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Abstract
We discuss the solution proposed by Fermi to the so called “4/3 problem” in the 
classical theory of the electron, a problem which puzzled the physics community for 
many decades before and after his contribution. Unfortunately his early resolution of 
the problem in 1922–1923 published in three versions in Italian and German jour-
nals (after three preliminary articles on the topic) went largely unnoticed. Even more 
recent texts devoted to classical electron theory still do not present his argument or 
acknowledge the actual content of those articles. The calculations initiated by Fermi 
at the time are completed here by formulating and discussing the conservation of the 
total 4-momentum of the accelerated electron as seen from the instantaneous rest 
frame in which it is momentarily at rest.

Keywords Classical theory of the electron · Maxwell’s equations · Fermi 
coordinates · Accelerated frames

1 Introduction

The simplest classical model of the nonrotating electron in special relativity consists 
of a static spherically symmetric distribution of total electric charge e over the sur-
face of a rigid sphere of radius r0 , as measured by an observer at rest with respect to 
the sphere. This model was first developed and studied during the first decade of the 
1900s by Abraham [1, 2] Lorentz [3] and Poincaré [4], based entirely on Maxwell’s 
theory of electromagnetism. For an unaccelerated electron, the rest frame integral of 
the local energy density of the Coulomb field over the exterior of the electron sphere 
representing the total energy W = e2∕(2r0) stored in that field, is equal to the self-
energy of the charge distribution.
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For any static isolated configuration of charge, this self-energy is equal to the 
work needed to assemble it by slowly bringing the charge elements in from spa-
tial infinity. The factor of 1/2 in the energy formula is a geometric factor which 
is replaced by 3/5 if the model of the electron is a constant charge density solid 
sphere rather than a constant density spherical surface charge distribution and 
one also considers the additional contribution to the electromagnetic field energy 
inside the sphere (zero in the surface distribution case by spherical symmetry): 
1∕2 + 1∕10 = 3∕5 . Dropping these factors and converting the Coulomb energy to 
the entire observed mass me of the electron by Einstein’s famous mass-energy rela-
tion E = mc2 defines a corresponding radius re = e2∕(mec

2) that pure dimensional 
analysis would lead to, called the classical radius of the electron.

With the birth of special relativity occurring during the same time years as the 
Abraham-Lorentz model development, there was the expectation that apart from any 
additional “bare mass” m0 that the electron might have, the electromagnetic energy 
W should contribute to the inertial mass of the electron an amount mem = W∕c2 
satisfying Einstein’s mass-energy relation, leading to a total mass me = m0 + mem . 
Instead they had found mem =

4

3
W∕c2 in the limit of nonrelativistic accelerated 

motion of the electron. This became the famous “4/3” problem.
After three preliminary papers on the inertial and gravitational mass of electro-

magnetic fields in 1921–1922 [5–7], in 1923 Fermi [8–11] reconsidered this prob-
lem for any regular spherically symmetric distribution of charge in motion that satis-
fies Born’s definition of relativistic rigidity [12, 13], namely that this distribution is 
time-independent in its instantaneous rest frame. Re-examining the Abraham-Lor-
entz derivation of the inertial mass of such a distribution of charge due entirely to 
its self-field, Fermi managed to correct the troublesome factor of 4/3 in their result 
which he showed is entirely due to their imposition of conventional rigidity with 
respect to a single inertial frame instead of the sequence of instantaneous rest frames 
following Born’s criterion. The former is not a Lorentz invariant condition like 
Born’s and so is in direct conflict with special relativity.

By an unfortunate coincidence the same numerical factor of 4/3 appears in the 
integral definition of the total 4-momentum observed by any inertial observer 
moving relative to an (unaccelerated) spherically symmetric charge distribution 
which is time-translation symmetric in its own inertial rest frame. Contracting the 
stress-energy tensor of the electromagnetic field due to such a distribution with 
the 4-velocity of any inertial observer gives the local 4-momentum distribution as 
seen by that observer, and integrating it over a time slice in that observer’s refer-
ence frame gives the total 4-momentum seen by that observer at that moment of 
inertial time. Since it arises as the hypersurface integral of a second rank tensor field 
(invariant under translation in the rest frame of the charge distribution), this quan-
tity is a linear 4-vector-valued function of the 4-velocity of the inertial observer and 
indeed the 4/3 factor enters because of the tensor transformation law. In the absence 
of sources, the 4-momentum of the electromagnetic field is actually independent of 
the observer, as shown by textbook applications of Gauss’s law to the divergence-
free stress-energy tensor, but in the presence of sources, this divergence is nonzero 
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and leads to the complications encountered in this problem that of course were not 
understood in the early days of special relativity.

Kwal in 1949 [14] and later independently Rohrlich [15] in 1960 made the obser-
vation that by fixing the 4-velocity of the inertial observer in this calculation to 
be the one associated with the rest frame of the unaccelerated charge distribution, 
one obtains a fixed 4-momentum independent of time which equals the rest frame 
4-momentum by definition and again the troublesome factor of 4/3 disappears. 
Unfortunately this is not the end of the story: the classical theory of charge distribu-
tions and electromagnetic self-forces and radiation reaction forces is a complicated 
and controversial subject into which many have entered the discussion over the past 
century since it began, and Fermi’s own contribution has been largely ignored.

Indeed the Fermi coordinates and Fermi-Walker transport for which Fermi is 
well known in relativity were developed specifically in 1922 to treat this problem 
[7] while he was a university student already knowledgeable in general relativity 
only a few years after its birth in 1916. In that very paper in its final section he con-
siders the Lagrangian for an extended charged body with a given charge and mass 
distribution moving in an external electromagnetic field, where the distributions are 
confined to a length scale that in his subsequent paper will be assumed to be small 
compared to the variation of the external field. In that next paper he focuses only on 
the contribution of the charge distribution to its equation of motion in the external 
field, but one can easily retain the mass contribution as well, as in many discussions 
of this problem, where this mass is referred to as the bare mass or mechanical mass 
of the object. The result is the Lorentz force law with the inertial rest mass contri-
bution to that equation consisting of the sum of the bare mass and the electromag-
netic energy in the self-field of the charge distribution, the latter energy not preceded 
by the famous 4/3 factor of Abraham and Lorentz. Fermi’s derivation in this larger 
context is discussed in detail in the textbook on special relativity by Aharoni [16] 
who came out with his second edition in 1965 specifically to include this part as 
explained in his preface, after attention had been called to the problem by Rohrlich 
in 1960.

Following the analysis by Abraham and then Lorentz of the accelerated version 
of their model for the electron, Fermi considered a regular spherically symmetric 
distribution of accelerated charges held in a rigid configuration by some external 
force and applied the Lagrangian variational principle to compute the time rate of 
change of the momentum in the force law, without specializing to a particular charge 
density profile. In order to show exactly how the mistaken 4/3 factor in the inertial 
mass due to the energy of the self-field arises, Fermi contrasted the Born rigid cal-
culation of the Lagrangian variation (variation B) with that assuming rigidity with 
respect to a particular inertial observer (variation A), which is not relativistically 
invariant and hence not to be trusted. He showed that the latter assumption in deriv-
ing the equations of motion leads to the Abraham-Lorentz result with the mistaken 
4/3 factor multiplying the electromagnetic energy of the charge distribution in its 
contribution to the inertial mass, but that the Born assumption gives the correct fac-
tor as expected by the equivalence of mass and energy through the famous equation 
E = mc2.
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Operationally, a congruence of timelike world lines is said to be Born-rigid if it 
has vanishing expansion. As discussed in detail by Salzman and Taub [17] in 1954, 
any timelike curve determines a family of orthogonal hyperplanes in special relativ-
ity and their orthogonal trajectories define the world lines of a body in Born-rigid 
motion (referred to as planar motion by Herglotz and Noether [18, 19]). The remain-
ing class of motions are called group motions, and consist of curve segments from 
a continuous 1-parameter subgroup of Lorentz transformations of Minkowski spa-
cetime into itself. The best example of these are the Rindler observers whose world 
lines are the integral curves of a single generator of Lorentz transformations, each 
world line with a unique constant acceleration. For the electron model, a time-inde-
pendent spherically symmetric distribution of charge in the Fermi coordinate system 
adapted to the central world line is Born rigid.

In order to fix the 4/3 problem Poincaré [4] (followed up by von Laue [20]) seri-
ously confused the issue by mixing it with the question of explaining the rigid con-
figuration of charge through internal stresses. Long after Fermi’s resolution of the 
4/3 problem, even in the commentary by his friend Persico on Fermi’s paper in the 
collected work of Fermi, it was thought that Poincaré stresses were necessary to 
explain this discrepancy. In fact the stability of the electron is an entirely different 
matter from the correct relation of the inertial mass to the electromagnetic energy as 
explained by Fermi.

Although Wilson [21] discussed the problem of the proper definition of the 
4-momentum of the electromagnetic field in 1936 with no citations, he did not suc-
ceed in clarifying matters. In 1949 Kwal [14] showed that a slight modification of 
Abraham’s original integral definitions for the unaccelerated electron leads to an 
electromagnetic 4-momentum endowed with the correct Lorentz transformation 
properties. Even later Rohrlich [15] in 1960 came to the same conclusion without 
being aware of previous work. They both explained that the correct result can only 
be obtained from the usual special relativistic integrals over a hypersurface of con-
stant inertial time if that hypersurface represents a time slice in the rest frame of 
the electron, although Kwal only discussed changing the element of hypersurface 
volume without relating the region of integration to that rest frame. The classical 
electron model has continued to intrigue people ever since, see for example, Feyn-
man [22], Teitelboim [23–26], Boyer [27], Rohrlich [28], Nodvik [29], Schwinger 
[30], Campos and Jimenéz [31, 32], Cohen and Mustafa [33], Comay [34], Moy-
lan [35], Kolbenstvedt [36], Rohrlich [37], Appel and Kiessling [38], de Leon [39], 
Harte [40], Pinto [41], Bettini [42], Galley et al. [43], Griffiths [44], Damour [45], 
and more.

At least three entire books are devoted to the topic of the classical theory of the 
charge distributions, those by Rohrlich [46, 47], Yaghjian [48, 49], and Spohn [50], 
and the model is described in detail by Jackson [51, 52], the universally accepted 
reference textbook on classical electrodynamics (see also Chapter  8 of Anderson 
[53]). Some interesting historical details may be found in the recent article of Jans-
sen and Mecklenburg [54, 55]. This whole problem is not without explicit contro-
versy, as detailed by Parrott in his archived exchange with Physical Review which 
would not publish his criticism of Rohrlich’s recent work [56].
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Except for Aharoni [16], and much later Kolbenstvedt [36] in 1997, and for Nod-
vik [29] and Appel and Kiessling [38] who consider a spinning generalization of 
the relativistically rigidly rotating electron model reviewed by Spohn [50], none of 
these references seem to take into account Fermi’s actual argument nor connect it to 
that of Kwal and Rohrlich even though most of them cite Fermi’s original article. 
Kolbenstvedt [36] called attention to Fermi’s argument with a slightly different but 
equivalent explanation of his own, and not in an obscure physics journal, and yet the 
latest edition of the books of Jackson, Rohrlich, and Yaghjian, all published after 
that year still do not reflect this news. Jackson does explain that his nonrelativis-
tic treatment can be relativistically corrected, referring to Fermi, and to be fair, the 
stated purpose of Yaghjian was to update the Abraham-Lorentz model which he did, 
apparently unaware of the content of Fermi’s articles. Misner, Thorne and Wheel-
er’s tome Gravitation [57], affectionately known as MTW, really raised the level of 
mathematical discussion of special and general relativity after 1973, and allowed 
Spohn to more cleanly and covariantly discuss the relativistic rigid electron model to 
include spin, but without discussing the observer-dependent 4-momentum integral 
for the electromagnetic self-field.

An important element of this discussion is the conserved nature of the integrals 
of the local densities of energy and momentum associated with the divergence-free 
stress-energy tensor of the sourcefree electromagnetic field when integrated over an 
entire spacelike hyperplane of Minkowski spacetime due to Gauss’s law. Such a con-
servation law fails to exist when the divergence is instead nonzero in the presence 
of sources or if a world tube containing sources is excluded from the integral, lead-
ing either to a spacetime volume divergence integral or (equivalently) to an internal 
boundary integral that must be taken into account in Gauss’s law. This is an impor-
tant discussion since none of the textbooks on special or general relativity describe 
this more general situation, while textbooks on classical electrodynamics typically 
only use local such integrals within bounded regions of space.

Since this discussion is crucial in understanding the present problem, it is 
included in the section following this introduction where the preliminary details 
about the electromagnetic field needed to consider the spherical model of an unac-
celerated electron are introduced together with the definitions of the 4-momentum 
in the field as observed by any inertial observer, and the role played by Gauss’s law 
in conservation laws is then explained, leaving the details of more exotic regions of 
spacetime integration to the appendix. The calculation of the 4-momentum integrals 
for the Abraham-Lorentz model of the unaccelerated electron is then reproduced in 
the subsequent section to explain the role played by Kwal and Rohrlich in this mat-
ter. Next we present Fermi’s re-analysis of the Abraham-Lorentz calculation of the 
inertial mass for their model of the accelerated electron taking into account Born’s 
rigidity condition. Finally the Kwal-Rohrlich definition of 4-momentum is related 
directly back to this correction using Gauss’s law.

One finds that the Kwal-Rohrlich restriction of the observer-dependent electro-
magnetic field 4-momentum integrals to the electron rest frame time hyperplanes 
associates a unique 4-momentum with the unaccelerated electron which is the one 
special relativity assigns, which has long been known. However, for a single static 
electron configuration in the absence of interaction, the 4-momentum is not so 
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interesting since there is no way even of revealing its inertial mass from at most 
uniform translational motion in flat spacetime. To get information about the inertial 
mass and 4-momentum, the electron must be accelerated and if we limit our atten-
tion to electromagnetic interactions, it will be accelerated by an external electromag-
netic field through the Lorentz force law. We expect that the total momentum of the 
electron and the electromagnetic field (for a closed system) should be conserved. We 
will show here for the first time that indeed the natural conclusion of Fermi’s calcu-
lation of the lowest order contributions to the equations of motion of the electron is 
that the total 4-momentum as observed in the time slices in the sequence of instan-
taneous rest frames along its path is conserved, i.e., is independent of time, and is 
the usual one we associate with the system. The key idea of Fermi of the importance 
of this sequence of hyperplanes orthogonal to the path of a given world line in spa-
cetime was embedded in his Fermi coordinate system adapted to that world line, 
and which outlived the purpose for which he introduced it in those initial days of 
the theory of general relativity. However, the interest in this classical problem over 
the past century continues to be unaware of Fermi’s early resolution of the problem, 
undoubtedly due to the lack of an English translation of Fermi’s work. The present 
work aims at filling this gap. The calculations initiated by Fermi at the time are com-
pleted here by analyzing the conservation of the total 4-momentum of the acceler-
ated electron, extending the discussion of Ref. [58] by displaying all the mathemati-
cal details and associated subtleties in a more systematic framework.

2  Electrodynamic Preliminaries

Although Fermi does not specify the density profile of the spherically symmetric 
charge distribution that he analyzes in his re-examination of the earliest classical 
electron theory proposed by Abraham [1, 2] and improved by Lorentz [3], he refers 
specifically to their spherical shell model of the electron in his introduction. Without 
acceleration of the electron this model cannot help identify the inertial mass which 
arises as the proportionality constant between the applied force and the resulting 
acceleration. However, it was the interest in their unaccelerated model which helped 
push towards the understanding of the 4-momentum hypersurface integrals for the 
electromagnetic field so it is useful to review this case first. We re-examine their 
work in light of modern notation and perspective.

The model for the electron first proposed by Abraham [1, 2] and improved by 
Lorentz [3] consisted of a uniform spherically symmetric distribution of total elec-
tric charge e over the surface of a rigid sphere of radius r0 in its rest frame. This 
was called the contractile electron since it would then undergo Lorentz contraction 
with respect to an inertial frame in relative motion, while Abraham had assumed 
that the electron remained a rigid sphere with respect to all inertial observers. Ein-
stein’s understanding of special relativity only came after this model had been devel-
oped, and Lorentz had interpreted the Lorentz contraction as a dynamical effect 
rather than as a universal property of spacetime itself. They attempted to explain the 
mass-energy of the electron as due wholly to the electromagnetic field of the elec-
tron, equating the electron’s energy and momentum to the energy and momentum of 
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its electromagnetic field, which can be evaluated by suitably integrating the normal 
components of the stress-energy tensor of the electromagnetic field over a spacelike 
hyperplane representing a moment of time in an inertial reference frame. This is a 
useful example to keep in mind.

In an inertial system of Cartesian coordinates (x�) = (t = x0, x1, x2, x3) associated 
with an inertial reference frame in Minkowski spacetime with signature (−+++) fol-
lowing the conventions of Misner, Thorne and Wheeler [57] with c = 1 , Maxwell’s 
equations for the electromagnetic field tensor F�� due to the 4-current density J� are

where Greek indices assume the values 0, 1, 2, 3, and Latin indices instead 1, 2, 3. 
Indices may be raised and lowered with the flat Minkowski spacetime metric whose 
inertial coordinate components are (g��) = diag(−1, 1, 1, 1) = (g��).

Of course when these equations are expressed in noninertial coordinate systems 
the comma here signifying partial coordinate derivatives f,� = ��f = �f∕�x� must be 
replaced by the semicolon indicating the components of the covariant derivative. We 
will have need later for an arbitrary covariant constant covector field Q� of vanishing 
covariant derivative Q�;� = 0 , the components of which reduce to Q�,� = 0 in an iner-
tial coordinate system where the components Q� (and Q� ) are actual constants. In fact 
such covariant constant vector fields Q� correspond to the translational Killing vec-
tor fields of Minkowski spacetime, which are special solutions of the general Killing 
equations that the symmetrized covariant derivative Q(�;�) = 0 vanish. The noncovari-
ant constant Killing vectors generate the rotations and boost symmetries of Minkowski 
spacetime.

The stress-energy tensor of the electromagnetic field

has the following explicit inertial coordinate components

where Uem and S are the electromagnetic energy density and the Poynting vec-
tor respectively, and of course E and B are the usual electric and magnetic fields 
observed in the associated reference frame in index-free notation, with nontrivial 
inertial coordinate components Ei = F0i = Fi0 and B1 = F23 etc. In general if u� is 
the 4-velocity of an observer at a point of spacetime, the electric field as seen by 
that observer there is E(u)� = F�

�u
� . In a system of inertial coordinates adapted to 

that observer, then u� = ��0 , so that one has E(u)� = F�
��

�
0 = F�

0 = �� iF
i
0 since 

due to the change of sign under index raising and the antisymmetry of the field 
tensor F0

0 = −F00 = 0 . Note that in inertial coordinates associated with a second 

(1)F��
,� = 4�J� , F��,� + F�� ,� + F��,� = 0 ,

(2)T��
em

=
1

4�

(
F��F�

� −
1

4
g��F��F��

)

(3)

T00
em

=
1

8�
(E2 + B2) = Uem,

T0i
em

=
1

4�
(E × B)i = Si,

Tij
em

=
1

4�
[−EiEj − BiBj +

1

2
gij(E2 + B2)],
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inertial observer in relative motion to a given 4-velocity u� , its components are given 
by (u�) = (� , �vi) , where vi are the components of the relative velocity of the first 
observer and � = (1 − vivi)

−1∕2 is the associated gamma factor.
The divergence of this stress-energy tensor in inertial coordinates is easily calculated 

using Maxwell’s equations

as shown by Exercise 3.18 of Misner, Thorne and Wheeler [57], for example. Thus 
in source-free regions where the 4-current J� = 0 vanishes, this divergence is zero, 
which is the condition needed to obtain a conserved 4-momentum for the free 
electromagnetic field in textbook discussions using Gauss’s law. When the 4-cur-
rent density J� = �U� is due to the motion of a distribution of charge moving with 
4-velocity field U� and rest frame charge density � , then this divergence has the 
value

which apart from the sign is the 4-force density exerted by the electromagnetic field 
on the charge distribution, expressable as the product of the charge density and the 
electric field in the rest frame of the moving charge. This divergence plays a crucial 
role in the Lagrangian equations of motion of the electron and in the conservation or 
not of the 4-momentum of the electromagnetic field. Unlike the 4-momentum of a 
particle which is locally defined and independent of the observer (but whose compo-
nents depend on the choice of coordinates of course), the 4-momentum of the elec-
tromagnetic field is nonlocal and can only be defined at a momentum of time with 
respect to some inertial observer through an integral over an entire hyperplane Σ of 
spacetime corresponding to the extension of the local rest space of that observer at 
that moment. In the presence of sources J� ≠ 0 , this 4-momentum not only generally 
depends on the time for nonstationary sources, but also on the choice of observer, 
since there is no a priori reason to expect integrals over different regions of space-
time to agree. When instead J� = 0 as is the case for a free electromagnetic field, a 
conservation law applies due to the vanishing divergence and if those integrals are 
finite, they in fact all define the same 4-momentum vector on Minkowski spacetime.

The components of the 4-momentum of the electromagnetic field as seen by an iner-
tial observer with 4-velocity u� at a moment of time t in the observer rest frame repre-
sented by a time coordinate hyperplane Σ (for which u� is in fact the future-pointing 
unit normal vector field) is given by the integral formula

where one can integrate over an object with a free index only if that index is 
expressed in some inertial coordinate system where it makes sense to compare 
4-vectors at different spacetime points in the flat spacetime due to the path inde-
pendence of parallel transport. The contracted pair of indices can be evaluated in 

(4)T��
em,� = −F�

�J
� ,

(5)T��
em,� = −�F�

�U
� = −�E(U)� ,

(6)P(Σ)� = ∫Σ

T��
em
dΣ� ,
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any coordinates. For any spacelike hyperplane Σ with future-pointing timelike unit 
normal u� , the hyperplane volume element

and induced volume element dVΣ are most easily evaluated in inertial coordinates 
(t, xi) adapted to the observer with 4-velocity u� , where u� = ��0 while u� = −�0� 
and dVΣ = dx1dx2dx3 , while the spacetime volume element is simply d4V = dt dVΣ . 
The minus sign −1 = u�u� in dΣ� is needed to pick out the future normal component 
Xu = −X�u� of a vector field in its integral

In an inertial system of coordinates the above integral then has the components

which represents the integral of the local density of energy and momentum in the 
field as seen by the associated inertial observer.

For a given fixed choice of hyperplane Σ , the above integral formula (6) for the 
4-momentum defines a unique 4-vector whose components can be evaluated in 
(Cartesian) inertial coordinates with respect to any other inertial observer, resulting 
in a Lorentz transformation of those components. However, if the hypersurface is 
changed, the result is a different 4-vector, unrelated to the original one by any simple 
transformation.

Only in the special case of a divergence-free stress energy tensor is the result 
actually independent of the hypersurface because of Gauss’s law, and so defines a 
single 4-vector no matter what time slice or what inertial observer is chosen. When 
the components of this single 4-vector are transformed from one system of inertial 
(Cartesian) coordinates to another, they then transform according to the associated 
Lorentz transformation. Perhaps influenced by this atypical special case, early on 
there was the expectation that this should be the situation in general when sources 
are present which make the divergence of the electromagnetic stress-energy tensor 
nonzero, but this was a completely unjustified expectation.

Since Gauss’s law is so essential to this question, it is crucial to have its applica-
tion understood before embarking on the details of the classical model of the elec-
tron. We consider the 4-dimensional spacetime region R bounded by two hyper-
planes Σ1 and Σ2 each representing a moment of time with respect to some inertial 
observer and each oriented by its future-pointing unit normal vector field, a constant 
vector field which represents the 4-velocity of the observer. These hyperplanes are 
parallel for the same inertial observer and hence do not intersect, with one in the 
future of the other, but they do intersect for two observers in relative motion, in 
which case one has to be careful about the signs in the two disjoint contributions to 
the 4-dimensional integral relative to the future-pointing normals of the hyperplanes, 

(7)dΣ� = −u�dVΣ

(8)∫Σ

X�dΣ� = −∫Σ

X�u�dVΣ = ∫Σ

XudVΣ .

(9)P(Σ)0 = ∫Σ

T00
em
dVΣ , P(Σ)i = ∫Σ

T0i
em
dVΣ ,
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since the future halves of each hyperplane switch passing from one to the other 
across the 2-plane of their intersection. The appendix discusses these details.

In its metric form rather than its metric-independent form involving only differ-
ential forms, Gauss’s law in Minkowski spacetime only applies to the integral of a 
vector field over the bounding hypersurface of a region R of spacetime, equating 
the integral of its divergence over R with respect to the spacetime volume element 
to the hypersurface integral of the outward normal component of the vector field 
with respect to the induced or intrinsic volume element on the hypersurface. Sup-
pose Σ1 and Σ2 do not intersect, and Σ2 is to the future of Σ1 . Then provided that 
the integral of the boundary at spatial infinity which closes the boundary between 
these two hyperplanes can be neglected due to the fall-off properties of the vector 
field there, Gauss’s law states that

where the negative sign proceeds the second integral since its future pointing normal 
is not outward but inward.

If the divergence J�
;� = 0 vanishes, then

so the integral is the same for these two parallel hyperplanes and so is independent 
of the moment of time for this single inertial observer. To extend this “conserva-
tion law” to any two inertial observers in relative motion, we just need to be careful 
about the signs of the orientations of the interior and bounding hyperplanes in the 
two disjoint regions and pairs of boundaries into which their intersection divides 
them. However, if the divergence is zero, this is all irrelevant and one again finds 
that the two integrals are the same, and hence the result is independent of the choice 
of spacelike hyperplane, giving the same result for all observers and all moments 
of their time. When the divergence is nonzero, the two integrals differ by a nonzero 
amount which depends on the region of integration and hence in general one finds a 
different result for every inertial observer and every moment of their time.

Gauss’s law can be applied to a second rank symmetric tensor T�� only by con-
tracting it with a covector Q� to form a vector field J� = Q�T

�� , so introduce a 
covariant constant such covector, in terms of which the divergence becomes

We then get the result

(10)∫R

J
�
;�d

4V = ∫Σ2

J
�dΣ� − ∫Σ1

J
�dΣ� ,

(11)∫Σ2

J
�dΣ� = ∫Σ1

J
�dΣ� ,

(12)J
�
;� = Q�T

��
;� .

(13)∫R

J
�
;�d

4V = ∫Σ2

Q�T
��dΣ� − ∫Σ1

Q�T
��dΣ� .
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If we agree to evaluate these expressions in inertial coordinates where Q� are con-
stants, then they can be factored out of the equation and one gets a relation involving 
the 4-momentum as seen by the corresponding inertial observers

or using Eq. (5) for the electromagnetic field we get

Thus if the divergence is nonzero, as occurs for the electromagnetic field in the pres-
ence of sources, the two 4-momenta differ by a quantity that depends on the region 
of integration, so there is no common agreement among inertial observers about the 
4-momentum in the field, nor is the result independent of time for a single inertial 
observer. This is the source of the complication for defining the 4-momentum of the 
electromagnetic field in the classical model of the electron.

A covariant constant vector field is a Killing vector generating translational sym-
metries of Minkowski spacetime from which the conservation of linear momentum 
follows for translation invariant Lagrangians according to Noether’s theorem. The 
arbitrary translational Killing vector field Q� allows us to pick out the components 
of linear momentum. A general Killing vector field satisfies the condition that its 
symmetrized covariant derivative vanish Q(�;�) = 0 . If instead we use a nontransla-
tional Killing vector field in the above argument, then since the stress-energy ten-
sor is symmetric and only the symmetric part contributes to its contraction with the 
covariant derivative of Q� , we get the same divergence formula as before

For the nontranslational Killing vector fields which generate rotations, for example, 
this process leads to picking out the components of the conserved angular momen-
tum in the case of vanishing divergence. See Misner, Thorne and Wheeler [57], for 
example. However, we will not consider angular momentum here.

For a static electric field due to a static charge distribution � in its rest frame, 
when expressed in terms of inertial coordinates in that rest frame for a time slice 
Σrest in that frame, the quantity

is just the self-energy of the charge configuration defined alternatively by

using the vector notation x = (xi) , d3x = dx1dx2dx3 = dV  . Jackson (see p. 41 of the 
Third edition [51, 52]) shows how the latter formula for the self-energy of such a 

(14)∫R

T��
;�d

4V = ∫Σ2

T��dΣ� − ∫Σ1

T��dΣ� = P(Σ2)
� − P(Σ1)

� ,

(15)P(Σ2)
� − P(Σ1)

� = −∫R

�E�(U)d4V .

(16)J
�
;� = Q�T

��
;� + Q(�;�)T

�� = Q�T
��

;� .

(17)P(Σ)0 =
1

8� ∫Σrest

E2(x)d3x = W

(18)W =
1

2 ∫ ∫ d3xd3x�
�(t, x)�(t, x�)

|x − x
�| ,
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static charge configuration is equivalent to the energy in its associated electric field 
using the integral formula for the potential

and the Poisson equation ∇2� = −4�� . Then replacing the primed factors in the 
double integral for W by this expression for the potential, and with a crucial integra-
tion by parts identity, we get

This integral is only over the charge distribution but one can extend it to over all 
space since the extra contribution is zero where the charge density is zero, but as an 
integral over all space, the divergence term by Gauss’s law is equivalent to a surface 
integral at spatial infinity, where the integrand goes to zero fast enough in this static 
case so that the surface integral evaluates to zero in the limit. The result is just the 
first term representing the total energy in the electric field.

This self-energy plays a key role in the lowest order approximation to the equations 
of motion of the charge distribution.

Returning now to the divergence −�E(U)i in inertial coordinates of the rest 
frame of a static distribution of charge, its spatial integral reversed in sign is just 
the total electric force on the charge distribution which of course must be zero for a 
static configuration of charge, assuming that the charge elements are held in place 
by forces that are not addressed yet in this model. Otherwise the situation would 
not remain static. However, if the charge distribution is accelerated, there is no a 
priori reason to expect that the total electric force in its instantaneous rest frame 
be zero, and this was the error made in the Abraham and Lorentz model. Fermi 
showed that by requiring that the rigidity of the model respect Born’s special rela-
tivistic rigidity condition, this total force integral is modified by a simple factor that 
his Fermi coordinate system provided, and resolves the 4/3 problem. Gauss’s law is 
then the key to picking out the correct conserved 4-momentum of the total system 
which remains ambiguous in the static unaccelerated case, as we will show in the 
final section.

(19)�(x) = ∫ d3x�
�(x�)

|x − x
�|

(20)

W =
1

2 ∫ ∫ d3xd3x�
�(x)�(x�)

|x − x
�| =

1

2 ∫ d3x �(x)�(x)

= −
1

8� ∫ d3x�(x)∇2�(x) =
1

8� ∫ d3x
[
∇i�(x)∇

i�(x) − ∇i(�(x)∇
i�(x))

]

=
1

8� ∫ d3x
[
E(x)2 − ∇i(�(x)∇

i�(x))
]
.

(21)W =
1

8� ∫ E(x)2 d3x = ∫ T00d3x .
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3  The Static Electron Model

Fermi considers an arbitrary spherically symmetric static distribution of total charge e 
with density � in the rest frame of the electron, while referring specifically to the Abra-
ham-Lorentz model of a uniform surface distribution of charge on a sphere of radius r0 
as the motivation for his analysis. The latter is an instructive example to keep in mind. 
Let the spherically symmetric charge distribution remain at rest at the spatial origin of 
a system of inertial coordinates (t, xi) associated with the inertial frame K in which it 
is at rest for all time. The inertial observer 4-velocity is u = �t (in index-free notation). 
Let (t, r, �,�) be a corresponding system of spherical coordinates in terms of which the 
sphere containing the charge has the equation r = r0 . The metric is

Then whatever the internal distribution of charge, the exterior field outside its outer 
surface at r = r0 in index-free notation is

so that the Poynting vector is also zero. Introducing orthonormal components with 
respect to the normalized spherical coordinate frame via

the nonvanishing such components of the stress-energy tensor of the exterior field 
(for r ≥ r0 ) are

Its divergence is zero in the exterior of the electron sphere. For the shell model, 
the interior electromagnetic field is zero by spherical symmetry, but if instead one 
assumes a constant density model inside a ball of radius r0 , the interior electric field 
has magnitude er∕r3

0
 (for r ≤ r0 ). This interior field then contributes to the total 

energy of the field.
The inertial coordinate components of the 4-momentum (9) in this rest frame K for 

any rest frame time slice Σrest are

where W is the self-energy of the static charge distribution due to its own electric 
field. These are time-independent because of the time-independence of the electric 
field in this frame, leading to the constant 4-momentum

(22)ds2 = −dt2 + dr2 + r2(d�2 + sin2 � d�2) .

(23)F = −
e

r2
dt ∧ dr , E =

e

r2
�r , B = 0 (r ≥ r0) .

(24)X0̂ = X0 , Xr̂ = Xr , X�̂� = r−1X𝜃 , X�̂� = (r sin 𝜃)−1X𝜙 ,

(25)T00
em

= −Trr
em

= T �̂��̂�
em

= T �̂��̂�
em

=
1

8𝜋
E2 =

e2

8𝜋r4
= Uem .

(26)P(Σrest)
0 = ∫Σrest

UemdV = W, P(Σrest)
k = ∫Σrest

SkdV = 0,

(27)P(Σrest)
� = WU� .
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For the Coulomb field of the spherical shell electron, evaluating this quantity in 
spherical coordinates gives the energy of the Coulomb field

For the constant density model of the electron, this integral over the internal 
field produces an additional contribution of e2∕(10r0) leading to the total energy 
3e2∕(5r0) . If one assumes that this electromagnetic energy makes a contribution mem 
to the inertial mass of the electron via Einstein’s mass-energy relation E = mc2 , then 
mem = W (in units where c = 1 ). However, the inertial mass can only be ascertained 
from the equation of motion of an accelerated electron, so this must be confirmed by 
the evaluation of the equation of motion.

Note that the tracefree condition T00
em

= T11
em

+ T22
em

+ T33
em

 in the Cartesian iner-
tial coordinates when integrated over the same region yields the condition

but by the spherical symmetry of the electric field in the rest frame each of the terms 
on the right hand side has the same value

Consider a second inertial system K′ with inertial Cartesian coordinates 
(t�, x1

�

, x2
�

, x3
�

) , such that the original rest system K of the electron is moving with 
velocity v along the x1′-axis, and let U� = �∕�t� be the 4-velocity of the new time 
lines and let Σ� be a new time slice of constant time t′ . These are related to each other 
by the Lorentz coordinate transformation x��

= L��x
� , namely

If the 4-momentum (6) defined the same 4-vector for every inertial observer, then 
its inertial coordinate components would simply transform like those of a 4-vector 
should under this Lorentz transformation, namely the components (W, 0, 0, 0) would 
transform to (W �, p1

�

, p2
�

, p3
�

) whose nonzero values would be

which in any case represent the new coordinate components of the 4-vector repre-
senting the 4-momentum as seen in the rest frame. However, the 4-momentum as 
seen by the new observer is a different 4-vector, as Gauss’s law requires, so this 
transformed 4-momentum is not the result of evaluating the 4-momentum formulas 
in the new frame, and it is senseless to actually compare the transformed compo-
nents of the old 4-vector with the new components of the new 4-vector.

To instead evaluate the 4-momentum (6) as seen by the new inertial observer in 
the frame K′ in the new inertial coordinates, we must first Lorentz transform the 

(28)W =
e2

2r0
.

(29)∫Σrest

T00
em
dV = ∫Σrest

(
T11
em

+ T22
em

+ T33
em

)
dV ,

(30)∫Σrest

T11
em
dV = ∫Σrest

T22
em
dV = ∫Σrest

T33
em
dV =

1

3 ∫Σrest

T00
em
dV .

(31)t� = �(t + vx1) , x1
�

= �(x1 + vt) , � = (1 − v2)−1∕2 .

(32)W � = �W = �mem , p1
�

= �Wv = �memv ,
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components of the electromagnetic energy-momentum tensor to the new frame 
and then perform the integration over the new time coordinate hyperplane Σ� , and 
finally relate that integral to the integral over the original rest frame time coordi-
nate hyperplane Σrest using the condition of time invariance in the rest frame. The 
stress-energy tensor transforms as follows

Using T01
em

= 0 , the nontrivial part of this transformation in the t-x1 components is 
explicitly

The 3-volume element on the hyperplane Σ� transforms according to dV � = dV∕� 
due to the Lorentz contraction of the differential dx1 . This follows from the relation 
dx1 = �(dx�1 − vdt�) restricted to dt� = 0 , while dx2 = dx�2, dx3 = dx�3 , so that

Then taking the symmetry property (30) into account, one finds

Here the integral over Σ� of the integrand with respect to dV in each case equals the 
integral over Σrest because its value at xi′ , re-expressed in terms of the old coordinates 
xi of the same point, is independent of t because the charge configuration is static in 
the rest frame, and so has the same value at the corresponding point of Σrest . For 
example, on the hyperplane Σ� , when expressed in terms of the old coordinates, the 
old components T00

em
(t�, x1

�

, x2
�

, x3
�

) = T00
em
(x1, x2, x3) simply don’t depend on t, and so 

the integral against dV on that hyperplane is equal to its integral against dV on the 
original rest frame hyperplane Σrest . The appendix shows how to re-express the dif-
ference between the 4-vectors P(Σ�) and P(Σrest) independent of inertial coordinates.

In the nonrelativistic limit |v| ≪ 1 where � → 1 , the energy is unchanged, but 
the momentum has an unwanted extra factor of 4/3. This is the famous 4/3 prob-
lem for the unaccelerated electron. Furthermore, at nonzero speeds for which v2 
becomes appreciable compared to 1, the ratio between the magnitude of the linear 

(33)T����

em
= L��L

�
�T

��
em

.

(34)
T0�0�

em
=�2[T00

em
+ 2vT01

em
+ v2T11

em
] = �2[T00

em
+ v2T11

em
],

T0�1�

em
=�2[T01

em
+ v(T00

em
+ T11

em
) + v2T01

em
] = �2v(T00

em
+ T11

em
).

(35)dV � = dx1
�

dx2
�

dx3
�

= �−1dx1dx2dx3 = �−1dV .

(36)

P(Σ�)0
�

=∫Σ�

T0�0�

em
dV � = �
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1 +

1

3
v2
)
∫Σ�

T00
em
dV
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(
1 +

1

3
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)
∫Σrest

T00
em
dV

=�

(
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v2

3

)
mem =

(
4

3
� −

1

3�
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mem,

P(Σ�)1
�

=∫Σ�

T0�1�

em
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(
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1

3

)
∫Σ�

T00
em
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1
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T00
em
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momentum and the energy is a complicated function of the speed |v| rather than the 
simple result |v|/c as in special relativity. However, this apparent problem is based 
on a misconception since as explained after Eq.  (5) in the previous section, the 
4-momentum of the electromagnetic field depends on the observer in the presence 
of sources, and each distinct inertial observer produces a different 4-vector from this 
process, so it makes no sense to compare the result (36) to the Lorentz transforma-
tion of the original 4-vector produced by the rest frame observer. For some reason 
this was never understood in the early days of relativity. Because historically people 
insisted on finding some conserved 4-momentum to assign to the electromagnetic 
field, they arbitrarily picked the only natural choice for an unaccelerated electron, 
the 4-momentum as seen in the rest frame of the electron, and in fact, this is the one 
we associate with a particle whose rest mass is mem . This was first proposed by Kwal 
in 1939 [14] although not stated so clearly and later independently by Rohrlich [15] 
in 1960. The real 4/3 problem is instead its unwanted appearance as a factor in the 
inertial mass evaluated for the accelerated electron model developed by Abraham 
and Lorentz. Unfortunately their calculation preceded the introduction by Born of 
a relativistically invariant notion of rigidity for that model, which Fermi eventually 
realized was the key to resolving that apparent conflict with the equivalence of mass 
and energy in special relativity.

For completeness we explain what Kwal and Rohrlich actually did. In the inte-
gral formulas in the primed inertial coordinates Kwal replaced the hypersurface 
volume element

by the one corresponding to the rest frame hypersurface volume element at the same 
spacetime point but expressed in the new coordinates

where dV = �dV � and (−urest
��

) = �(1,−vi) . This changes the integral to a new one. In 
other words this substitution disconnects the hypersurface volume element 4-vector 
from the hypersurface of integration, changing both its direction and magnitude. See 
Fig. 1. Then with this substitution, we get

implying

(37)dΣ�
��
= −u��dV

� = �0�dV
�

(38)dΣ�� = −urest
��

�dV � = urest
��

dV ,

(39)P(Σ�)�
�

= ∫Σ�

T����

em
dΣ�

��
,

(40)

PKR(Σ
�)�

� ≡�Σ�

T
����

em
(−urest

��
�dV �) = �Σ�

L
�
�Tem

��(−urest
�

)dV

= �Σ�

L
�
�Tem

���0�dV = L
�
� �Σ�
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�0
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=L
�
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Tem
�0
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using −urest
�

= �0� for the rest frame inertial coordinate components. Again one 
must use the time invariance in the rest frame to conclude that the integral over Σ� 
when expressed in the rest frame inertial coordinates is independent of time and so 
agrees with the integral over Σrest , allowing the components of the new 4-momen-
tum to transform like those of a 4-vector from the components in the rest frame.

This redefinition of the momentum integral is perhaps more simply understood 
as the result of merely inserting the projection operator along the unit rest frame 
4-velocity vector −urest��urest

��
 into the contracted pair of indices and using the rela-

tion � = −urest�
�

u�� for the relative gamma factor of the two 4-velocities to get the 
gamma factor in the integrand which undoes the Lorentz contraction to get the 
rest frame volume element dVΣrest

= �dVΣ� at the same point

Fig. 1  A 2-dimensional diagram of the rest frame time coordinate line t (slanted forward) and a moment 
of rest frame coordinate time Σ (slanted upward) and the moving frame with time coordinate line t′ (ver-
tical) and a moment Σ� of its time (horizontal). For a differential region independent of time in the rest 
frame, like the strip between the t axis and the parallel line immediately to its right, the differential of 
volume dV ′ on Σ� as seen in the moving frame is Lorentz contracted with respect to the rest frame dif-
ferential on Σ : dV � = �−1dV  . Thus integrating on Σ� with respect to the differential �dV ′ is equivalent to 
integrating over the corresponding region of Σ (obtained by projection from Σ� to Σ along the t coordinate 
lines), provided that the integrand is independent of time in the rest frame
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Since there is only one free index here, if we re-express the integral in the rest frame 
inertial coordinates, then we get

but the integral is still over the new time hyperplane. However, the integrand is a 
static function independent of the rest frame time coordinate t, so it is equivalent to 
the integral over Σrest instead

Kwal was not sophisticated enough to do more than examine the volume element 
without ever referring explicitly to the actual region of integration, where the sta-
ticity condition in the rest frame is essential to allow the integral to be done on 
any time hyperplane. Rorhlich simply demanded that the original integral for the 
4-momentum only be performed on a time hyperplane in the rest frame of the elec-
tron, which eliminates the consideration of the integrals on other hyperplanes which 
yield results different from that evaluated in the rest frame. Thus one always eval-
uates the 4-momentum integral to the same 4-vector, whose components one can 
express in any inertial coordinate system, and which will then transform under the 
corresponding relative Lorentz transformation.

4  Fermi’s Contribution

Fermi’s first paper in 1921 (“On the dynamics of a rigid system of electric 
charges in translational motion,” [5]) studied a special relativistic system of elec-
trons in rigid motion as then understood by Abraham and Lorentz and found the 
4/3 factor in its inertial mass formula, while this factor was not present in the 
mass corresponding to the “weight” he calculated using general relativity in his 
second paper (“On the electrostatics of a homogeneous gravitational field and on 
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the weight of electromagnetic masses,” [6]), referring to Levi-Civita’s uniformly 
accelerated metric for the calculations [59]. This contradicted the assumed equiv-
alence of these two masses in general relativity. These papers were both written 
within five years of the birth of Einstein’s theory of general relativity in 1916, 
during which Fermi was first a high school student and then a university student 
writing his first two scientific papers. During the next year 1922 in preparation 
for his revisit to the problem, Fermi published his third paper on his famous 
Fermi comoving coordinate system adapted to the local rest spaces along the 
world line of a particle in motion (“On phenomena occurring close to a world 
line,” [7]), and calculated the variation of the action for a system of charges and 
masses interacting with an electromagnetic field in such a coordinate system. He 
then used this approach to resolve the 4/3 puzzle in his fourth paper (two versions 
Fermi 4a and 4c published in Italian and one in German, the most complete of 
which is “On a contradiction between electrodynamic theory and the relativistic 
theory of electromagnetic mass,” [8–11]) without explicitly referring to the third 
paper. These were published in 1922–1923. Still in 1923 collaborating with A. 
Pontremoli [60], Fermi applied his same argument to correct the calculation of 
the inertial mass of the radiation in a cavity with reflecting walls, where the same 
4/3 factor had appeared when the cavity is in rigid motion not respecting the Born 
criterion; Boughn and Rothman provide a detailed alternative analysis which con-
firms Fermi’s result in that case [61].

His approach was to use a variational principle in a region of spacetime con-
taining the world tube of an accelerated electron charge distribution within which 
one has to make certain assumptions on how the relative motion of the individual 
charge elements in the distribution behaves. Following the Born notion of rigidity 
compatible with special relativity, the only way an electron can move rigidly so 
that its shape in its rest frame does not change is if the individual world lines of 
the charge distribution all cut the local rest frame time slices orthogonally, a Lor-
entz invariant geometrical condition which is equivalent to stating that their rela-
tive velocities are all zero at that moment. This condition must hold in a sequence 
of different inertial observers with respect to which the charge distribution is at 
rest. If instead one takes the family of time slices associated with a single inertial 
observer and require that the shape not change, i.e., that the relative velocities are 
all zero at each such time, this corresponds to the nonrelativistic notion of rigid-
ity, and the world lines may be varied by arbitrary time-dependent translations, 
so that their variations of the spatial inertial coordinates from a given state can 
be arbitrary functions of time. However, such a conventional rigid motion with 
respect to that single observer will not be seen as rigid in that sense with respect 
to any other single inertial observer, so it is clearly incompatible with special rel-
ativity as emphasized by Fermi. This was perhaps obvious, but no one had exam-
ined the equations of motion starting from the Lagrangian to understand that the 
usual starting point for the Abraham-Lorentz evaluation of their assumed equa-
tions of motion was equivalent to this assumption. This was the insight that Fermi 
had had to resolve the problem. Assuming conventional rigidity, one finds the 
starting point equations of motion of the Abraham-Lorentz model whose analysis 
yields the incorrect inertial mass factor with the 4/3 factor, but with Born rigidity 
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one instead finds the one expected from Einstein’s mass-energy relation which 
removes this factor. The only difference in the two calculations is the resulting 
Fermi correction factor in the integral of the total force on the charge distribution, 
a factor arising from the spacetime volume element in Fermi coordinates due to 
the acceleration of its central world line.

Fermi considers a laboratory frame with inertial coordinates (t, x1, x2, x3) in which 
at the end of his argument, the accelerated electron is momentarily at rest centered 
about the spatial origin at the initial coordinate time which we will assume for sim-
plicity to be t = 0 . Assuming that the Fermi coordinate system (T ,X1,X2,X3) is 
adapted to a world line in the electron charge distribution passing through the origin 
of these spatial coordinates at t = 0 when vi = 0 , its time hypersurface T = 0 can be 
chosen to coincide with t = 0 , but after a small interval dt of laboratory time along 
the central world line, equal to the increment dT in the proper time along that world 
line to first order, the Fermi time slice is instead tilted slightly to remain orthogonal 
to that world line as shown in Fig. 1. The metric in the Fermi coordinate system is

where Γi = v̇i = dvi∕dT  are the Cartesian components of the proper acceleration of 
the central world line (functions of T), and the speed of light c is not taken to be 
unity in this paragraph only in order to appreciate how factors of c enter the dis-
cussion. The proper time along the central Fermi coordinate time line is initially 
approximately dT = dt at t = 0 = T  , but away from the spatial origin at that world 
line there is a linear correction factor due to the lapse function N in the Fermi coor-
dinate system. The proper time interval along the normal to the initial hypersurface 
(measured by the increment in t or T to first order) to a nearby Fermi time slice is 
the increment c−1N dT = (1 + Γix

i∕c2)dT  , namely the proper time along the time 
lines in the Fermi coordinate system. Misner, Thorne and Wheeler discuss the Fermi 
coordinate system in detail [57]. Of course because the proper time of each charge 
element world line varies by the Fermi lapse function factor compared to the central 
world line, the accelerations of the actual charge elements away from the central 
world line differ slightly from that of the central world line.

If we imagine doing a variation of the action integral over a spacetime region 
in inertial coordinates between two slices of inertial time (his variation A), then if 
we use the same coordinate symbols (t, xi) for the corresponding variation in Fermi 
coordinates between two slices of Fermi coordinate time (his variation B), the 
only formal difference in the action integrand is the additional Fermi lapse factor 
which enters through the spacetime volume element. This lapse correction factor 
is the entire basis for Fermi’s correction, and multiplies the coordinate volume ele-
ment to provide the covariant spacetime volume element in Minkowski spacetime: 
d4V  which is d4x = dt dV  in inertial coordinates but Ndt dV  in Fermi coordinates, 
where Ndt = d� is the proper time along the time world lines orthogonal to the flat 
time slices and dV = dx1dx2dx3 is the spatial volume element in both cases. Fermi 
does not mention his mathematical article on these coordinates, but just presents a 
short derivation of the correction factor based on the curvature of the world line. 
The extra acceleration term in the integral with coefficient Γix

i (with c = 1 again) 

(44)ds2 = −N2dT2 + �ijdX
i dXj , N = c(1 + ΓiX

i∕c2) ,
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provides exactly the necessary correction to produce the desired result in the inertial 
mass coefficient in the equations of motion for any smooth spherically symmetric 
model of the electron.

However, to justify this variation of the action yielding the Lagrange equations, 
the variations must vanish on the bounding time slices and be arbitrary functions of 
time for the intermediate times. For the variation A, Fermi explicitly states that the 
variations of the spatial coordinates are arbitrary functions of t which vanish at the 
end slices, but for the variation B he only examines an infinitesimal contribution of 
an interval of Fermi time to the whole 4-dimensional integral and he emphasizes 
that for that interval of time, the variations in the spatial coordinates of the world 
lines should be arbitrary constants to represent an overall translation of those world 
lines. However, in order to claim his resulting Lagrangian equation is valid, it has to 
be understood that as in the first case, the variations in the spatial coordinates must 
be arbitrary functions of the time coordinate which vanish at the end times. This 
implies that the Lagrangian variation extremizes the action among all those world 
lines which break the rigid Born symmetry assumed in the solution about which 
the variation takes place. It does not allow for a variation among the family of Born 
rigid motions of the electron nearby the given solution. None of this is made explicit 
in Fermi’s article.

If the spatial variations were arbitrary constants in the Fermi coordinate system in 
order to preserve the rigidity in the variation, and if they were to vanish on the end 
time slices, they would vanish everywhere, so could one not conclude that at every 
time along the world tube of the electron that the spatial integral coefficients of the 
variation must vanish. On the other hand if they did not vanish at the end times, one 
could not ignore the boundary terms which result from the integration by parts along 
the time lines. Furthermore, without being independent variations at each time, one 
cannot conclude that their coefficients must vanish. This is a very tricky point since 
in general one cannot impose symmetries on a Lagrangian and be guaranteed to get 
the same equations of motion for the restricted variational principle as those that 
result from imposing the symmetries on the Lagrangian equations of motion derived 
from the general variational principle as discussed by MacCallum and Taub for the 
complementary problem of spatial rather than temporal symmetry imposed on a 
Lagrangian [62]. It is the boundary terms which play the key role in this discussion. 
By not requiring that the variations about a symmetric solution conform to the sym-
metry, Fermi appears to have avoided these difficulties.

Note that the model of the charge distribution as some kind of rigid body is neces-
sary in order to assign some common acceleration to the system at each moment of 
time (that of the central world line) so that its coefficient in the equations of motion 
can be interpreted as the inertial mass. Consider therefore as Fermi does such an 
accelerated system of electric charge in special relativity held at rest relative to each 
other by some external forces (i.e., in conventional or relativistic rigid motion). The 
corresponding action is given in inertial coordinates by the usual Lagrangian inte-
gral in inertial coordinates with the additional term in the mechanical mass added 
back into the discussion representing a rest mass distribution with differential mass 
dm assumed to have the same rigidity properties as the charge distribution with dif-
ferential charge de, i.e., they mass and charge elements share the same world lines
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The region of integration is an arbitrary region of spacetime, and the 4-current 
J� = �U� depends on the parametrized world lines of the charged particles, whose 
unit 4-velocity is U� = dx�∕d� if d� is the increment of proper time along them. 
The charge and mass terms are first integrated over the world lines of the charge and 
mass elements and then over the family of these world lines. Both the charge and 
mass profiles as a function of the family of world lines of the matter distribution are 
assumed to be given and fixed along those world lines. Fermi discusses and varies 
this action in his Fermi coordinate article [7]. The line integrals in the charge and 
mass distribution terms are parametrization independent, so the world lines can be 
parametrized by any parameter, including coordinate time.

Varying S with respect to the vector potential A� , fixing the world lines of the 
charge distribution, leads to the inhomogeneous Maxwell’s equations. In fact

that is

The next to last equality in this sequence follows from the usual Lagrangian varia-
tion integration by parts, resulting in the integral of a divergence which by Gauss’s 
law is equivalent to a boundary integral where the variation is assumed to vanish 
and hence does not contribute to the final expression.

The variation of S with respect to the coordinates of the charge element world 
lines where the above variations A and B are relevant requires first reinterpreting 
the spacetime volume integral of the interaction term as the integral over a family 
of line integrals along those world lines. This is most easily done using the adapted 
Fermi coordinate system where the spatial coordinates parametrize the world lines 
of the charge elements, which are the time lines of the system. The spacetime vol-
ume element is d4x = Ndt dV = d� dV with dV = d3x and d� = N dt . The 4-current 
is J� = �U� , where � is the rest frame charge density, which is a constant (along 
the world lines but zero everywhere else), and U� = dx�∕d� is the charge element 
4-velocity. Then let de = �dV . The interaction term in the action can then be repre-
sented as the integral of the line integral alone the world line with respect to the rest 
frame charge density

(45)S = S(A�, x
�) = ∫

(
−

1

16�
F��F�� + A�J

�
)
d4x − ∫ d� dm .

(46)

�S|x�=const. =∫ d4x
(
−

1

8�
F���F�� + J��A�

)

=∫ d4x
(
−

1

4�
F���(��A�) + J��A�

)

=∫ d4x
(

1
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��F

���A� + J��A�

)
− ∫ d4x

1

4�
��(F

���A�)

=∫ d4x
(

1

4�
��F

�� + J�
)
�A�,

(47)��F
�� = 4�J� .
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Keeping in mind the geometrical origin of de, the line integral is coordinate inde-
pendent and so one can use this expression also in inertial coordinates using any 
parametrization of the world lines.

Since variations of the electromagnetic field Lagrangian at constant A� vanish, 
we only have to vary the source term, where A� is instead evaluated along the charge 
element world lines so �A� = A�,��x

� . Using the fact that �(dx�) = d(�x�) as usual 
in the Lagrangian variation, we find step by step for the variation of the interaction 
term

Ignoring the boundary term, the first integral (where the line integral part is inde-
pendent of the parametrization of the world lines) can be expressed in terms of iner-
tial coordinates or proper time in Fermi coordinates, where the Fermi lapse correc-
tion factor depends on the location of the charge element

Both expressions are equivalent but the presence of a nonunit lapse function in the 
Fermi coordinate system is crucial.

If we consider the left expression in inertial coordinates in which the electron 
is momentarily at rest (so that N = 1 , dx�∕dt = ��0 and dV agrees with the Fermi 
coordinate volume element), it reduces to

since Fi0 = Ei is the electric field in inertial coordinates and F00 = 0 . The factor 
in parentheses is just the total electric force on the distribution of electric charge 
at this moment. For the Fermi variation A in these inertial coordinates, one has 
�x� = �� i�x

i(t) and one can require that �xi(t1) = 0 = �xi(t2) at the boundary iner-
tial time hyperplanes of the region of integration, while leaving �xi(t) arbitrary in 
between. This allows one to ignore the boundary term which integrates to the end 

(48)∫ J�A�d
4x = ∫ ∫ �A�

dx�

d�
d� dV = ∫

(
∫ A�dx

�

)
de .

(49)

�S|A�=const.
=�

(
∫ de dx�A�

)

=∫ de ∫
[
A�,�dx

��x� + A��dx
�
]

=∫ de ∫
[
A�,�dx

��x� − dA��x
� + d(A��x

�)
]

=∫ de ∫
[
(A�,� − A�,�)dx

��x� + d(A��x
�)
]

=∫ de ∫ F��dx
��x� + ∫ de ∫ d(A��x

�).

(50)∫
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∫ F��

dx�

dt
de

)
�x� dt = ∫

(
∫ F��

dx�

d�
Nde

)
�x� dt .

(51)∫
(
∫ Ei de

)
�xi dt = ∫

(
∫ �EidV

)
�xi dt



 Foundations of Physics (2024) 54:35

1 3

35 Page 24 of 44

times where the variation vanishes, while forcing the expression in parentheses to 
zero if we ignore the mechanical mass term in the Lagrangian for the moment, lead-
ing to the condition

This is the starting point of the Abraham-Born derivation of the equations of motion 
in the model of the electron with zero mechanical mass, showing that it is equivalent 
to assuming the noncovariant rigidity condition, which Fermi concludes must obvi-
ously invalidate that model.

The only difference for his variation B in the Fermi coordinate system is the addi-
tional factor of the Fermi lapse in the differential of proper time needed to define the 
electric field in that coordinate system

an expression which only has nonzero components E(U)� = �i�E(U)i in either 
Fermi coordinates or in inertial coordinates in which the electron is momentarily 
at rest, where E(U)i = Ei then agree. Clearly when the acceleration is identically 
zero Γi = 0 and N = 1 , the final conditions are the same for both cases A and B, so 
one must have nonzero acceleration to see a difference in these two cases. Of course 
without acceleration one cannot measure the inertial mass.

To finish the story we must analyze these conditions in terms of the internal forces 
exerted on the charge elements by other charge elements and the forces exerted by the 
external electromagnetic field responsible for the acceleration of the electron. It is the 
separation of the self-field and the external field that allows one to extract the Lorentz 
force law relation to the acceleration of the central world line (corrected by radiation 
reaction terms if one expands it far enough in the acceleration) and thus identify the 
inertial mass coefficient where the 4/3 problem is apparent, and Fermi’s correction 
restores this factor to 1. The uncorrected Abraham-Lorentz condition is discussed in 
detail in Jackson [51, 52] (although the Third Edition omits the final explicit evalua-
tion of the famous 4/3 term), so we only summarize it here. We then follow Fermi in 
explicitly evaluating the correction term to see its effect in removing the unwanted 4/3 
factor. Finally we will consider the additional mechanical mass term in the Lagrangian 
to follow Fermi’s original Lagrangian discussion in his third paper. For the moment we 
set this term to zero as in Fermi’s fourth paper.

∙ Field separation for variations of type A
Consider first the system of variations A.

Let E = Eself + Eext , where Eself and Eext the contributions to the total field due to the 
self-interaction of the system and to the external electric field respectively, the lat-
ter of which is assumed to be sufficiently uniform over the small dimensions of the 

(52)∫ �EidV = 0 .

(53)0 = ∫ F��

dx�

d�
Nde = ∫ F��U

�Nde = ∫ �E(U)�NdV ,

(54)0 = ∫ Ea de .
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system that it can be pulled out of the integral, which results in the total charge mul-
tiplying the external electric field evaluated at the central world line. Equation (54) 
thus becomes

The self-force is the result of the interaction of each element of charge of the sphere 
with every other element. The explicit details of the calculation involving the 
retarded times can be found in Jackson’s textbook [51, 52]. The self-field can be 
expressed in terms of the self-potentials A and � by

so that

since the charge element is de = � d3x . We now adopt the Jackson notation that x is 
the spatial position vector in the Cartesian coordinate system and dV = d3x is the 
spatial volume element, and let v and a = v̇ = Γ be the velocity and acceleration of 
the charge distribution, which at the initial time t of our calculation satisfies v(t) = 0 
(all elements of the charge distribution are simultaneously at rest) and a = a(t) (the 
acceleration is the same for all elements of the charge distribution at that moment), 
expressing the nonrelativistic rigidity of the charge distribution. We also reintroduce 
factors of the speed of light c into the discussion.

By evaluating the potentials at the retarded time t� = t − |x − x
�|∕c , i.e.,

and using the rule (Taylor series expansion about the time t� = t)

Eq. (57) becomes

Consider the first term in the brackets. The n = 0 term

(55)Fa
ext
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ext
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ext � de = −� Ea

self
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.

(56)Eself = −∇� −
1

c

�A

�t
,
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vanishes in the case of a spherically symmetric charge distribution, whereas the 
n = 1 term is identically zero (gradient of a constant), implying that the first nonvan-
ishing contribution comes from n = 2 . Changing the summation indices thus leads 
to

The continuity equation, spherical symmetry and angular averaging can be used to 
simplify this expression, taking into account also that for a rigid charge distribution 
the current is J(t, x�) = �(t, x�)v(t) , where v(t) = 0 holds at the time t at which this 
calculation is carried out, so only its time derivatives contribute to the series expan-
sion. The term in this expansion containing the first time derivative of the accelera-
tion Γ̇ = v̈ is associated with the radiation reaction, not discussed here.

The final result, obtained by neglecting all nonlinear powers of the acceleration 
and its derivatives (which appear for n ≥ 4 ), at lowest order can be written as

where

The lowest order term is the only one considered by Fermi to make his point and is 
twice the self-energy of the charge distribution

which for the spherical shell model of the electron is 2W = e2∕r0 . In the point par-
ticle limit, I0 diverges corresponding to the infinite self-energy of a point particle, 
I1 = e2 , and In = 0 for n > 1 . When the charge is uniformly distributed over the sur-
face of the sphere one has In = 2e2(2r0)

n−1∕(n + 1).
In the nonrelativistic limit for any smooth spherically symmetric distribution of 

charge (i.e., considering only the n = 0 term of the series) Eq. (63) becomes

so that the Newton’s equation of motion for the system takes the form

(61)∫ d3x∫ d3x� �(t, x)�(t, x�)∇|x − x
�|−1

(62)
Fext =
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(65)I0 = 2W = ∫ ∫ d3xd3x�
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This is 4/3 times the electromagnetic mass mem defined by the Einstein mass-energy 
relation. Recall that this is understood to be expressed in an inertial frame in which 
the electron is momentarily at rest, ignoring higher order terms in the acceleration 
which include the famous radiation reaction terms.

∙ Field separation for variations of type B
The “correct” result in which the unwanted factor of 4/3 is removed is achieved 

starting instead with Fermi’s corrected integral condition, so that in the previous 
calculation of Jackson we must replace the factor of �(t, x) in the double spatial 
integral by 𝜌(t, x)(1 + v̇(t) ⋅ x) , assuming that we are using a Fermi coordinate sys-
tem at a time slice which coincides with the previous inertial coordinate slice 
of the preceding discussion when the electron is momentarily at rest. Thus the 
vanishing integral n = 0 term, namely Eq.  (61), of the original expansion now 
becomes

Fermi noted that this double spatial integral will give the same value if the 
two dummy vector integration variables are switched, and hence can also be 
replaced by the average of these two ways of writing the same integral. Letting 
∇|x − x

�|−1 = −(x − x
�)∕|x − x

�|3

Now imposing spherical symmetry about the origin, the components of this vector 
integral are nonzero only along the acceleration vector, with a coefficient which can 
be replaced by the average value of the vector component integral

so it reduces to

since the expression in square brackets is the self-energy of the charge distribu-
tion at the time t. This is the only additional term linear in the acceleration which 
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contributes to the lowest terms of the previous calculation (so that the lowest order 
radiation reaction term is unchanged, although not shown here)

which leads to the desired result

in the nonrelativistic limit, according to Newton’s law with the electromagnetic 
mass mem = W∕c2.

Finally to consider the contribution to the Lagrangian from a mechanical mass 
distribution, we must vary the final term in the Lagrangian which has been ignored 
until now. In the Fermi coordinate system this is trivial. The Lagrangian term is 
simply

and its variation is

where m0 is the total mechanical mass. The contribution to the above Fermi condi-
tion are the coefficients of the arbitrary variations �xi = �xi(t) , namely just the term 
− ∫ (m0Γi) = −m0v̇

i . The complete equation of motion is then first

and then after splitting off the self-force and passing to the lowest order 
approximation

Thus mechanical mass and the electromagnetic mass contribute in the same way to 
the total inertial rest mass of the spherical distribution of charged matter.
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5  Relating Kwal‑Rohrlich Back to Fermi Through Gauss

Given the Kwal-Rohrlich 4-momentum evaluated for an unaccelerated electron and 
the inertial mass contribution from the electromagnetic field found by Fermi for the 
accelerated electron, it is natural to look for a relation between them. In the unacceler-
ated case, one has an entire family of distinct 4-momenta which depend on the inertial 
observer, but the one we usually associate with the electron of a certain rest energy is 
the one defined by the rest frame observer. Although Fermi stopped his analysis once 
he achieved his limited goal, in light of the 4-momentum integral situation in which 
interest later arose, it is natural to continue his line of thought to its logical conclusion. 
We do this here and find that Fermi’s corrected condition which generates the correct 
equations of motion guarantees the conservation of the total 4-momentum as seen in 
the instantaneous rest frame of the accelerated electron at each point of its world line.

All we need do do is specialize the Gauss law discussion begun in Section 2 to the 
electromagnetic stress-energy tensor over the spacetime region R between two succes-
sive time hyperplanes Σt and Σt+Δt associated with a Fermi coordinate system adapted 
to the central world line of the accelerated electron, as in Fig. 2 of the Appendix where 
the case of 1-dimensional motion is illustated. Let Δt > 0 so t + Δt is to the future of t 
along the central world line where t measures the elapsed proper time. Figure 2 shows 
the tilting of the Fermi time slices to remain orthogonal to the central world line of the 
electron and to the common local rest space of the elements of charge which make up 
the electron sphere. Then Eqs. (13) and (5) lead to the fundamental relation

Fig. 2  A constant x2, x3 slice of inertial coordinates (t, xi) showing the world tube of an electron sphere 
instantaneously at rest at t = 0 but accelerated in the negative x1 direction ( Γ1 < 0 ) and two successive 
rest frame Fermi time coordinate slices ( Σ ∶ t = 0 and Σ� ∶ t = Δ�(1 + Γ1x

1) ) separated by infinitesimal 
proper time Δ� at the center of the sphere, with the Fermi time slices intersecting to the right of the 
world tube (equivalent to the assumption |Γ1|r0 < 1 ). The spacetime region within the electron world 
tube between the two slices (shaded in this plane cross-section) occurs in the Gauss’s law application 
to the wedge between the two time slices, namely R− ∪ R+ , two regions which are separated from each 
other by a plane of constant x1 within the hypersurface t = 0 shown as the intersection point in this dia-
gram
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where on the right hand side the components have to be expressed in inertial coor-
dinates or the components Q� are not constant and cannot be factored out of the 
integral. On the left hand side, if evaluated in the Fermi coordinate system, these 
components are functions of time to compensate for the time-dependent change of 
direction of the 4-velocity of the central world line, and so can only be pulled out 
of the spatial integral. Recall that E(U)� is the electric field seen in the electron rest 
frame and � is the rest frame charge density.

Let R− be the half-region for which the hyperplane Σt+Δt is in the future of Σt , 
while R+ has the reverse relationship, as in Fig.  2, so that the world tube of the 
electron cuts through the region R− as shown there. Splitting the integral into the 
spatial integral and then the temporal integral, using the spacetime volume element 
d4V = (1 + Γix

i)dV dt , one then has

For the Born rigid distribution of charge according to the Fermi condition (76), the 
spatial integral in parentheses on the left hand side of Eq. (79) at each Fermi time 
(which the proper time parameter along the central world line) equals the mechani-
cal mass times the proper time covariant derivative D∕d� of the 4-velocity of the 
central world line

where p�
0
= DU�∕d� is the mechanical momentum. Here we use the notation D∕d� 

to remind us that in noninertial coordinates like those of Fermi, the covariant deriva-
tive along the parametrized curve does not coincide with the action of the ordinary 
such derivative, but when we evaluate the expression in components with respect 
to a fixed inertial coordinate system, it does. The final integral with respect to the 
Fermi time coordinate, if performed with the components taken in an inertial coor-
dinate system, is then just the difference of the mechanical momentum between the 
two Fermi times

so that

Expressing this in inertial coordinates, since Q� are arbitrary constants, we find
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namely that the sum of the mechanical 4-momentum and the 4-momentum of the 
external electromagnetic field p�

0
+ P� must be the same on the two Fermi time 

slices and hence on every Fermi time slice. In other words the Fermi condition is 
equivalent to the conservation of the Kwal-Rohrlich 4-momentum for the total sys-
tem, a fact which no one seems to have realized until now. Thus Fermi also pointed 
the way towards selecting the only observer-defined total 4-momentum which is 
conserved and which corresponds to what we associate with this system. The proper 
time derivative of this relation gives its rate of change version

Thus the calculations initiated by Fermi nearly a century ago have finally reached 
their natural conclusion.

Apart from Kolbenstvedt [36] much later in 1997, only Aharoni [16] seems to 
have seen and understood Fermi’s argument, explaining exactly what Fermi did in 
detail in his 1965 textbook revised because of the then recent Rohrlich work on this 
topic and re-interpreting it in his own way, explaining in detail how the 4-momen-
tum integrals first explained by Kwal and later Rohrlich are connected to Fermi’s 
approach to the problem. Anaroni’s equations (6.5), (6.18) and (6.19) for the total 
self-force due to the electron charge distribution involve through his (6.18) the 
proper time rate of change of an integral over the spacetime region between two 
successive proper time hypersurfaces of the electron (his own reformulation of the 
self-force in view of the Kwal-Rohrlich integral definition as noted in a footnote). 
Aharoni considers the following equivalent reformulation of the previous equations 
valid for the total electromagnetic field, but restricted only to the self-field in order 
to define the self-force due only to the self-field of the charge distribution

However, Aharoni failed to relate his“postulated” self-force expression to Gauss’s 
law to show that it actually is related to the proper time rate of change of the Kwal-
Rohrlich 4-momentum integral restricted to the self-field. Spohn and Yaghjian both 
have long bibliographies in their textbooks, but neither mentions Aharoni, while 
Rohrlich has an author index indicating Aharoni’s name on page 283 where no refer-
ence to anyone can be found. Only the much later work of Kolbenstvedt acknowl-
edges Fermi’s approach, rederiving it in a slightly different but equivalent form, also 
ignored by Rohrlich, Spohn and Yaghjian in their later editions.

6  Concluding Remarks

References  [8–11] was the culmination of Fermi’s early work in relativity pub-
lished in a series of his first four articles only a few years after the birth of gen-
eral relativity and written while he was a university student. Its actual contents 
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seem to have remained a mystery to nearly all those who have cited it in dis-
cussions of the classical theory of the electron which still interested people long 
after its beginnings in the early nineteenth century, while the leading textbook 
on classical electrodynamics only repeats the Abraham-Lorentz derivation of the 
equations of motion without Fermi’s correction, although admitting that it can 
be relativistically corrected following Fermi. Ironically Fermi’s third paper (see 
Ref. [63] for a historical discussion), which he considered only a tool for obtain-
ing his result in that fourth paper, and which Fermi never even explicitly cited 
there, did make an indelible mark on relativity with the terms Fermi coordinates 
and Fermi-Walker transport, although even the much later paper by Walker that 
coupled together their names forever also ignores Fermi’s original paper in Ital-
ian. Surprisingly even the text by Rohrlich [46, 47], updated in 2007 four decades 
after its original publication, fails to connect his own adjustment of the defini-
tion of the 4-momentum of the electromagnetic field of the classical electron to 
Fermi’s argument about the equations of motion, while recent books by Yaghjian 
and Spohn devoted to this area also show no sign that they have ever seen Fer-
mi’s argument. We hope the present work restores Fermi’s message to its rightful 
place, and perhaps provokes some thought about its meaning.

Appendix A: Gauss’s Theorem and “Conservation Laws”

For a divergence-free stress-energy tensor in all of Minkowski spacetime which 
falls off sufficiently fast at spatial infinity, its integral over any two parallel inertial 
time hyperplanes would be the same by Gauss’s law, as explained in most stand-
ard textbooks in relativity, see Chapter 5 of Misner, Thorne and Wheeler [57], for 
example, or Appendix A1–5 of Rohrlich’s Third Edition [46, 47], or Anderson [53]. 
This gives the usual 4-momentum conservation law that the 4-momentum has the 
same value for different time slices for a given inertial observer. However, for two 
time slices associated with a pair of inertial observers in relative motion, the time 
slices necessarily intersect so one has to be more careful in applying Gauss’s law 
to this more general situation, though again one finds that the 4-momentum is inde-
pendent of the observer as well as the time slice. However, in the present case the 
nonzero divergence due to the source inside the timelike world tube of the electron 
sphere surface, or equivalently the boundary term on that world tube if one excludes 
the sources from Gauss’s law, interferes with this more familiar picture, forcing 
the 4-momentum of the electromagnetic field to depend explicitly on the inertial 
observer. We consider these complications in detail in this appendix since they do 
not seem to be discussed in standard textbooks. The spherical shell model of the 
electron discussed in the first section is used to illustrate the evaluation of the Gauss 
law integrals (Figs. 3, 4).

Figure 1 represents a constant x2, x3 slice of the unaccelerated electron world tube 
centered at the origin of the unprimed spatial coordinates in spacetime. As in sec-
tion 2, the unprimed coordinates are associated with the rest frame K of the electron, 
while the primed coordinates are associated with a frame K′ in relative motion with 
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Fig. 3  Four-momentum conservation law applied to the world tube of the electron sphere with an inner 
cylindrical boundary (see, e.g., Fig. 5.3.b of Misner, Thorne and Wheeler [57]). The arrows show the 
chosen unit normal direction for the orientation of each hypersurface, but in the single Gauss law relation 
for the region of spacetime between Σ1 and Σ2 excluding the shaded region inside the cylinder, the sum 
of the outward normally oriented integral contributions is zero for a divergence-free vector field. Here 
the boundary term due to the portion � of the cylinder between the two parallel hyperplanes vanishes by 
spherical symmetry

Fig. 4  The world tube of the electron sphere is a cylinder in spacetime about the t axis, shown here with 
one spatial dimension suppressed. The time slices t = 0 ( Σ ) and t� = 0 ( Σ� ) cut this cylinder, intersecting 
in the spacelike 2-plane x1 = 0, t = 0 , which separates the spacetime region between these time slices 
into two disjoint subregions x1 > 0 and x1 < 0 . Gauss’s law applies separately to each of these two sim-
ply connected regions outside the electron sphere cylinder, but the signs of the outward normals of the 
time slices switch between these two regions, while remaining the same for the cylindrical portion of 
their boundaries
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respect to the unprimed frame is in the x1 direction with velocity −v < 0 as shown 
in the figure. Consider the spacetime region devoid of electromagnetic sources 
between two spacelike hyperplanes Σ�

1
 and Σ�

2
 of constant inertial times t′

1
 and t′

2
> t′

1
 

and outside of an internal lateral boundary � between them which is a subset of the 
cylindrical timelike surface representing the world tube of the electron spherical sur-
face ( r = r0 in its rest frame). Let Σ�

1
 and Σ�

2
 be the portions of those planes exterior 

to this cylinder. Suppose Σ�
1
 and Σ�

2
 are oriented by their future-pointing unit normal 

vector fields and � by its inward unit normal �∕�r relative to the region of spacetime 
in question. Let Q be any covariant constant 4-vector so that q� = Q�T

��
em is a diver-

gence-free vector field in the spacetime region bounded by the three hypersurfaces 
Σ , Σ� and � , as well as by the lateral boundary at spacelike infinity, a region to which 
Gauss’s law with zero volume integral and outward pointing normals applies. Tak-
ing the orientations into account relative to the outward normal on each boundary 
hypersurface, one then has

If the lateral boundary term vanishes, then the integral is the same over each of the 
two time hypersurfaces outside the world tube of the electron sphere. Indeed for 
time slices in the rest frame of the electron, or in the moving frame, these integrals 
are time-independent, which corresponds exactly to the vanishing of the integral 
over the electron surface tube between the two slices. This follows for all possible 
projections Q� in the explicit evaluation of the lateral integral from the vanishing of 
T0r
em

 itself and of the surface integral of the spatial stress components

over the 2-sphere r = r0 , which follows from the spherical symmetry and the fact 
that the integral along the time direction on the cylinder is the constant rest frame 
time difference t2 − t1 = �(t�

2
− t�

1
) . However, even though for each such inertial 

coordinate system, the integral at constant time is time-independent, we must do 
a second calculation to relate the results of the integration with respect to inertial 
coordinate systems in relative motion.

In the usual textbook situation of a free electromagnetic field with no sources, 
one does not exclude any world tube from the Gauss law application so the inter-
nal boundary integral is not present and the divergence integral is zero. As a result 
the difference of the integrals over the two time parallel hyperplanes is zero. The 
same remarks will apply to the Gauss law application to two intersecting time hyper-
planes, extending the equality of the 4-momentum integral to all inertial time slices.

The situation between the time hyperplanes of two different inertial frames is 
more complicated since the hyperplanes necessarily intersect, as shown in Fig.  2 
with one spatial dimension suppressed, assuming that the relative velocity v along 
the direction x1 of the electron rest frame relative to the moving primed frame is 
positive, as in the previous figure. Figure 5 shows a constant x2, x3 slice of Fig. 2 
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generalizing Fig.  5.3.c of Misner, Thorne and Wheeler [57] (or Fig.  A1–3 from 
Rohrlich’s Third Edition), but with an additional internal lateral boundary, here 
the portion � of the cylinder representing the electron sphere centered around the 
t axis and extending between the two time slices. Consider the region of spacetime 
exterior to the electron sphere bounded by the time hypersurfaces t = 0 and t� = 0 , 
with unit future-pointing normals U = �∕�t and U� = �∕�t� . Let � = �− ∪ �+ be 
the portion of the cylindrical world tube of the electron sphere between these two 
time hyperplanes, divided into two disjoint parts �+ for x1 > 0 and �− for x1 < 0 , 
each with the orientation induced by the outward radial normal �∕�r relative to the 
sphere. For each point on the electron sphere, � consists of the region between t = 0 
and t = −vx1 , so the integral on � along t leads to a factor Δt = 0 − (−vx1) = vx1 > 0 
for x1 > 0 and a factor Δt = −vx1 − 0 = −vx1 > 0 for x1 < 0 since the integrand is 
independent of t along the cylinder.

Similarly let Σ = Σ− ∪ Σ+ and Σ� = Σ�
−
∪ Σ�

+
 , each with the future-pointing nor-

mal orientation, and let Σ = Σ− ∪ Σ+ and Σ� = Σ�
−
∪ Σ�

+
 be the portions of those 

Fig. 5  Generalization of Fig. 5.3.c from Misner, Thorne and Wheeler (or of Fig. A1–3 from Rohrlich’s 
Third Edition) redrawn with an inner cylindrical boundary which is the world tube of the electron sphere 
boundary, showing a constant x2, x3 slice of the previous figure. The arrows show the chosen unit normal 
direction for the orientation of each hypersurface, which changes sign relative to the unit outward normal 
of the exterior region outside the cylinder going from x1 > 0 to x1 < 0 . Here the boundary term due to 
the portion � of the cylinder between the two parallel hyperplanes is now nonvanishing. The two halves 
�+ ( x1 > 0 ) and �− ( x1 < 0 ) contribute terms with opposite signs to the two separate Gaussian integral 
relations because of the change in sign of the outward normals on Σ and Σ� , and hence in the differ-
ence relation needed to reassemble the two halves of those time hypersurface integrals, they contribute a 
nonzero correction term
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regions outside the world tube of the electron sphere. One can separately apply 
Gauss’s law to the two disjoint regions with these boundaries and reassemble the 
pieces to get a relation between the integrals over Σ , Σ� and � . Since the outer nor-
mal directions switch directions for Σ and Σ� but not � going from x1 > 0 to x1 < 0 , 
one must take the difference of the two separate Gauss law relations to reassemble 
the total integrals over Σ and Σ� , which leads to a net nonvanishing contribution 
from � in spite of the spherical symmetry. One has

and therefore taking the difference

Consider applying the above relation in this setting for Q = −U� , so that 
q� = −U�

��
T���
em

= Tt��
em

= �(Tt�
em

+ vTx1�
em

) . Then

while

Using the exterior field in the source free region outside the electron spherical shell 
model as an example, one finds that the cylindrical world tube integrals, since the 
integrand is independent of t, are explicitly
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and

Since the outward normals on Σ and Σ� reverse direction on the second set of inte-
grals, but the outward normal on � does not, the separate Gauss’s law relations are

and their sum is

Thus the unwanted correction factor is exactly the integral over the cylindrical 
boundary over the electron sphere of the moving frame 4-velocity component of the 
stress-energy tensor, with the factor of 1/3 equal to

whose value follows from spherical symmetry as expressed in Eq. (30). This term 
which causes the result to differ from the 4-momentum as seen in the rest system is 
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exactly due to the unbalanced outward radial stress on the charge distribution at the 
surface of the electron sphere.

One can repeat this calculation for Q = �∕�x�1 in order to express the momentum 
correction factor as an integral over this boundary, with one less factor of v in the 
correction term since

compared to the previous calculation where

With this corresponding correction term the integral relationship now becomes

explaining the famous factor of 4/3.
On the other hand for the model with a uniform distribution of charge within 

the electron sphere, one must extend the hypersurface integrals over the interior 
region to evaluate the total 4-momentum in the electromagnetic field since the 
field is no longer zero there. Only by doing this does the self-energy integral of 
the static charge configuration agree with the energy in the electric field it gener-
ates. This forces one instead to consider the spacetime volume divergence inte-
gral over that region in applying Gauss’s law, rather than the spherical boundary 
hypersurface integral. One could do the same for the spherical shell model, where 
the divergence integral would yield the same result as the spherical boundary 
integral evaluated above when excluding the region containing the charge.
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Fig. 6  Left: The plane of the two inertial observer 4-velocities for motion along the x1-axis. The rest 
frame axis x1 has slope � . A unit vector along this axis has primed 0′ and 1′ components ⟨��, �⟩ . The rela-
tive velocity of U′ as seen by the rest frame observer with 4-velocity Urest is �(U�,Urest) , which extends 
from the tip of Urest to the vertical axis along U′ , and whose 0′ and 1′ components are −�⟨��, �⟩ . Right: 
The rest frame 4-momentum and the moving frame 4-momentum
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We can easily re-express the above component relationships (A10) and (A14) 
in 4-vector form. The subtracted terms on the left hand side are exactly the mov-
ing frame inertial coordinate components of the 4-momentum as seen by the rest 
frame

The right hand sides instead have corresponding primed components 1
3
�v⟨v, 1⟩ , 

which can be re-expressed as follows. The 4-vector with its first two primed com-
ponents equal to v�⟨v, 1⟩ is just the sign-reversed relative velocity of the moving 
frame compared to the rest frame as seen in the rest frame, call its components 
−�(U�,Urest)

�� . See Fig.  6. The rest energy is just W = P(Σrest)
0 = −P(Σrest)�U

�

rest , 
where for emphasis we include the subscript notation for the rest frame quantities. 
Thus we get in index-free notation

so that we get the following orthogonal decomposition of the general 4-momentum

This extra 4-vector piece aligned with the relative velocity of the moving frame with 
respect to the rest frame is what causes the 4-momentum to depend on the observer 
4-velocity relative to the rest system, causing it to deviate from the desired 4-vector 
momentum. Its scalar coefficient is directly related to the unbalanced radial stress at 
the surface of the electron sphere.

Poincaré stresses are introduced within the electron sphere so that they exactly 
compensate for this radial stress, but then they add their own contribution to the 
total conserved 4-momentum, which is aligned with the 4-velocity of the electron 
sphere. Schwinger has a detailed discussion of these additional stresses [30]. The 
best choice to fix the arbitrariness of his family of models simply eliminates the 
extra unwanted term along the relative velocity to make the total 4-momentum 
equal to the rest frame value for the electromagnetic field alone ( h = −1 in the 
notation of Jackson [51, 52]. For this choice the stress-energy tensor of the Poin-
caré stresses is proportional to the projection g�� + Urest�Urest� into the local rest 
space of the rest frame, whose contraction with the volume element of the rest 
frame time hyperplane therefore vanishes, so in that frame the total 4-momen-
tum integral reduces to the integral of the electromagnetic stress-energy tensor 
alone. Since the total stress-energy tensor is divergence-free, observers in relative 
motion therefore measure the same 4-momentum WUrest� as in the rest frame.

One can directly evaluate the difference in the 4-momentum 4-vector observed 
by the rest and moving frame observers in a few lines using Gauss’s law Eq. (15) 
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expressed in rest frame inertial coordinates applied to the entire spacetime region 
between the rest frame time slice Σrest : t = 0 and the moving frame time slice 
Σ� : t� = �(t + vx1) = 0 , or t = −vx1 . See Fig. 7 For the shell model of the electron 
the spherical surface density limited to the sphere r = r0 is � = e∕(4�r2

0
)�(r − r0) . 

Because of the delta function, the spacetime volume integral reduces to a hyper-
surface integral over the spherical cylinder with volume element dt r2

0
dΩ , but one 

has to take into account the fact that the corresponding radial electric field has 
a Heaviside function factor: the inertial components of the rest frame Coulomb 
field are those of the radial inverse square field H(r − r0)e∕r

3⟨0, x1, x2, x3⟩ , using 
the rest frame inertial coordinate component notation: z = ⟨z0, z1, z2, z3⟩ , where 
H(r) is the Heaviside function:

Recalling that the two regions into which the plane of intersection of these time 
hyperplanes are divided have opposite orientation for the spacetime region integral, 
we get for the integral over the spherical shell between the hyperplanes

(A18)H(x) =

⎧⎪⎨⎪⎩

0, x < 0

1∕2, x = 0

1, x > 0

Fig. 7  A 2-dimensional cross-
section of the region between 
the rest and moving frame 
inertial time hypersurfaces t = 0 
and t� = 0 for relative motion 
along the x1 direction. Applying 
Gauss’s law Eq. (15) to this 
region requires opposite signed 
orientations for the spacetime 
regions on opposite sides of the 
plane of intersection x1 = 0 = t
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where the integrals over the half spheres of the products x1x2 and x1x3 vanish by 
symmetry, and the one remaining integral by symmetry is 1/3 the integral with (x1)2 
replaced by r2

0
 . The factor H(0) = 1∕2 results from the limiting situation of integra-

tion over a thin shell of finite thickness where the radial electric field rises from 0 to 
its value at the outer edge of the shell, so its integral over the shell against the con-
stant charge density function leads to the average value of the electric field, which 
has an additional factor of 1/2.

Just for fun, suppose we evaluate the spatial momentum in the moving frame in 
terms of the rest frame inertial coordinates, where the future-pointing normal to 
the primed inertial time hypersurface t� = �(t + vx1) = 0 is n = �⟨1,−v, 0, 0⟩ , while 
�dV � = dV  , so that on Σ� , the volume element is ⟨dΣ�⟩ = −⟨n�dV �⟩ = dV⟨1, v, 0, 0⟩ . 
Then −T1�n�dV

� = T1jnj = T11(�v)dV � = T11v , so that

Noting that �(U�,U) = −� and P(Σrest)
1 = 0 , we thus recover exactly the previous 

result (A19).
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