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Abstract
The relevance of gravitational boundary degrees of freedom and their dynamics 
in gravity quantization and black hole information has been explored in a series 
of recent works. In this work we further progress by focusing keenly on the genu-
ine gravitational boundary degrees of freedom as the origin of black hole entropy. 
Wald’s entropy formula is scrutinized, and the reason that Wald’s formula correctly 
captures the entropy of a black hole examined. Afterwards, limitations of Wald’s 
method are discussed; a coherent view of entropy based on boundary dynamics 
is presented. The discrepancy observed in the literature between holographic and 
Wald’s entropies is addressed. We generalize the entropy definition so as to han-
dle a time-dependent black hole. Large gauge symmetry plays a pivotal role. Non-
Dirichlet boundary conditions and gravitational analogues of Coleman-De Luccia 
bounce solutions are central in identifying the microstates and differentiating the 
origins of entropies associated with different classes of solutions. The result in the 
present work leads to a view that black hole entropy is entanglement entropy in a 
thermodynamic setup.

1 Introduction

The difficulty in cracking the black hole information (BHI) paradox [1, 2] (see, 
e.g., [3] for a recent review on the paradox) is attributed to several factors. One may 
attribute this difficulty, among other things, to the intricacies in quantizing gravity, 
given that quantized gravity must be a proper framework for tackling the paradox 
(and some other long-standing problems). Another factor is the enigma of identify-
ing the black hole microstates that are responsible for the black hole entropy (see, 
e.g., [4] for a review). Still another reason can be found in that the boundary dynam-
ics was incompletely dealt with in the past; a more recently explored solution of the 
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BHI puzzle pivots on the boundary dynamics [5–9]. These considerations are in fact 
related, as will be discussed in more detail. The boundary configuration induces the 
corresponding gravitational analogue of a Coleman-De Luccia (CdL) bounce solu-
tion.1 Non-perturbative bounce physics as well as boundary dynamics is indispensa-
ble for a proper understanding of BHI.

The present work is not directly about gravity quantization. It is nevertheless the 
issues encountered while quantizing gravity that provide crucial threads to follow in 
tracking not only the quantization itself but also several long-standing puzzles such 
as BHI paradox. To illustrate, one way of connecting different moving parts is as 
follows. As well known, gravity has a large amount of gauge symmetry, diffeomor-
phism: large gauge symmetry as well as regular one. They both play important roles 
in quantization, with the former crucial for the present entropy analysis. The large 
gauge symmetry is also behind a curtain of several recently analyzed phenomenon. 
For instance, it provides one of the key rationales for considering non-Dirichlet 
boundary conditions associated with non-trivial boundary dynamics [7]. Conven-
tionally, a Dirichlet boundary condition has been used in gravitational theories and 
is a crucial component in defining an isolated system. Once one includes non-Dir-
ichlet conditions, there is a host of issues including the crucial task of determining 
the physical sector of the theory, a proper handling of which is an essential part of 
quantization. For the present work we focus on the attributes of the large gauge sym-
metry and their implications for the black hole microstates.

We anticipate that the large gauge symmetry and boundary degrees of freedom 
should be responsible for the black hole microstates and their associated entropy. 
What makes this identification possible is the fact that the boundary degrees of 
freedom are part of the gravitational degrees of freedom. This view was explained 
in earlier works of [5–8] (and is in spirit of [17]): a given background of the bulk 
theory is reduced by the physical state condition (see [18] for a linear-level analysis 
of a dS background), and the reduced action describes the fluctuation modes of the 
physical degrees of freedom. To rephrase, the boundary theory comes to describe 
the fluctuations - which is part of the bulk theory physics - around the onshell back-
ground geometry. This way, the boundary description becomes dual to the bulk 
description. In other words, the former is the latter for the onshell physics. Note that 
there is a subtle but crucial difference between this and the standard viewpoint of 
AdS/CFT-type dualities in that in our view the boundary degrees of freedom are not 
alien to those of the bulk: they are part of the bulk theory.2

The main goal of the present work at the technical level is to generalize Wald’s 
entropy and conduct an in-depth study that aims at paradigmatically establishing 
a generic appearance of a Page curve [19] from the first principles of pure - viz, 
without relying on AdS/CFT - gravitational physics. This undertaking inevita-
bly involves conceptual aspects of the BHI paradox. BHI paradox is multifaceted 

1 The same name,“bounce,” is used for the “Lorentzian bounce solutions” in the gravitational context 
[10–16]. The main conceptual difference of our view is the instontonic physics aspect of a CdL bounce 
solution.
2 For how the worldvolume theory manifests, see sect. 3.3 of [5].
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problem. For instance, it can be formulated as a special case of the “second law 
puzzle” [20]. B. S. Kay’s interesting series of papers [20–24] put forth a proposal of 
entropy expected to obey the second law of thermodynamics, the so-called matter-
gravity entanglement entropy. It is enlightening to see that entanglement between 
different sets of entities is expected to lead to different behaviors, namely, a Page 
curve vs. the second law.

One convenient framework for studying BHI is the standard quantum field-the-
oretic scattering setup. However, a more inclusive framework will be useful for a 
wider range of tasks, and we believe that a Schrodinger setup provides a suitable 
conceptual framework.3 In a Schrodinger setup a transition amplitude between arbi-
trary initial and final states is considered, with a scattering amplitude as a special 
case. With this setup one can pinpoint where the full quantum-gravitational account 
of BHI deviates from the semi-classical or Hawking’s analysis. In brief, it is precise 
identification and specification of the initial (and final) vacuum state(s) that lead to 
the evaporating process’ dependence on the initial collapse. Central to the specifica-
tions of the initial configurations are the boundary degrees of freedom (again, the 
degrees of freedom referred to here are genuine gravitational degrees of freedom 
but not directly those of the dual gauge theory, although they should ultimately be 
identified.): the very live and active degrees of freedom on the boundary are a chief 
component of specifying the vacuua and excited states. These boundary configura-
tions will result in various corresponding bounce solutions, which in turn mediate 
the black hole formation and evaporation process.

Remarks on black hole hair will be useful. There are different types of hair. At the 
quantum level, large gauge transformations (LGTs) transform the Fock space and 
thereby introduce additional Fock states associated with the transformed solutions. 
This is because the transformed states should be counted as physically inequivalent 
to the original ones. (Another way of saying this is that the large gauge symme-
try is part of the moduli.) It is this hair of the microstates that should be responsi-
ble for black hole entropy. Consideration of LGS is accompanied by adoption of a 
non-Dirichlet boundary condition. The boundary excitations are the microstates, and 
they give the same coarse-grained bulk geometry. These states are counted by black 
hole entropy, which is analogous to the fact that statistical entropy counts the micro-
states of gas particles whose property is specified by several global variables such 
as temperature and pressure. There is also hair arising from quantum corrections. In 
other words, a different kind of the hair arises from the feature that makes QFT dif-
ferent from the first-quantized framework: the Lagrangian (thus the field equations) 
is shifted by quantum corrections. We refer to [8] for more detailed discussion of 
different kinds of the hair.

A word of clarification on ’generalization’ is in order. As well known there are 
several different ways of getting the ‘area law’ of black hole entropy. One of them 
is based on Noether procedure, pioneered by Wald [26]. To better understand it we 
compare it with the traditional Euclidean action method [27]. The two methods are 

3 In this work we use the setup only at a conceptual level. See [25] for a recent analysis in which BHI 
was studied by employing the setup.
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complementary: the former makes clear certain black hole physics, such as Page 
curves. The latter is applicable to a time-dependent solution, provided that it satis-
fies a Dirichlet boundary condition. It is not clear how to apply the Wald’s method 
to a solution with time-dependence that cannot be ”gauged away” by an LGT (see 
the body). For such a solution one should presumably follow the Euclidean action 
method, but with suitable boundary terms replacing the standard York-Gibbons-
Hawking (YGH) term. This proposal is the highest-level generalization; it is at a 
conceptual level, and actually finding ‘suitable boundary terms’ is likely to be a non-
trivial task. Fortunately, however, it should be possible to understand essential phys-
ics by restricting to time-dependent solutions that are asymptotically flat. For this 
class of solutions, by ‘generalization,’ we do not mean that a different formula be 
employed to compute the Wald’s entropy. Instead, the generalization involves two 
facets. The first is the intermediate steps to derive the Wald’s formula: we base the 
derivation on LGS. The second is a unification aspect. There is a sense in which the 
Euclidean thermal action method with a Dirichlet boundary condition can actually 
be understood as a special case of entanglement entropy computation - which later 
makes a connection with the Noether method based on LGS - with more general 
boundary conditions. (However, the most general case will again have to rely on the 
Euclidean method, as stated above.)

In the spirit of the highest-level generalization one can interpret the Wald’s 
method as in line with the Euclidean action method. In other words the Wald’s 
method is a particular way of evaluating the action which is nothing but the leading 
part of the free energy. This clarifies two things that the Wald’s approach did not 
address: the integration range of the action and overall normalization of the Noether 
charge. Our contention is that what was referred to as the ‘interior boundary’ - which 
is ultimately identified as the event horizon - in Wald’s work [26] naturally arises by 
considering the Noether procedure as part of an action-evaluating procedure. With 
that, the action integral comes to range from the event horizon to infinity. Similarly, 
the overall normalization of the charge is automatically achieved.

The observations above unravel the essence of black hole entropy. While black 
hole entropy can be interpreted as thermodynamic entropy, it is not entirely clear 
what the ‘environment,’ i.e., the thermal bath, is. There has also been expectation 
that the black hole entropy must be entanglement entropy (see, e.g., [4]). What are 
the entities that are entangled? We show by filling some gaps in these views that 
both of these views are correct: for the former we identify the environment as the 
degrees of freedom outside a (stretched) horizon. For the latter it must again be the 
(stretched) horizon that divides the entangling bodies. We show that it is the non-
Dirichlet sector boundary dynamics that provides the missing links. For both views 
the boundary degrees of freedom and their dynamics are the key.

The rest of the paper is organized as follows.
In sect.  2, we discuss our perspective on the semi-classical approach, Firewall 

[28], and a Page curve. At the conceptual level our discussion is staged on a Schro-
dinger setup. With the setup it is straightforward to point out the critical limitation 
of the semi-classical approach. One can also put a finger on where the full quantum 
gravitational account of BHI deviates from the Hawking’s analysis - which is the 
purpose of employing the setup to begin with. We take up several folklore statements 
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against Firewall that we find obscure and/or debatable. Additional Firewall-support-
ing arguments from the boundary kinematics’ viewpoint, including a typicality argu-
ment, are offered. We wrap up by discussing genericity of a Page curve, which arises 
from the genericity of a bounce solution. In sect. 3 we generalize the Wald charge to 
a time-dependent solution. We identify the black hole microstates as the states asso-
ciated with gravitational boundary configurations. What makes this identification 
possible is, as previously stated, the fact that the boundary degrees of freedom are 
part of the gravitational degrees of freedom, i.e., genuine gravitational degrees of 
freedom. The identification of the boundary degrees of freedom as black hole micro-
states naturally leads to overhaul of several related subjects. This includes Wald’s 
entropy charge and the roles of a large gauge transformation (LGT).4 Not unrelated 
to the issue of an isolated system, the standard Noether procedure is implemented 
with the fields satisfying Dirichlet boundary conditions. However, it is recently seen 
that non-Dirichlet conditions are as crucial and indispensable. To explore the in-
depth physical meaning of the Wald’s formula, we consider configurations obtained 
by performing LGTs on a given configuration. For an asymptotically flat black hole 
spacetime, we discuss why the Wald’s formula correctly captures the entropy. The 
LGS-based definition of entropy also reveals a limitation of the Wald’s approach 
that may well be behind the discrepancy [29–32] between holographic and Wald’s 
entropies. Mathematical attributes of a Lie derivative play an important role in the 
key analysis in sect. 3. The observations in the present work imply that black hole 
entropy is entanglement entropy in a thermodynamic setup. In sect. 4 we conclude 
with a discussion of a few points to be tied up in future works.

2  On BHI, Firewall, and Page Curve

In this section we discuss several subjects revolving around black hole hair and 
entropy before carrying out a more technical analysis in the subsequent section. 
Although there is no shortage of discussions of these topics in the literature, we 
offer new insights based on the foliation-based approach of gravity quantization [33, 
34]. We split this into three tasks.

Firstly, we zero in on the deficiency of the semi-classical analysis that led to the 
evaporating process’ independence of the initial collapse state. As previously noted, 
the deficiency lies in that the metric is not quantized, thus overlooking in particu-
lar the fact that the in- and out- vacua may not be equivalent. We corroborate the 
view put forth in [6, 8] regarding how the full quantum gravitational account avoids 
this problem. Although we ultimately narrow down to a scattering amplitude to 
remedy the deficiency, for a broader perspective, it is useful to start with a more 
general transition amplitude. In principle, one may compute a transition amplitude 
between arbitrary initial and final states, which can be written in informal notation 
as < final|initial > . Here, by states are meant the Schrodinger picture states. The 

4 In some of the comments, replacing LGS by asymptotic symmetry would be more appropriate; we will 
not be concerned with this distinction.
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following connection to a Coleman-De Luccia (CdL) bounce solution (or, more pre-
cisely, its gravitational analogue5) will be established below:

With this, the amplitude of one’s interest can be written as

The second task concerns Firewall. We debate several common statements made in 
the spirit of the semi-classical approach. In the Firewall literature, avoidance of BHI 
paradox (and Firewall) was mostly attempted within the semi-classical description. 
In contrast, the approach of [6–8] and present work is such that within the semi-
classical framework the information is indeed lost; it takes full quantum gravity to 
avoid BHI paradox.

The third task is to argue the relevance of a bounce solution to a Page curve. 
Given an initial state there should be a wide variety of final states that can be inter-
preted as an evaporating process. In particular, there will be a class of solutions 
that lead to the transition without being over-determined by the final state condi-
tions. They should be gravitational analogues of a Coleman-De Luccia bounce solu-
tion. The boundary dynamics and LGS make the meaning and feasibility (and/or 
likelihood) of an isolated system sophisticated. Information can leak out, which is 
mediated by a bounce solution, for an un-isolated system, which should satisfy a 
non-Dirichlet boundary condition. To make things intertwined, a generic bounce 
solution should have a non-Dirichlet boundary condition. Not unrelated, the charge 
of an LGS-transformed system will not be conserved: the non-conservation means 
the current flows across the asymptotic boundary [7].

2.1  Limitation of Semi‑classical Analysis

Although a semi-classical analysis has its own virtues, care must be exercised in 
assuming its range of validity. A statement commonly found in the literature is that 
a semiclassical description should be valid until the size of the black hole reaches a 
Planckian scale. As an infalling object approaches the horizon, however, its kinetic 
energy will become very large and Planckian physics will be involved.

To our view, the best way to see why the semi-classical approach adopted 
by Hawking led to BHI loss is to contrast it against a full quantum gravitational 
description and pinpoint where the latter deviates from the former.6 In the semi-
classical framework one quantizes the matter fields, treating the metric as a fixed 
background. In addition, only the vacuum associated with the Dirichlet boundary 

(1)|false vac>= |initial collapse> , |true vac>= |final white hole> .

(2)
< final|initial >=< true vac|false vac>=<final white hole|initial collapse> .

5 In [8] a simplistic gravitational bounce solution based on a shock wave was constructed, postponing 
construction of a more realistic solution. In fact, the construction should be possible by following [35] of 
which we have become aware recently.
6 Related discussions were presented in the earlier works, such as [6, 8]. It is, however, the discussion 
around Eqs. (5 and 6) below that most clearly and explicitly “pins the issue down.”



1 3

Foundations of Physics (2023) 53:74 Page 7 of 21 74

condition is considered. (At least that is what was conceived.7) In short, it is the 
dynamism of the metric in the full quantum gravitational description that makes a 
difference: once one considers a dynamical metric, diffeomorphism symmetry - in 
particular, the large gauge symmetry - comes into play. Since the LGTs are nothing 
but the hair of the black hole, one ends up removing the hair as a result of consider-
ing fixed geometry.

The quantities computed in semi-classical analyses typically take the form of

where the subscript zero denotes a fixed geometry in the sense that the metric is not 
quantized; the ellipsis denotes an observable, or product of operators, more gener-
ally. Decay of a black hole mediated by a gravitational analogue of a CdL bounce 
solution is central to the proposed resolution of BHI paradox in [8] employing a full 
quantum gravitational description. For the resolution, one should consider quantized 
metric and two backgrounds, ’black hole’ and, say, ’Minkowski spacetime’. Decay 
of the former to the latter can be related, at an intuitive level, to a gravitational ana-
logue of a CdL bounce solution. (The connection will be made more precise below.) 
Let us denote the Fock vacua corresponding to the aforementioned two backgrounds, 
the black hole vacuum |BH> and Minkowski vacuum |M> , respectively. Note that 
quantization of the metric being considered, the subscript zero has been removed. 
For the scattering amplitude discussion later these vacua take the forms of in- and 
out- states. Naively, the false vacuum of the Coleman-de Lucci formalism corre-
sponds to |BH> and the true vacuum to |M> . We will explain shortly why this view 
is naive, and what a more proper view should be; for now we proceed with these 
identifications.

To be specific let us narrow down to a scattering amplitude setup. In the pre-
sent lingo, the Hawking analysis led to the paradox, roughly speaking, because the 
amplitude between the two different vacua, of the form

was not considered. There are several rationales for considering such decay from the 
black hole vacuum to the Minkowski vacuum. Firstly, the transition is all but what 
is implied by evaporation of the black hole. Secondly, from the statistical point of 
view, the original amplitude, Eq. (3), is a highly restrictive special case of measure 
zero in that the boundary dynamics was not taken into account. Besides these rea-
sons, note that energy conservation does not stand in the way since it only applies to 
an isolated system: once one considers large gauge symmetry, non-Dirichlet sectors 
become relevant, and the system is no longer isolated in the standard sense of the 
word.

(3)< BH0|(...)|BH0 >

(4)< M|(...)|BH >,

7 In a Hartle-Hawking vacuum, for instance, the boundary degrees of freedom are excited. Since a Dir-
ichlet boundary condition was always assumed, this raises a question on internal consistency of the anal-
ysis.
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Although starting with an eternal black hole is heuristic as well as useful to moti-
vate the connection with the CdL formalism, the identification of the true and false 
vacua above is naive and imprecise: the identification of |BH> as a true vacuum is 
not adequate, given that the black hole state decays.8 For proper identification of 
the initial state (false vacuum) and final state (true vacuum), non-Dirichlet boundary 
conditions must be taken into account. Once the boundary dynamics is taken into 
account, the initial state ‘ |BH > ‘ should not be taken to be an eternal state but, more 
naturally and generically, a collapsing state. In other words, the correct identification 
of the false vacuum is an initial collapsing state. Similarly, but more subtly, what 
|M > represents should be an asymptotic white hole state, leading to Eqs. (1 and 2).

Before discussing the statistical aspects, let us reiterate the above in more formal 
notation. Typically, the amplitude considered in a semi-classical analysis takes the 
form of

where � collectively represents the fields and |Ψ > the vacuum. Disregarded here 
is the inequivalence between out < Ψfinal| and |Ψinitial >in . To see the information 
preserved and the state remain pure, one must consider a more general form of an 
amplitude:

and take into account the fact that the in- and out- vacua can be inequivalent. For a 
fixed initial state, one should also consider many different final < Ψfinal| states. With 
the inequivalent vacua taken into account, it is expected to have an additional fac-
tor - which contains the bounce contribution - multiplying the thermal expression: 
after the contraction of the fields between the in- and out- vacua one will end up 
with out < Ψfinal|Ψinitial >in and this will depend on the initial state, thus preserving 
the information.

If one examines the state |Ψinitial >in (which is pure) near the horizon, one will be 
unable to distinguish the state from a mixed state. Even though the state looks mixed 
or thermal near the horizon, it is pure due to the entanglement of the near-horizon 
degrees of freedom and those radiated away. A Page curve from a bounce solution 
then reflects the entanglement between the black hole and the radiation.

2.1.1  Essence of Firewall Argument

The Firewall argument [28] (see [36, 37] for earlier related works) is a clever appli-
cation of quantum principles to a General Relativistic system, capturing essen-
tial physics near the event horizon of a black hole. According to the Equivalence 

(5)< Ψ|𝜙⋯𝜙|Ψ >

(6)out < Ψfinal|𝜙⋯𝜙|Ψinitial >in

8 Indeed it is well known that it is Unruh vacuum that describes a decaying BH. The Unruh vacuum was 
obtained by carefully conducting perturbative analysis around a collapsing solution. Although it shuold 
be possible to consider a bounce solution associated with decay of Unruh vacuum, the analysis will enev-
itably be more complicated. To some degree, the simplification involved is analogous to the one achieved 
by examining an Unruh effect, instead of Unruh vacuum, for BH decay.
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Principle (EP) or, to be exact, its conventional interpretation the near horizon region 
must be in a vacuum state for an infalling observer. In other words, locally things 
must look as they would in a Minkowski spacetime, with no particles around. The 
core of the AMPS argument [28] is that at the quantum level it should be impossible 
to have entanglement (which is necessary for a smooth horizon) between the black 
hole interior degrees of freedom and those of the late Hawking radiation.

One of the criticisms of Firewall is that if the infalling observer did not make 
any measurement before falling, then the black hole state could be an eigenstate (in 
particular, vacuum) of the infalling observer, hence the observer will not encoun-
ter Firewall, being consistent with the EP. However, let us suppose that this person 
made a measurement before infalling. Then the observer will encounter a Firewall. 
The EP is a classical concept and it does not depend on whether or not the infalling 
observer makes a measurement before falling. Furthermore, to our view one does 
not need to complete the experiment: any serious step of the experiment will inter-
fere with the system and the system will not be in vacuum for an infalling observer. 
In the Firewall context, what is meant by “vacuum” is ”local vacuum,” as mentioned 
above. Imposing such an EP-based classical notion of vacuum on a potentially 
highly quantum field-theoretic situation seems unnatural, even a priori. The Equiva-
lence Principle is based on a geometric description of motion of a point particle. 
However, it must only be in a strictly point-particle case where the motion could be 
understood as a geometrical effect: once quantum field-theoretic physics is involved, 
a strictly point-like object is artificial, since any object will have certain spread.

In QFT the Lagrangian gets modified by quantum corrections and this shift was 
crucial for generation of a trans-Planckian energy. The solutions of the field equa-
tions contain the boundary modes. We refer to [38, 39] for details. Because of this, 
an issue of which state is a typical state arises: given the existence of the boundary 
modes, their presence will be much more generic than their absence. In other words, 
the case of their absence - which should correspond to a Dirichlet boundary condi-
tion and smooth horizon - must be of measure zero. In the original classical back-
ground solution, which we may call the original nonperturbative state, an infalling 
observer does not encounter any drama as one can check by computing contraction 
of a geodesic and stress tensor. With the quantum corrections this changes: with 
the 1IP effective action one examines a quantum-corrected nonperturbative state, 
i.e., a solution of the quantum action. A quantum-level solution contains the ℏ-order 
boundary modes and the solution displays a trans-Planckian energy scaling.

Although the Firewall argument [28] apparently assumes the semi-classical 
approach, it implicitly employs quantum gravitational effects to a certain degree 
[38]. It may seem that what’s important for the trans-Planckian energy is overall 
quantum effects, regardless of whether they come from matter or graviton fields, 
but not necessarily the quantum gravitational effects. In other words, although the 
AMPS argument clearly involves quantum field-theoretic ingredients, whether or 
not it involves quantum gravitational ingredients is subtle. Before examining this 
further, let us recall what’s shown in [39] and its earlier sequels. Strictly speak-
ing, it is the quantum effects (regardless of whether they are matter- or graviton- 
originated) plus the metric back reaction that are important for the trans-Planckian 
energy. The fact that one considers the metric back reaction reflects dynamism of 
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the metric. Once one considers a dynamical metric and matter quantum effect, there 
is no rationale to exclude the graviton loop effect, hence the relevance of the quan-
tum gravitational effects [39]. The AMPS argument in [28] was based largely on 
the semi-classical framework but still led to a trans-Planckian energy. The following 
must be the reason that AMPS argument indeed involves dynamism of the metric. 
Their argument involves a Schwarzschild observer and a Kruskal observer. In other 
words their setup involves a coordinate transformation. One does not consider sym-
metry transformation for a nondynamic field. The fact that they did implies that the 
metric is dynamic in their argument. In [39], there is an interplay between the metric 
part and matter part: the relevant zero modes are those of the metric and it was the 
quantum correction terms, such as R2 terms, that were important for the structure of 
the solution. Meanwhile, for the stress tensor analysis it was the matter kinetic term 
that yielded the trans-Planckian energy. Presumably, this is how the AMPS Firewall 
argument is realized at the quantitative quantum gravitational level.

2.1.2  A Page‑Llike Curve from a Bounce Solution

We give two independent arguments that conceptually facilitate the arrival of a Page 
curve, one with the help of AdS/CFT and the other based on LGS. The discussion 
of the second argument will be brief, with details postponed to the next section. For 
now we restrict to relatively simple cases. More general cases will be discussed in 
sect. 3. In both arguments, it is the event horizon area that captures the entropy at 
the end. These arguments clearly demonstrate genericity of a Page curve.

Consider a black hole and split the region into the black hole itself and the 
outside. Say one computes the entanglement entropy of the black hole after trac-
ing out the states associated with the inside. With gauge-fixing, the physical states 
must have support at the boundary [33, 34, 40–42], so we are effectively integrating 
over the boundary theory. Invoke the Ryu-Takayanagi proposal (see, e.g., [43] for 
a review) with gradually increasing boundary area: if one integrates over the entire 
boundary the corresponding extremal surface is the event horizon. In other words, 
initially one integrates over the boundary theory (recall that the boundary theory is 
nothing but the bulk theory of the physical states; see the comments in the introduc-
tion), but then one can consider the minimal surface in the original gravity theory. 
As long as there is a Killing vector outside of the black hole, the area of event hori-
zon captures the entanglement entropy [8]. This obviously leads to a Page curve. 
One can also deduce a Page curve by considering an LGT, which is the subject to 
be studied in detail in sect.  3. When the gauge parameter dies out at infinity, the 
gauge transformation is just redundancy. In contrast, when the parameter is ”large” 
the gauge transformation should count the degrees of freedom.

There is a crucial issue of how generically a bounce solution represents the black 
hole evaporation process. Let us take a step back and consider a transition amplitude 
between arbitrary initial and final states. In the present case, the initial state in which 
we are interested is a boundary configuration that will later lead to a black hole for-
mation. Given such an initial state, there will be a wide variety of final states that 
can be interpreted as an evaporating process. Some of which will be, say, more com-
plex than the “minimal” process that we turn to in sect. 3. There should be a class 
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of solutions that are guaranteed to lead to the transition in the sense that the initial 
and final conditions are not over-determined, and thus provide a more controlled 
setup. These should be gravitational analogues of Coleman-De Luccia bounce solu-
tions. Because a bounce solution is time-reversal-symmetric, it is only the initial (as 
opposed to initial and final) conditions that one gets to impose. The solution will 
exist for a generic initial condition that will be of a non-Dirichlet type. Therefore, 
the decay will occur generically.

3  Wald’s Entropy: Revisit and Generalization

The primary goal of this section is to quantitatively understand the origin of black 
hole entropy and come up with a definition of entropy that can be applied to an arbi-
trary black hole, including time-dependent ones. As well known, the area entropy 
law can be derived in several different ways. We focus on two of them: the first 
is based on a Euclidean action and the second on Wald’s method. Below, Wald’s 
entropy is generalized to one based on large gauge symmetry. Given that in the 
Wald’s original paper [26] the starting point was gauge symmetry, our proposal is 
not entirely new. However, the crucial new ingredients are the boundary dynamics 
and large gauge symmetry. (See, e.g., [44–46] for works in which the importance 
of boundary terms in black hole entropy computation was noted.) Also, the starting 
point is entanglement entropy calculation, unlike the original Wald’s derivation. The 
new definition is motivated in part by examining an LGT on a given configuration. 
We employ an active, as opposed to passive, point of view for convenience. The 
mathematical fact that a Lie derivative is a tensor type-preserving operation - a fea-
ture not shared by a covariant derivative - plays a role in the manipulation.9

Several cautionary remarks regarding the generalization are in order. Although 
large gauge variation takes the same form as ordinary gauge variation, it is only 
the large gauge symmetry that is relevant for the subsequent Noether charge analy-
sis. In other words, the ordinary gauge symmetry is redundancy to be fixed, but not 
something to be counted as contributing to enumeration of the physical states. In 
contrast, LGTs enumerate the space of the inequivalent solutions connected by the 
transformations of a solution with a given boundary condition, such as a Dirichlet: 
the LGT-deformed solutions belong, unlike ordinary-gauge-transformed ones, to the 
moduli of the theory.

The results of the present work shed light on the long-evasive question: what 
is the origin of the black hole entropy and what is the identity of the responsible 
degrees of freedom? The boundary degrees of freedom with LGS and their dynam-
ics naturally suggest that they should be responsible for the black hole microstates 
and the associated entropy.10 The present analysis reveals the microscopic origin of 

9 This is so in the component notation. In the coordinate-free notation, tensor types are preserved both 
by Lie and covariant derivatives (but not by a covariant differential) [47].
10 Another way to see this is through a path integral: the measure should ultimately be over the physical 
states, which have support on the boundary [40].
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the entropy - which is not revealed by the direct evaluation of the Euclidean action - 
as the solutions connected by LGTs and their Fock spaces.

3.1  Generalization of Wald’s Entropy

Being a Noether charge, Wald’s entropy is distinct, to start with, from thermal entropy. 
It is an independent definition of a charge, hence the relation between the two is not 
a priori clear. (This issue was addressed to some extent in the original Wald’s paper 
[26].) For a stationary black hole, one can adopt the Wald’s definition dependent on a 
Killing vector. However, it is not clear what to do with a time-dependent solution. Here 
we show that there exists a way of obtaining Wald’s entropy that avoids these prob-
lems. This is achieved by our procedure based on entanglement entropy computation 
followed by LGS analysis. The establishment of the precise connection between the 
generalized Wald’ entropy and the entropy by Euclidean action method makes clear the 
reason that Wald entropy formula correctly captures the black hole entropy in relatively 
simple (but important) cases. The key to this is ’unification’: it turns out that an LGT of 
the metric followed by functional expansion of the action - which can be regarded as an 
extension of the Wald’s method - provides a more or less ‘unified’ way of obtaining the 
‘area law’. There are several other unclear features in the Wald’s approach. One of them 
is that the starting point is a Neumann action since the YGH term is not included. In 
fact, employing a Neumann action can be justified by the generalized definition, as we 
discuss below. Another unclear feature is the manner in which the ‘interior boundary’ 
was introduced in [26]: ultimately, the event horizon serves as the interior boundary, 
but the justification of the interior boundary is not clear to us. Below we address this as 
well.

Let us introduce, for convenience, the terms ‘Dirichlet and Neumann actions’. The 
Dirichlet action is defined by

where � = −1 for spacelike boundary �V and the subscript D denotes the Dirichlet 
boundary condition. In 4D, the Neumann action amounts to not adding the YGH 
term (in general, i.e., in D ≠ 4 , some boundary terms are required [48]):

To set the stage for the analysis below, let us also recall the following standard steps 
of thermodynamics that relate the thermal partition function to entropy. As well 
known, the maximum value of Gibbs entropy S = −kBΣi�i ln �i (as well as entangle-
ment entropy) occurs when the density operator � takes the thermodynamic form 
[49]. The thermal entropy follows from the partition function Z through

where F denotes the Helmholtz free energy

(7)SD ≡ SEH + SYGH , SYGH ≡ 2�
�V

d3x
√
�h� �K

(8)SN = SEH .

(9)Sth = −
�F

�T
= kB

(
1 + T

�

�T

)
logZ = kB

(
1 − �

�

��

)
log Z
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In the Euclidean path integral, the leading term for F (setting the factor kBT  aside) is 
the action. (The area law was also shown to follow from one-loop analysis of renor-
malization of Newton’s constant [51]. See [52] for further results and subtleties.) In 
the Euclidean action method one takes the Dirichlet action and directly evaluates it 
over a Schwarzschild solution [50, 53]. For entanglement entropy computation of 
a black hole - which is, as we will see, related to the Wald’s entropy, we divide the 
bulk into two regions, the black hole and its outside; � represents the reduced den-
sity operator obtained by tracing out the interior states.

To recall how the area law is reproduced in the Wald’s approach, let us first 
start with arbitrary variation:

Note that for the Wald’s procedure and its generalization we consider the Einstein-
Hilbert action without the YGH term, i.e., the Neumann action. The Dirichlet 
boundary condition is not suitable once one considers LGT-transformed solutions: 
in general the transformed solutions will not satisfy the Dirichlet boundary condi-
tion. For gauge variation ��g�� = ∇��� + ∇��� with a ‘large’ gauge parameter �� , the 
above takes

Let us focus on v� ≡ ∇��g�� − g��∇��g�� . By using ∇�∇��
� = ∇�∇��

� − R���
� , 

one gets

The volume integration can be reduced by Stokes’ theorem. The first application of 
Stokes’ theorem reduces the integration range to the time-fixed surface; the second 
application to the event horizon and the spherical shell at infinity:

where dΣ� and dΣ�� represent the 3D and 2D boundary surface, respectively. Now 
let us restrict to the case in which �� is taken to be a Killing vector K� along the 
time direction, �� = K� . Onshell, all of the terms involving the Ricci tensor vanish, 
leaving

(10)F = −kBT log Z.

(11)�SN = ∫
(
R�� −

1

2
Rg��

)
�g�� + ∫ g���R�� .

(12)g���R�� =∇
�
[
∇�(∇��� + ∇���) − 2∇�∇��

�
]
.

(13)v� =

[
∇�(−∇��� + ∇���) + 2R���

�
]
.

(14)∫
3D

dΣ�∇�(∇��� − ∇���) ∼∫
2D

dΣ��(∇��� − ∇���)

(15)∫
3D

dΣ�∇�(∇�K� − ∇�K�) ∼∫
2D

dΣ��(∇�K� − ∇�K�).
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Upon using K�∇�K
� = �K� , where � denotes the surface gravity, and employing an 

appropriate normalization (which we will address below), one gets the surface area 
of the event horizon for the Noether charge. See, e.g., [54] for more details.

Above, the Dirichlet action is employed and the integration range of the action is 
the entire spacetime. Although one evaluates the action over the original Schwarzs-
child solution, one could also employ a solution obtained by performing a Killing 
transformation, and would get the same result. (This may sound trivial but will be 
relevant below.) The entanglement entropy computation is more involved: it is sub-
ject not only to technical challenges but also to thorny conceptual issues. The first 
step is to trace out the inside of the black hole,11 which should yield the reduced 
density matrix. One way to handle the tracing is to employ the so-called replica 
trick, which is technically challenging. However, once one seeks a maximum value 
of the entanglement entropy, the general result employed above [49] applies here 
as well: the maximum value will occur when the reduced density matrix takes the 
thermal form. To see this, note that the variational procedure to determine the maxi-
mum entropy (in the present case, the entanglement entropy) is ultimately over the 
reduced density matrix. With this, one gets (10). In particular, the leading term of 
logarithm of the partition function is again the action. What’s crucial is that the inte-
gration range of the action is now between the event horizon and infinity. In other 
words the interior of the black hole is excluded, effectively introducing an ‘inner 
boundary’.

Let us turn to the main task of generalizing the steps leading to the Wald’s 
Noether charge for a class of solutions obtained by conducting LGTs on a given 
solution. To be specific we first illustrate the idea with an Einstein-Hilbert action 
and a Schwarzschild solution. Afterward, we will take up more general cases. Given 
a background g�� , consider an LGT

where the gauge parameter �� is one that is suitable for large gauge symmetry, i.e., 
it does not die out in the asymptotic region. The argument x is explicitly displayed 
to stress that an active transformation is being considered. A passive transformation 
corresponds to g̃𝜇𝜈(x�) where x′ denotes the transformed coordinates. Let us evaluate 
the Neumann action over the metric g̃𝜇𝜈 by expanding the action around the given 
configuration, i.e., through functional Taylor expansion:

Before proceeding, let us pause and discuss the following delicate point. For a rea-
son to be explained �� will ultimately be taken to be a Killing vector, �� = K� . It may 
appear that one should get zero for the variational terms in the functional Taylor 
expansion since the original configuration is invariant and the original value of the 
action was zero. However, this is not the case: the original configuration is invariant 

(16)g̃𝜇𝜈(x) ≡ g𝜇𝜈(x) + 𝛿𝜉g𝜇𝜈(x)

(17)S(g̃𝜇𝜈) = S(g𝜇𝜈 + 𝛿𝜉g𝜇𝜈) = S(g𝜇𝜈) + 𝛿𝜉S +⋯ .

11 Strictly speaking, we believe that the degrees of freedom here should include those within the 
stretched horizon.
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under the Killing symmetry only outside the black hole. At the event horizon the 
Christoffel symbols become singular.12 The metric should be viewed as changing 
according to whatever is dictated by the actual form of the Killing vector. In light of 
the singularity, the procedure in (15) can be viewed as involving certain regulariza-
tion. This raises a possibility that the functional expansion procedure may be a way 
of extracting the event horizon contribution with certain regularization. As for the 
Euclidean method, the fact that one could employ a solution obtained by perform-
ing a Killing transformation has been reminded above: the transformed and original 
solutions will both yield the same result, since the relevant contribution comes from 
the asymptotic region. It is tempting to use this as a rationale to employ a Killing-
transformed solution for the entanglement entropy computation too. To a certain 
extent (but not entirely), this is circular logic since we want to establish that the two 
approaches yield the same value of the entropy. Even with this step it is still subtle 
to establish what we intend to establish. This is because whereas it is clear for the 
thermal entropy that one is computing the same entropy as the untransformed one, 
in the case of the entanglement computation it is not at all clear whether or not one 
is computing, by considering the transformed solution, the same entropy as that of 
the original solution. Our stance on this matter is that the Noether method is nothing 
but evaluation of the action over the original solution (the solution before the Killing 
transformation) even though it employs the Killing-transformed one. In other words, 
the Noether method is a way to extract the singular contribution from the EH13 of 
the original solution. The procedure must be computing this contribution through 
certain suitable regularization - which is associated with (15) - of the horizon sin-
gularity. Put differently, one may take the procedure as defining the regularization.

The expansion (17) can also be written by explicitly using the fact �� = L� where 
L  denotes a Lie derivative, as

The Wald’s formula corresponds to the linear part of eL� , i.e., an infinitesimal case. 
In general, the leading term S(g��) will not vanish. It does vanish for a Schwarzs-
child solution, and does not concern us for now; we come back to this later. The �
-linear term L�S yields, as briefly reviewed above, the area entropy when � is taken 
to be the Killing vector K. We now show that the higher-order terms vanish, and 
thus do not contribute to the evalaution of the action. Let us examine them, starting 
with ∼ L�

2
S:

(18)S(g̃𝜇𝜈) = eL𝜉S(g𝜇𝜈) = S(g𝜇𝜈) +L𝜉S +⋯ .

12 The singularity at the EH is usually referred to as a ‘coordinate singularity.’ All this means is that it 
is not a curvature singularity. To our view the term coordinate singularity is misleading at the quantum 
level in that it gives an impression that the singularity is not physical. If, for instance, a non-smooth EH 
turns out to be real, which we anticipate, the singularity will be very physical, though not a curvature 
singularity.
13 The relevance of the EH in entropy computation is long known in other methods, such as those of [55, 
56]. In the present framework both the EH and asymptotic boundary play roles: LGS is a symmetry asso-
ciated with the boundary, whereas the nonzero contributions come from the EH.
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For further manipulation note that a Lie derivative is a tensor type-preserving opera-
tion [47]. Applied to Eq. (19), this means that both 

√
−gL and L�(

√
−gL) (as well 

as L�
2(
√
−gL) ) are scalars.14 On account of this, the above can be written as

which, in light of ∇��
� = 0 [7] (which should be valid even for a large gauge 

parameter), becomes a total derivative expression with the following further 
manipulations:

The first term on the second line is a total derivative (see, e.g., [53]), thus vanishes 
due to the fact that the boundary of the boundary vanishes. The second term yields 
a surface gravity term; because the onshell action vanishes the second term vanishes 
as well.

Let us pause and summarize. A priori, Wald entropy is a certain Noether charge, 
but not necessarily (thermal) entropy. However, it appears in the evaluation of the 
Euclidean action which is the leading part of the free energy. Therefore it can be 
said that the entropy of black hole and Wald’s formula are connected to a certain 
degree. For a precise connection between the entropy of black hole and Wald’s for-
mula, it is necessary to more carefully examine the transformed action (17). In fact, 
this is what has just been achieved: it is only the classical action plus the leading 
correction, i.e., the linear term, that determines the value of the transformed action. 
Above, we have shown that the second-order term in (18), ∼ L�

2
S , does not contrib-

ute. The rest of the higher-order terms do not contribute either, which we now show.
This time we consider the case in which the onshell value of the action does not 

vanish. The higher-order terms do not contribute to the entropy either because they 
produce terms that vanish due to the fact boundary of boundary vanishes or are 
removed by the step of Eq. (9). To see this pattern, let us examine the next order 
∼ L�

3
S:

(19)L�
2
S = ∫

V

L�

�
L�(

√
−g L)

�
.

(20)= ∫
V

� ⋅ ∇

�
L�(

√
−g L)

�

(21)

= ∫
V

∇�
�
��L�(

√
−g L)

�
= ∫

�V

dΣ� ��L�(
√
−g L) = ∫

�V

dΣ� �� � ⋅ ∇(
√
−g L)

= ∫
�V

dΣ� ∇�
�
����(

√
−g L)

�
− ∫

�V

dΣ� ��(∇
���)(

√
−g L).

(22)

L�
3S = ∫

V

L�

�
L�

2(
√
−g L)

�
= ∫

�V

dΣ� ∇�
�
����(L�

√
−g L)

�
− ∫

�V

dΣ� ��(∇
���)(L�

√
−g L).

14 In general, this is not strictly true since 
√
−g is a tensor density. However, with ∇��

� = 0 , the quanti-
ties under consideration do transform as scalars.
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The first term on the right-hand side vanishes due to the fact that the boundary of the 
boundary vanishes, and the second term can be rewritten as

This is the same, up to −� , as the right-hand side of the second equality of (21), and 
one can repeat the procedure. Note that unlike the pure Einstein-Hilbert case, the 
leading term (i.e., the onshell value of the action) may not vanish. The extra contri-
butions due to the non-vanishing action are removed through (9). To see this, let us 
schematically write these contributions as

where (⋯) denotes an expression independent of � , which should be the case for an 
stationary configuration. Obviously, this form of the term in the entropy is removed 
by (9).

3.2  Salient Points

As analyzed above, the Wald’s method can be regarded as a particular way of evalu-
ating the action which is nothing but the leading part of the logarithm of the partition 
function obtained by tracing out the black hole interior. Thus, the Wald’s method is 
in line with the Euclidean action method, and is a special case of the highest-level 
(conceptual) generalization mentioned earlier. Without the integrating-out proce-
dure, there would be no ‘interior boundary’: the contribution would come only from 
the asymptotic region, wherein the integrand is regular and would yield a vanishing 
result. With the interior integrated out, however, the event horizon becomes relevant 
and the total derivative terms yield a non-vanishing contribution.

Sometimes the BH entropy is understood as thermal entropy and other times as 
entanglement entropy. What the anaysis above reveals is that one needs both of these 
ingredients at the same time: the result in the present work leads to a view that black 
hole entropy is entanglement entropy in a thermodynamic setup.

Consider a collection of solutions connected to the bulk Schwarzschild geometry 
by LGTs. Inequivalent states notwithstanding, these solutions must be treated as one 
“bundle”: although these solutions have time-dependence, each of those solutions 
has a Killing vector. These solutions share a global property, the entropy. This is 
analogous to the case of gases: there are many microstates represented by several 
global variables, such as temperature and pressure and, of course, entropy. How 
does one actually calculate the global property, the entropy, of a given bundle? This 
can be expedited by resorting to the Schwarzschild geometry, which can be viewed 
as a representative of the group of solutions connected by LGTs. Then the charge, 
i.e., entropy, is associated with the well-known form of the Killing vector. It will of 
course be possible to directly show that each of those solutions has the same charge. 
One just needs to transform the event horizon and Killing vector according to the 
LGT under consideration so that all of the relevant steps in the Noether procedure 
are covariantly transformed.

(23)= −� ∫
�V

dΣ� ��(L�

√
−g L).

(24)�(⋯)
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One may wonder why one must set the gauge parameter to be a Killing vec-
tor to compute the entropy. The answer lies in the conservation requirement of a 
charge. Namely, to define a charge one must consider a Dirichlet boundary condi-
tion and charge conservation. One may raise that the YGH term was not present in 
the original derivation of Wald’s entropy. Recall, however, that the definition of a 
charge is subject to an ambiguity: it is up to total derivative terms. We believe that 
a more proper setup for deriving Wald’s charge should be a Dirichlet action. Once 
the charge is defined, one can consider the case of the parameter set to a non-Kill-
ing vector. Such a solution would describe a ’leaking’ situation. To identify what is 
leaking one must first consider the Killing case with a Dirichlet boundary condition 
and define the charge. (More on this in the conclusion.)

Lastly, let us discuss an implication of our result for the discrepancy between holo-
graphic and Wald’s entropies for higher-derivative gravity theories. It was observed 
in [29, 32] that for agreement between holographic and Wald entropies it is crucial to 
have “rotational symmetry” or “O(2) symmetry”. The present result is not only in line 
with this but also sheds light on the reason behind. Consider a higher-derivative grav-
ity theory. It should be the total derivative terms that are a potential source of this dis-
crepancy, since as mentioned above only singular terms would contribute. The pres-
ence of the rotational symmetry must be linked with the existence of a Killing vector. 
As a matter of fact this observation was made in [29]: “In the holographic framework, 
when the entangling surface Σ has a rotational symmetry boundary, this typically 
extends to a symmetry about a bulk surface mΣ . The latter then naturally becomes the 
extremal surface in calculating the holographic EE. In such a situation, it also appears 
that upon analytically continuing back to the Minkowski signature, the rotational sym-
metry will become a Killing symmetry, but further that mΣ becomes the bifurcation 
of a Killing horizon in the new Minkowski signature spacetime. That is, the resulting 
bulk geometry has the structure of a black hole.” If there is a time-like Killing vector, 
the higher-derivative terms will yield contributions that will be removed by the step of 
(9). To see this, let us go to a coordinate system in which the time coordinate becomes 
cyclic [57]. The contribution to the logarithm of the partition function will take the 
form of (24) and thus is removed by the procedure of (9). If the time-dependence of 
the solution is complex enough to prevent a Killing symmetry, this will not be the 
case, and extra contributions that go beyond Wald’s entropy are expected.15

4  Conclusion

The boundary theory is nothing but the theory of the gravitational boundary 
degrees of freedom. Given this, the entropy of the boundary theory must natu-
rally be equal to the entropy of the bulk theory. After presenting our perspectives 

15 Although the original Wald’s definition requires the presence of a Killing vector, the charge was also 
given in subsequent works by an expression based on a functional derivative with respect to the Riemann 
tensor. The present result implies that a formal entropy calculation based on such a definition will not 
reproduce the entropy based on an Euclidean action.
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on various matters in sect.  2, we have examined several aspects of black hole 
entropy calculation and observed that the Wald’s method is closely tied with 
free energy computation. Although one usually considers Wald’s Noether charge 
entropy in the holographic context, the analysis in the present work raises a pos-
sibility that it may not always be the same as the entropy based on the Euclidean 
action. In our view, it is the entropy based on the Euclidean action that is more 
fundamental.

More work is required to tighten several loose ends:
In this work we have focused on two specific boundary conditions: one is a 

Dirichlet-type and the other a Neumann. While it should certainly be a worthy 
effort to try to come up with the most general form of a boundary condition, it 
will likely be a difficult task. The present results suggest a simpler and more prac-
tical approach. Given a boundary condition, one should presumably consider all 
other boundary conditions connected by LGTs; one may consider each solution 
with LGTs as one bundle. For the most thorough treatment one will have to con-
sider transitions between such different sectors. However, it should be possible 
to understand a large chunk of the essential physics by focusing on a few sectors.

The questions of what kinds of different charges LGTs lead to and their dynamics 
are also worth further study. Given that a Dirichlet boundary condition is required 
to define a charge, only time-independent LGTs can be used to yield different 
charges. Those LGT-transformed solutions will have the same entropy as well as 
additional charges at the same time. In a non-conservation situation, it may well be 
both entropy and the other charges that may leak. For entropy leaking, it will be the 
horizon area that provides a probe. It will be of interest to explore and conduct a 
quantitative analysis of these aspects of the boundary dynamics.
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