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Abstract
Nelson’s stochastic quantum mechanics provides an ideal arena to test how the Born 
rule is established from an initial probability distribution that is not identical to the 
square modulus of the wavefunction. Here, we investigate numerically this problem 
for three relevant cases: a double-slit interference setup, a harmonic oscillator, and 
a quantum particle in a uniform gravitational field. For all cases, Nelson’s stochastic 
trajectories are initially localized at a definite position, thereby violating the Born 
rule. For the double slit and harmonic oscillator, typical quantum phenomena, such 
as interferences, always occur well after the establishment of the Born rule. In con-
trast, for the case of quantum particles free-falling in the gravity field of the Earth, 
an interference pattern is observed before the completion of the quantum relaxation. 
This finding may pave the way to experiments able to discriminate standard quan-
tum mechanics, where the Born rule is always satisfied, from Nelson’s theory, for 
which an early subquantum dynamics may be present before full quantum relaxation 
has occurred. Although the mechanism through which a quantum particle might vio-
late the Born rule remains unknown to date, we speculate that this may occur during 
fundamental processes, such as beta decay or particle-antiparticle pair production.
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1 Introduction

Quantum mechanics (QM) has raised innumerable foundational questions since 
its formalization in the early twentieth century. Most of those questions arise from 
two “weird" properties of QM, which single it out from earlier physical theories: (i) 
QM is an intrinsically probabilistic theory, meaning that its outcomes can only be 
predicted on average, and (ii) quantum probabilities do not follow the same rules 
as classical ones, inasmuch as in QM probability amplitudes are additive, and not 
the probabilities themselves.1 This fact is encapsulated into Born’s rule [2], which 
defines quantum probabilities as the squared modulus of complex amplitudes.

The first of these properties was the source of much controversy at the dawn 
of QM, because earlier fundamental theories were all deterministic. Being capa-
ble of predicting with virtually perfect accuracy a physical event (e.g., an eclipse 
or the passage of a comet) was seen as the hallmark of a rigorous physical theory, 
the kind of achievement that gave Newton’s and Maxwell’s theories all their pres-
tige. Besides, just a few years earlier, Boltzmann had shown how to bridge the gap 
between reversible macroscopic motion at the molecular level and irreversible heat 
and matter diffusion at the macroscopic scale. It was natural, then, to assume that 
also the randomness of QM could one day be explained in a similar fashion.

However, it is the second property that poses the hardest foundational questions 
– and is also at the heart of the spooky action at a distance first highlighted in the 
celebrated Einstein–Podolsky–Rosen (EPR) paper [3], and later confirmed in many 
experiments, mainly based on John Bell’s extension to spin states of the original 
EPR argument [4]. Born’s rule is at the heart of these “weird" features of QM and, 
for this reason, deserves some special attention. Indeed, Born’s rule stands alone in 
the mathematical machinery of QM, and is employed only when one needs to trans-
late the abstract wavefunction into an actual prediction about probabilities of out-
comes. We also note that, while the Schrödinger equation is linear in the wavefunc-
tion, Born’s rule, which is quadratic, reinstates some nonlinearity into the theory.

It is well-known that in some nonlocal hidden-variable theories [5], such as the 
Bohm-de Broglie version of QM (also known as Bohmian mechanics), the Born 
rule need not necessarily be satisfied.2 In the Bohm-de Broglie mechanics [6], if 
an ensemble of trajectories satisfies Born’s rule at a certain initial time t = 0 , i.e. if 
P(x, t = 0) = |Ψ(x, t = 0)|2 (where P is the probability density of the position vari-
able x and Ψ is the wavefunction), then this property will always be satisfied for any 
subsequent time t > 0 . But the equations of the Bohm-de Broglie mechanics remain 
perfectly valid also when one takes P(x, t = 0) ≠ |Ψ(x, t = 0)|2 , i.e., if Born’s rule is 

1 It is possible to formulate QM in terms of ordinary probabilities, provided that these are allowed to 
take negative values (see, for instance, Ref. [1] and references therein). This is another manifestation of 
the weirdness of quantum theory.
2 Strictly speaking, actual ensembles in experiments only have a finite number of particles N, so that 
these theories always violate the Born rule. Here, we mean that the latter may be violated even in the 
limit N → ∞.
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violated. In that case, the two quantities P(x, t) and |Ψ(x, t)|2 will remain distinct for 
all later times.

In the context of the Bohm-de Broglie mechanics, Valentini [7] suggested that the 
Born rule is the analogue of thermal equilibrium in classical statistical mechanics. 
In the latter, non-equilibrium states are possible during transient evolutions, but the 
system eventually relaxes to its thermal equilibrium, given for instance by a Max-
wellian probability distribution. In the same fashion, Valentini postulated that the 
Bohm-de Broglie distribution of positions may in general differ from that given by 
Born’s rule, and only relaxes to it in a finite (albeit fast) timescale. Hence, the stand-
ard distribution that satisfies Born’s rule corresponds to a sort of quantum equilib-
rium defined by P = |Ψ|2 , although quantum non-equilibrium states with P ≠ |Ψ|2 
may also exist during short transients (this is referred to as “subquantum dynamics” 
by Valentini). The possibility of finding signatures of subquantum dynamics in the 
primordial universe was also suggested [8, 9].

Just like in standard statistical mechanics, quantum-equilibrium distributions 
are much more probable than non-equilibrium ones (they are typical, in a techni-
cal sense3) and therefore should be observed most of the time, which is of course 
the case in all known experiments. From a dynamical point of view, non-equilib-
rium distributions will typically converge to quantum equilibrium. Earlier numerical 
simulations [14] showed that relaxation to equilibrium is indeed observed, provided 
some coarse graining procedure is applied.

An alternative, and perhaps more appropriate, avenue to study such convergence 
to quantum equilibrium is to resort to Nelson’s stochastic quantization [15–17]. As 
detailed in the next section, Nelson’s dynamics is similar to the Bohm-de Broglie 
mechanics, with the important difference that the equations of motion are not deter-
ministic, but rather stochastic with a diffusion coefficient equal to ℏ∕2m , where ℏ is 
the reduced Planck constant and m the mass. Nelson’s theory reproduces standard 
QM when the Born rule is satisfied at the initial time. When this is not the case, the 
distribution P will converge to the Born rule value |Ψ|2 , without any need for an 
artificial coarse graining procedure, thanks to the stochastic nature of the dynamics. 
Hence, Nelson’s approach appears to be particularly adapted to investigate subquan-
tum physics and the relaxation to quantum equilibrium.

Of course, one would also need to postulate a mechanism through which a quan-
tum particle could find itself at quantum non-equilibrium. Although we do not have 
a theory for such a mechanism, we may conjecture that fundamental processes—
such as beta decay or particle-antiparticle pair production—generate quantum par-
ticles that are, at least at the very early stages, out of quantum equilibrium. Indeed, 
during such processes the quantum particles are created ex nihilo and may not have 
had enough time to relax to the Born rule. We will not try to justify or explore any 
further this speculative conjecture. Our purpose here is merely to investigate what 
happens if, for whatever reason, Born’s rule is at some point violated.

3 For a definition of typicality in statistical mechanics, see [10, 11], and in the Bohm-de Broglie theory, 
see [12, 13].
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Within this framework, an important question is whether quantum thermalization 
occurs faster than any typical quantum effect, such as interference. If this is the case, 
it would mean that all typically quantum phenomena are “equilibrium” phenomena 
and hence indistinguishable from standard QM. In the opposite case (i.e., quantum 
interference occurring before relaxation), one could hope to observe some anomaly 
in the interference pattern due to subquantum corrections. If true, this would be an 
appealing prediction for future experiments.

In the present paper, we investigate this topic by means of numerical simulations 
of Nelson’s stochastic dynamics, for three relevant cases: (i) a standard double-slit 
interference setup, (ii) a harmonic oscillator, and (iii) quantum particles in a gravity 
field, such as ultracold neutrons in the gravitational field of the Earth [18]. The next 
section is devoted to a brief description of Nelson’s approach to QM. In sect. 3, we 
illustrate how to quantify the distance to quantum equilibrium and the relaxation 
towards it. Section 4 includes the numerical results for the three physical systems 
mentioned above. Finally, conclusions are drawn in Sect. 5.

2  Nelson’s Stochastic Quantization

In the Bohm-de Broglie theory [6], particles have a well-defined position x(t), and 
their trajectories evolve according to a deterministic law of the type:

where the velocity u(x, t) is related to the phase of the wavefunction, which satisfies 
the standard time-dependent Schrödinger equation. In particular, writing the wave-
function in polar coordinates

where R(x,  t) is the amplitude and S(x,  t) is the phase, one has that u = ℏ�xS∕m . 
Note that, in the present work, we will always consider one-dimensional problems.

In contrast, in Nelson’s dynamics [15, 16] the particles obey a Langevin equation

where b(x(t), t) is the deterministic velocity and W(t) is a stochastic Wiener process. 
The latter is characterized by a zero mean ⟨dW⟩ = 0 and a finite variance

with DQ the quantum diffusion coefficient. The origin of such Brownian motion with 
diffusion coefficient DQ was not specified by Nelson, and here we just assume the 
presence of some universal force agitating all quantum particles. We also note that 
similar stochastic theories have been discussed by Bohm and Hiley [19], Peruzzi and 
Rimini [20], as well as Bohm and Vigier [21].

In Nelson’s theory, the total velocity b(x, t) is written as the sum of two terms:

(1)
dx(t)

dt
= u(x, t),

Ψ(x, t) = R(x, t) eiS(x,t),

(2)dx(t) = b(x(t), t)dt + dW(t),

(3)⟨dW2⟩ = DQ ≡ ℏ

2m
,
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where the first term (drift velocity) is proportional to the gradient of the phase and 
is identical to the velocity of the Bohm-de Broglie model, while the second term 
(osmotic velocity) depends on the amplitude R.

The wavefunction follows the standard Schrödinger equation 
i�𝜕tΨ(x, t) = ĤΨ(x, t) , with Hamiltonian Ĥ = p̂2∕2m + V̂(x, t) . Hence, the phase S 
obeys the following quantum Hamilton–Jacobi equation:

Finally, the stochastic Langevin Eq. (2) can also be expressed as an equivalent Fok-
ker–Planck equation for the probability density P(x, t):

In summary, Nelson’s theory is encapsulated in the Eqs. (2) (stochastic process), (4) 
(definition of the velocity), and (5) (quantum Hamilton-Jacobi).

When the initial particle distribution P(x,  0) is identical to the squared ampli-
tude of the wavefunction |Ψ(x, 0)|2 = R2(x, 0) , Nelson’s dynamics is equivalent to 
the standard quantum theory and reproduces the same results as the time-dependent 
Schrödinger equation. Like the Bohm-de Broglie theory, it can be seen as a nonlocal 
hidden variable theory, where the hidden variable is the position of the particles, but 
it differs from the Bohm-de Broglie mechanics inasmuch as it is non-deterministic. 
However, it is important to stress that, despite Eq. (2) being a stochastic process, the 
whole Nelsonian dynamics is reversible in time [15], as it should be to guarantee the 
equivalence with the Schrödinger equation. This can easily be seen from the Fok-
ker–Planck Eq. (6), by noting that the osmotic velocity exactly cancels the diffusion 
term.

3  Quantum Equilibrium

In the standard formulation of QM, the Born rule is a crucial postulate: the prob-
ability density of finding a particle at a position x at time t is given by the squared 
modulus of the wavefunction |Ψ(x, t)|2 . However, this postulate is not needed in the 
Nelson and Bohm-de Broglie formalisms, where the wavefunction is viewed as a 
field that guides the dynamics of the particles and is not necessarily linked to the 
probability of finding a particle in a certain region of space. Hence, it is perfectly 
consistent within these approaches to consider cases where P(x, t) ≠ |Ψ(x, t)|2 , in 
which case the predictions of standard QM would differ from those of the Nelson 
and Bohm-de Broglie theories.

As suggested by Valentini [7], the Born rule may correspond to a situation of 
quantum equilibrium, analogue to the thermal equilibrium of classical mechanics. 

(4)b(x, t) =
ℏ

m

�

�x
S(x, t) + 2DQ

�

�x
lnR(x, t),

(5)ℏ
�S

�t
+

ℏ2

2m

(
�S

�x

)2

−
ℏ2

2mR

�2R

�x2
+ V = 0.

(6)�P

�t
+

�

�x
[b(x, t)P] = DQ

�2P

�x2
.
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According to this view, non-equilibrium states with P(x, t) ≠ |Ψ(x, t)|2 can exist, but 
they relax to quantum equilibrium on a very short timescale, so that they are difficult 
to observe in practice. Valentini developed these ideas in the context of the Bohm-de 
Broglie mechanics which, being deterministic, requires some form of coarse grain-
ing to observe such relaxation [14]. But in Nelson’s theory the approach to equilib-
rium should occur more naturally, thanks to the stochastic nature of the motion. This 
fact was first analyzed in detail by Petroni and Guerra [22], building on earlier work 
by Bohm and Vigier [21], although the convergence to quantum equilibrium may 
not be proven in general for any initial condition and potential. More recently, Hatifi 
et al. [23] have studied analytically and numerically the relaxation to quantum equi-
librium, in relation with the experiments of Couder et al. on bouncing oil droplets as 
an analogue of quantum motion [24, 25].

The aim of the present work is to investigate, by means of numerical simulations, 
whether quantum thermalization occurs faster than any typical quantum effect, such 
as interference. In order to do so, one first needs to reconstruct the probability den-
sity P(x, t) of the particles at each time. This is done by partitioning the space x ∈ ℝ 
into bins of size Δx , such that each bin contains a sufficiently large number of parti-
cles, and constructing the corresponding histogram. The stochastic Nelson Eq. (2) is 
solved using a second-order Helfand-Greenside’s method [26–28]. In order to reduce 
the statistical noise, the simulations are repeated independently many times and the 
results are averaged to reconstruct the probability density. In order to compute the 
velocity b(x, t), we need to solve the Schrödinger equation to obtain the phase S and 
amplitude R of the wavefunction. In the three examples considered in this work, the 
solution could be obtained analytically or semi-analytically, as detailed in the next 
section.

The probability density P(x,  t) must then be compared to the squared modulus 
of the wavefunction |Ψ(x, t)|2 = R2 . For this, we need to define a distance between 
these two quantities. Out of the many possibilities, one can use the Lp distance 
between two functions f and g, defined as

In particular, the L1 distance was advocated by Petroni and Guerra [22] as the appro-
priate tool to quantify the relaxation to quantum equilibrium. The infinite distance 
L∞ can be seen as its limit when p → ∞ and is given by

Other criteria can also be defined, such as the entropy-like function used by Valen-
tini [7]:

(7)Lp[f , g](t) =
p

√

∫
+∞

−∞

dx |f (x, t) − g(x, t)|p.

(8)L∞[f , g](t) = max
x

|f (x, t) − g(x, t)|.

(9)H ≡ LH[f , g](t) = �
+∞

−∞

dx f (x, t) ln

(
f (x, t)

g(x, t)

)
,
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which is related to the Kullback–Leibler divergence, also called relative entropy 
[29].

Taking f = P and g = |Ψ(x, t)|2 , all these distances vanish when the Born rule is 
satisfied, i.e. at quantum equilibrium. Of course, in order to estimate the relaxation 
time, it will be necessary to define a somewhat arbitrary threshold below which the 
distance is assumed to be practically zero. Finally, using the entropy-like quantity 
(9), Hatifi et al. [23] were able to prove a H-theorem which ensures that a generic 
probability distribution P(x, t) converges to |Ψ(x, t)|2 as t → ∞ (with some caveats, 
as will be seen in the next section).

4  Simulation Results

The main question we try to answer in this work is whether quantum thermaliza-
tion occurs faster than any other typical quantum effects, such as the appearance 
of interferences. If that were the case, it would mean that all quantum phenomena 
are “equilibrium" phenomena and hence indistinguishable from standard QM. In the 
opposite case, one could hope to observe some anomaly in the interference pattern 
due to subquantum corrections, which would be an appealing prediction for future 
experiments.

In this section, we will use the distance functionals defined in Sect.  3 to esti-
mate the time of relaxation to quantum equilibrium, and compare it with the time of 
appearance of quantum effects. This problem will be investigated for three emblem-
atic physical systems: the double-slit experiment, the harmonic oscillator, and the 
evolution of a wavepacket in a linear potential representing the gravity field of the 
Earth.

4.1  Double‑Slit Experiment

We consider a standard double-slit experiment, where the two slits have an aperture 
of width � and are separated by a distance 2a, see Fig. 1. We shall use units in which 
ℏ = m = a = 1 , so that the only free parameter is the width � and actually represents 
the ratio �∕a . This choice also defines a timescale � = ma2∕ℏ ( = 1 , in these units).

In order to model the configuration of a double-slit experiment, we take an initial 
wavefunction that is the sum of two Gaussians of width � and centered at x = ±a:

As we want to investigate the relaxation to quantum equilibrium, the initial parti-
cle distribution should not satisfy the Born rule, i.e. P(x, 0) ≠ |Ψ(x, 0)|2 . Hence, we 
assume that all particles are concentrated at the same position, at the centre of each 
slit:

(10)
Ψ(x, 0) =

1�
2
√
��

�
1 + e−a

2∕�2
��1∕2

�
e−(x+a)

2∕2�2

+ e−(x−a)
2∕2�2

�
.
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where � denotes the Dirac delta function. This initial configuration is plotted in 
Fig. 1 (left panel), while the right panel of the same figure shows both |Ψ(x, t)|2 and 
P(x, t) at a later time when the system has evolved but has not yet reached the quan-
tum equilibrium.

The free evolution of this initial wavefunction can be computed analytically [28], 
yielding the following square modulus at time t:

The particle density P is obtained numerically by solving the stochastic Nelson Eq. 
(2) for a large number N of trajectories. In order to do so, one needs the expression 
of the velocity term b that appears in the Nelson equation, which is obtained by 
injecting Eq. (12) into Eq. (4). We obtain [28]:

(11)P(x, 0) =
�(x − a) + �(x + a)

2
,

(12)

��(x, t)�2 = �

2

�
�(�4 +

ℏ2 t2

m2
)
�
1 + e−a

2∕�2
�

⎡
⎢⎢⎢⎣
exp

⎧
⎪⎨⎪⎩
−
�2(x + a)2

�4 +
ℏ2 t2

m2

⎫
⎪⎬⎪⎭
+ exp

⎧
⎪⎨⎪⎩
−
�2(x − a)2

�4 +
ℏ2 t2

m2

⎫
⎪⎬⎪⎭
+ 2 exp

⎧
⎪⎨⎪⎩
−
�2(x2 + a

2)

�4 +
ℏ2 t2

m2

⎫
⎪⎬⎪⎭
cos

⎛⎜⎜⎝

2ℏtax

m

�4 +
ℏ2 t2

m2

⎞⎟⎟⎠

⎤
⎥⎥⎥⎦

Fig. 1  Left panel: Initial densities for the wavefunction |Ψ(x, t)|2 (red continuous line) and the particles 
P(x, 0) (blue dashed line). Here, P is the sum of two Dirac delta functions centered at ±a , while |Ψ(x, t)|2 
is the sum of two Gaussians of width � = 0.3 a . Right panel: Same quantities at time t = 0.09 � , when 
quantum equilibrium is not yet attained (Color figure online)
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where (ℜ +ℑ) denotes the sum of the real and imaginary parts of the expression 
between parenthesis. Then, at each instant t, we construct a histogram of the particle 
positions, and finally interpolate the histogram to obtain the density P(x,  t). This 
procedure is illustrated in Fig. 2.

Given the analytical expression of |Ψ|2 and the numerically-computed density P, 
it is possible to compare these two objects using the distances LX defined in Sect. 3. 
These quantities are represented as a function of time in Fig. 3, for the case � = 0.3a . 
For all cases, the distance between P and |Ψ|2 decreases to zero for long times, signal-
ling the convergence to the quantum equilibrium and the emergence of the Born rule. 
Due to numerical errors occurring during the computation of P, the minimal distance 
is never zero, but approximately 10−2 − 10−3 , depending on the adopted measure. It 
is also interesting to note that the qualitative behavior is similar for all distances, so 
that they can be fitted with the same type of function in order to extract the relaxation 
time �q . Numerically, one can show that a good candidate for the fitting function is

(13)

b(x, t) = (ℜ +ℑ)

⎛
⎜⎜⎜⎝
ℏ

m

−
�
�2 − i

ℏt

m

�

�4 +
ℏ2t2

m2

⎡
⎢⎢⎢⎣
(x + a) exp

⎧
⎪⎨⎪⎩
−

�
�2 − i

ℏt

m

�
(x + a)2

2
�
�4 +

ℏ2t2

m2

�
⎫
⎪⎬⎪⎭

+(x − a) exp

⎧⎪⎨⎪⎩
−
(�2 − i

ℏt

m
)(x − a)2

2
�
�4 +

ℏ2t2

m2

�
⎫⎪⎬⎪⎭

⎤⎥⎥⎥⎦
×

⎡⎢⎢⎢⎣
exp

⎧⎪⎨⎪⎩
−

�
�2 − i

ℏt

m

�
(x + a)2

2
�
�4 +

ℏ2t2

m2

�
⎫⎪⎬⎪⎭

+ exp

⎧⎪⎨⎪⎩
−

�
�2 − i

ℏt

m

�
(x − a)2

2(�4 +
ℏ2t2

m2
)

⎫⎪⎬⎪⎭

⎤⎥⎥⎥⎦

⎞⎟⎟⎟⎠
,

Fig. 2  Trajectories of N = 1000 particles (left side, black curves) initially distributed at the center of 
each slit. The histogram of the distribution of the positions (right side, blue segments) at the end of the 
evolution is interpolated to obtain the corresponding density P(x, t) (right side, dashed blue line) (Color 
figure online)
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where �1 , �2 , and �3 are free fitting parameters, to be determined for each distance 
and each value of � . From this expression, we define the quantum relaxation time 
�q as the time at which the tangent of the curve LX(t) at t = 0 intersects the abscissa 
axis, which gives: �q = 1∕(�2�3).4

Next, we need a suitable definition of a “typical" quantum time �int , defined as 
the time of appearance of quantum interferences, in order to compare it with the 
relaxation time �q . Interferences occur because the two initial Gaussian wavepack-
ets spread in space, and after a certain time they overlap in the region between the 
two slits. As illustrated in Fig. 4, we define �int as the time when the first maximum 
appears in between the two original wavepackets. Further maxima appear at later 
times, until the full interference pattern is formed.

We now have all the elements to compare �q and �int for different values of � . The 
ratio �∕a has to be smaller than unity to ensure that there is no significant overlap 
between the two Gaussian wavepackets at the initial time, but not too small because 
we want to ensure that P and |Ψ|2 are significantly different. Hence, we will consider 
values of �∕a in the interval [0.2, 0.7]. The computed values of �int and �q , for differ-
ent distances LX , are shown in Fig. 5 as a function of the initial width �.

The important result of Fig. 5 is that, whatever the value of � , it is not possible 
to find a situation where the interference occurs before the system has converged to 
the quantum equilibrium. In other words, for the double slit experiment, all typically 
quantum physical phenomena occur after the Born rule has been established. Or, 
to put it differently, the subquantum dynamics displays no quantum effects such as 
interferences.

(14)LX(t) = �1 exp
(
−�2e

�3t
)
,

Fig. 3  Semi-logarithmic plots of the various functionals (see Sect.  3) used to quantify the distance 
between the probability density P and the squared modulus of the wavefunction |Ψ|2 , as a function of the 
time t (in units of � ), for � = 0.3a

4 Indeed, a Taylor expansion of Eq. (14) near t = 0 yields: L
X
(t) ≃ L

X
(0) (1 − �

2
�
3
t).
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A possible extension of the study presented in this section would be to consider 
three or more slits and check if it possibly increases the relaxation time beyond the 
quantum interference time. Experimental investigations in this direction have been 
performed recently [30, 31]. However, in the present work, we will rather focus on 
two other configurations: the harmonic oscillator and a linear potential truncated by 
a perfectly reflecting wall.

Fig. 4  Squared modulus of the wavefunction for � = 0.09a , at times t = 0 (left panel), t = 0.12� (middle 
panel), and t = 0.6� (right panel). Initially, only two peaks exist, one for each Gaussian wavepacket. At 
t = 0.12� , a third peak has appeared between the two initial ones: this event defines the interference time 
�int . At later times, several new peaks appear and form the full interference pattern

Fig. 5  Time of appearance of the interferences �int (red dots) and times of convergence to quantum equilibrium 

�X
q

 (shades of blue dots) associated with the different distances defined in Sect. 3, as a function of the initial 
width �∕a . All of the different times can be nicely fitted with a hyperbolic tangent function (dashed lines) of 
the type: �q(�) = �1 tanh(�2�

2 + �3) + �4 , where the �i are fitting parameters. For every value of � and for 
every distance LX , quantum equilibrium (Born’s rule) is reached before the appearance of quantum interferences 
(Color figure online)
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4.2  Harmonic Oscillator

The harmonic oscillator is perhaps the most important and studied system in 
quantum mechanics and is crucial to the development of quantum field theory. It 
is both interesting in itself and a common approximation to many physical sys-
tems. Here, we will further investigate the interplay between the establishment of 
the Born rule (quantum relaxation) and the appearance of typical quantum effects.

We consider the Schrödinger equation

where m is the mass of the particle and � the frequency of the oscillator. Normal-
izing space to x0 ≡ √

ℏ∕(m�) and time to t0 ≡ 2∕� , the Schrödinger equation 
becomes

This system of units amounts to taking � = 2 , ℏ = 1 and m = 1∕2 , so that the 
quantum diffusion coefficient is DQ = ℏ∕2m = 1 and the ground state energy 
E0 = m�2∕2 = 1.

We want to study the convergence to the quantum equilibrium when the initial 
particle probability density P is given by a Dirac distribution centred at the bot-
tom of the harmonic potential ( x = 0 ). The initial wavefunction is also a Gaussian 
of given width, but not necessarily the ground state of the system, hence it will 
display breathing oscillations while remaining Gaussian for all times. A similar 
study, but only considering a ground state wavefunction for the Schrödinger equa-
tion, was performed by Hatifi et al. [23].

In practice, our initial condition is as follows:

where A0 , B0 and a0 are appropriate constants that define the wavefunction’s width 
and phase. At any time t > 0 , the wavefunction will keep the same functional form, 
so that it can be written as:

with initial conditions A(0) = A0 , a(0) = a0 and B(0) = B0 . Note that the ground 
state corresponds to A0 = a0 = 0 and B0 = 2.

Injecting this ansatz into the Schrödinger Eq. (16), we obtain a system of first-
order differential equations, where the dot denotes differentiation with respect to 
time:

(15)iℏ
�

�t
Ψ(x, t) =

(
−
ℏ2

2m

�2

�x2
+

1

2
m�2x2

)
Ψ(x, t),

(16)i
�

�t
Ψ(x, t) =

(
−

�2

�x2
+ x2

)
Ψ(x, t).

(17)

Ψ(x, 0) =

(
B0

2�

) 1

4

exp

{
−
B0x

2

4
+ i

(
A0x

2

2
+ a0

)}
and P(x, 0) = �(x),

(18)Ψ(x, t) =

(
B(t)

2�

) 1

4

exp

{
−
B(t)x2

4
+ i

(
A(t)x2

2
+ a(t)

)}
,
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The solution to the above equations completely determines the wavefunction Ψ(x, t) , 
and hence the term b(x,  t) in Nelson’s Eq. (4): b(x, t) = [2A(t) − B(t)]x , so that the 
Nelson equation can be written as

The corresponding Fokker-Planck equation can be obtained using the Kram-
ers–Moyal expansion [32, 33] and reads as:

Supposing that the probability density is also Gaussian (which is an exact ansatz):

and injecting the above density into Eq. (21), one obtains that C(t) should obey the 
following equation

The convergence to the quantum equilibrium can be studied by investigating the con-
vergence of C(t) to B(t). To do so, we introduce the new variable �(t) = C(t)∕B(t) , 
which, from Eqs. (23) and (19), must be a solution of the Riccati equation

Hence, one needs to first solve the system of Eq. (19) to obtain B(t) and then inject 
it into Eq. (24) in order to obtain �(t) . The solution to Eq. (24) can be obtained 
pseudo-analytically and reads as [34]:

with the initial condition �(0) = ∞ , which corresponds to the situation where P is 
initially a Dirac delta function. Moreover, the system of Eq. (19) possesses the ana-
lytical solution [35]:

(19)

⎧
⎪⎪⎨⎪⎪⎩

Ȧ(t) =
B(t)

2
− 2A2(t) − 2,

ȧ(t) = −
B(t)

2
,

Ḃ(t) = −4A(t)B(t).

(20)dx(t) = [2A(t) − B(t)] xdt + dW(t).

(21)
�

�t
P(x, t) =

�

�x
{−[2A(t) − B(t)] x P(x, t)} +

�2

�x2
P(x, t).

(22)P(x, t) =

√
C(t)

2�
exp

(
−C(t)

x2

2

)
,

(23)Ċ(t) = −2C(t)[2A(t) − B(t)] − 2C2(t).

(24)�̇�(t) = 2B(t)𝛾(t)[1 − 𝛾(t)].

(25)�(t) = 1 +
�(t)

2 ∫ t

0
d� B(�)�(�)

, with �(t) = e−2 ∫ t

0
d�B(�)

(26)B(t) =
8B0

B2
0
+ 4 − (B4

0
− 4) cos(4t)

.



 Foundations of Physics (2023) 53:89

1 3

89 Page 14 of 28

In Fig. 6, we present the solution of Eqs. (19) and (24) for the initial condi-
tions A(0) = 0, a(0) = 0,B(0) = 0.5 and �(0) = ∞ , meaning, respectively, no ini-
tial phase, a wavefunction that is not the ground state of the harmonic oscillator, 
and a �-distributed probability P(x, 0). The phase function A and the width B of 
the wavefunction are both periodic in time, with period T = (�∕2)t0 = �∕� , equal 
to half the natural period of the harmonic oscillator 2�∕� (this is because they 
are quadratic quantities in x). In contrast, the ratio � = C∕B relaxes to � = 1 over a 
timescale �q . When this has occurred, then both P and |Ψ|2 are Gaussian functions 
of the same width and the Born rule is satisfied.

The purpose here is to compute �q for different values of B0 , i.e. different ini-
tial widths of the wavefunction, and to check whether or not it is possible to find 
a situation where the period of quantum oscillations T is shorter than the relaxa-
tion time �q . In the following, we will consider different initial inverse widths B0 
of the wavefunction, from B0 = 0.125 to B0 = 32 , corresponding to initial widths 
�0 =

√
2∕B0 from 0.25 to 4, in units of x0 . Note that, for the ground state, one 

has: �0 = 1 ( B0 = 2).
This can be done using several methods, like arbitrarily defining a cutoff value, so 

that the relaxation time is defined as the time when � reaches such value. Here, we 
shall use a similar, but subtler, technique. We first compute the root mean-square devi-
ation of � over a sliding window in time [36]. We construct a window, centred at the 
data point i, which contains n + 1 other data points between i − n∕2 and i + n∕2 , and 
compute the mean square deviation Θi of � inside this window using the expression

Fig. 6  Left panel: Time evolution of the phase functions A(t) and a(t), and the inverse width B(t) of the 
wavefunction Ψ . A(t) and B(t) are periodic with period T = (�∕2)t0 , while a(t) is monotonously decreas-
ing, in accordance with the second Eq. (19). Right panel: Time evolutions of the ratio �(t) = C(t)∕B(t) 
and of the function �(t) appearing in Eq. (25); � and � converge respectively to unity and zero over a 
relaxation timescale denoted �q
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where �i = �(ti) and 𝛾i =
∑i+n∕2

i−n∕2
𝛾j is the mean value of � inside the window. Typi-

cally, we take n = 10 . Hence, as �(t) approaches a constant value (here, � = 1 ), the 
function Θ will tend to zero. By choosing a threshold � , one can define the relaxation 
time �q as the time for which Θ < 𝜃.

To visualize this procedure, the evolutions of � and Θ (dashed blue) are rep-
resented in Fig. 7, for three values of the initial width �0 = 0.94 , 1.63, and 5.54. 
The convergence time is represented on the horizontal axis as the abscissa of the 
black dot, which is the point corresponding to Θ = � , where in the present case 
� = 5 × 10−4 . For the different values of �0 , the behavior of �(t) differs slightly, 
but the curve is always strictly decreasing, and no ambiguity arises for the deter-
mination of �q.

One may wonder about the dependence of the relaxation time on the threshold 
value � , but, as it appears in Fig. 7, Θ decays fast close to the convergence time, 
so one can expect this effect to be minor. To check this point, �q was computed 
using different values of threshold, ranging from � = 10−2 to � = 5 × 10−4 and its 
dependence on the initial width �0 is plotted in Fig. 8. For every threshold and 
for every value of �0 , the relaxation time �q is smaller than the period of quan-
tum oscillations T. In particular, we note the two limiting cases: (i) For �0 → 0 , 
then �q → 0 : this is rather natural, as it corresponds to the case where P and |Ψ|2 
already have the same vanishing width at t = 0 ; (ii) For large �0 , �q → �∕4 = T∕2 , 
in other words relaxation is completed in half an oscillation period.

Θ2
i
=

1

n + 1

i+n∕2∑
j=i−n∕2

(𝛾j − 𝛾i)
2,

Fig. 7  Evolution of �(t) (blue dashed curve) and its mean-square deviation Θ(t) (red solid curve) as a 
function of time (in units of t0 ), for three different values of the initial wavefunction width �0 . The cutoff 
value � = 5 × 10−4 is represented as a horizontal line which cuts the curve Θ(t) at t = �q , defining the 
relaxation time. We note that �q is always smaller than the period T = (�∕2)t0 of the harmonic oscillator 
(also represented on the abscissa axis), but increases when �0 increases (Color figure online)
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The limit �q → �∕4 , obtained for large initial dispersions, can be recovered 
analytically as follows. For small B0 , corresponding to large �0 , the function B(t) 
becomes [see Eq.(26)]:

so that, from Eq. (25): �(t) ≃ exp[−B0 tan(2t)] which goes to zero when t → �∕4.
All in all, these results show that relaxation to quantum equilibrium (Born’s 

rule) occurs much faster than an oscillation period of the quantum oscillator, and 
is completed at the latest over half such a period. As in the double-slit case, the 
system will always reach the quantum equilibrium before quantum phenomena 
become observable, preventing the possibility of observing a situation where the 
Born rule does not hold.

So far, we considered wavefunctions that are Gaussians, albeit not necessar-
ily the ground state of the harmonic oscillator. To end this section, we now turn 
to the case where Ψ represents an excited state. In this case, the wavefunction 
possesses nodes (zeroes), leading to singularities (asymptotes) in the velocity 
field b(x, t), which becomes infinite at the location of the nodes. These singulari-
ties constitute infinite barriers that the trajectories cannot cross. For instance, for 
the first excited state of the oscillator, there is one singularity at x = 0 , where 
limx→0± b(x) = ±∞ . Hence, a particle approaching zero from the right ( x > 0 ) will 
develop an ever increasing velocity directed in the positive x direction, and will 
never manage to cross the origin. Similarly, for a particle approaching zero from 
the left ( x < 0).

This is illustrated in Fig. 9, where the initial distribution P is a Dirac delta func-
tion located at x = −1 , in the centre of the left lobe of the wavefunction density. 
At t = 1 (right panel), the initial particle distribution has considerably spread, but 

B(t) ≃
2B0

1 + cos(4t)
=

B0

cos2(2t)
,

Fig. 8  Evolution of the quantum relaxation time �q with respect to the initial width �0 of the wavefunc-
tion, for different thresholds � , ranging from 1.0 × 10−2 to 5.0 × 10−4 (shades of red dots). For each 
threshold, the value of �q increases with �0 and saturates at �q = �∕4 (dotted red line). Hence, the conver-
gence time is always at least twice as small as the quantum oscillator period T = �∕2 (blue dashed line) 
(Color figure online)
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it has not crossed the barrier at x = 0 . We note that this result is in disagreement 
with a similar simulation of Hatifi et  al. [23], who found numerically that the 
barrier is eventually crossed and full relaxation is observed. Nevertheless, some 
important differences exist: firstly, Hatifi et  al. [23] simulate a single trajectory 
and appeal to the ergodic theorem to reconstruct the particle density P; secondly, 
their final simulation time tfinal = 1000 is much longer than ours (this is because 
they have to average on time slices to compensate for the presence of a single 
trajectory). But the main difference is in the time step, which is dt = 0.01 in their 

Fig. 9  Particle probability density P(x,  t) (dashed blue line) and squared wavefunction |Ψ|2 (red solid 
line) at times t = 0 (left panel) and t = 1 (right panel). Time is expressed in units of t0 and space in units 
of x0 . The wavefunction corresponds to the first excited state of the harmonic oscillator. The initial par-
ticle distribution is a Dirac delta function centred at x = −1 and cannot cross the barrier located at the 
origin. The time step is dt = 10−4 (Color figure online)

Fig. 10  Particle probability density P(x,  t) (blue histograms) and squared wavefunction |Ψ|2 (red solid 
line) at times t = 50 , for three values of the time step: dt = 0.1 (left panel), dt = 10−3 (middle panel), 
and dt = 10−6 (right panel). Time is expressed in units of t0 and space in units of x0 . The wavefunction 
corresponds to the first excited state of the harmonic oscillator and the particles are initially all located 
at x = 1 . For the smallest time step virtually no particles have crossed the barrier situated at x = 0 (Color 
figure online)
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simulation and dt = 10−4 in ours. Indeed, if the time step is large enough, the parti-
cle can sometimes cross the barrier, because it cannot “see" it during times shorter 
than dt. This is confirmed by three long-time simulations using different values of 
dt (see Fig. 10), which show that, as the time step decreases, fewer and fewer parti-
cles cross the barrier. Hence, in the limit dt → 0 , no crossings should be observed.

The result of Fig.  9 may seem in contradiction with what was claimed earlier, 
namely that the relaxation time �q is smaller than any typical quantum timescale. 
In Fig. 9, relaxation never occurs, so effectively �q → ∞ . To better understand this 
issue, we have performed one further simulation (see Fig. 11) for an initial wave-
function that is equal to the first excited state Ψ1(x) , plus a small perturbation pro-
portional to the ground state Ψ0(x) : Ψ(x, 0) = cos(0.1◦)Ψ1(x) + sin(0.1◦)Ψ0(x) (note 
that sin(0.1◦) ≈ 0.0017 ≪ 1 ). In this case, relaxation takes place again and occurs on 
a timescale �q ≈ 2.8t0 , shorter than the oscillator period 2�∕� = �t0 (remember that 
� = 2∕t0 in our units). In summary, the relaxation time �q is indeed always smaller 
than the typical oscillator timescale, except in the special case of an initial wave-
function that is an eigenstate of the system and possesses one or more nodes.

4.3  Uniform Gravity Field

4.3.1  Ultracold Neutron Experiments

Let us now consider the case of a particle in a constant field, like the one generated 
by the gravitational attraction of the Earth. These types of problems are motivated 

Fig. 11  Time evolution of the distance LH(t) for an initial state that is a superposition of the ground 
state Ψ0(x) and the first excited state Ψ1(x) : Ψ(x, 0) = sin(0.1◦)Ψ0(x) + cos(0.1◦)Ψ1(x) (the correspond-
ing density is shown in the inset). Initially, the particles are localized at x = 1 (blue vertical line in the 
inset). Time is expressed in units of t0 and space in units of x0 . Relaxation is completed for t = �q ≈ 2.8t0 , 
shorter than the oscillator period 2�∕� = �t0 (Color figure online)
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by ongoing experiments on the gravitational response of antimatter, in which anti-
hydrogen atoms fall in the gravity field of the Earth and are annihilated at the lower 
surface of the device [37, 38]. By measuring the duration of the fall, it will be pos-
sible to estimate the gravitational acceleration of antimatter ḡ , and check whether it 
is identical to that of standard matter g.

When the quantum nature of the anti-hydrogen atoms is taken into account, more 
subtle phenomena can arise, leading to the quantum reflection of the atoms at the 
surface through the Casimir-Polder potential [39] and the subsequent formation of 
an interference pattern. Exploiting this effect can considerably improve the estima-
tion of ḡ , because of the great precision with which frequency differences can be 
measured [40–42].

Similar experiments were performed over two decades ago using free-falling 
ultracold neutrons confined between a lower reflecting mirror and an upper absorb-
ing surface [18], and led to the observation of the quantized gravitational energy 
levels of the neutrons. These techniques were further used to realize high-precision 
gravity-resonance spectroscopy studies on ultracold neutrons [43], which were 
recently exploited to search for anomalous gravitational interactions [44]. Gravita-
tional experiments that use cold hydrogen atoms are also envisaged [45]

Here, we will focus on the relaxation to quantum equilibrium of a quantum parti-
cle (typically, a neutron) falling in the gravitational field of the Earth from a height 
h. The initial wavefunction is a Gaussian of width � centered at x = h , where x is 
the coordinate representing the altitude with respect to the lower reflecting mirror, 
whereas the particles are initialized as a Dirac delta function at the same height h. 
After bouncing on the mirror, the wavefunction develops quantum interferences. 
Our purpose will be again to investigate whether quantum relaxation and the estab-
lishment of the Born rule occurs before or after the formation of the quantum inter-
ference pattern.

4.3.2  Gravitational Quantum States

Assuming a constant gravitational force at the surface of the Earth, the correspond-
ing gravitational potential is mgx, where m is the mass of the neutron, g the free-fall 
acceleration, and x the altitude with respect to the reflecting mirror, located at x = 0 . 
The corresponding wavefunction is a solution of the time-dependent Schrödinger 
equation

with boundary conditions Ψ(x = 0, t) = Ψ(x → ∞, t) = 0 , for all times. The system 
is then bound and admits a discrete set of eigenstates. The initial wavefunction is 
given by

(27)iℏ
�

�t
Ψ(x, t) =

(
−
ℏ2

2m

�2

�x2
+ mgx

)
Ψ(x, t),
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with Θ(x) the Heaviside function, ensuring that the wavefunction is strictly zero for 
x ≤ 0 . We choose 𝜁 ≪ h , so that the wavefunction is correctly normalized.

The eigenstates �n of the problem are obtained by solving the stationary 
Schrödinger equation

We further define dimensionless units of length, energy and time as follows:

Using these units, the eigenfunctions read as:

where Ai(x) denotes the first Airy function and Ai�(x) its derivative. Because the 
eigenenergies are obtained by imposing �n(0) = 0 , they correspond to the zeros of 
the Airy function Ai , which are well-known and have been tabulated [46]. It is also 
possible to convert each En to a corresponding “eigenaltitude" hn above the mirror 
surface, by setting En equal to the potential energy mghn , leading to: hn = En∕mg . 
The presence of an upper absorbing plate ensures that only a finite number nmax of 
eigenstates can be present simultaneously in the device. The first ten eigenfunctions 

(28)Ψ(x, 0) = Θ(x)
1

(2��2)
1

4

exp

[
−
(x − h)2

4�2

]
,

(29)
(
−
ℏ2

2m

�2

�x2
+ mgx

)
�n(x) = En�n(x).

(30)x0 =

(
ℏ2

2m2g

) 1

3

, �0 = mgx0 =

(
ℏ2mg2

2

) 1

3

, t0 =
ℏ

�0
=

(
2ℏ

mg2

) 1

3

.

(31)�n(x) = Θ(x)
Ai

(
x − En

)

Ai�(−En)
,

Fig. 12  Representation of the first ten gravitational quantum states �n (red solid lines), which are given 
by the same Airy function Ai(x) shifted of an amount equal to En , where En is the n-th energy eigenvalue; 
see Eq. (31) for the full formula. The horizontal axis represents the altitude x, in units of x0 . The blue line 
represents the gravitational potential mgx (Color figure online)
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are represented in Fig.  12, together with the eigenenergies/eigenaltitudes and the 
gravitational potential mgx.

Using the eigenbasis (31), the solution to the Schrödinger Eq. (27) can be writ-
ten as

where the cn are the coefficients of the expansion [47]. Their expression can be 
obtained semi-analytically under the assumption that the width � of the wavepacket 
is small compared to its altitude h [48]:

Some details of the derivation are given in the Appendix 1.

4.3.3  Relaxation to Quantum Equilibrium

In order to investigate the relaxation to quantum equilibrium, we take an initial prob-
ability distribution P that does not follow the Born rule, but is rather given by a 
Dirac delta function: P(x, 0) = �(x − h) , so that all particles are at the same altitude 
h from the mirror. In the forthcoming simulations the altitude varies from h = 1.50 
– which is lower than the ground-state eigenaltitude ( h0 = 2.34 ) – to h = 5 . The 
width of the initial wavefunction is fixed and equal to � = 0.09 . A schematic rep-
resentation of the initial system, along with a typical random trajectory obtained by 
solving Nelson’s stochastic equation, is shown in Fig. 13.

(32)Ψ(x, t) =

nmax∑
n=0

cn�n(x)e
−iEnt,

(33)c
n
=

(8��2)
1

4

Ai�(−E
n
)
Ai
(
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n
+ �4

)
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[
�2
(
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n
+

2

3
�4
)]

.

Fig. 13  Schematic view of the physical system under study. The initial wavefunction (grey curve on the 
left) is a Gaussian of width � , centered at an altitude h from the mirror (hatched horizontal line at the 
bottom). The different eigenaltitudes (dashed horizontal lines) are represented for n = 0, 1,⋯ nmax , where 
nmax is the highest-energy state allowed by the upper absorbing plate. The trajectory of a typical particle 
(blue line), initially located at x = h , shows the presence of bounces, not only at the level of the mirror, 
but also in correspondence of the various eigenaltitudes (Color figure online)
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The LH distance as a function of time is shown in Fig. 14 (upper panel) and dis-
plays a peculiar behaviour. First, it decreases rather abruptly until a time �1 , then 
it increases up to time �2 , and finally decreases again for t > 𝜏2 . In order to under-
stand this behaviour, the squared modulus of the wavefunction |Ψ|2 and the prob-
ability density P are also shown in Fig. 14 (lower panels) for three different times 
t = 0.005 , t = 0.07 and t = 0.5 , corresponding to three different phases of the evo-
lution: (i) t < 𝜏1 , (ii) 𝜏1 < t < 𝜏2 , and (iii) t > 𝜏2 . During the first phase, both |Ψ|2 
and P remain approximately Gaussian and their distance is progressively reduced, 
as it was found for the harmonic oscillator in Sect. 4.2. However, after �1 , interfer-
ences start building up in |Ψ|2 , but not in P, so that the distance between such two 
functions increases again. For t > 𝜏2 , the interference pattern is fully formed and the 
particle distribution again converges towards |Ψ|2.

Finally, for even longer times, of the order of the relaxation time �q ≈ 0.5 , the LH 
distance goes to zero and the Born rule is eventually satisfied (Fig. 14, upper panel). 
Hence, it appears that some quantum interference phenomena do occur before the 
quantum relaxation is fully completed, in particular during the intermediate phase 
where 𝜏1 < t < 𝜏2 , where the distributions |Ψ|2 and P start diverging again. During 
that phase, the interference pattern forms too quickly for the particle distribution 
to catch up with the wavefunction. This type of effect was not observed in the two 
other situations (double slit and harmonic oscillator) that were analysed earlier in 
the present work.

Fig. 14  Upper panel: Time evolution of the distance LH(t) for an initial state with h = 1.5 and � = 0.09 . 
The shaded colours represent the three different phases of the evolution described in the main text. The 
two vertical dashed lines show the times �1 and �2 between which the LH distance increases. The dashed 
horizontal line corresponds to the level below which LH cannot go, for reasons due to the numerical inte-
gration (errors due to the finite number of particles and the interpolation method). Full convergence – 
hence establishment of the Born rule – is achieved for a relaxation time �q ≈ 0.5 , significantly larger than 
�2 . Lower panels: Squared modulus of the wavefunction |Ψ|2 (red solid curve) and particle distribution 
P (blue dashed curve) at three different times, t = 0.005 (left), t = 0.07 (middle), and t = 0.5 (right) (in 
units of t0 ), corresponding to the three regions visible in the upper panel (Color figure online)
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In order to show that the time �1 (when the distance between |Ψ|2 and P 
starts increasing again) actually coincides with the time of appearance of the 
early interference pattern �int , we need a recipe to estimate the latter. The proce-
dure runs as follows. First, we normalize the squared modulus of the wavefunc-
tion so that its maximum is equal to unity, and search for extrema in the region 
0 < |Ψ|2∕max |Ψ|2 < 0.6 , thus focussing on the tail of the wavefunction (shaded 
green area in Fig.  15). Then, we define the prominence of a peak as the height 
between two neighbouring extrema (a maximum and a minimum). We consider that 
interference occurs when at least two peaks have appeared with prominence larger 
than a threshold value p. This defines the appearance time of the interference pat-
tern, �int . This procedure is illustrated in Fig.  15, where the wavefunction at the 
interference time is plotted for three values of p.

Now, we can compare the interference time �int with the time �1 at which the 
LH distance starts increasing. The result is plotted in Fig. 16, including error bars 
accounting for different choices of the prominence p. As expected, these two times 
are very similar, confirming that the increasing distance between |Ψ|2 and P between 
�1 and �2 is due to the formation of an early interference pattern in the former, but 
not in the latter.

In summary, simulations of a quantum particle falling in a uniform gravitational 
field have shown that quantum interference phenomena could indeed be observed 
before the Born rule is satisfied, in contrast to what was found for the double slit and 
harmonic cases. This opens the way to possible experimental verifications of the 
Born rule using gravitational quantum states of ultracold neutrons [18] or hydrogen 
atoms [45], which, in the case of neutrons, have reached extremely high accuracy 

Fig. 15  Normalized squared modulus of the wavefunction as a function of the distance x from the lower 
mirror, for an initial height h = 1.50 (in units of x0 ) and three values of the prominence: p = 0.0025 (left 
panel), p = 0.05 (middle panel), and p = 0.152 (right panel). Interference is said to occur when at least 
two peaks are present in the green shaded region and have a prominence higher than p. The peaks are 
highlighted by a red cross on the curves. The corresponding interference time �int depends on the chosen 
value of p and is also indicated on the figure (Color figure online)
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levels [44]. We recall that we expressed our results in units of x0 = 5.87μm for 
distances and t0 = 1.09ms for times, see Eq. (30). Hence, for the case of Fig. 14, 
a significant discrepancy from the Born rule should still be observable around 
t ≈ 0.2t0 ≈ 0.2ms , if all neutrons were initially perfectly localized at an altitude 
h = 1.5x0 ≈ 8.8μm . This level of accuracy in the time resolution should be attain-
able with current experimental setups.

5  Conclusion

The Born rule was introduced by Born in 1926 in order to provide an interpreta-
tion of the wavefunction that appears in the Schrödinger equation. Interestingly, 
in the original paper by Born [2], the rule appears in a note added in proofs, and 
is expressed in words rather than mathematically.5 Such simple rule stands alone 
with respect to the mathematical machinery of quantum mechanics, but is of course 
extremely important, as it bridges the gap between the abstract mathematical theory 
and the interpretation of actual experiments.

A question that has been raised by several researchers is whether the Born rule 
should be considered as fundamental, or rather an approximation. In particular, 
Valentini [7, 14] suggested that the Born rule plays the same role as thermal equi-
librium in classical statistical mechanics. Just like an out-of-equilibrium classical 

Fig. 16  Ratio of the interference time �int and the time of increase of the LH distance �1 (black squares) 
for different altitudes h and an intermediate value of the prominence, p = 0.05 , see Fig. 15. The “error 
bars” are obtained using the upper and lower values p = 0.0152 and p = 0.0025 . All ratios are close to 
unity, indicating that the two times relate to the same physical phenomenon (Color figure online)

5 The footnote reads as [2]: Anmerkung bei der Korrektur: Genauere Uberlegung zeigt, daß die Wahr-
scheinlichkeit dem Quadrat der Ψ proportional ist. (Note added in proofs: More careful consideration 
shows that the probability is proportional to the square of Ψ).
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system quickly relaxes towards a Maxwell-Boltzmann equilibrium, a quantum 
system may exist in a “subquantum" state where the Born rule is not satisfied. We 
always observe the validity of the Born rule only because this relaxation to quantum 
equilibrium is extremely fast.

Nelson’s stochastic version of quantum mechanics provides an ideal arena to test 
such subquantum dynamics, as it allows to initialize the system in an out-of-equilib-
rium state that does not respect the Born rule. Due to the random nature of Nelson’s 
dynamics, the Born rule is quickly attained over a timescale that depends on the system 
under study. (The same is true for the Bohm-de Broglie theory, but the latter being 
deterministic, it requires some sort of coarse graining in order to recover Born’s rule).

In the present work, we have investigated numerically this relaxation to quantum 
equilibrium for three relevant cases: a standard double-slit interference setup, a har-
monic oscillator, and a quantum particle in a uniform gravity field, such as ultracold 
neutrons in the gravitational field of the Earth. For all cases, the Nelson stochastic tra-
jectories are initially localized at a definite position, thereby violating the Born rule.

For the double slit and harmonic oscillator, we found that typical quantum phenom-
ena, such as interferences, always occur well after the establishment of the Born rule. In 
contrast, for the case of quantum particles free-falling in the gravity field of the Earth, 
an interference pattern is observed before the completion of the quantum relaxation. 
The different behavior in the latter case is likely to arise from the nonlinearity induced 
by the reflecting mirror. If that is the case, a similar behaviour should be observed for 
generic non-quadratic Hamiltonians.

These findings may pave the way to experiments that are capable of discriminating 
standard quantum mechanics, where the Born rule is always verified, from Nelson’s 
theory, for which an early subquantum dynamics may be present before full quantum 
relaxation has occurred. One may argue that particles in our labs had a long and violent 
astrophysical history since the Big Bang, with ample time to relax to quantum equilib-
rium, so that it would be extremely difficult to observe any deviations from the Born 
rule at the present epoch. This is the line of argument followed by Valentini [49] in the 
context of the Bohm-de Broglie theory.

However, one might speculate on different scenarios. For instance, we could think 
of a decay-type experiment (beta or alpha decay, neutron or proton emission, etc.) in 
which a quantum particle (electron, positron, helium nucleus, neutron, proton...) is cre-
ated from a fundamental process arising – for instance, but not exclusively – from the 
weak interaction. In this case, the particle might be born in a non-equilibrium situa-
tion where Born’s rule has not had enough time to be established. Another example is 
the creation of a particle-antiparticle pair (e.g., electron-positron) from a photon. This 
occurs in nuclear physics when a high-energy photon interacts with the nucleus, ena-
bling the production of an electron-positron pair without violating the conservation of 
momentum. Just after the pair creation, the electron or positron should be in a non-
equilibrium state. Of course, these are somewhat speculative proposals, but the findings 
put forward in this work at least suggest a viable way to test the existence of a subquan-
tum dynamics in laboratory experiments.
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Appendix A Derivation of the c
n
 Coefficients

We sketch here the procedure used in Ref. [42] to decompose the wavefunction

on the basis of the eigenfunctions of the Hamiltonian (29):

Writing Ψ(x, 0) =
∑

n cn�n(x) , the problem is reduced to finding an expression of the 
coefficients

where the asterisk denotes complex conjugation.
When the width � of the Gaussian is small enough with respect to h, the lower 

bound of the integral can be replaced by −∞ and the cn have an analytical expression:

which is just the expression of Eq. (33). Note that we used the following identity:
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