θ i sin θ 0
0 0 0 1

 . (11)

This gives a particle number preserving dynamics for the state, since
the hit operators J also preserve particle number.

We chose σ0 to be a constant time surface and we chose two
initial states, |ψ1

0〉 and |ψ2
0〉 (in the same superselection sector, which

here meant the same particle number sector). We generated, at random
according to the probability distribution P1 or P2 field configurations
to the future of σ0. For each of these field configurations, α(M) (where
M was large enough for the calculation in hand) we calculated the two
states |ψa

n, α(n)〉, a = 1, 2 on the surface σn which is the nth surface in
a sequence of surfaces chosen according to the stochastic rule “choose
the next elementary motion at random with uniform probability from
those possible.” This is not a covariant rule – it is equivalent to a
probability distribution on linear extensions of the partial order on
the whole future lattice but it does not give each equal weight – and
moreover a covariant, Markovian rule does exist [20] but we made the
choice for ease of calculation. We will comment on what significance
this has for our results below.

We would like to show that the two states |ψa
n, α(n)〉, a = 1, 2

become close, up to a phase, as n gets large and more precisely we would
like to know how the difference behaves with n. One can argue that it is
not the states themselves that should be compared but the probability
distributions for the field variables that they produce. Indeed, in an
interpretation in which only the field is real, it is only this probability
distribution and not the state itself which has physical import.

In principle the entities that should be compared are the two
probability distributions, for states 1 and 2, over field configurations to
the future of any surface σ, given the values of α(M) lying to the past
of σ. This is calculationally impractical and we used two simplifying
strategies. First, we sampled the space of all surfaces by choosing
a sequence σ1, σ2, . . . according to the rule described above. This rule
does not sample uniformly in the space of surfaces, as mentioned above,
and an improvement of our scheme would be to determine and then
implement the covariant rule which does. Second, we compared the
probabilities, not for the whole future field configuration but only for
the value 1 on each of the two outgoing links from vn for each n.

An important point is that, as discussed in [9], the interesting
physical regime for these models is when the parameter X is close to
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one, alternatively when ε ≡ 1 − X is close to zero. This means that
the hits are very gentle and superpositions of microscopically different
states will last for a long time. In this case, however, the conditional
probability of a 1 on each link becomes very close to 1/2, indeed it is
equal to 1/2+O(ε). (Here we clearly see the white noise term in the field
configuration that is to be expected from Diosi’s work.) So for small
epsilon the probabilities will be close, whether or not the states are
coming close to each other. Indeed, let the link in question be denoted
l and suppose, at some stage in the dynamics, l is one of the outgoing
links from the vertex that has just been evolved over. Let the state on
the current spacelike surface through l be denoted schematically by

|Ψ〉 = a|0〉+ b|1〉, (12)

where |0〉 (|1〉) is short hand for the normalised superposition of all
the terms in the state in which the value of the field on l is 0 (1).
The probability that the field will be 1 on l (conditional on the past
evolution to that stage) is

|a|2X2 + |b|2
1 +X2

=
X2

1 +X2
− |b|2 1−X2

1 +X2
. (13)

So, for the difference between the probability for a 1 on link l in state
1 and in state 2 we will obtain

(|b1|2 − |b2|2)(1−X2)/(1 +X2). (14)

When ε is small, this becomes

(|b1|2 − |b2|2)(ε+O(ε2)) . (15)

From this we see that the appropriate quantity to calculate for
each link is |b1|2 − |b2|2: that gives a measure of the difference of the
probability distributions that affects the coarse grained, renormalised
field configuration (see [9]) and indeed it is a measure of the difference
between the states themselves.

Thus, we calculated for each vertex vn (recall the sequence
v1, v2, . . . is equivalent to a linear extension and is the one chosen at
random by our evolution rule described above) and for each outgoing
link, l, from vn, the quantity |b1|2 − |b2|2 which we denote by B(l). Of
course this is a very approximate measure of the difference between the
two states and to overcome this, we took the sum of this quantity over
every link in a block, a certain number m of lattice time steps long and
the width of the whole spatial lattice:

Bm(t) ≡
∑

l

B(l), (16)
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where the sum is over all links with lattice time coordinate from t
through t+m−1 (the lattice time step is 1). Our convergence criterion
was Bm(t) < δ and we define the convergence time Tc to be the smallest
time such that Bm(t) ≤ δ, ∀t > Tc.

With the help of numerical simulations on 8, 9 and 10 vertex
lattices we studied the dependence of Tc on ε, on particle number, on
θ and on different types of initial state within fixed particle number
sectors. In total about 600 simulations were run. We also studied the
convergence of states for field configurations not generated according
to the probability distributions from either state, for example the field
configuration (a) of all 1’s, (b) of all 0’s and (c) randomly generated
with uniform probability distribution of 1/2 for a 1 on each link. We
failed to find convergence only in the cases (a) and (b) mentioned above
when the field configuration was all 1’s or all 0’s which is consistent with
the conjecture because they almost surely do not occur in P1 and in
P2. Convergence occurred but was slower for the field configurations
of type (c) than for those generated by (and therefore likely in) the
probability distibutions of states 1 or 2.

In our simulations we were limited as to lattice size by the ex-
ponential growth of the problem in vertex number, and it is at present
unclear whether the limited size of the lattice has important impli-
cations for our results, in particular the question whether the periodic
boundary conditions of the lattice stimulate convergence remains open.

5. RESULTS

To begin by giving a flavour of the kind of simulations run, the conver-
gence of two initial states is illustrated in Fig. 2. Each cell corresponds
to a single link of the lattice (so there are twice as many cells across
the lattice width as vertices) and the darkness of the cell is (positively)
proportional to |b|2 (see equation (12)). In plot (a) we show the evo-
lution of state 1, which begins as an eigenstate with 4 particles on the
left hand side of the lattice in the leftmost panel, time proceeds up the
page and then the lattice continues at the bottom of the next panel and
so on. Plot (b) shows the evolution of state 2, which begins as a state
with 4 particles on the right hand side of the lattice. The parameters
for the evolution are X = 0.65 and θ = 0.26π. Comparing (a) and (b)
it can be seen that the plots are indistinguishable from halfway up the
first panel in each. The plots after this time are somewhat superfluous
but we show them to emphasize that we checked that the convergence
persists long after our convergence criterion is reached.

Figure 3 shows the quantity B10(t) defined in equation (16) plot-
ted against lattice time t, for an 8 vertex run with X = 0.95, θ = 0.1π
and initial states which are two different one-particle eigenstates. It
shows a pleasingly sharp falloff to zero.
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Fig. 2. (a) and (b) are plots of the evolution of four-particle eigenstates
|ψ1〉 and |ψ2〉 respectively, in a field configuration generated according
to the probability distribution of |ψ1〉, with X = 0.65 and θ = 0.26π.

Figure 4 is a plot of log(Tc) against log(ε) for many 8 vertex
runs of varying ε, where we chose B10 as our measure of difference and
δ = 10−4 to define the convergence time. The other parameters were
θ = 0.1π and |ψ1〉 and |ψ2〉 are two fixed one-particle eigenstates. The
field configuration is chosen according to the probability distribution
from |ψ1〉. The plot is consistent with a dependence of

Tc ∝ 1/ε2 (17)

As a consequence of this, in a continuum limit in which the
lattice spacing a → 0 and ε = O(

√
a), the “physical” convergence

time, aTc would tend to some finite non-zero value.
A plot of the convergence time (defined by B10 and δ = 10−4)

against θ is given in Fig. 5 for X = 0.95 and fixed initial one-particle
eigenstates.

The plot is difficult to interpret. It seems particularly odd when
one realises that for θ = π/2 and θ = 0 (the two limits of the range of θ
shown) the R-matrix is such that it does not introduce any superposi-
tions into the states. Indeed the evolution is completely deterministic:
for θ = π/2 an initial one-particle field eigenstate remains essentially
constant – just acquiring a phase of i at each lattice time step – and
for θ = 0 it propagates at the speed of light along the null direction it
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Fig. 3. Plot of B10(t), against lattice time t, for X = 0.95, θ = 0.1π
and two different one-particle eigenstates for initial states.

starts off in. The evolution in these cases, therefore, does not “mix”
the Hilbert space and states 1 and 2 can never converge.

The plot, however, suggests that for values of θ close to these
limiting ones, convergence is faster than for θ in the middle of the range,
and indeed the convergence time is tending to zero. We speculate that
this has something to do with the competing effects of the mixing by
the R-matrices and the converging effect of the hits. If we imagine
starting with two states which have support over the whole of the one-
particle sector of Hilbert space, the harder the hits, the faster the states
will converge. In the extreme case, if ε = 1 then the hit operators are
projectors, state 1 will collapse into one of the eigenstates after one time
step, the field configuration will be the one given by that eigenstate and
state 2 will be forced into that state also. When ε and θ vary, there is
a competition between the driving towards eigenstates by the hits and
the mixing (introduction of superpositions) by the R-matrices. In the
runs plotted here, we kept ε fixed so the strength of the hits does not
vary but as θ tends towards the two limiting values it could be that the
R-matrix evolution loses the competition. If the hits drive state 1 very
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Fig. 4. Plot of log(Tc) against log(ε)

quickly into an eigenstate, then as long as there’s been enough mixing
so that there is even a tiny amplitude for that eigenstate in state 2,
there will be convergence.

Figure 6 shows results from runs on an 8 vertex lattice with
X = 0.9, θ = π/4. In any given run the two initial states are eigenstates
with the same particle number, which varies across the runs. The plot
is of Tc (defined by B8 and δ = 10−4) against particle number.

The plot is consistent with expected behaviour. The fixed par-
ticle number, m, sectors have dimension (2N)!/m!(2N − m)! which
increases as m increases to N and then decreases symmetrically as m
increase further to 2N . When the Hilbert space is larger, we expect
that convergence will take longer as it takes longer for each state to mix
and acquire amplitudes for all the different eigenstates. We expect the
plot to be symmetric because, further, there is a duality in the models
between field value 0 and field value 1.

We checked our results by taking several runs and calculating
the quantity

Cn = 1− ‖〈ψ1
n, α(n)|ψ2

n, α(n)〉‖2 (18)

and comparing it to the quantity B10(t) for the same run (recall that
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Fig. 5. Convergence time vs θ.

the way B10(t) is defined, there is one value for every tenth lattice time
coordinate, so there are 80 times as many Cn data as B10 data). Figure
7 is a Cn plot of the run shown in 3. This is a more direct check of the
conjecture and in the future we would want to redo our analysis using
this method.

However, we present more evidence in Figs. 9, and 11 that indi-
cates that the results will be the same. Indeed, even in the details of
how the convergence occurs in each run, the behaviours of the measures
B10(t) and Cn match each other very well. On noting that the number
of elementary motions is 8 times the lattice time, it can be seen that
the main features of the two types of plot are well matched in time.
Figures 8, 9 show a plot of B10(t) and Cn data for a run with the same
initial states and parameters as for the simulation whose data is shown
in Figs. 3 and 7, while Figs. 10, 11 show a plot of B10(t) and Cn data
for a run with the same states and parameters as for 8 and 9 but a
different θ = 0.25π.
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Fig. 6. Plot of log Tc against particle number.

6. DISCUSSION

We can state the import of the conjecture we have made thus: given
some particular field history from t = −∞ to t = 0 then there is a
physical probability distribution on the field histories for t > 0 which
we can express conveniently in the form (3), using a quantum state at
t = 0 which is precisely specified by the past field history. If one could
discover an algorithm for transforming the data in the field history
directly into the probability distribution then one would have built a
model in terms only of the field variables which makes no reference to
a quantum state.

We have presented evidence for this conjecture. The falloff seen
in Figs. 3 and 7-11 suggest the stronger conjecture that there is a time
scale Tc such that even if we know only the field history from t = −Tc

to t = 0 then we can construct a quantum state that gives the correct
predictions FAPP. We would like to study this further by investigating
the dependence of Tc on the degree of convergence δ.

For the purposes of this paper we chose δ = 10−4 to define Tc and
we presented evidence that Tc is of order ε−2 as ε→ 0. In a continuum
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Fig. 7. Plot of Cn, against the number of elementary motions, for X =
0.95, θ = 0.1π and two different one-particle eigenstates for initial
states. The data is from the same run as shown in Fig. 3

Fig. 8. Plot of B10(t), against lat-
tice time t, for X = 0.95, θ =
0.1π and two different one-particle
eigenstates for initial states.

Fig. 9. Plot of Cn, against the
number of elementary motions.
The data is from the same run as
shown in Fig. 8.
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Fig. 10. Plot of B10(t), against
lattice time t, for X = 0.95,
θ = 0.25π and two different
one-particle eigenstates for initial
states.

Fig. 11. Plot of Cn, against the
number of elementary motions.
The data is from the same run as
shown in Fig. 10.

limit where the lattice spacing a→ 0 and ε = O(
√
a) then the physical

convergence timescale, aTc would remain finite and the dynamics would
be approximately Markovian for time scales larger than this.

It would be valuable to check all our results by redoing the sim-
ulations and calculating, instead of Bm(t), Cn on each sampled surface
and examining how it tends to 0 as we did for some runs described in
the last section. Improvements on our methods would include calculat-
ing and implementing the covariant evolution rule for surfaces which
would make our sampling of surfaces uniform. We would like to analyse
quantitatively the dependence of Tc on the dimension of the particle
number sector implied by the results shown in Fig. 6.

Results with different types of R-matrices as well as general
initial states are still to be investigated. In particular, further evidence
for the conjecture can be obtained by choosing pair-particle conserving
matrices, as well as general matrices with no conservation laws.

We stress that the analysis and simulations presented in this
paper are at a rather mathematical level. The question of physics has
not been addressed. This would involve the settling of the issue of
the competition between the R-matrices and the hits in the collapse of
superpositions of eigenstates [9]. This bears on the conclusions of the
current paper. The physically interesting range of parameters is when
ε is very small and θ is also small so that “microscopic” superpositions
persist for a long while but eventually collapse. In this regime, the
hits are very gentle and the “mixing” of the Hilbert space by the R-
matrices is slow. Investigating this regime is essential if we are to draw
physically relevant conclusions about collapse models of this sort.

Finally we extend our conjecture to all collapse models. It would
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be interesting to study it in other cases such as the GRW model and
Diósi’s single particle model.
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