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Abstract
In the literature there has been evidence that a kind of relational structure called 
a quantum Kripke frame captures the essential characteristics of the orthogonal-
ity relation between pure states of quantum systems, and thus is a good qualitative 
mathematical model of quantum systems. This paper adds another piece of evi-
dence by providing a tensor-product construction of two finite-dimensional quantum 
Kripke frames. We prove that this construction is exactly the qualitative counterpart 
of the tensor-product construction of two finite-dimensional Hilbert spaces over the 
complex numbers, and thus show that composition of quantum systems, especially 
the phenomenon of quantum entanglement, can be modelled in the framework of 
quantum Kripke frames. The assumptions used in our construction hint that we need 
complex numbers in quantum theory. Moreover, for this construction, we give a new 
and interesting characterization of linear maps of trace 0 in terms of the orthogonal-
ity relation.

Keywords  Orthogonality relation · Mathematical foundations of quantum theory · 
Quantum entanglement · Quantum logic

1  Introduction

Developed since the early twenteenth century, quantum theory is a successful theo-
retical framework in describing microscopic objects on the one hand and a great 
source of conceptual dispute on the other. Mathematical foundations of quantum 
theory [1, 2], considered as initiated by Birkhoff and von Neumann [3], is one of 
the fields devoted to investigating the foundations of quantum theory and improv-
ing the conceptual understanding of it. According to my understanding, one of the 
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main questions of this field is: what are the characteristics in quantum physics of 
some basic physical concepts, which force us to use Hilbert spaces over ℂ as math-
ematical models of physical systems? To answer this question, the paradigm mainly 
consists of four steps: first, choose and start from some basic concepts in physics; 
second, use simple mathematical structures to model these concepts; third, find axi-
oms, as simple and natural as possible, to characterize the features of these con-
cepts in quantum theory; fourth, prove representation theorems of the mathematical 
structures satisfying the axioms via Hilbert spaces over ℂ . Besides these four steps, 
the mathematical structures emerging from this research are also applied to model 
quantum phenomena and tested whether they are good models of (certain aspects of) 
quantum systems.

In the literature, there have been many successful approaches in this field. The 
oldest and the most famous one was initiated by Birkhoff and von Neumann and 
carried on by Mackey [4], Jauch [5], Piron [6], Aerts [7] and others. It uses lattices 
to model the structure formed by testable properties of quantum systems. For other 
approaches, Mielnik [8] and Zabey [9] use probabilistic transition systems to model 
the structure of pure states formed with the transition probabilities; Dalla Chiara, 
Giuntini and others [10] use algebras to model the structure formed by effects of 
quantum systems; Baltag and Smets [11] use relational structures to model the 
structure of pure states formed under tests of properties; Isham, Döring, Butterfield 
and others [12–17] use topoi to model quantum measurements; Holik and others 
[18] use Cox’s probability theory to model mixed states. If we may, we also consider 
the work of Abramsky, Coecke and others [19–21] as using monoidal categories to 
model composition of quantum systems and the work in the book [22] as using oper-
ational probabilistic theory to model quantum information.

This paper belongs to mathematical foundations of quantum theory, and we fol-
low another approach which is in the work of Foulis and Randall [23], Dishkant 
[24], Goldblatt [25] and others. In this approach, we use sets each equipped with 
a binary relation to model the structure of pure states formed with the orthogonal-
ity relation. Considering the physical meaning and fundamental theoretical role of 
the orthogonality relation, we think that this approach is natural and close to the 
way how most physicists think about quantum systems. To be more precise, we will 
focus on a kind of mathematical structures called quantum Kripke frames. In [26] it 
is argued from two perspectives that they capture the essential characteristics of the 
(non-)orthogonality relation: from the mathematical perspective, a representation 
theorem of quantum Kripke frames via Hilbert spaces over ℝ , ℂ and ℍ is presented 
(Theorem 2.13); from the conceptual perspective, natural hypotheses are proposed 
to reveal the empirical rationale behind the definition of quantum Kripke frames. 
Moreover, in [27], which is an extension of [28], a duality is established between a 
category of quantum Kripke frames and one of Piron lattices, which shows a close 
connection between this approach and the traditional lattice-theoretic approach.

In this paper, we try to describe quantum entanglement using quantum Kripke 
frames. In quantum theory, quantum entanglement is described by the tensor product 
of Hilbert spaces over ℂ . Hence, mathematically the description of quantum entan-
glement is called the tensor product problem: if we use two or more mathematical 
structures of a particular kind to model two or more quantum systems, respectively, 
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how to construct the mathematical structure of the same kind that models the sys-
tem formed by composing these quantum systems? Many approaches in mathemati-
cal foundations of quantum theory have addressed this problem. In the traditional 
lattice-theoretic approach, this problem has been addressed at an early stage. By 
introducing probability measures on lattices, Randall and Foulis [29] show that, if 
we use orthomodular lattices to model two quantum systems, it is possible that there 
is no orthomodular lattice that models the composition of these two systems. In [30] 
Foulis and Bennett study orthoalgebras, which are more general than orthomodular 
lattices, and give existence conditions for the tensor product of two orthoalgebras. 
In [31] the authors give a characterization of L(H1 ⊗H2) from L(H1) and L(H2)

1, 
and discuss the physical justification of this characterization. In both [32] and [33] 
the authors give characterizations when a lattice of a particular kind is the tensor 
product of two lattices of the same kind, respectively. In [32] a construction is also 
given but is proved to be failed to construct L(H1 ⊗H2) from L(H1) and L(H2) ; 
in [33] the characterization involves probability measures and the relation among 
L(H1 ⊗H2) , L(H1) and L(H2) is shown to be a special case of this characterization. 
In other approaches, Baltag and Smets [34] give an informational-logical characteri-
zation of entangled states in a bipartite quantum system in terms of local observa-
tions and remote evolutions. Finally, Abramsky, Coecke and others focus primarily 
on composition of quantum systems, and their work turns out to be of great value in 
both theory and application.

In this paper, we study the tensor product problem of quantum Kripke frames. 
Unlike [29] and [33], we do not introduce probability measures and stick to the 
purely qualitative framework. Moreover, we restrict our goal only to mimic one way 
of constructing the tensor product of two finite-dimensional Hilbert spaces over ℂ : 
the vectors in the tensor product are linear maps from one Hilbert space to the other, 
and two linear maps, f and g, are orthogonal if the trace of f †◦g is 0. As it turns out, 
we achieve our goal under some assumptions in an arguably natural way: Relying 
heavily on results in projective geometry in the literature, we find that, among the 
arrows in the category of quantum Kripke frames in [27] called continuous homo-
morphisms, there are counterparts of linear maps between finite-dimensional Hilbert 
spaces, which model the states of the composite system. Then we prove a theorem 
characterizing linear maps of trace 0 in terms of the orthogonality relation in a Hil-
bert space, and use it to define the (non-)orthogonality relation between continuous 
homomorphisms. Our construction is such that, if two quantum Kripke frames are 
abstracted from two finite-dimensional Hilbert spaces over ℂ , respectively, then our 
construction results in the quantum Kripke frame abstracted from the tensor product 
of them.

In a word, our work models quantum entanglement in terms of the (non-)orthogo-
nality relation which is physically intuitive. Moreover, the result in this paper yields 
hope of solving the tensor product problem for approaches in mathematical founda-
tions of quantum theory which are purely qualitative and primarily focus on physical 
concepts about a quantum system as a whole, like the relational one we use and the 

1  Here L(H) denotes the lattice formed by the closed linear subspaces of a Hilbert space H.



	 Foundations of Physics (2023) 53:75

1 3

75  Page 4 of 49

lattice-theoretic one. Finally, the assumptions we use reflect some features of com-
plex numbers which are not shared by real numbers and quaternions. This hints at 
why we use complex numbers in quantum theory and, in addition, that the reason 
may only be found when we describe composition of quantum systems and may not 
be found if we only consider a quantum system as a whole. This echoes some recent 
theoretical and experimental research on ruling out quantum theory over real num-
bers [35–37].

The rest of this paper is organized as follows: In Sect. 2, we review elements of 
the Hilbert space formalism of quantum theory, of quantum Kripke frames and of 
some relevant results in projective geometry. Section 3 introduces continuous homo-
morphisms which model quantum entanglement as correlation in terms of the (non-)
orthogonality relation, and we find among them counterparts of linear maps from 
a Hilbert space to another which can model the states of a composite system. In 
Sect. 4, as a preparatory step for defining the (non-)orthogonality relation between 
the states of a composite system, we prove a characterization of linear maps of trace 
0 in terms of the orthogonality relation. Section 5 presents the main result of this 
paper based on the previous two sections, and Sect. 6 contains the conclusion and 
some discussion. Appendix A deals with a technical subtlety; Appendix B lists the 
definitions and the results in projective geometry in [38] and [39] used in this paper.

2 � Preliminaries

2.1 � States in Quantum Theory

According to quantum theory, a quantum system is described by a Hilbert space2 H 
over ℂ in such a way that the (pure) states of the system correspond to one-dimen-
sional subspaces of H.

In mathematics it is well known that the one-dimensional subspaces of a vector 
space form a projective geometry. Therefore and in particular, the states of a quan-
tum system form a special kind of projective geometry called an irreducible Hilber-
tian geometry. The definition, adapted from [38, 40, 41], is as follows:

Definition 2.1  A projective geometry is a tuple � = (G,⋆) , where G is a non-empty 
set and ⋆ is a function from G × G to the power set of G such that all of the follow-
ing hold: for all a, b, c, d, r ∈ G,

(P1) a ⋆ a = {a};
(P2) a ∈ b ⋆ a;
(P3) if a ∈ b ⋆ r , r ∈ c ⋆ d and a ≠ c , then (a ⋆ c) ∩ (b ⋆ d) ≠ �.

2  In this paper, we assume that every vector space V, including a Hilbert space, is of dimension at least 
1, i.e. V ≠ {0}.
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An orthogeometry is a tuple 𝔊 = (G,⋆,⟂) , where (G,⋆) is a projective geometry 
and ⟂ ⊆ G × G is such that all of the following hold: for all a, b, c, q ∈ G,

(O1) a ⟂ b implies that b ⟂ a;
(O2) if a ⟂ q , b ⟂ q and c ∈ a ⋆ b , then c ⟂ q;
(O3) if b ≠ c , then there is a q ∈ b ⋆ c such that q ⟂ a;
(O4) there is a b ∈ G such that a ̸⟂ b.

For any E,F ⊆ G , E⊥
def
={a ∈ G ∣ a ⟂ b , for every b ∈ E} is called the orthocom-

plement of E in � ; and E⊞ F , called the linear sum of E and F, is defined as 
follows:

An orthogeometry is a Hilbertian geometry, if it satisfies the following:

(Hil) for each E ⊆ G , if E = E⊥⊥ , then E⊞ E⊥ = G.

A projective geometry is irreducible, if it satisfies the following:

(Irr) for any a, b ∈ G satisfying a ≠ b , a ⋆ b contains at least three elements.

The following proposition formally expresses the idea that the states of a quan-
tum system form a projective geometry.

Proposition 2.2  For each Hilbert space H over ℂ , the tuple 𝔊H = (ΣH,⋆H,⟂H) 
defined as follows is an irreducible Hilbertian geometry:

•	 ΣH

def
=
�
⟨v⟩ ∣ v ∈ H ⧵ {0}

�
 , where ⟨v⟩ is the one-dimensional subspace gener-

ated by v;
•	 for any s, t ∈ ΣH , s ⋆H t

def
=
�
⟨s + t⟩ ∣ s ∈ s, t ∈ t and s + t ≠ 0

�

•	 for any s, t ∈ ΣH , define that 

 where ⟨⋅, ⋅⟩ denotes the inner product of H . The relation ⟂H is called the orthog-
onality relation.

Proof  A direct verification is not hard. For an indirect proof, combine Theorem 2.16 
below and Proposition 2.7 in [26]. 	�  ◻

We will need some definitions and theorems about projective geometry.

E⊞ F
def
=

�⋃
{a ⋆ b ∣ a ∈ E, b ∈ F}, if E ≠ � and F ≠ �

E ∪ F, otherwise

s ⟂H t, if and only if ⟨s, t⟩ = 0 is true for any s ∈ s and t ∈ t,
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Definition 2.3  (Definition 2.3.1 in [38]) A subspace of a projective geometry 
� = (G,⋆) is a set E ⊆ G satisfying that, for any a, b ∈ E , a ⋆ b ⊆ E.

Theorem  2.4  (Proposition 2.3.3 in [38]) In a projective geometry � = (G,⋆) , for 
each E ⊆ G , there is a smallest (in the sense of set inclusion) subspace of � that 
contains E.

This subspace is called the linear closure of E and denoted by C(E).

With the notion of linear closure, we build a dimension theory of projective 
geometry. The key definitions and theorems are as follows:

Definition 2.5  (Definitions 4.1.1 and 4.1.7 in [38]) Let � = (G,⋆) be a projective 
geometry and E,F ⊆ G.

•	 E is independent, if, for each a ∈ E , a ∉ C(E⧵{a}).
•	 E is a basis of F, if E is independent and F = C(E).

Theorem  2.6  (Theorems 4.1.9 and 4.2.2 in [38]) Let � = (G,⋆) be a projective 
geometry. 

1.	 Every independent set contained in a subspace E of � can be extended to a basis 
of E.

2.	 For each subspace E of � , each basis of E is of the same cardinality, which is 
called the rank of E.

Remark 2.7  In [38] Theorems 4.1.9 and 4.2.2 are about matroids. According to 
Proposition 2.3.3 and Proposition 3.1.13, a projective geometry is a matroid.

2.2 � Bipartite Entanglement in Quantum Theory

According to quantum theory, if two quantum systems are described by two Hil-
bert spaces HA and HB over ℂ , respectively, then the quantum system consisting 
of these two systems is described by the tensor product HA ⊗HB.

There are many ways of constructing HA ⊗HB . We briefly review the one that 
is used here. We need the notion of the conjugate space of a Hilbert space.

Definition 2.8  (Page 131 in [42]) For a Hilbert space H over ℂ , its conjugate space, 
denoted by H , is a Hilbert space over ℂ such that 

1.	 H and H have the same set of vectors;
2.	 for any u, v ∈ H , u+v = u + v;
3.	 for any u ∈ H and c ∈ ℂ , c⋅u = c∗ ⋅ u;
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4.	 for any u, v ∈ H , [u, v] = ⟨v, u⟩,

where + , ⋅ and ⟨⋅, ⋅⟩ are the addition, the scalar multiplication and the inner product 
of H , + , ⋅ and [⋅, ⋅] are the addition, the scalar multiplication and the inner product 
of H and (⋅)∗ is the complex conjugate.3

Theorem  2.9  For any two Hilbert spaces HA and HB over ℂ , HSO(HA,HB) 
equipped with the addition + , the scalar multiplication ⋅ and the inner product ⟨⋅, ⋅⟩ 
is the tensor product HA ⊗HB , where 

1.	 HSO(HA,HB) is the set of all Hilbert-Schmidt operators from HA to HB ; a Hil-
bert-Schmidt operator from HA to HB is a bounded linear map f ∶ HA → HB such 
that Tr(f †◦f ) =

∑
vA∈BA

⟨f (vA), f (vA)⟩B < ∞ , where Tr is the trace function and BA 
is an orthonormal basis of HA whose choice can be proved to be irrelevant;

2.	 for any f , g ∈ HSO(HA,HB) , (f + g)(�
�
) = f (vA) + g(vA) , for each vA ∈ HA;

3.	 for any f ∈ HSO(HA,HB) and c ∈ ℂ , (cf )(�
�
) = cf (vA) , for each vA ∈ HA;

4.	 for any f , g ∈ HSO(HA,HB) , ⟨f , g⟩ = Tr(f †◦g) =
∑

vA∈BA
⟨f (vA), g(vA)⟩B , where 

BA is an orthonormal basis of HA whose choice can be proved to be irrelevant.

Proof  Please refer to Sect. 2.6, especially pp.125-142, in [42]. 	� ◻

Remark 2.10  When at least one of HA and HB is finite-dimensional, Hilbert-Schmidt 
operators coincide with linear maps. In other words, if we introduce the notation 
Hom(HA,HB) to denote the set of all linear maps from HA to HB , then in this special 
case HSO(HA,HB) = Hom(HA,HB).

According to quantum theory, the physical intuition behind this construction is 
very clear. The main idea is: a state of the bipartite system can be not only a juxta-
position of two states one from each subsystem but also a way of correlation between 
the states of the two subsystems. (No correlation is a correlation, so the former is a 
special case of the latter.) To be concrete, consider the situation when the bipartite 
system is in a state described by ⟨f ⟩ ∈ Σ

HSO(HA,HB)
 . On the one hand, after perform-

ing a measurement only on the subsystem described by HA , if from the outcome we 
learn that the state of the subsystem is now the one described by ⟨vA⟩ ∈ ΣHA

 , then 
the state of the other subsystem is now the one described by ⟨f (vA)⟩ ∈ ΣHB

 and the 
state of the bipartite system is no longer the one described by ⟨f ⟩ . At this moment, 
no matter what measurement only on the subsystem described by HB do we per-
form, if from the outcome we can learn the state of the subsystem, it will be non-
orthogonal to the one described by ⟨f (vA)⟩ . On the other hand, after performing a 
measurement only on the subsystem described by HB , if from the outcome we learn 
that the state of the subsystem is now the one described by ⟨vB⟩ ∈ ΣHB

 , then the 

3  For simplicity, we henceforth omit all ‘ ⋅ ’ for the scalar multiplication in a vector space.
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state of the other subsystem is now the one described by ⟨f †(vB)⟩ ∈ ΣHA
 and the 

state of the bipartite system is no longer the one described by ⟨f ⟩ . At this moment, 
no matter what measurement only on the subsystem described by HA do we perform, 
if from the outcome we can learn the state of the subsystem, it will be non-orthogo-
nal to the one described by ⟨f †(vB)⟩ . Since there is no causal relation between meas-
urements on the two subsystems, both orders of performance are possible and the 
description using f and its adjoint f † is generic enough to model such a correlation.

Finally, the notion of the conjugate space is needed just because we define a Hil-
bert-Schmidt operator to be a linear map. In fact, HSO(HA,HB) is the set of anti-
linear maps from HA to HB satisfying the additional condition about trace, where an 
anti-linear map is defined as follows:

Definition 2.11  An anti-linear map from HA to HB is a function f ∶ HA → HB such 
that 

1.	 for any uA, vA ∈ HA , f (uA + vA) = f (uA) + f (vA);
2.	 for any uA ∈ HA and c ∈ ℂ , f (cuA) = c∗f (uA).

2.3 � Quantum Kripke Frame

In Subsect.  2.1, given a Hilbert space H over ℂ , we define a binary relation ⟂H 
on ΣH such that, for any s, t ∈ ΣH , s ⟂H t , if and only if, for any s ∈ s and t ∈ t , 
⟨s, t⟩ = 0 . This relation is called the orthogonality relation. According to quantum 
theory, this relation has a clear and important physical significance as the (perfect) 
discriminability relation between states [43]. To be precise:

for two states s and t, s ⟂H t , if and only if there is an observable of the system 
and two possible values i and j of the observable such that, if we know that the 
system is in either the state s or the state t, then after a measurement of this 
observable we will know which is the case: the state is s if and only if the out-
come is i, and the state is t if and only if the outcome is j.

In this paper, following [26, 27, 41], it is more convenient to focus on the comple-
ment of this relation in ΣH × ΣH , called the non-orthogonality relation and denoted 
by →H . To be precise, for any s, t ∈ ΣH , s →H t , if and only if there are s ∈ s and 
t ∈ t such that ⟨s, t⟩ ≠ 0.

According to Proposition 2.7 in [26], the mathematical structure �H = (ΣH,→H) 
is a quantum Kripke frame defined via the following definitions from [26, 41]:

Definition 2.12  A Kripke frame � is an ordered pair (Σ,→) in which Σ is a non-
empty set and → is a binary relation on Σ.

Definition 2.13  Let � = (Σ,→) be a Kripke frame.

•	 s ↛ t means that s → t does not hold.
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•	 For each P ⊆ Σ , the orthocomplement of P, denoted by ∼P , is the set 
{s ∈ Σ ∣ s ↛ t , for each t ∈ P}.

•	 P ⊆ Σ is closed, if P = ∼∼P.
•	 s, t ∈ Σ are indistinguishable with respect to P ⊆ Σ , denoted by s ≈P t , if 

s → w ⇔ t → w holds for each w ∈ P.
•	 For each P ⊆ Σ and s ∈ Σ , s� ∈ Σ is called a representative of s in P, if s� ∈ P 

and s ≈P s�.
•	 P ⊆ Σ is orthogonal, if, for any s, t ∈ P , s ≠ t implies s ↛ t.
•	 P ⊆ Σ is maximal orthogonal, if P is orthogonal and ∼∼P = Σ.

Definition 2.14  A quantum Kripke frame is a Kripke frame � = (Σ,→) satisfying all 
of the following five conditions: 

1.	 Reflexivity: for each s ∈ Σ , s → s.
2.	 Symmetry: for any s, t ∈ Σ , if s → t , then t → s.
3.	 Separation: for any s, t ∈ Σ , if s ≠ t , then there is a w ∈ Σ such that w → s but 

w ↛ t.
4.	 Superposition: for any s, t ∈ Σ , there is a w ∈ Σ such that w → s and w → t.
5.	 Representation: for any P ⊆ Σ and s ∈ Σ , if P = ∼∼P and s ∉ ∼P , then there is 

a representative of s in P.

For Reflexivity and Symmetry, technically they follow directly from positive 
definiteness and conjugate symmetry of the inner product; intuitively they are 
natural properties of the indiscriminability relation. For Separation, technically 
w is the projection of s onto the orthocomplement of t; intuitively it is an ideali-
zation saying that there are enough measurements to non-perfectly discriminate 
any two distinct states. For Superposition, technically w is the superposition of s 
and t; intuitively this is the feature that distinguishes quantum physics from clas-
sical physics. For Representation, technically the representative of s in P is the 
projection of s on P whose existence is a consequence of the orthogonal decom-
position theorem; intuitively it guarantees that, given any state, any measurement 
and any result of the measurement, there is always a point in the Kripke frame 
which properly describes the state after the given measurement on the given state 
yielding the given result, if this is possible to happen. A detailed discussion of the 
physical intuitions behind the definition of quantum Kripke frames can be found 
in Sec. 4 in [26].

The following lemma collects some basic and useful results about quantum 
Kripke frames.

Lemma 2.15  (Lemma 2.8 in [26]) Let � = (Σ,→) be a quantum Kripke frame. 

1.	 ∼� = Σ and ∼Σ = � , and thus ∼∼� = � and ∼∼Σ = Σ.
2.	 For any P,Q ⊆ Σ , P ⊆ Q implies that ∼Q ⊆ ∼P.
3.	 For each P ⊆ Σ , P ⊆ ∼∼P.
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4.	 For each P ⊆ Σ , ∼P is closed.
5.	

⋂
i∈I Pi is closed, if Pi is closed for each i ∈ I.

6.	 For each s ∈ Σ , {s} is closed.
7.	 For any P ⊆ Σ and s, t, t� ∈ Σ , if P is closed and both t and t′ are representatives 

of s in P, then t = t�.

A very important fact about quantum Kripke frames is that they correspond to 
irreducible Hilbertian geometries, as is manifested by the following theorem:

Theorem 2.16  (Theorem 4.22 in [41])  

1.	 For every quantum Kripke frame � = (Σ,→) , G(�) = (Σ,∼∼{⋅, ⋅},↛) is an irre-
ducible Hilbertian geometry.

2.	 For every irreducible Hilbertian geometry 𝔊 = (G,⋆,⟂) , F(𝔊) = (G, ̸⟂) is a 
quantum Kripke frame.

3.	 G is a class function from the class of quantum Kripke frames to that of irreduc-
ible Hilbertian geometries.

	   F is a class function from the class of irreducible Hilbertian geometries to that 
of quantum Kripke frames.

	   For any quantum Kripke frame � and irreducible Hilbertian geometry � , 

This theorem enables us to use powerful results in projective geometry to 
study quantum Kripke frames. Here we illustrate this by two examples which will 
be used later: one is a dimension theory of quantum Kripke frames, and the other 
is a representation theorem of quantum Kripke frames via generalized Hilbert 
spaces.

For the dimension theory, we need the following results and definition.

Proposition 2.17  Let � = (Σ,→) be a quantum Kripke frame, n ∈ ℕ and 
s1,… , sn ∈ Σ . ∼∼{s1,… , sn} = C({s1,… , sn}) , where the right-hand side is the lin-
ear closure of {s1,… , sn} in G(�).

Proof  We leave it to the Appendix. 	� ◻

Corollary 2.18  Let � = (Σ,→) be a quantum Kripke frame, n ∈ ℕ and s1,… , sn ∈ Σ . 
If {s1,… , sn} is orthogonal, then {s1,… , sn} is independent in G(�).

Proof  If n = 0 , by convention {s1,… , sn} = � and thus it is independent.
If n ≠ 0 , take an arbitrary s ∈ {s1,… , sn} . Without loss of generality we assume 

that s = s1 . Since {s1,… , sn} is orthogonal, s1 ∈ ∼{s2,… , sn} . By Reflexivity and 
Proposition 2.17

(F◦G)(�) = � (G◦F)(�) = �
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Therefore, {s1,… , sn} is independent in G(�) . 	�  ◻

Definition 2.19  Let � = (Σ,→) be a quantum Kripke frame and n ∈ ℕ . � is 
n-dimensional, if there is a maximal orthogonal set P ⊆ Σ of cardinality n.

Remark 2.20  By Proposition  2.17 and its corollary a quantum Kripke frame 
� = (Σ,→) is n-dimensional, if and only if Σ is of rank n in G(�) . Therefore, this 
definition does not depend on the choice of P, and thus is legitimate.

For the representation theorem, we start from reviewing the definition of general-
ized Hilbert spaces.

Definition 2.21  (Definition 52 in [40]) A division ring is a ring in which every non-
zero element has a multiplicative inverse; if further the multiplication is commuta-
tive, it is called a field.

An involution on a division ring K = (K,+, ⋅, 0, 1)4 is a function � ∶ K → K satis-
fying all of the following: 

1.	 � is bijective;
2.	 �(x + y) = �(x) + �(y) and �(xy) = �(y)�(x) , for any x, y ∈ K;
3.	 (�◦�)(x) = x , for every x ∈ K;

An Hermitian form on a vector space V over a division ring K = (K,+, ⋅, 0, 1) is a 
function Φ ∶ V × V → K satisfying all of the following: 

1.	 Φ(u + v,w) = Φ(u,w) + Φ(v,w) , for any u, v,w ∈ V;
2.	 Φ(xv,w) = xΦ(v,w) , for any v,w ∈ V  and x ∈ K5;
3.	 there is an involution � on K such that Φ(v,w) = �(Φ(w, v)) holds for any 

v,w ∈ V .

� is called the accompanying involution of Φ.
A generalized Hilbert space is a vector space V over some division ring K 

equipped with an Hermitian form Φ satisfying the following condition: 

(∗)	� for every E ⊆ V  , if E = (E⊥)⊥ , then V = {u + v ∣ u ∈ E and v ∈ E⊥};

 where E⊥
def
={u ∈ V ∣ Φ(u, v) = 0 holds for each v ∈ E}.

s1 ∉ ∼∼{s2,… , sn} = C({s2,… , sn}) = C({s1,… , sn} ⧵ {s1})

4  In the following, for simplicity, we omit all ‘ ⋅ ’ for the multiplication in a ring.
5  An Hermitian form is defined to be conjugate in the second argument, while an inner product is usually 
defined to be conjugate in the first argument. This difference is just a matter of notation.
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It can be verified that every generalized Hilbert space naturally gives rise to a 
quantum Kripke frame:

Proposition 2.22  Let V be a generalized Hilbert space where Φ is the Hermitian 
form on it. �V = (ΣV ,→V ) defined below is a quantum Kripke frame: 

1.	 ΣV is the set of one-dimensional subspaces of V;
2.	 for any s, t ∈ ΣV  , s →V t , if and only if there are s ∈ s and t ∈ t such that 

Φ(s, t) ≠ 0.

In fact, Theorem  2.11 in [26] is a representation theorem of quantum Kripke 
frames via generalized Hilbert spaces, and it facilitates studying quantum Kripke 
frames using the analytic method. Moreover, as a generalized Hilbert space is a mild 
algebraic generalization of a Hilbert space over ℂ , this theorem means that the con-
ditions defining a quantum Kripke frame capture the essential properties of the non-
orthogonality relation, and that quantum Kripke frames are good qualitative models 
of quantum systems. For a more detailed discussion, please refer to [26].

In this paper we use a more specific version of this representation theorem. For 
this, we need the notion of Pappian quantum Kripke frames.

Definition 2.23  A quantum Kripke frame � = (Σ,→) is Pappian, if it has an orthog-
onal set of cardinality at least 3 and, for any a, b, c, a�, b�, c�, x, y, z ∈ Σ satisfying all 
of the following: 

1.	 a, b, c, a′, b′, c′ are all distinct;
2.	 c ∈ ∼∼{a, b};
3.	 c� ∈ ∼∼{a�, b�};
4.	 ∼∼{a, b} ∩ ∼∼{a�, b�} = {o} , for some o ∈ Σ ⧵ {a, b, c, a�, b�, c�};
5.	 x ∈ ∼∼{a, b�} ∩ ∼∼{a�, b};
6.	 y ∈ ∼∼{b, c�} ∩ ∼∼{b�, c};
7.	 z ∈ ∼∼{c, a�} ∩ ∼∼{c�, a};

it holds that s1 ∈ ∼∼{s2, s3} , for some s1, s2, s3 ∈ Σ with {s1, s2, s3} = {x, y, z}.
This definition involves complicated configurations. The following picture of the 

analogue in an affine plane may help to make sense of it:
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Remark 2.24  It can be verified that a quantum Kripke frame � is Pappian, if and 
only if the theorem of Pappus holds in the irreducible Hilbertian geometry G(�) in 
the sense of the definition on page 62 in [39].

The following is a representation theorem of Pappian quantum Kripke frames via 
generalized Hilbert spaces over fields.

Theorem 2.25  For a Kripke frame � = (Σ,→) , the following are equivalent: 

	 (i)	 � is a Pappian quantum Kripke frame;
	 (ii)	 there is a generalized Hilbert space V of dimension at least 3 over some field 

K such that � ≅ �V = (ΣV ,→V ).

Moreover, if they exist, both V and K are unique up to isomorphism, and the Hermi-
tian form is unique up to a constant multiple.
Proof  The proof is very similar to that of Theorem 2.11 in [26] except for two differ-
ences. One of them is in the direction from (ii) to (i). We use Theorem 2.2.2 in [39] 
to prove that � is Pappian. The other is in the direction from (i) to (ii). When � is 
Pappian, the theorem of Pappus holds in G(�) , so the theorem of Desargues holds in 
G(�) by Theorem 2.2.3 in [39], which is the main result in [44]. Then the division 
ring is a field, according to Theorem 2.2.2 in [39]. 	�  ◻

3 � States of a Bipartite Quantum System

In the coming three sections, we try to answer the following question:

Given two quantum Kripke frames �A = (ΣA,→A) and �B = (ΣB,→B) describ-
ing two quantum systems, respectively, what is the quantum Kripke frame 
� = (Σ,→) that describes the bipartite quantum system consisting of the two 
given quantum systems?

In this section, we are going to construct the right candidate for Σ from 
�A = (ΣA,→A) and �B = (ΣB,→B) , which models the set of states of the bipartite 
quantum system. In the next two sections, we are going to define a non-orthogonal-
ity relation → on Σ , which models the indiscriminability relation between the states 
of the bipartite quantum system, and thus finish the construction.

3.1 � Adjunction and Continuous Homomorphism

To construct the right candidate for Σ from �A = (ΣA,→A) and �B = (ΣB,→B) , we 
will adopt the idea explained in Subsect. 2.2: a state of a bipartite quantum system is 
a way of correlation between the states of the two subsystems. We first use relations 
to model correlations, and this leads to the definition of adjunctions between �A and 
�B . We will study the properties of adjunctions to find the right candidate for Σ.
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3.1.1 � Adjunction

Definition 3.1  An adjunction between two Kripke frames �A = (ΣA,→A) and 
�B = (ΣB,→B) satisfying ΣA ∩ ΣB = � is a set R ⊆ (ΣA × ΣB) ∪ (ΣB × ΣA) such that: 
for any sA ∈ ΣA and sB ∈ ΣB , 

1.	 for any tA ∈ ΣA and tB ∈ ΣB , if sARsB and tBRtA , then sA →A tA ⇔ sB →B tB;
2.	 there is no wB ∈ ΣB such that sARwB , if and only if, for each tA ∈ ΣA , if there is a 

tB ∈ ΣB such that tBRtA , then sA ↛A tA;
3.	 there is no wA ∈ ΣA such that sBRwA , if and only if, for each tB ∈ ΣB , if there is a 

tA ∈ ΣA such that tARtB , then sB ↛B tB.

In this definition, an adjunction is defined to be a relation satisfying special condi-
tions which models the correlation between elements in ΣA and those in ΣB . These 
special conditions are all in terms of the primitive relations →A and →B . Moreo-
ver, they are not very complicated: intuitively, they reflect the idea of correlation 
explained in Subsect. 2.2; mathematically, in a qualitative way they reflect the defin-
ing equation ⟨f (wA),wB⟩ = ⟨wA, f

†(wB)⟩ relating a linear map and its adjoint, if it 
exists. However, the special conditions in fact impose mathematical properties on an 
adjunction which will be very useful and thus should be made more explicit. In the 
following, we will obtain some characterization of adjunctions. In the end, we will 
arrive at the counterparts of linear maps at the level of one-dimensional subspaces 
to construct Σ.

The following proposition shows that an adjunction is in fact the union of two 
partial functions in opposite directions.

Proposition 3.2  Let �A = (ΣA,→A) and �B = (ΣB,→B) be two quantum Kripke 
frames such that ΣA ∩ ΣB = � and R ⊆ (ΣA × ΣB) ∪ (ΣB × ΣA) . The following are 
equivalent: 

	 (i)	 R is an adjunction between �A and �B;
	 (ii)	 there are two partial functions F ∶ ΣA ⤏ ΣB and G ∶ ΣB ⤏ ΣA such that 

R = F ∪ G and all of the following are true for F and G: 

1.	 Ker(F) = ∼AG[ΣB]
6;

2.	 Ker(G) = ∼BF[ΣA];
3.	 for any sA, tA ∈ ΣA and sB, tB ∈ ΣB , if (sA, sB) ∈ F and (tB, tA) ∈ G , then 

sA →A tA ⇔ sB →B tB.

Here Ker(F)
def
={sA ∈ ΣA ∣ F(sA) is undefined} is called the kernel of F.

Proof  From (i) to (ii): Let F = R ∩ (ΣA × ΣB) and G = R ∩ (ΣB × ΣA) . Obviously 
R = F ∪ G . The crux is to prove that both F and G are partial functions. After 

6  Here G[ΣB] denotes the image of ΣB under the partial function G ∶ ΣB ⤏ ΣA.
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proving this, the three items follow immediately from the three items in the defini-
tion. Moreover, since the definition of adjunction is symmetric in the subscripts A 
and B, it suffices to prove that F is a partial function, for the proof of G is similar.

Assume that sA ∈ ΣA and sB, s�B ∈ ΣB are such that sARsB and sARs′B . Suppose 
(towards a contradiction) that sB ≠ s′

B
 . By Separation there is a tB ∈ ΣB such that 

tB →B sB but tB ↛B s′
B
 . Since sARsB and tB →B sB , by Symmetry and Item 3 in the 

definition there is a tA ∈ ΣA such that tBRtA . On the one hand, since sARsB and tBRtA , 
by Item 1 in the definition sA →A tA ⇔ sB →B tB . Since tB →B sB , sA →A tA . On the 
other hand, since sARs′B and tBRtA , by Item 1 in the definition sA →A tA ⇔ s′

B
→B tB . 

Since tB ↛B s′
B
 , sA ↛A tA . Hence we have got a contradiction. Therefore, sB = s�

B
 , so 

F is a partial function.
From (ii) to (i): This follows easily from the definition of adjunctions. 	�  ◻

In the following, the term ‘adjunction’ will be used in the sense of the characteri-
zation, i.e. Item (ii), in this proposition, instead of the formal definition.

Remark 3.3  (F, G) is an adjunction between �A and �B , if and only if it is an adjunc-
tion between G(�A) and G(�B) (Definition 14.4.1 in [38]).

3.1.2 � Continuous Homomorphism

In this subsubsection, we introduce continuous homomorphisms. We will see in the 
next subsubsection that they are exactly the partial functions each serving as a com-
ponent in an adjunction.

Definition 3.4  (Definition 9 in [27]) A continuous homomorphism from a Kripke 
frame �A = (ΣA,→A) to a Kripke frame �B = (ΣB,→B) is a partial function 
F ∶ ΣA ⤏ ΣB such that, for each tB ∈ ΣB , if there is an sA ∈ ΣA such that F(sA) is 
defined and F(sA) →B tB , then there is a tA ∈ ΣA satisfying the following7:

Remark 3.5  For every PB ⊆ ΣB , recall that the inverse image of PB under F, 
denoted by F−1[PB] , is {sA ∈ ΣA ∣ (sA, sB) ∈ F , for some sB ∈ PB} . With this ter-
minology, it can be shown that a partial function F ∶ ΣA ⤏ ΣB is a continuous 
homomorphism, if and only if, for every tB ∈ ΣB , Ker(F) ∪ F−1[∼B{tB}] = ΣA or 
Ker(F) ∪ F−1[∼B{tB}] = ∼A{tA} for some tA ∈ ΣA.

Moreover, it can be shown that, for every tA ∈ ΣA , there is no closed set which lies 
strictly between ∼A{tA} and ΣA in the set inclusion ordering. Hence a partial function 

(Ad)F for any wA ∈ ΣA, tA →A wA, if and only if F(wA) is defined and

tB →B F(wA)

7  Please remember that the following condition (Ad)F is not a property of a Kripke frame or a partial 
function; instead it is a property of an (ordered) pair of two elements in two Kripke frames, in this case, 
(tA, tB).
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F ∶ ΣA ⤏ ΣB is a continuous homomorphism, if and only if, for each tB ∈ ΣB , 
Ker(F) ∪ F−1[∼B{tB}] is closed and includes ∼A{tA} for some tA ∈ ΣA.

The following is a lemma which will be used immediately.

Lemma 3.6  Let �A = (ΣA,→A) and �B = (ΣB,→B) be two quantum Kripke frames, 
F a continuous homomorphism from �A to �B and tB ∈ ΣB . If it exists, tA ∈ ΣA with 
(tA, tB) satisfying (Ad)F is unique.

Proof  Suppose (towards a contradiction) that t�
A
∈ ΣA⧵{tA} is also such that (t�

A
, tB) 

satisfies (Ad)F . Since tA ≠ t′
A
 , by Separation there is a wA ∈ ΣA such that tA ↛A wA 

and t′
A
→A wA . Since (t�

A
, tB) satisfies (Ad)F , F(wA) is defined and tB →B F(wA) . Since 

(tA, tB) satisfies (Ad)F , tA →A wA , contradicting that tA ↛A wA . 	�  ◻

3.1.3 � Correspondence

In this subsubsection, we prove a correspondence between adjunctions and continu-
ous homomorphisms. It means that continuous homomorphisms are exactly the par-
tial functions each serving as a component in an adjunction. Later on Σ will be con-
structed based on them.

Throughout this subsubsection, we fix two quantum Kripke frames �A = (ΣA,→A) 
and �B = (ΣB,→B).

First we show how to get an adjunction given a continuous homomorphism.

Proposition 3.7  Let F ∶ ΣA ⤏ ΣB be a continuous homomorphism from �A to �B . 
F†

def
={(sB, sA) ∈ ΣB × ΣA ∣ (sA, sB) satisfies (Ad)F} is a partial function from ΣB to ΣA , 

called the adjoint of F, and (F,F†) is an adjunction between �A and �B.

Proof  By Lemma 3.6 F† is a partial function from ΣB to ΣA.
To show that (F,F†) is an adjunction, we prove three facts.
Fact 1: Ker(F) = ∼AF

†[ΣB].
Let wA ∈ ΣA be arbitrary.
First assume that wA ∉ Ker(F) . By Reflexivity F(wA) →B F(wA) . Since F 

is a continuous homomorphism, there is a w+
A
∈ ΣA such that (w+

A
,F(wA)) sat-

isfies (Ad)F . Since F(wA) is defined and F(wA) →B F(wA) , w+
A
→A wA . Hence 

wA →A w+
A
= F†(F(wA)) , and thus wA ∉ ∼AF

†[ΣB].
Second assume that wA ∉ ∼AF

†[ΣB] . Then there are sA ∈ ΣA and sB ∈ ΣB such 
that F†(sB) = sA and wA →A sA . By the definition of F† (Ad)F holds for (sA, sB) . Since 
sA →A wA , F(wA) is defined. Hence wA ∉ Ker(F).

Fact 2: Ker(F†) = ∼BF[ΣA].
Let wB ∈ ΣB be arbitrary.
First assume that wB ∉ Ker(F†) . Then there is an wA ∈ ΣA such that 

(wB,wA) ∈ F† , i.e. (Ad)F holds for (wA,wB) . By Reflexivity wA →A wA , so F(wA) is 
defined and wB →B F(wA) . Therefore, wB ∉ ∼BF[ΣA].
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Second assume that wB ∉ ∼BF[ΣA] . Then there are sA ∈ ΣA and sB ∈ ΣB such 
that F(sA) = sB and wB →B sB . Since F is a continuous homomorphism, there is a 
wA ∈ ΣA such that (Ad)F holds for (wA,wB) . By the definition of F† (wB,wA) ∈ F† , so 
wB ∉ Ker(F†).

Fact 3: sA →A F†(sB) ⇔ F(sA) →B sB , if sA ∉ Ker(F) and sB ∉ Ker(F†).
Let sA ∉ Ker(F) and sB ∉ Ker(F†) be arbitrary. By the definition of F† (Ad)F 

holds for (F†(sB), sB) . Hence F†(sB) →A sA , if and only if F(sA) is defined and 
sB →B F(sA) . Since sA ∉ Ker(F) , the required equivalence follows. 	�  ◻

Remark 3.8  We denote by A�A

�B

 the function from the set of continuous homomor-
phisms from �A to �B to the set of adjunctions between �A and �B , which maps 
every continuous homomorphism F to the adjunction (F,F†) defined as in this prop-
osition. When the context is clear, we abbreviate A�A

�B

 to A.
Besides, note that, for any sA ∈ ΣA and sB ∈ ΣB , (Ad)F holds for (sA, sB) , if and 

only if (sB, sA) ∈ F† , i.e. F†(sB) is defined and equals to sA.

Second we show how to get a continuous homomorphism given an adjunction.

Proposition 3.9  Let (F, G) be an adjunction between �A and �B with F ∶ ΣA ⤏ ΣB 
and G ∶ ΣB ⤏ ΣA . Then both F and G are continuous homomorphisms.

Proof  We show that F is a continuous homomorphism from �A to �B . Let 
sA ∈ ΣA and sB, tB ∈ ΣB be arbitrary such that (sA, sB) ∈ F and sB →B tB . Then 
tB ∉ ∼BF[ΣA] = Ker(G) . We claim that (G(tB), tB) satisfies (Ad)F.

Let wA ∈ ΣA be arbitrary. First assume that G(tB) →A wA . Then 
wA ∉ ∼AG[ΣB] = Ker(F) , so F(wA) is defined. Since G(tB) →A wA , by the definition 
of adjunction and Symmetry tB →B F(wA) . Second assume that F(wA) is defined and 
tB →B F(wA) . It follows directly from the definition of adjunction and Symmetry 
that G(tB) →A wA.

Since tB is arbitrary, F is a continuous homomorphism.
Finally, by definition (G, F) is an adjunction between �B and �A . Hence by what 

was just proved G is a continuous homomorphism from �B to �A . 	�  ◻

Remark 3.10  We denote by C�A

�B

 the function from the set of adjunctions between �A 
and �B to the set of continuous homomorphisms from �A to �B , which maps every 
adjunction (F, G) to the continuous homomorphism F from �A to �B defined as in 
this proposition. When the context is clear, we abbreviate C�A

�B

 to C.

Finally, we prove the correspondence.

Proposition 3.11 

1.	 For every continuous homomorphism F from �A to �B , (C◦A)(F) = F.
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2.	 For every adjunction (F,  G) between �A and �B with F ∶ ΣA ⤏ ΣB and 
G ∶ ΣB ⤏ ΣA , (A◦C)((F,G)) = (F,G).

Proof  For 1: By the previous two propositions, (C◦A)(F) = C((F,F†)) = F.
For 2: We start with proving that G = F†.
First note that Ker(F†) = Ker(G) . Since both (F,F†) and (F, G) are adjunctions, 

by definition Ker(F†) = ∼BF[ΣA] = Ker(G).
Second show that G(sB) = F†(sB) , for every sB ∉ Ker(F†) = Ker(G) . By the proof 

of Proposition  3.9 (G(sB), sB) satisfies (Ad)F . By definition (F†(sB), sB) satisfies 
(Ad)F . By Lemma 3.6 G(sB) = F†(sB).

As a result, G = F† , and thus (A◦C)((F,G)) = A(F) = (F,F†) = (F,G) . 	�  ◻

In this correspondence, on the one hand, adjunctions have an intuitive definition 
based on the idea of correlation; on the other hand, continuous homomorphisms 
have a definition which is simple and easy to use in proofs. In the following investi-
gation, we will mostly focus on continuous homomorphisms.

Remark 3.12  Combining this correspondence with Proposition 14.4.4 in [38], F is 
a continuous homomorphism from �A to �B , if and only if it is a continuous homo-
morphism from G(�A) to G(�

�
) as is defined in [38].

3.2 � Continuous Homomorphism and Continuous Quasi‑Linear Map

Since the analytic method is powerful and handy, we will facilitate its application. 
In this subsection, we study the analytic counterpart of continuous homomorphisms. 
We start from reviewing the notion of quasi-linear maps.

Definition 3.13  (Definition 6.6.10 and Lemma 14.4.9 in [38]) Let VA and VB 
be two vector spaces over two division rings KA = (KA,+A, ⋅A, 0A, 1A) and 
KB = (KB,+B, ⋅B, 0B, 1B)

8, respectively. A quasi-linear map from VA to VB is a func-
tion f ∶ VA → VB such that: 

1.	 for any uA, vA ∈ VA , f (uA + vA) = f (uA) + f (vA);
2.	 there is a division ring isomorphism � ∶ KA → KB , called the division 

ring isomorphism associated to f, such that, for any vA ∈ VA and x ∈ KA , 
f (xvA) = �(x)f (vA).

When both VA and VB are generalized Hilbert spaces whose Hermitian forms 
are ΦA and ΦB , respectively, a quasi-linear map f from VA to VB is continuous, if 
there is a quasi-linear map f † ∶ VB → VA such that, for any vA ∈ VA and vB ∈ VB , 
ΦB(f (vA), vB) = �(ΦA(vA, f

†(vB))).

8  In the following, for simplicity, we omit all subscripts of function symbols and constant symbols of 
division rings. We also omit the dot for multiplication in a division ring.
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Remark 3.14  By Lemma 14.4.9 in [38], for each continuous quasi-linear map f, the 
quasi-linear map f † with the property prescribed by the definition is unique, and it is 
called the adjoint of f.

According to the following proposition, each continuous quasi-linear map induces 
a continuous homomorphism.

Proposition 3.15  Let VA and VB be two generalized Hilbert spaces over two division 
rings KA and KB , respectively, and f a continuous quasi-linear map from VA to VB . 
Define a partial function P(f ) ∶ ΣVA

⤏ ΣVB
 as follows: for each sA ∈ ΣVA

,

Then P(f ) is a continuous homomorphism from �VA
 to �VB

 , called the continuous 
homomorphism induced by f.

Proof  Assume that sA ∈ ΣVA
 and tB ∈ ΣVB

 are such that P(f )(sA) is defined and 
P(f )(sA) →B tB . By definition P(f )(sA) is f [sA] , and it is not {0B} . Let tB be a non-
zero vector such that tB = ⟨tB⟩ . Since f is a continuous quasi-linear map, by defi-
nition there is a quasi-linear map f † ∶ VB → VA such that, for any vA ∈ VA and 
vB ∈ VB , ΦB(f (vA), vB) = �(ΦA(vA, f

†(vB))).
We claim that f †(tB) ≠ 0A : Suppose (towards a contradic-

tion) that f †(tB) = 0A . Then, for each sB ∈ P(f )(sA) and vB ∈ tB , there 
are sA ∈ sA and x ∈ KB such that sB = f (sA) and vB = xtB , and thus 
ΦB(sB, vB) = ΦB(f (sA), xtB) = �B(x)ΦB(f (sA), tB) = �B(x)�(ΦA(sA, f

†(tB))) = �B(x)�(ΦA(sA, 0A)) = 0 , where �B is 
the accompanying involution of ΦB . It follows that P(f )(sA) ↛B tB , contradicting the 
assumption.

Now that f †(tB) ≠ 0A , ⟨f †(tB)⟩ = f †[tB] is an element of ΣVA
 . We try to show that 

(f †[tB], tB) satisfies (Ad)P(f ) . Let wA ∈ ΣVA
 be arbitrary.

First, assume that f †[tB] →A wA . By definition there are vA ∈ f †[tB] and wA ∈ wA 
such that ΦA(wA, vA) ≠ 0 . Then there is an x ∈ KA⧵{0} such that vA = xf †(tB) . Hence 
ΦB(f (wA), tB) = �(ΦA(wA, f

†(tB))) = �(ΦA(wA, x
−1vA)) = �(�A(x

−1)ΦA(wA, vA)) ≠ 0 , 
where �A is the accompanying involution of ΦA . It follows that f (wA) ≠ 0B , and thus 
f [wA] ≠ {0B} , so P(f )(wA) is defined. It also follows that tB →B P(f )(wA).

Second, assume that P(f )(wA) is defined and tB →B P(f )(wA) . By defini-
tion there are vB ∈ tB and wB ∈ P(f )(wA) such that ΦB(vB,wB) ≠ 0 . Hence 
there are wA ∈ wA and x ∈ KB⧵{0} such that wB = f (wA) and tB = xvB . Hence 
�(ΦA(wA, f

†(tB))) = ΦB(f (wA), tB) = ΦB(wB, xvB) = �B(x)ΦB(wB, vB) ≠ 0 . Hence 
ΦA(wA, f

†(tB)) ≠ 0 . Therefore, f †[tB] →A wA . 	�  ◻

Since every linear map having an adjoint is a quasi-linear map, it seems from 
the above proposition that continuous homomorphisms are the counterparts of lin-
ear maps at the level of one-dimensional subspaces. However, not every continuous 
homomorphism can be proved to be induced by a quasi-linear map. To characterize 

P(f )(sA) =

{
f [sA], if f [sA] ≠ {0B}

undefined, otherwise
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the continuous homomorphisms that are induced by quasi-linear maps, we need the 
following definition.

Definition 3.16  Let �A = (ΣA,→A) and �B = (ΣB,→B) be two quantum Kripke 
frames and F a continuous homomorphism from �A to �B . 

1.	 F is non-degenerate, if F[ΣA] includes an orthogonal set of cardinality at least 3.
2.	 F is arguesian, if it is the composition of two non-degenerate continuous homo-

morphisms between quantum Kripke frames. (These non-degenerate continuous 
homomorphisms may involve quantum Kripke frames other than �A and �B.)

Remark 3.17  A partial function F ∶ ΣA ⤏ ΣB is an arguesian continuous homomor-
phism from �A to �B , if and only if it is an arguesian continuous homomorphism 
from G(�A) to G(�B) in the sense of Definition 10.3.2 in [38].

Now we can characterize the continuous homomorphisms induced by quasi-lin-
ear maps.

Theorem  3.18  Let VA and VB be two generalized Hilbert spaces of dimension at 
least 3 over two division rings KA and KB , respectively. For each partial function 
F ∶ ΣVA

⤏ ΣVB
 , the following are equivalent: 

	 (i)	 F is an arguesian continuous homomorphism from �VA
 to �VB

;
	 (ii)	 there is a continuous quasi-linear map f ∶ VA → VB such that F = P(f ).

Moreover, if F[ΣVA
] is not a singleton and the f in (ii) exists, f is unique up to scalar 

multiplication.
Proof  From (i) to (ii): Assume that F is an arguesian continuous homomorphism 
from �VA

 to �VB
 . Then there is a generalized Hilbert space VC and two non-degener-

ate continuous homomorphisms G ∶ ΣVA
⤏ ΣVC

 and G� ∶ ΣVC
⤏ ΣVB

 such that 
F = G�

◦G . Note that, for each v ≠ 0 in a generalized Hilbert space V, there is a lin-
ear functional, namely Φ(⋅,v)

Φ(v,v)
 , such that its value on v is 1. Hence every generalized 

Hilbert space is a dualized vector space in the sense of Example 13.4.2 in [38]. By 
Proposition 13.5.3 in [38] there are two continuous quasi-linear maps g ∶ VA → VC 
and g� ∶ VC → VB such that G = P(g) and G� = P(g�) . It can be verified that 
g�◦g ∶ VA → VB is a continuous quasi-linear map and (g′◦g) = (g′)◦(g)
= G′◦G = F.

From (ii) to (i): By Proposition 3.15P(f ) is a continuous homomorphism. We can 
also prove that P(f ) is arguesian by the strategy used in the proof of Theorem 10.3.1 
in [38] as follows:
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Since VB is of dimension at least 3, we can find a set of three linearly independent 
vectors in VB . Using the Gram-Schmidt process we get three pairwise orthogonal 
vectors v1

B
 , v2

B
 , v3

B
 in VB

9. Let W = VA ×KA ×KA ×KA and define a function

where �A is the accompanying involution of ΦA . It can be shown that W over KA 
equipped with Φ is a generalized Hilbert space. Then define the functions

Here � is the division ring isomorphism associated to f. It can be verified that fA 
is linear and fB is quasi-linear, and f = fB◦fA . By definition the dimension of the 
image of fA is the same as VA which is at least 3, and the image of fB includes all 
of v1

B
 , v2

B
 and v3

B
 ; so both P(fA) and P(fB) are non-degenerate. By Proposition 3.15 

both P(fA) and P(fB) are continuous homomorphisms and it can be verified that 
P(f ) = P(fB)◦P(fA) . Therefore, P(f ) is arguesian.

Uniqueness: It follows from Lemma 6.3.4 in [38]. 	� ◻

Remark 3.19  It is crucial for the direction from (ii) to (i) to assume that both VA 
and VB are at least 3-dimensional. Here we need to show P(f ) = G◦H , for two con-
tinuous homomorphisms G and H such that both are non-degenerate, i.e. the range 
of each of them contains three pairwise orthogonal elements. If VA were at most 
2-dimensional, H would have at most two orthogonal elements in its range and 
thus not be non-degenerate, even if it is an embedding. If VB were at most 2-dimen-
sional, G would have at most two orthogonal elements in its range and thus not be 
non-degenerate.

3.3 � Projective Collineations in Projective Geometries and in Quautum Kripke 
Frames

The work in the previous subsection results in a correspondence between arguesian 
continuous homomorphisms and continuous quasi-linear maps.

Suppose that we are in a concrete setting with two finite-dimensional Hilbert 
spaces HA and HB over ℂ . By Theorem  2.9 and Remark  2.10 we can construct 
HA ⊗HB from Hom(HA,HB) , so Σ

Hom(HA,HB)
 can be defined as the set of all contin-

uous homomorphisms of the form P(f ) , where f is a linear map whose image is not 

Φ ∶ W ×W → KA

∶∶
(
(u1

A
, x1

A
, x2

A
, x3

A
), (u2

A
, y1

A
, y2

A
, y3

A
)
)

↦ ΦA(u
1
A
, u2

A
) + �A(x

1
A
) ⋅ y1

A
+ �A(x

2
A
) ⋅ y2

A
+ �A(x

3
A
) ⋅ y3

A

fA ∶ VA → W∶∶uA ↦ (uA, 0, 0, 0)

fB ∶ W → VB∶∶(uA, x
1
A
, x2

A
, x3

A
) ↦ f (uA) + �(x1

A
)v1

B
+ �(x2

A
)v2

B
+ �(x3

A
)v3

B

9  Here we use superscripts as indices, for subscriptes have been used to distinguish between objects 
related to VA and those related to VB.
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{0B} . Please be aware that, if we want to define Σ
Hom(HA,HB)

 using �HA
 and �HB

 , we 
can not take all arguesian continuous homomorphims from �HA

 to �HB
 ; otherwise, 

by Theorem 3.18 the anti-linear maps would sneak in.
As a result, we see the need to characterize the arguesian continuous homomor-

phisms induced by linear maps. More precisely, we need to characterize the argue-
sian continuous homomorphisms each induced by a quasi-linear map with the same 
associated division ring isomorphism; then, without loss of generality, we can 
assume that this isomorphism is the identity.

Our way of doing this will employ some results in projective geometry about 
projective collineations. The following definition is adapted from that on Page 96 
in [39].

Definition 3.20  Let � = (G,⋆) be a projective geometry. A central collineation on 
� is a bijection C ∶ G → G such that: 

1.	 for any a, b, c ∈ G , c ∈ a ⋆ b if and only if C(c) ∈ C(a) ⋆ C(b);
2.	 there is a hyperplane such that each element of it is a fixed point of C, where a 

hyperplane is defined to be a subspace H of � such that G is the only subspace E 
satisfying H ⫋ E;

3.	 there is an o ∈ G such that, for any a, b ∈ G , if b ∈ a ⋆ o , then C(b) ∈ a ⋆ o.

A projective collineation on � is a composition of finitely many central collinea-
tions on �.
Theorem  3.21  Let V be a vector space and �V = (ΣV ,⋆V ) . For each function 
F ∶ ΣV → ΣV , the following are equivalent: 

	 (i)	 F is a projective collineation on �V;
	 (ii)	 there is a bijective linear map f ∶ V → V  such that F = P(f ).

Proof  It follows from Theorem 3.6.7 and the definition on page 126 in [39]. Here 
we use the characterizing condition in the theorem in [39] as the definition and the 
definition there as a characterizing condition. 	�  ◻

According to Theorem 2.16, we can introduce the notion of projective colline-
ations into the framework of quantum Kripke frames.

Definition 3.22  Let � = (Σ,→) be a quantum Kripke frame. 

1.	 For any two distinct elements s and t of Σ , the line determined by s and t is the 
set ∼∼{s, t}.

2.	 A subspace of � is a subset E of Σ such that, for any s, t ∈ Σ , s ∈ E and t ∈ E 
imply that ∼∼{s, t} ⊆ E.
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3.	 A hyperplane of � is a subspace H such that Σ is the only subspace P satisfying 
H ⫋ P.

4.	 A central collineation on � is a bijection F on Σ such that: 

(a)	 for any s, t, u ∈ Σ , u ∈ ∼∼{s, t} if and only if F(u) ∈ ∼∼{F(s),F(t)};
(b)	 there is a hyperplane H of � such that every element in H is a fixed point 

of F;
(c)	 there is an o ∈ Σ such that, for any s, t ∈ Σ , if t ∈ ∼∼{s, o} , then 

F(t) ∈ ∼∼{s, o}.

5.	 A collineation on � is projective, if it is a composition of finitely many central 
collineations on �.

Combining Theorems 2.16 and 3.21 we have the following theorem:

Theorem  3.23  Let V be a vector space and �V = (ΣV ,→V ) . For each function 
F ∶ ΣV → ΣV , the following are equivalent: 

	 (i)	 F is a projective collineation on �V;
	 (ii)	 there is a bijective linear map f ∶ V → V  such that F = P(f ).

3.4 � Continuous Homomorphisms with the Same Associated Division Ring 
Isomorphism

Now we start to characterize the arguesian continuous homomorphisms each 
induced by a quasi-linear map with the same associated division ring isomorphism. 
First we deal with the degenerate case.

Lemma 3.24  Let VA and VB be two vector spaces over two division rings KA and 
KB , respectively, g ∶ VA → VB a quasi-linear map whose image is at most one-
dimensional, and � ∶ KA → KB a division ring isomorphism. There is a quasi-linear 
map f ∶ VA → VB such that � is the division ring isomorphism associated to f and 
P(f ) = P(g).

Proof  Let � be the division ring isomorphism associated to g. Two cases need to be 
considered.

Case 1: g[VA] = {0B} . In this case g is the zero map, and it is not hard to verify 
that g is a quasi-linear map with � as the associated division ring isomorphism, and 
trivially P(g) = P(g).
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Case 2: g[VA] is one-dimensional. From linear algebra there is a Hamel basis10 
{vi

A
∣ i ∈ I ∪ {e}} of VA such that e ∉ I and g(vi

A
) ≠ 0B if and only if i = e , for every 

i ∈ I ∪ {e} . For every vector vA ∈ VA , if vA =
∑

i∈J xiv
i
A
 for a finite set J ⊆ I ∪ {e} , 

define f (vA) to be 
∑

i∈J �(xi)g(v
i
A
) . Then f is a function from VA to VB . We claim that 

f has the required properties.
First show that f is additive. For any two vectors sA, tA ∈ V  , suppose that under 

the basis sA =
∑

i∈Js
xiv

i
A
 and tA =

∑
i∈Jt

yiv
i
A
 . Then

Second show that f (xuA) = �(x)f (uA) , for any x ∈ KA and uA ∈ VA . Suppose that 
under the basis uA =

∑
i∈J xiv

i
A
 . Then

f (sA + tA)

= f (
∑

i∈Js

xiviA +
∑

i∈Jt

yiviA)

= f (
∑

i∈Js∩Jt

(xi + yi)viA +
∑

i∈Js⧵(Js∩Jt)
xiviA +

∑

i∈Jt⧵(Js∩Jt)
yiviA)

=
∑

i∈Js∩Jt

�(xi + yi)g(viA) +
∑

i∈Js⧵(Js∩Jt)
�(xi)g(viA) +

∑

i∈Jt⧵(Js∩Jt)
�(yi)g(viA)

=
∑

i∈Js∩Jt

�(xi)g(viA) +
∑

i∈Js∩Jt

�(yi)g(viA) +
∑

i∈Js⧵(Js∩Jt)
�(xi)g(viA)

+
∑

i∈Jt⧵(Js∩Jt)
�(yi)g(viA)

=
∑

i∈Js

�(xi)g(viA) +
∑

i∈Jt

�(yi)g(viA)

= f (sA) + f (tA)

f (xuA) = f (x
∑

i∈J

xiv
i
A
)

= f (
∑

i∈J

(xxi)v
i
A
)

=
∑

i∈J

�(xxi)g(v
i
A
)

=
∑

i∈J

�(x)�(xi)g(v
i
A
)

= �(x)
∑

i∈J

�(xi)g(v
i
A
)

= �(x)f (
∑

i∈J

xiv
i
A
)

= �(x)f (uA)

10  A Hamel basis of a vector space V is an independent set B ⊆ V  such that every vector in V is a (finite) 
linear combination of vectors in B.
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It can now be concluded that f is a quasi-linear map from VA to VB with � as the asso-
ciated division ring isomorphism. It remains to show that P(f ) = P(g) . Let uA ∈ VA 
be arbitrary. Suppose that uA =

∑
i∈J xiv

i
A
 under the basis. When e ∉ J or xe = 0,

When e ∈ J and xe ≠ 0,

It follows that P(f ) = P(g) . 	�  ◻

Second we deal with the non-degenerate case. Please note that here we need the 
commutativity of the multiplication.

Lemma 3.25  Let VA and VB be two vector spaces over two fields KA and KB , respec-
tively, f , g ∶ VA → VB two quasi-linear maps such that both of their images are at 
least two-dimensional, and � and � the division ring isomorphisms associated to f 
and g, respectively. Then the following are equivalent: 

	 (i)	 � = �;
	 (ii)	 there is a subspace PA ⊆ ΣVA

 , a projective collineation CA on �VA
 and a 

projective collineation CB on �VB
 such that P(f )[PA] is not a singleton and 

(CB◦P(f ))↾PA
= (P(g)◦CA)↾PA

.

Proof  From (i) to (ii): Since the image of f and that of g are both at least two-
dimensional, let u1

A
, u2

A
∈ VA be such that f (u1

A
) and f (u2

A
) are linearly independ-

ent, v1
A
, v2

A
∈ VA be such that g(v1

A
) and g(v2

A
) are linearly independent. It follows 

that u1
A
 and u2

A
 are linearly independent and v1

A
 and v2

A
 are linearly independent. 

Extend {u1
A
, u2

A
} to a Hamel basis {ui

A
∣ i ∈ I} of VA such that 1, 2 ∈ I . Extend 

{v1
A
, v2

A
} to a Hamel basis {vi

A
∣ i ∈ I} of VA . We can use the same index set because 

any two Hamel bases of VA are of the same cardinality. Extend {f (u1
A
), f (u2

A
)} to a 

Hamel basis {uj
B
∣ j ∈ J} of VB such that 1, 2 ∈ J , u1

B
= f (u1

A
) and u2

B
= f (u2

A
) . 

Extend {g(v1
A
), g(v2

A
)} to a Hamel basis {vj

B
∣ j ∈ J} of VB such that v1

B
= g(v1

A
) and 

v
2
B
= g(v2

A
) . We can use the same index set because any two Hamel bases of VB are 

of the same cardinality.
Let PA = ⟨u1

A
⟩ ⋆A ⟨u2A⟩ . Since u1

B
= f (u1

A
) , u2

B
= f (u2

A
) and f (u1

A
) and f (u2

A
) are 

linearly independent, P(f )[PA] is not a singleton.

f (uA) =
∑

i∈J

�(xi)g(v
i
A
) = 0B, g(uA) =

∑

i∈J

�(xi)g(v
i
A
) = 0B

f (uA) =
∑

i∈J

�(xi)g(v
i
A
) = �(xe)g(v

e
A
) ≠ 0B

g(uA) =
∑

i∈J

�(xi)g(v
i
A
) = �(xe)g(v

e
A
) ≠ 0B,
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Moreover, define cA ∶ VA → VA to be the linear map that maps ui
A
 to vi

A
 for each 

i ∈ I and cB ∶ VB → VB to be the linear map that maps ui
B
 to vi

B
 for each i ∈ J . By 

Theorem 3.23 CA = P(cA) and CB = P(cB) are two projective collineations on �VA
 

and �VB
 , respectively.

Finally, we verify that (CB◦P(f ))↾PA
= (P(g)◦CA)↾PA

 : Let wA ∈ PA⧵{0} be arbi-
trary. Then there are x, y ∈ KA such that {x, y} ≠ {0} and wA = xu1

A
+ yu2

A
.

From (ii) to (i): Let x ∈ KA be arbitrary. If x = 0 , �(x) = 0 = �(x) by the definition 
of field isomorphisms. It remains to consider the case when x ≠ 0.

By (ii) and Theorem 3.23 there are two bijective linear maps cA ∶ VA → VA and 
cB ∶ VB → VB such that CA = P(cA) and CB = P(cB).

Also by (ii) there are u1
A
, u2

A
∈ VA⧵{0A} such that ⟨u1

A
⟩, ⟨u2

A
⟩ ∈ PA , f (u1A) ≠ 0B , 

f (u2
A
) ≠ 0B , ⟨f (u1

A
)⟩ and ⟨f (u2

A
)⟩ are two different elements in P(f )[PA] . Then 

⟨u1
A
+ u

2
A
⟩, ⟨u1

A
+ xu2

A
⟩ ∈ PA . We calculate

(CB◦P(f ))(⟨wA⟩) = (P(cB)◦P(f ))(⟨xu1A + yu2
A
⟩)

= P(cB)(⟨�(x)f (u1A) + �(y)f (u2
A
)⟩)

= P(cB)(⟨�(x)u1B + �(y)u2
B
⟩)

= ⟨�(x)v1
B
+ �(y)v2

B
⟩

= ⟨�(x)g(v1
A
) + �(y)g(v2

A
)⟩ (by (i))

= P(g)(⟨xv1
A
+ yv2

A
⟩)

= P(g)(⟨xcA(u1A) + ycA(u
2
A
)⟩)

= (P(g)◦P(cA))(⟨xu1A + yu2
A
⟩)

= (P(g)◦CA)(⟨wA⟩)
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As (CB◦P(f ))↾PA
= (P(g)◦CA)↾PA

 , there are non-zero k, l,m, n ∈ KB such that

Hence

and thus

(CB◦P(f ))(⟨u1A⟩) = (P(cB)◦P(f ))(⟨u1A⟩)

= P(cB)(⟨f (u1A)⟩)

= ⟨(cB◦f )(u1A)⟩

(P(g)◦CA)(⟨u1A⟩) = (P(g)◦P(cA))(⟨u1A⟩)

= P(g)(⟨cA(u1A)⟩)

= ⟨(g◦cA)(u1A)⟩

(CB◦P(f ))(⟨u2A⟩) = (P(cB)◦P(f ))(⟨u2A⟩)

= P(cB)(⟨f (u2A)⟩)

= ⟨(cB◦f )(u2A)⟩

(P(g)◦CA)(⟨u2A⟩) = (P(g)◦P(cA))(⟨u2A⟩)

= P(g)(⟨cA(u2A)⟩)

= ⟨(g◦cA)(u2A)⟩

(CB◦P(f ))(⟨u1A + u
2

A
⟩) = (P(cB)◦P(f ))(⟨u1A + u

2

A
⟩)

= P(cB)(⟨f (u1A) + f (u2
A
)⟩)

= ⟨(cB◦f )(u1A) + (cB◦f )(u
2

A
)⟩

(P(g)◦CA)(⟨u1A + u
2

A
⟩) = (P(g)◦P(cA))(⟨u1A + u

2

A
⟩)

= P(g)(⟨cA(u1A) + cA(u
2

A
)⟩)

= ⟨(g◦cA)(u1A) + (g◦cA)(u
2

A
)⟩

(CB◦P(f ))(⟨u1A + xu2
A
⟩) = (P(cB)◦P(f ))(⟨u1A + xu2

A
⟩)

= P(cB)(⟨f (u1A) + �(x)f (u2
A
)⟩)

= ⟨(cB◦f )(u1A) + �(x)(cB◦f )(u
2

A
)⟩

(P(g)◦CA)(⟨u1A + xu2
A
⟩) = (P(g)◦P(cA))(⟨u1A + xu2

A
⟩)

= P(g)(⟨cA(u1A) + xcA(u
2

A
)⟩)

= ⟨(g◦cA)(u1A) + �(x)(g◦cA)(u
2

A
)⟩

k(cB◦f )(u
1
A
) = (g◦cA)(u

1
A
)

l(cB◦f )(u
2
A
) = (g◦cA)(u

2
A
)

m
(
(cB◦f )(u

1
A
) + (cB◦f )(u

2
A
)
)
= (g◦cA)(u

1
A
) + (g◦cA)(u

2
A
)

n
(
(cB◦f )(u

1
A
) + �(x)(cB◦f )(u

2
A
)
)
= (g◦cA)(u

1
A
) + �(x)(g◦cA)(u

2
A
)

m(cB◦f )(u
1
A
) + m(cB◦f )(u

2
A
) = k(cB◦f )(u

1
A
) + l(cB◦f )(u

2
A
)

n(cB◦f )(u
1
A
) + n�(x)(cB◦f )(u

2
A
) = k(cB◦f )(u

1
A
) + �(x)l(cB◦f )(u

2
A
)
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Since f (u1
A
) and f (u2

A
) are linearly independent, we have n = k = l = m and 

n�(x) = �(x)l , so �(x) = n−1�(x)n . Since KB is a field, �(x) = �(x) . 	�  ◻

Now we define the relation of being colleagues, and use it to characterize the 
arguesian continuous homomorphisms each induced by a quasi-linear map with 
the same associated field isomorphism.

Definition 3.26  Let �A and �B be two quantum Kripke frames. For any two continu-
ous homomorphisms F and F′ from �A to �B , F is a colleague of F′ , denoted by 
F ≎ F� , if at least one of the following holds:

•	 either F[ΣA] or F�[ΣA] is a singleton;
•	 there is a closed PA ⊆ ΣA and two projective collineations CA ∶ �A → �A and 

CB ∶ �B → �B such that F[PA] is not a singleton and (CB◦F)↾PA
= (F�

◦CA)↾PA
.

Theorem  3.27  Let VA and VB be two generalized Hilbert spaces over a field K . 
Let h ∶ VA → VB be a linear map such that h[VA] is at least two-dimensional. For 
each arguesian continuous homomorphism F from �VA

 to �VB
 , the following are 

equivalent: 

	 (i)	 F ≎ P(h);
	 (ii)	 there is a linear map f ∶ VA → VB such that F = P(f ).

Moreover, if F[ΣVA
] is not a singleton and the f in (ii) exists, f is unique up to sca-

lar multiplication.
Proof  From (ii) to (i): If F[ΣVA

] is a singleton, by definition F ≎ P(h) . It remains 
to consider the case when F[ΣVA

] is not a singleton. Then f [VA] is at least two-
dimensional. Since both f and h are linear maps, by Lemma 3.25 there is a subspace 
QA ⊆ ΣVA

 and two projective collineations CA ∶ �VA
→ �VA

 and CB ∶ �VB
→ �VB

 
such that F[QA] is not a singleton and (CB◦P(f ))↾QA

= (P(h)◦CA)↾QA
 . Since 

F[QA] is not a singleton, pick two distinct sA, tA ∈ QA such that F(sA) ≠ F(tA) . 
By Proposition  2.17 sA ⋆A tA is closed. Then F[sA ⋆A tA] is not a singleton and 
(CB◦P(f ))↾sA⋆AtA

= (P(h)◦CA)↾sA⋆AtA
 . By definition F = P(f ) ≎ P(h).

From (i) to (ii): If F[ΣVA
] is a singleton, by Lemma 3.24 there is a linear map 

f ∶ VA → VB such that F = P(f ) . It remains to consider the case when F[ΣVA
] is not 

a singleton. By (ii) and the definition of colleagues there is a PA ⊆ ΣVA
 and two pro-

jective collineations CA ∶ �VA
→ �VA

 and CB ∶ �VB
→ �VB

 such that ∼A∼APA = PA , 
F[PA] is not a singleton and (CB◦F)↾PA

= (P(h)◦CA)↾PA
 . Since PA is closed, it is a 

subspace by Lemma A.4. Since F is an arguesian continuous homomorphism, by 
Theorem  3.18 there is a quasi-linear map f ∶ VA → VB such that F = P(f ) . By 

(m − k)(cB◦f )(u
1
A
) + (m − l)(cB◦f )(u

2
A
) = 0

(n − k)(cB◦f )(u
1
A
) + (n�(x) − �(x)l)(cB◦f )(u

2
A
) = 0
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Lemma 3.25 the division ring isomorphisms associated to f and h are the same, so f 
is a linear map.

Uniqueness: It follows from the uniqueness part of Theorem 3.18. 	�  ◻

With this theorem, we finally know how to define Σ: We take all arguesian con-
tinuous homomorphisms which are the colleagues of a particular non-degener-
ate continuous homomorphism.

4 � Linear Maps of Trace 0

Please recall that our question is the following:

Given two quantum Kripke frames �A = (ΣA,→A) and �B = (ΣB,→B) describ-
ing two quantum systems, respectively, what is the quantum Kripke frame 
� = (Σ,→) that describes the bipartite quantum system consisting of the two 
given quantum systems?

In the previous section, we define Σ by finding the counterparts of linear maps. In 
this section, we work towards defining a non-orthogonality relation → on Σ.

From the definitions, we see that the non-orthogonality relation between one-
dimensional subspaces is defined via the inner product of two vectors being zero; 
and in the tensor product constructed from linear maps the inner product is defined 
via the trace function. Therefore, to define the non-orthogonality relation → we 
need a characterization of linear maps of trace 0. In this section our goal is such a 
characterization.

Throughout this section, we fix a finite-dimensional vector space V over a field 
F = (F,+, ⋅, 0, 1) equipped with an anisotropic Hermitian form Φ11. Moreover, we 
use (⋅)∗ to denote the accompanying involution of Φ.

Such a V is a generalization of a finite-dimensional generalized Hilbert space over 
a field and thus that of a finite-dimensional Hilbert space over ℂ.

We start from proving two lemmas about F  which will be used later.

Lemma 4.1  Suppose that the dimension of V is at least 2 and each linear map on a 
subspace of V has at least one eigenvector. For each x ∈ F , there is a y ∈ F such 
that x = yy.

Proof  Let x ∈ F be arbitrary. Since V is of dimension at least 2, there are u, v ∈ V  
which are linearly independent. Consider the following function defined on 
L({u, v}) : for any c, d ∈ F,

f (cu + dv) = cv + dxu

11  An Hermitian form Φ is anisotropic if, for each v ∈ V  , Φ(v, v) = 0 implies v = 0 . Every orthomodular 
Hermitian form is anisotropic. A proof can be found below Definition 1.2 on page 206 of [45].



	 Foundations of Physics (2023) 53:75

1 3

75  Page 30 of 49

It can be verified that this is a linear map on L({u, v}) . By the assumption it has an 
eigenvector au + bv , where a ≠ 0 or b ≠ 0 . Denote the corresponding eigenvalue by 
y. Then

and thus

Since u and v are linearly independent, ya − bx = 0 and yb − a = 0 . Hence 
yyb − bx = 0 . Since F  is a field, b(yy − x) = 0.

Note that b ≠ 0 ; otherwise, we have a ≠ 0 and yau − av = 0 , and thus yu − v = 0 , 
contradicting that u and v are linearly independent.

Therefore, x = yy . 	�  ◻

Definition 4.2  V admits normalization, if, for each v ∈ V⧵{0} , there is an x ∈ F 
such that Φ(xv, xv) = 1.

Lemma 4.3  Suppose that V admits normalization and, for each x ∈ F , there is 
a y ∈ F such that x = yy . For each v ∈ V  , there is a 

√
Φ(v, v) ∈ F such that √

Φ(v, v) = (
√
Φ(v, v))∗ and Φ(v, v) =

√
Φ(v, v)

√
Φ(v, v).

Proof  Let v ∈ V  be arbitrary. If v = 0 , by definition Φ(v, v) = 0 , so 0 ∈ F has the 
required property. It remains to deal with the case when v ≠ 0 . Since V admits nor-
malization, there is an x ∈ F such that Φ(xv, xv) = 1 . Then there is a y ∈ F such 
that x = yy . Let 

√
Φ(v, v) = y−1(y−1)∗ . It is obvious that 

√
Φ(v, v) = (

√
Φ(v, v))∗ . 

Moreover,

	�  ◻

Proposition 4.4  Suppose that V admits normalization and each linear map on 
a subspace of V has an eigenvector. For each linear map f ∶ V → V  , there is a 
w ∈ V⧵{0} such that Tr(f ) = Φ(f (w),w).

Proof  Use induction on the dimension n of V.

y(au + bv) = f (au + bv) = av + bxu

(ya − bx)u + (yb − a)v = 0

√
Φ(v, v)

√
Φ(v, v) = y−1(y−1)∗y−1(y−1)∗

= y−1y−1(y−1)∗(y−1)∗ (F is a field)

= (yy)−1(y−1y−1)∗

= x−1(x−1)∗

= x−1(x−1)∗Φ(xv, xv)

= Φ(x−1xv, x−1xv)

= Φ(v, v)
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Base Step: n = 1 . Take a unit vector w ∈ V  . By the definition of trace 
Tr(f ) = Φ(f (w),w).

Induction Step: n = k . By the supposition f has at least one eigenvector v . Since 
V admits normalization, without loss of generality, we assume that v is a unit vec-
tor and f (v) = av . Then U = {v}⊥ is an (n − 1)-dimensional subspace of V. Let 
{u1,… , uk−1} be an orthonormal basis of U. Then {v,u1,… , uk−1} is an orthonor-
mal basis of V. Hence Tr(f ) = Φ(f (v), v) +

∑k−1

i=1
Φ(f (ui), ui).

Now define two functions �0 ∶ V → V  and �1 ∶ V → V  as follows: for each 
x, x1,… , xk−1 ∈ F,

It can be verified that: 

1.	 both �0 and �1 are idempotent and self-adjoint linear maps, and thus they are 
orthogonal projections onto {v} and U = {v}⊥ , respectively;

2.	 �0 + �1 = idV , and thus f = idV◦f = (�0 + �1)◦f = �0◦f + �1◦f ;
3.	 (�1◦f )↾U is a linear map on U.

Hence by the IH there is a u ∈ U⧵{0} such that

Since {u1,… , uk−1} is an orthonormal basis of U,

Therefore, Φ((�1◦f )(u), u) =
∑k−1

i=1
Φ((�1◦f )(ui), ui) . Moreover,

Let

�0

(
xv +

k−1∑

i=1

xiui

)
= xv, �1

(
xv +

k−1∑

i=1

xiui

)
=

k−1∑

i=1

xiui

Tr((�1◦f )↾U) = Φ((�1◦f )↾U(u), u) = Φ((�1◦f )(u), u)

Tr((�1◦f )↾U) =

k−1∑

i=1

Φ(((�1◦f )↾U)(ui), ui) =

k−1∑

i=1

Φ((�1◦f )(ui), ui)

Tr(f ) = Φ(f (v), v) +

k−1∑

i=1

Φ(f (ui), ui)

= Φ(f (v), v) +

k−1∑

i=1

Φ((�0◦f + �1◦f )(ui), ui)

= Φ(f (v), v) +

k−1∑

i=1

Φ((�0◦f )(ui) + (�1◦f )(ui), ui)

= Φ(f (v), v) +

k−1∑

i=1

Φ((�1◦f )(ui), ui)

= Φ(f (v), v) + Φ((�1◦f )(u), u)
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where r ∈ {v,u}⊥ . Then Φ(f (v), v) = Φ(av, v) = a and 
Φ((�1◦f )(u), u) = Φ(cu + r, u) = cΦ(u,u) . We consider three cases.

Case 1: a = 0 . We let w be u . Since u ≠ 0 , w ≠ 0 . Moreover,

Case 2: b = 0 . We let w be v + u . Obviously w ≠ 0 . Moreover,

Case 3: a ≠ 0 and b ≠ 0.
Since n ≥ 2 , there are s, t ∈ V  such that Φ(s, t) = 0 . Since V admits normaliza-

tion, without loss of generality we assume that both s and t are unit vectors. Con-
sider the vector a

b
s +

1

2
t,12 and we have

By the supposition Lemma 4.1 holds for V. Hence by Lemma 4.3 there is an x ∈ F 
such that x = x∗ and aa

∗

bb∗
+

1

4
= xx.

Consider the vector

f (v) = av, f (u) = bv + cu + r

Φ(f (w),w) = Φ(f (u), u)

= Φ(bv + cu + r, u)

= cΦ(u,u)

= a + cΦ(u,u) (by a = 0)

= Φ(f (v), v) + Φ((�1◦f )(u),u)

= Tr(f )

Φ(f (w),w) = Φ(f (v + u), v + u)

= Φ(f (v), v) + Φ(f (u), v) + Φ(f (v), u) + Φ(f (u), u)

= Φ(av, v) + Φ(cu + r, v) + Φ(av, u) + Φ(cu + r,u)

= a + cΦ(u, u)

= Φ(f (v), v) + Φ((�1◦f )(u), u)

= Tr(f )

Φ
(
a

b
s +

1

2
t,
a

b
s +

1

2
t

)

= Φ
(
a

b
s,
a

b
s

)
+ Φ

(
a

b
s,
1

2
t

)
+ Φ

(
1

2
t,
a

b
s

)
+ Φ

(
1

2
t,
1

2
t

)

=
aa∗

bb∗
Φ(s, s) +

a

b

1

2
Φ(s, t) +

1

2

a∗

b∗
Φ(t, s) +

1

2

1

2
Φ(t, t)

=
aa∗

bb∗
+

1

4

w =
b

a
(x −

1

2
)v + u

12  Since K is a field, the fraction notation like a
b
 is legitimate and intuitive.
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Obviously, w ≠ 0 . We calculate

	�  ◻

Theorem 4.5  Suppose that V admits normalization and each linear map on a sub-
space of V has an eigenvector. For each linear map f ∶ V → V  , the following are 
equivalent: 

	 (i)	 Tr(f ) = 0;
	 (ii)	 there is an orthonormal basis {v1,… , vn} of V such that Φ(f (vi), vi) = 0 holds 

for each i ∈ {1,… , n}.

Proof  From (i) to (ii): We use induction on the dimension n of V.
Base Step: n = 1 . In this case, both (i) and (ii) are equivalent to that f is the zero map.
Induction Step: n = k . Assume that Tr(f ) = 0 . By the above proposition 

Φ(f (v1), v1) = 0 , for some v1 ∈ V⧵{0}.

Φ(f (w),w)

= Φ
(
f
(
b

a
(x −

1

2
)v + u

)
,
b

a
(x −

1

2
)v + u

)

= Φ
(
b

a
(x −

1

2
)f (v) + f (u),

b

a
(x −

1

2
)v + u

)

=
b

a
(x −

1

2
)
(
b

a
(x −

1

2
)
)∗

Φ(f (v), v) +
(
b

a
(x −

1

2
)
)∗

Φ(f (u), v)

+
b

a
(x −

1

2
)Φ(f (v), u) + Φ(f (u), u)

=
b

a
(x −

1

2
)
(
b

a
(x −

1

2
)
)∗

Φ(av, v) +
(
b

a
(x −

1

2
)
)∗

Φ(bv + cu + r, v)

+
b

a
(x −

1

2
)Φ(av, u) + Φ(bv + cu + r,u)

=
b

a
(x −

1

2
)
(
b

a
(x −

1

2
)
)∗

a +
(
b

a
(x −

1

2
)
)∗

b + cΦ(u, u)

=
bb∗

aa∗

(
x −

1

2

)(
x∗ −

1

2

)
a +

b∗

a∗

(
x∗ −

1

2

)
b + cΦ(u,u)

=
bb∗

aa∗

(
x −

1

2

)(
x −

1

2

)
a +

b∗

a∗

(
x −

1

2

)
b + cΦ(u, u) (by x = x∗)

=
bb∗

a∗

(
xx − x +

1

4

)
+

bb∗

a∗

(
x −

1

2

)
+ cΦ(u,u)

=
bb∗

a∗

(
aa∗

bb∗
+

1

2
− x

)
+

bb∗

a∗

(
x −

1

2

)
+ cΦ(u, u) (by xx =

aa∗

bb∗
+

1

4
)

=
bb∗

a∗
aa∗

bb∗
+ cΦ(u,u)

= a + cΦ(u,u)

= Tr(f )
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Since V admits normalization, without loss of generality, we assume that v1 is a 
unit vector. Extend the set {v1} to an orthonormal basis {v1, u2,…uk} of V and let 
U = {v1}

⊥ = {u2,…uk}
⊥⊥ . Define two functions �0 and �1 on V as follows: for any 

x1,… , xk ∈ F,

It can be verified that: 

1.	 both �0 and �1 are idempotent and self-adjoint linear maps, and thus they are 
orthogonal projections onto U⊥ = {v1} and U, respectively;

2.	 �0 + �1 = idV , and thus f = idV◦f = (�0 + �1)◦f = �0◦f + �1◦f ;
3.	 (�1◦f )↾U is a linear map on U.

Hence

Then Tr((�1◦f )↾U) = Tr(f ) = 0 . Since the dimension of U is k − 1 , the IH 
applies. Hence there is an orthonormal basis {v2,… , vk} of U such that 
Φ((�1◦f )↾U(vi), vi) = 0 holds for each i ∈ {2,… , k} . Since {v1, u2,…uk} 
is an orthonormal basis of V and {v2,… , vk} is an orthonormal basis of 
U = {v1}

⊥ = {u2,…uk}
⊥⊥ , {v1, v2,… , vk} is an orthonormal basis of V.

Consider this basis. We already know Φ(f (v1), v1) = 0 . Moreover, for each 
i ∈ {2,… , k},

�0(x1v1 +

k∑

i=2

xiui) = x1v1, �1(x1v1 +

k∑

i=2

xiui) =

k∑

i=2

xiui

Tr(f ) = Φ(f (v1), v1) +

k∑

i=2

Φ(f (ui), ui) = 0 +

k∑

i=2

Φ(f (ui), ui)

=

k∑

i=2

Φ((�0◦f + �1◦f )(ui), ui)

=

k∑

i=2

(
Φ((�0◦f )(ui), ui) + Φ((�1◦f )(ui), ui)

)

=

k∑

i=2

Φ((�1◦f )(ui), ui)

=

k∑

i=2

Φ((�1◦f )↾U(ui), ui) = Tr((�1◦f )↾U)
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As a result, the orthonormal basis {v1,… , vk} satisfies that Φ(f (vi), vi) = 0 holds for 
each i = 1,… , k.

From (ii) to (i): Since {v1,… , vn} is an orthonormal basis of V, by the definition 
of trace Tr(f ) =

∑n

i=1
Φ(f (vi), vi) = 0 . 	�  ◻

With this theorem, we finally know how to define an orthogonality relation 
between linear maps: Two linear maps f and g from VA to VB are orthogonal, 
if there is an orthonormal basis of VA such that, for every element vA in this 
basis, ΦB(f (��), g(��)) = 0 . This idea can be easily lifted to the level of continu-
ous homomorphisms.

5 � Tensor Product of Two Quantum Kripke Frames

Given two finite-dimensional Hilbert spaces HA and HB over ℂ , we can construct 
the tensor product of them based on Hom(HA,HB) . In this section, based on the 
results obtained before, we mimic this construction in the framework of quantum 
Kripke frames. We will only deal with a special case when two quantum Kripke 
frames �A = (ΣA,→A) and �B = (ΣB,→B) satisfy the following 5 assumptions:

•	 Assumption 1:
	   Both �A and �B are Pappian.
•	 Assumption 2:
	   For each i ∈ {A,B} and Pi ⊆ Σi satisfying Pi = ∼i∼iPi , each arguesian con-

tinuous homomorphism Fi on (Pi,→i ∩ (Pi × Pi)) has at least one fixed point.
•	 Assumption 3:
	   For each i ∈ {A,B} , �i satisfies that, for any si, ti ∈ Σi , if si ↛ ti , then there 

is an isomorphism Fi on �i such that Fi(si) = ti , Fi(ti) = si and Fi↾∼{si,ti}
 is the 

identity.
•	 Assumption 4:
	   There is a non-degenerate arguesian continuous homomorphism H from �A 

to �B.
•	 Assumption 5:
	   Both �A and �B are finite-dimensional.

Φ(f (vi), vi) = Φ((�0◦f )(vi) + (�1◦f )(vi), vi)

= Φ((�0◦f )(vi), vi) + Φ((�1◦f )(vi), vi)

= Φ((�0◦f )(vi), vi) + Φ((�1◦f )↾U(vi), vi)

= Φ((�0◦f )(vi), vi) + 0

= Φ(xv1, vi), for some x ∈ F

= xΦ(v1, vi), for some x ∈ F

= 0



	 Foundations of Physics (2023) 53:75

1 3

75  Page 36 of 49

We are going to use the analytic method. The following proposition reveals the 
analytic consequences of these five assumptions:

Proposition 5.1  Let �A = (ΣA,→A) and �B = (ΣB,→B) be two quantum Kripke 
frames satisfying the five assumptions. 

1.	 There is a field K and, for each i ∈ {A,B} , there is a generalized Hilbert space Vi 
such that 

(a)	 Vi is over the field K;
(b)	 �i ≅ �Vi

;
(c)	 Vi is of finite dimension at least 3;
(d)	 Vi admits normalization;
(e)	 Every linear map on a subspace of Vi has at least one eigenvector.

2.	 There is a linear map h ∶ VA → VB such that H = P(h).

In particular, both VA and VB satisfy the supposition in Theorem 4.5.
Proof  By Assumption 1 and Theorem 2.25, for each i ∈ {A,B} , there is a general-
ized Hilbert space Vi over a field Ki such that �i ≅ �Vi

.
By Assumption 5, for each i ∈ {A,B} , Vi is finite-dimensional.
By Assumption 4 and Theorem 3.18 there is a quasi-linear map h ∶ VA → VB such 

that H = P(h) and the dimension of VA and that of VB are both at least 3. Moreover, 
without loss of generality, we can assume that KA = KB and the field isomorphism 
associated to h is the identity, so h is a linear map. Thus we can drop the subscripts 
for the field. Therefore, Items 1(a) to 1(c) and Item 2 are proved.

It remains to prove Items 1(d) and 1(e). Let i ∈ {A,B} be arbitrary.
For Item 1(d), by Assumption 3 and the proof of Theorem  2.13 in [26], espe-

cially the proof of the claim in the direction from (ii) to (i), for any si, ti ∈ Vi⧵{0i} , 
if Φi(si, ti) = 0 , then there is an x ∈ K such that Φi(si, si) = Φi(xti, xti) . For 
any si, ti ∈ Vi⧵{0i} , since the dimension of Vi is at least 3, we can always find a 
ui ∈ Vi⧵{0i} such that Φi(si, ui) = 0 and Φi(ui, ti) = 0 , so there are y, z ∈ K such that 
Φi(si, si) = Φi(yui, yui) and Φi(ui, ui) = Φi(zti, zti) , and thus letting x = yz we have 
Φi(si, si) = Φi(xti, xti) . Finally, by Theorem  2.25 Φi is fixed only up to a constant 
multiple, so we can rescale Φi such that Φ(si, si) = 1 for some si ∈ Vi . As a result, 
without loss of generality, we can assume that Vi admits normalization.

For Item 1(e), for each subspace Wi of Vi , it can be verified that ΣWi
⊆ ΣVi

 , 
ΣWi

= ∼i∼iΣWi
 and (ΣWi

,→Wi
) = (ΣWi

,→i ∩ (ΣWi
× ΣWi

)) . By Assumption 2 and 
Theorem 3.18 every linear map on Wi has at least one eigenvector. 	�  ◻

Theorem 5.2  Let �A = (ΣA,→A) and �B = (ΣB,→B) be two quantum Kripke frames 
satisfying the five assumptions. � = (Σ,→) defined as follows is a quantum Kripke 
frame: 
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1.	 Σ = {F ∣ F is an arguesian continuous homomorphism from �A to �B such that 
F ≎ H};

2.	 for any F,G ∈ Σ , F → G , if and only if, for each maximal orthogonal set PA in �A , 
there is an sA ∈ PA such that both F(sA) and G(sA) are defined and F(sA) →B G(sA).

Proof  Since �A and �B satisfy the five assumptions, by Proposition 5.1 Items 1 and 
2 in the proposition hold. We will also use the same notations.

It can be verified that Hom(VA,VB) can be organized into a general-
ized Hilbert space over K in a way similar to that in Theorem  2.9, so 
�Hom(VA,VB)

= (ΣHom(VA,VB)
,→Hom(VA,VB)

) is a quantum Kripke frame.
To prove that � is a quantum Kripke frame, it suffices to prove that 

� ≅ �Hom(VA,VB)
 . Define that

By linearity I(⟨f ⟩) does not depend on the choice of f, so I is a well-defined function.
For injectivity, assume that I(⟨f ⟩) = I(⟨g⟩) for some f , g ∈ Hom(VA,VB) nei-

ther of which is the zero map. By definition P(f ) = P(g) . If the ranges of both P(f ) 
and P(g) are at most one-dimensional, since both are linear maps, f ∈ ⟨g⟩ and thus 
⟨f ⟩ = ⟨g⟩ . If the ranges of both P(f ) and P(g) are at least two-dimensional, by the 
uniqueness part of Theorem 3.27 f is unique up to scalar multiplication such that 
P(f ) = P(g) . Then f ∈ ⟨g⟩ and thus ⟨f ⟩ = ⟨g⟩.

For surjectivity, let F ∈ Σ . Then F is an arguesian continuous homomorphism 
from �A to �B such that F ≎ H . Since �i ≅ �Vi

 for i ∈ {A,B} , without loss of gener-
ality we can consider F as an arguesian continuous homomorphism from �VA

 to �VB
 

such that F ≎ H . By Theorem 3.27 there is an f ∈ Hom(VA,VB) such that F = P(f ) . 
Then I(⟨f ⟩) = P(f ) = F.

Therefore, I is a bijection.
Finally, for any s, t ∈ ΣHom(VA,VB)

 , by definition there are f , g ∈ Hom(VA,VB) such 
that s = ⟨f ⟩ and t = ⟨g⟩ . By Theorem 4.5

I ∶ ΣHom(VA,VB)
→ Σ∶∶⟨f ⟩ ↦ P(f ), where f ∈ Hom(VA,VB) is not the zero map
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As a result, I is an isomorphism. 	�  ◻

According to this theorem, we see that the non-orthogonality between the states 
of a bipartite system is related to the non-orthogonality relations of the two sub-
systems in a natural way. Let two quantum systems A and B be described by two 
quantum Kripke frames �A = (ΣA,→A) and �B = (ΣB,→B) , respectively, satisfying 
the five assumptions; and F and G two arguesian continuous homomorphisms from 
�A to �B modelling two states of the bipartite system consisting of A and B. Then  F  
and G  are non-orthogonal, if and only if there is no (local) measurement on A  
and (local) measurement on B  such that preforming each of these two measure-
ments once can always distinguish between F  and G . To be precise, if F and G 
are non-orthogonal, then, for any measurement on A, even if after performing it once 
we know that the state of A is sA , it is possible (depending on what is sA ) that there 
is no measurement on B such that one performance of it can distinguish between 
F(sA) and G(sA) , i.e. the system in either states before the measurement may yield 
the same result in the measurement; Similarly, for any measurement on B, even if 
after performing it once we know that the state of B is sB , it is possible (depending 
on what is sB ) that there is no measurement on A such that one performance of it can 
distinguish between F†(sB) and G†(sB).

6 � Conclusion and Discussion

In this paper, we manage to mimic the tensor product construction of two finite-
dimensional Hilbert spaces in the framework of quantum Kripke frames under 
five assumptions. Despite of the complicated and tedious technical details and the 

s ↛Hom(VA ,VB)
t

⇔ ⟨f ⟩ ↛Hom(VA ,VB)
⟨g⟩

⇔ Φ(f , g) = 0

⇔ Tr(g†◦f ) = 0

⇔ there is an orthonormal basis {vi
A
∣ i = 1,… , n} of VA such that

ΦA((g
†
◦f )(vi

A
), vi

A
) = 0 holds for each i = 1,… , n

⇔ there is an orthonormal basis {vi
A
∣ i = 1,… , n} of VA such that

ΦB(f (v
i
A
), g(vi

A
)) = 0 holds for each i = 1,… , n

⇔ there is a maximal orthogonal set {vi
A
∣ i = 1,… , n} of �A such that,

for each i = 1,… , n, at least one of the following holds: P(g)(vi
A
) is undefined,

P(f )(vi
A
) is undefined and P(f )(vi

A
) ↛B P(g)(vi

A
)

⇔ there is a maximal orthogonal set {vi
A
∣ i = 1,… , n} of �A such that,

for each i = 1,… , n, at least one of the following holds: I(s)(vi
A
) is undefined,

I(t)(vi
A
) is undefined and I(s)(vi

A
) ↛B I(t)(vi

A
)

⇔ I(s) ↛ I(t)
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restrictive assumptions, the definition of the non-orthogonality relation in the ‘ten-
sor product’ of two quantum Kripke frames is intuitive and natural. This shows the 
hope that quantum Kripke frames can model bipartite quantum systems and thus the 
phenomenon of quantum entanglement. Besides those in [26], this is another piece 
of evidence that quantum Kripke frames are good qualitative models of quantum 
systems.

In the following, we discuss some issues related to this construction.

6.1 � Discussion About the Five Assumptions

None of the assumptions seems to have clear intuitive meaning, so we only discuss 
their role in the technical aspect. For Assumption 1, the significance is three-fold. 
First, it guarantees that the quantum Kripke frames under consideration are isomor-
phic to those induced by vector spaces, and thus we can use the analytic method. 
Second, it restricts our attention to only vector spaces of dimension at least 3. Third, 
it restricts our consideration to only vector spaces over fields and thus excludes those 
over division rings like that of the quaternions (Theorem 2.25). The third signifi-
cance is crucial in characterizing continuous homomorphisms with the same associ-
ated division ring isomorphism and thus finding the right mathematical objects to 
model the states of bipartite systems (Lemma 3.25); it is also needed in character-
izing trace-zero linear maps and thus defining the orthogonality relation between 
arguesian continuous homomorphisms (Lemmas 4.1 and 4.3 and Proposition 4.4). 
For Assumption 2, it guarantees that, in the vector spaces involved, each linear map 
has at least one eigenvector; so it excludes vector spaces over the real numbers. It 
is used in characterizing trace-zero linear maps and thus defining the orthogonality 
relation between arguesian continuous homomorphisms (Lemma 4.1 and Proposi-
tion 4.4). If Assumptions 1 and 2 are proved to be necessary, then it helps to argue 
from a mathematical perspective that we do not use real numbers or quaternions 
in quantum theory. Assumption 3 guarantees that the vector spaces involved admit 
normalization (the proof of Theorem 2.13 in [26]). It is used in characterizing trace-
zero linear maps and thus defining the orthogonality relation between arguesian con-
tinuous homomorphisms (Lemma 4.3 and Proposition 4.4). Assumption 4 is used 
to guarantee that the two fields corresponding to the two quantum Kripke frames 
are isomorphic (Theorem 3.18), which seems to be natural and necessary. Assump-
tion 5 makes the vector spaces involved be finite-dimensional. It is desirable to drop 
this assumption. First of all, note that, once we consider infinite-dimensional vector 
spaces, according to Theorem 2.13 in [26] which is a corollary of Solèr’s Theorem 
[46], Assumption 3 forces the vector spaces involved to be infinite-dimensional Hil-
bert spaces over the real numbers, the complex numbers and the quaternions. (Con-
sidering this, Assumption 3 is acceptable.) Combining with Assumptions 1 and 2, 
we are only dealing with (infinite-dimensional) Hilbert spaces over ℂ . Then we will 
succeed to drop Assumption 5, if we manage to finish two tasks. The first task is to 
characterize Hilbert-Schmidt operators between Hilbert spaces, which are used in 
the tensor product construction involving infinite-dimensional Hilbert spaces over 
ℂ . Recall that each of them is a bounded linear map f from a Hilbert space HA to 
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HB such that, for each orthonormal basis {vi
A
∣ i ∈ I} of HA , 

∑
i∈I⟨f (viA), f (v

i
A
)⟩ is 

finite. The question is whether arguesian continuous homomorphisms correspond to 
such operators in the infinite-dimensional case, and, if not, whether we need to add 
structure on quantum Kripke frames such that these operators can be characterized. 
The second task is to generalize Theorem 4.5 to the infinite-dimensional case. Given 
the nice properties of Hilbert-Schmidt operators, this may not be difficult; but it will 
still be left to future work. In a word, it will be interesting to see how far the five 
assumptions used in our construction can be relaxed; such a study will improve our 
understanding of quantum theory from the perspective of describing composition of 
quantum systems in terms of the orthogonality relation.

6.2 � Application in Analysing Quantum Entanglement

Theorem 5.2 reveals a natural and intuitive relation between the orthogonality rela-
tion of a bipartite system and those of its subsystems. When it comes to measur-
ing the degree of entanglement, on the one hand, since the framework of quantum 
Kripke frames is purely qualitative, there is little hope that we can have something 
like (full-fledge) von-Neumann entropy to evaluate the degree of entanglement. On 
the other hand, our framework adheres some ways of evaluating the degree of entan-
glement from the idea of modelling entanglement using linear maps. For example, 
consider a state of a bipartitle quantum system modelled by an arguesian continuous 
homomorphism F from �A to �B satisfying the five assumptions. If the range of F 
is a singleton sB , then the state is in fact a separable state in which A is in the state 
in the singleton ∼Ker(F) and B is in the state sB . If F is an isomorphism from �A to 
�B , then the state is of the maximal degree of entanglement like a Bell state. Further 
application of our results in analysing quantum entanglement is left to future work.

6.3 � Extension to Multi‑partite Quantum Systems in General

On the one hand, in principle there is no technical difficulty to apply the construc-
tion in this paper to quantum systems consisting of more than two subsystems. 
We take a quantum system consisting of three parts, A, B and C, as an exam-
ple. Let the Hilbert spaces HA , HB and HC describe these three systems, respec-
tively, such that �HA

 , �HB
 and �HC

 satisfy the five assumptions; moreover, we use 
the symbol ⊗ to denote the tensor product of Hilbert spaces and our construc-
tion on quantum Kripke frames. Then by Theorem  5.2 �HA⊗HB

≅ �HA
⊗�HB

 
and �(HA⊗HB)⊗HC

≅ (�HA⊗HB
)⊗�HC

≅ (�HA
⊗�HB

)⊗�HC
 . Hence, from 

�HA
 , �HB

 and �HC
 , we construct (�HA

⊗�HB
)⊗�HC

 which can describe the tri-
partite system. On the other hand, however, we have to confess that this simple-
minded extension loses the intuitive feature of the construction. Now an element 
F  in (�HA

⊗�HB
)⊗�HC

 is an arguesian continuous homomorphism that maps an 
arguesian continuous homomorphism from �HA

 to �HB
 in the domain of F  to an ele-

ment in ΣHC
 . This picture is complicated, and it will become more complicated if the 

number of systems is even higher. Moreover, the frame (�HA
⊗�HB

)⊗�HC
 is not 
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handy to use in calculation in some scenarios. Suppose that we know that the state of 
the tripartite system is modelled by F  in (�HA

⊗�HB
)⊗�HC

 ; we first do a meas-
urement on A and get to know that the state of A after the measurement is sA ; then 
we do a measurement on B and get to know that the state of B after the measurement 
is sB . Now we hope to calculate the state of C after these two measurements. We 
will have to proceed as follows: First, we calculate an element in �HC

⊗�HB
 which 

maps every tC ∈ ΣHC
 to F†(tC)(sA) ∈ ΣHB

 , if F†(tC)(sA) is defined; second we take 
the adjoint of this continuous homomorphism and get an element in �HB

⊗�HC
 ; 

finally, we apply it to sB , and then the output is the state of C after these two meas-
urements. Therefore, compared to the Hilbert space formalism, the framework of 
quantum Kripke frames is more operational and has less and simpler primitive struc-
ture, but we sacrifice the quantitative part and thus some convenience in modelling 
and calculation. It is left to future work whether there is a tensor product construc-
tion on quantum Kripke frames which can elegantly and operationally model multi-
partite quantum systems and interesting states of them like the GHZ states and the 
W states.

6.4 � Relation to Similar Works

There are two works in the literature which are most similar to that in this paper. 
One is the paper [34] by Baltag and Smets. Although they also use Kripke frames to 
model quantum systems, their work is not about constructing a Kripke frame model-
ling a composite system from the Kripke frames modelling the subsystems. Instead, 
they start from a Kripke frame which is abstracted from a Hilbert space over ℂ mod-
elling a quantum system composing of finitely many subsystems. (For convenience, 
let N be the set of indices of the subsystems; and thus an I ⊆ N indexes the part of 
the system formed by the subsystems whose indices are in I.) Then they introduce 
a propositional variable w whose interpretation is exactly a fixed fully separable 
state of the system and a modal operator KI for each part I ⊆ N . Roughly speaking, 
KIP means that at the current (global) state, after any unitary evolutions local at the 
part I, the resulting state has property P. Observing that local unitary evolutions 
never change a separable state to an entangled state and vice versa, they characterize 
entanglement as follows: at the current state the part I is entangled with the other 
subsystems, if and only if KN⧵IKIw is false. An advantage of their approach is that 
they use Hilbert spaces directly and thus they can conveniently handle entanglement 
of more than two subsystems, although they do not give an example of this in the 
paper. In this paper this is not easy as is mentioned above. However, if only bipar-
tite systems are under consideration, then their analysis can be carried out in our 
abstract Kripke frames. As is mentioned above, a separable state can be modelled 
by a constant arguesian continuous homomorphism. According to Wigner’s Theo-
rem [47], unitary evolutions local at system A can be modelled by isomorphisms 
on (ΣA,→A) and thus the modal operator KA can be properly interpreted; the same 
observation also applies to KB . Hence in our abstract framework we can also charac-
terize the separable states by KAKBw , where w is interpreted by exactly one constant 
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arguesian continuous homomorphism. Moreover, in our framework, as is mentioned 
above, we can measure the degree of entanglement by the ranges of arguesian con-
tinuous homomorphisms. In [34] they do not discuss this, but we guess that, for each 
entanglement between certain parts and of a certain degree, to characterize the states 
of the system entangled in such a way, they have to introduce a propositional vari-
able to denote a fixed state entangled in such a way. In one word, considering only 
bipartite systems, Baltag and Smets use an abstract and simple formal language to 
talk about concrete models of entanglement, i.e. Hilbert spaces; in this paper, we 
propose abstract models of entanglement which can interpret their formal language. 
The other is the work on categorical quantum mechanics by Abramsky, Coecke 
and others. We think that, based on a class of quantum Kripke frames each pair of 
which satisfies the five assumptions and the arguesian continuous homomorphisms 
between them, we will be able to construct a symmetric monoidal dagger category 
and even categories with richer structures. The details still have to be checked. If 
this is true, we will have symmetric monoidal dagger categories based on mathemat-
ical structures a bit more general than finite-dimensional Hilbert spaces.

Appendix A

In this appendix, we are going to prove Proposition  2.17 which is crucial to the 
dimension theory of quantum Kripke frames.

We start from reviewing three results about projective geometry.
The first one is about a way of constructing the linear closure of a set.

Proposition A.1  Let � = (G,⋆) be a projective geometry. For each A ⊆ G , define a 
sequence {Ai}i∈ℕ of subsets of G as follows:

•	 A0 = A;
•	 An+1 =

⋃
{a ⋆ b ∣ a, b ∈ An}.

Then C(A) =
⋃

i∈ℕ Ai.
Proof  First we prove by induction that Ai ⊆ C(A) , for every i ∈ ℕ.

Base Step: i = 0 . By the definition of linear closures A0 = A ⊆ C(A).
Induction Step: i = n + 1 . Let c ∈ An+1 be arbitrary. By the definition of An+1 

there are a, b ∈ An such that c ∈ a ⋆ b . By the induction hypothesis a, b ∈ An ⊆ C(A) , 
so c ∈ a ⋆ b ⊆ C(A) since C(A) is a subspace.

This finishes the proof by induction. Therefore, 
⋃

i∈ℕ Ai ⊆ C(A).
Second we prove that 

⋃
i∈ℕ Ai is a subspace including A, and thus C(A) ⊆

⋃
i∈ℕ Ai . 

By definition A = A0 ⊆
⋃

i∈ℕ Ai . Now let a, b ∈
⋃

i∈ℕ Ai be arbitrary. Then there are 
n, n� ∈ ℕ such that a ∈ An and b ∈ An� . Note that by definition Ai ⊆ Ai+1 , for every 
i ∈ ℕ . Hence a, b ∈ Am , where m = max{n, n�} . Therefore, a ⋆ b ⊆ Am+1 ⊆

⋃
i∈ℕ Ai . 

As a result, 
⋃

i∈ℕ Ai is a subspace. 	�  ◻
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The second one is a very important and useful result in projective geometry 
called the projective law.

Theorem A.2  (Corollary 2.4.5 in [38]) Let � = (G,⋆) be a projective geometry. For 
any non-empty sets A,B ⊆ G,

The third one is a corollary of the projective law to be used later.

Corollary A.3  Let � = (G,⋆) be a projective geometry. For any a ∈ G and A ⊆ G , 
C({a} ∪ C(A)) = C({a} ∪ A).

Proof  By definition C(A) is a subspace, and thus C(C(A)) = C(A) . Using the projec-
tive law,

	�  ◻

Now we are going to prove that in a quantum Kripke frame, for any n ∈ ℕ 
and s1, ..., sn ∈ Σ , C({s1, ..., sn}) = ∼∼{s1, ..., sn} . Please remind that, according to 
Theorem 2.16, in a quantum Kripke frame � = (Σ,→) , for any s, t ∈ Σ , ∼∼{s, t} is 
the line s ⋆ t in the projective geometry corresponding to �.

Lemma A.4  In a quantum Kripke frame � = (Σ,→) , if P ⊆ Σ is closed, it is a sub-
space of G(�).

Proof  Assume that s, t ∈ P . Then {s, t} ⊆ P . Applying 2 of Lemma 2.15 twice, one 
can obtain ∼∼{s, t} ⊆ ∼∼P . Since P is closed, ∼∼{s, t} ⊆ ∼∼P = P . 	�  ◻

Lemma A.5  In a quantum Kripke frame � = (Σ,→) , ∼Q = ∼C(Q) , for every Q ⊆ Σ.

Proof  By definition Q ⊆ C(Q) , so ∼C(Q) ⊆ ∼Q by 2 of Lemma 2.15. It remains to 
show that ∼Q ⊆ ∼C(Q).

We define a sequence of sets {Qi}i∈ℕ in the same way as in Proposition  A.1. 
Then by the proposition C(Q) =

⋃
i∈ℕ Qi . It is easy to see from the definition that 

∼C(Q) = ∼
⋃

i∈ℕ Qi =
⋂

i∈ℕ ∼Qi . We prove ∼Q ⊆
⋂

i∈ℕ ∼Qi = ∼C(Q) by showing 
that ∼Q ⊆ ∼Qi , for every i ∈ ℕ . Use induction on i.

Base Step: i = 0 . ∼Q ⊆ ∼Q = ∼Q0 obviously holds.
Induction Step: i = n + 1 . Let s ∈ ∼Q and t ∈ Qn+1 be arbitrary. By definition 

there are u, v ∈ Qn such that t ∈ ∼∼{u, v} . By IH s ∈ ∼Q ⊆ ∼Qn . Hence s ↛ u and 

C(A ∪ B) =
⋃

{a ⋆ b ∣ a ∈ C(A), b ∈ C(B)}.

C({a} ∪ A) =
⋃

{c ⋆ d ∣ c ∈ C({a}), d ∈ C(A)}

=
⋃

{c ⋆ d ∣ c ∈ C({a}), d ∈ C(C(A))}

= C({a} ∪ C(A))
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s ↛ v , i.e. s ∈ ∼{u, v} . Since t ∈ ∼∼{u, v} , s ↛ t . Since t is arbitrary, s ∈ ∼Qn+1 . 
Therefore, ∼Q ⊆ ∼Qn+1 . 	�  ◻

The following lemma suggests a way to get a bigger closed set from a smaller one 
using linear closures. It is a special case of Proposition 14.2.5 in [38]. Since a direct 
proof is not long, we give it here to avoid introducing general terminologies.

Lemma A.6  In a quantum Kripke frame � = (Σ,→) , let s ∈ Σ and P ⊆ Σ be closed. 
Then C({s} ∪ P) is closed.

Proof  If s ∈ P , then C({s} ∪ P) = C(P) = P is closed by Lemma  A.4 and the def-
inition of subspaces. It remains to show the case when s ∉ P . Since P is closed, 
s ∉ ∼∼P , so there is a u ∈ ∼P such that s → u.

By Lemma  2.15 C({s} ∪ P) ⊆ ∼∼C({s} ∪ P) . It remains to show that 
∼∼C({s} ∪ P) ⊆ C({s} ∪ P) . By Lemma  A.5 it suffices to show that 
∼∼({s} ∪ P) ⊆ C({s} ∪ P).

Let w ∈ ∼∼({s} ∪ P) be arbitrary. If w = s , then w ∈ C({s} ∪ P) ; so it remains 
to deal with the case when w ≠ s . By Lemma 4.11 in [41] there is a v ∈ ∼∼{w, s} 
such that u ↛ v . Since s → u and u ↛ v , s ≠ v . Hence by Lemma 4.12 in [41] 
w ∈ ∼∼{s, v} . To show that w ∈ C({s} ∪ P) and thus finish the proof, it remains to 
show that v ∈ P = ∼∼P.

Let x ∈ ∼P be arbitrary. When x = u , then v ↛ u follows from the construc-
tion of v. When x ≠ u , by Lemma 4.11 in [41] there is a y ∈ ∼∼{x, u} such that 
y ↛ s . Since x, u ∈ ∼P , y ∈ ∼∼{x, u} ⊆ ∼∼∼P = ∼P . Together with y ↛ s , we 
have y ∈ ∼{s} ∩ ∼P = ∼({s} ∪ P) . Hence w ↛ y . Since v ∈ ∼∼{w, s} , v ↛ y . Since 
s → u and y ↛ s , y ≠ u . Hence by Lemma 4.12 in [41] x ∈ ∼∼{y, u} . Since v ↛ u 
and v ↛ y , v ∈ ∼{u, y} , so x ↛ v . Since x is arbitrary, v ∈ ∼∼P = P . 	�  ◻

Finally we are ready to prove Proposition 2.17.

Proposition A.7  (Proposition 2.17) In a quantum Kripke frame � = (Σ,→) , for any 
n ∈ ℕ and s1, ..., sn ∈ Σ , C({s1, ..., sn}) = ∼∼{s1, ..., sn}.

Proof  We prove by induction that, for every n ∈ ℕ , C({s1, ..., sn}) is closed.
Base Step: n = 0 . By convention {s1, ..., sn} = � , so C(�) = � is closed by 

Lemma 2.15.
Induction Step: n = k + 1 . By the induction hypothesis C({s1, ..., sk}) is closed. 

Then by Lemma A.6 C({sk+1} ∪ C({s1, ..., sk})) is closed. By Corollary A.3

Hence C({s1, ..., sk, sk+1}) is closed. This finishes the proof by induction.
Now by Lemma  A.5 ∼∼{s1, ..., sn} = ∼∼C({s1, ..., sn}) . As C({s1, ..., sn}) is 

closed, ∼∼{s1, ..., sn} = C({s1, ..., sn}) . 	�  ◻

C({sk+1} ∪ C({s1, ..., sk})) = C({sk+1} ∪ {s1, ..., sk}) = C({s1, ..., sk, sk+1})
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Appendix B

In this appendix, we list the results in projective geometry in the literature which are 
used in this paper. The following results with the notations are from [38], and the 
footnotes are added by me.

Proposition 2.3.3 (Page 34) For every subset A of a projective geometry G there 
exists a smallest subspace C(A) containing A and the so obtained operator C is a clo-
sure operator on G.

Proposition 3.1.13 (Page 59) Let G be a projective geometry and C the closure 
operator associated to it. Then the set G together with the closure operator C is a 
geometry.13

Lemma 6.3.4 (Page 137) Let V1 , V2 be vector spaces over K1 , K2 respectively, 
f ∶ V1 → V2 and h ∶ V1 → V2 two additive maps14 such that h(x) ∈ K2 ⋅ f (x) for all 
x ∈ V1 . We suppose that f (V1) contains at least two linearly independent vectors. 
Then there exists a unique � ∈ K2 such that h(x) = � ⋅ f (x) for all x ∈ V1.

Theorem  10.3.1 (Page 243) For a partial map g ∶ G ⤏ G� between arguesian 
geometries the following conditions are equivalent: 

(1)	 if homogeneous coordinates u ∶ PV → G and u� ∶ PV � → G� are given, there 
exists a semilinear map f ∶ V → V � such that g = u�◦Pf◦u−1,

(2)	 g is described by a semilinear map in some homogeneous coordinates,
(3)	 g is the composite of two non-degenerate morphisms,
(4)	 g is the composite of finitely many non-degenerate morphisms.

Definition 10.3.2 (Page 243) A morphism g ∶ G ⤏ G� between arguesian geom-
etries is called arguesian if it satisfies the equivalent conditions of the preceding 
theorem.

Proposition 11.2.5 (Page 259) For any vector space V one has a nat-
ural isomorphism ΘV ∶ P(V∗) → (PV)∗.15 It is induced by the map 
Ω ∶ (V∗)∙ → (PV)∗,� ↦ P(ker �).16

Definition 13.4.1(Page 310) A dualized (projective) geometry is a projec-
tive geometry G together with a subspace Γ ⊆ G∗ of the dual geometry satisfying ⋂
Γ = �.
Example 13.4.2 (Page 310) Let V be a dualized vector space, i.e. a vector space 

with a vector subspace V � ⊆ V∗ of the algebraic dual which is separating. This means 
that for every x ≠ 0 there exists l ∈ V � such that l(x) = 1 . Then P(V) together with 
the subspace ΘV (P(V

�)) (cf. 11.2.5) is a dualized geometry.

13  A geometry is a simple matroid.
14  A map f ∶ V1 → V2 is additive, if f (x + y) = f (x) + f (y) for any x, y ∈ V1.
15  For a vector space V, its algebraic dual V∗ is the vector space of the linear functionals on V. For a 
projective geometry (G,⋆) , its dual geometry is the ordered pair (G∗,⋆∗) such that G∗ is the set of hyper-
planes of (G,⋆) and, for any A,B ∈ G∗ , A ⋆∗ B is the set of hyperplanes each of which includes A ∩ B.
16  For a vector space V, V ∙ denotes the set of non-zero vectors in V.
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Proposition 13.5.3 (Page 316) Let V1 and V2 be dualized vector spaces. Then for 
every non-degenerate continuous homomorphism g ∶ P(V1) ⤏ P(V2) there exists a 
continuous quasilinear map f ∶ V1 → V2 such that g = Pf .

Proposition 14.1.4 (Page 324) Let G be an orthogeometry. Then G together with 
the set Γ ∶= {a⊥ ∣ a ∈ G} is a dualized geometry.

Definition 14.4.1 (Page 334) An adjunction between two orthogeometries G1 
and G2 consists of two partial maps g1 ∶ G1 ⤏ G2 and g2 ∶ G2 ⤏ G1 satisfying 

1)	 Ker g1 = (Im g2)
⊥,

2)	 Ker g2 = (Im g1)
⊥,

3)	 for all a ∈ Dom g1 and b ∈ Dom g2 one has g1a ⟂ b iff a ⟂ g2b.

Proposition 14.4.4 (Page 335) For a partial map g1 ∶ G1 ⤏ G2 between orthoge-
ometries the following conditions are equivalent: 

(1)	 there exists a partial map g2 ∶ G2 ⤏ G1 such that (g1, g2) is an adjunction,
(2)	 g1 is a continuous homomorphism.

Lemma 14.4.9 (Page 337) A quasilinear map f ∶ V1 → V2 is continuous if and only 
if there exists a quasilinear map f ◦ ∶ V2 → V1 such that Φ2(fx, y) = �(Φ1(x, f

◦y)) for 
all x ∈ V1 and y ∈ V2 . The map f ◦ is unique and called the adjoint of f.

The following results with the notations are from [39].
Definition (Page 62) Let P be a projective space.17 We say that in P the theorem 

of Pappus holds if any two intersecting lines g and h with g ≠ h satisfy the follow-
ing condition. If A1,A2,A3 are distinct points on g and B1,B2,B3 are distinct points 
on h all different from g ∩ h then the points

lie on a common line.
Theorem 2.2.2 (Page 62) Let V be a vector space over a division ring F. Then the 

theorem of Pappus holds in P(V) if and only if F is commutative (in other words, if 
F is a field).

Theorem 2.2.3 Hessenberg’s Theorem (Page 65) Let P be an arbitrary projec-
tive space. If the theorem of Pappus holds in P then the theorem of Desargues is also 
true in P.

Theorem 3.6.7 (Page 132) The projective collineations of P(V) are precisely the 
products of central collineations.
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