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Abstract
In the context of a particular framework of emergent quantum mechanics, it is 
argued the emergent origin of the inertial mass of a physical system. Two main con-
sequences of the theory are discussed: an emergent interpretation of the law of iner-
tia and a derivation of the energy-time uncertainty relation.

Keywords  Emergent quantum mechanics · Emergence of mass · Emergent gravity

1  Introduction

The problem of finding a consistent picture unifying quantum mechanics and the 
gravitational interaction, usually in the form of a quantum theory of gravity, has 
been the goal of intense investigations and research in the field of theoretical physics 
during decades. The most common view is that the gravitational interaction must 
be quantized. The exact meaning of quantum gravity varies greatly from theory to 
theory, and one has several candidates for an unifying paradigms, among them string 
theory, loop quantum gravity, non-commutative spacetimes or causal set theory. Just 
the opposite approach, namely relativize the quantum theory, has been advocated 
by R. Penrose [1–3]. Other points of view towards a unifying theory explore the 
possibility that gravity is emergent, while other fields are of quantum nature. This 
is the case of Jacobson’s theory [4], Verlinde’s entropic gravity approach [5, 6] and 
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Padmanabhan’s approach to classical gravity as a thermodynamical system [7–9], 
three significant proposals for emergent gravity. Remarkably, these theories rely 
on quantum mechanical principles to the extent that a version of Unruh’s formula 
relating temperature and acceleration and the weak equivalence principle must hold 
good.

On the other hand, emergent approaches to quantum mechanics have been the 
object of investigation by several authors from the point of view of an underlying 
fundamental theory [10–19]. Other approaches attack the emergent character of 
quantumtheory from a thermodynamical point of view [20–23].

Within one of these emergent approaches to the foundations of quantum mechan-
ics [14, 24], it is discussed in this paper how a given notion of mass can be identi-
fied with the inertial mass of the system. The fundamental idea of this approach 
is that quantum systems are emergent from an underlying level of physical reality, 
described by deterministic dynamical systems with many degrees of freedom, the 
dynamics being almost cyclic for free quantum systems. In this context, it is shown 
how the notion of inertial mass has an emergent character, directly associated with 
the sub-quantum degrees of freedom of the associated Hamilton–Randers system. In 
particular, a relation between mass and the semi-period of the fundamental cycle is 
presented. Furthermore, we show how a simple model for the semi-period implies a 
direct relation between the mass and the number of degrees of freedom N. Several 
consequences of the theory are explored. Among them, a new interpretation of the 
law of inertia of classical dynamics, linked with the notion of complexity and emer-
gence, and a derivation of an energy-time uncertainty relation, that can be inter-
preted as a sharper relation than the standard energy-time uncertainty of quantum 
mechanics.

2 � Notion of Hamilton–Randers Dynamical Systems

The fundamental notions of Hamilton–Randers theory can be found in [14]. Here 
we distill the necessary notions of the theory to developed the ideas of this paper. 
One starts by considering a M̃ a smooth manifold. The state of a Hamilton–Rand-
ers system is described by a point of the co-tangent space T∗M̃ . In particular, it is 
assumed a product structure for the configuration manifold of the form

where all the manifolds Mk

4
, k = 1, ..,N are diffeomorphic to each other. This con-

struction is consistent with the assumption that all sub-quantum degrees of freedom 
are identical.

In Hamilton/Randers theory it is assumed that every quantum system can be 
described in terms of a Hamilton–Randers dynamical system. Indeed, Hamilton–Rand-
ers theory is based on generic properties that geometric models of Randers type metrics 
on tangent bundles T∗TM

k
 possess. A Randers space is a metric space where a Rie-

mannian or pseudo-Riemannian norm function � has been perturbed by a linear term 

(2.1)M̃ ≅

N
∏

k=1

T M
k

4
,
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� . The Randers metrics provide three fundamental elements: first, a notion of proper 
time and the corresponding geodesic flow, and second, a notion of measure, that is used 
below in taking the averaging operation. These two structures play relevant roles in 
the construction of the theory. Finally, it determines the exact form of the dynamics 
for the sub-quantum degrees of freedom, in the form of first order ordinary differential 
equations.

The emergent degrees of freedom are described by a dynamics denoted U� . The 
emergent degrees of freedom can be seen as a coarse grained average description of 
the system of N sub-quantum degrees of freedom of a Hamilton–Randers system. Such 
emergent degrees of freedom are associated with probability densities and it is indeed 
possible to show that such probability densities follow Born rule of quantum mechanics 
[14]. Therefore, the U� dynamics is associated with a quantum dynamics.

The notion of 2-time dynamics is of fundamental relevance for the construction of 
the emergence mechanism proposed in Hamilton–Randers theory. The consequences 
of adopting the 2-time dynamics and the effective description of the system in terms 
of the coarse grained description includes a mechanism for the reduction of the wave 
function [25] and the interpretation of entanglement and quantum non-locality [26], 
based upon the formal projection from the description in terms of the 2-time dynamics 
to the description in terms of the 1-time dynamics describing the dynamical evolution 
of the coarse grained degrees of freedom.

3 � Interpretation of the Semi‑period T for a Particular Class 
of t‑Parameter

In Hamilton–Randers theory there is no geometric structure defined on the tangent 
space TM that can be used to determine a natural t-time parameter for the U

t
 dynamics. 

Indeed, the Hamilton–Randers dynamical models are invariant under positive oriented 
t-time re-parameterizations. However, the freedom in the choice of the t-parameter does 
not preclude the existence of choices of the t-parameter that are particularly enlighten-
ing. In particular, it can be useful to identify the semi-period T as a characteristic of the 
system it describes since, given a fixed t-time parameter, different systems can have dif-
ferent semi-periods. In this context, we postulate the existence of t-time parameters of 
the form [0, 2 T] ⊂ ℝ such that for any Hamilton–Randers system corresponding to a 
free quantum system, the relation

holds good. T
min

 corresponds to the minimal period of the fundamental cycles for 
any Hamilton–Randers dynamical system. This minimal period must exist since, by 
assumption, the sub-quantum degrees of freedom are different from the quantum 
degrees of freedom. Since by assumption, quantum systems contain a finite number 
of them, then the limiting case when N = 1 imposes a limit on the complexity of 
the quantum system. This shows the need for the existence of a T

min
 if the period is 

directly linked to the number of sub-quantum degrees of freedom. On the grounds 

(3.1)log

(

T

T
min

)

=
T
min

m c2

ℏ
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of how quantum systems emerge from Hamilton–Randers theory, N
min

 is expected 
to be much larger than 1. The value of T

min
 depends on the choice of the arbitrary 

t-parameter but, once the parameter has been chosen, T
min

 achieves the same univer-
sal value for all the Hamilton–Randers systems.

One observes that the parameter T is a measure of the complexity of the sys-
tem, since for simple systems one expects T smaller than for large systems. This 
is analogous to the interpretation of the parameter m. Later we will compare this 
interpretation with the usual interpretation of the inertial mass of a system.

4 � The Parameter m as a Notion of Inertial Mass

It is useful to re-cast the relation (3.1) as a definition of the mass parameter m in 
terms of the semi-period T of the fundamental cycle. The mass parameter m of a 
Hamilton–Randers dynamical system with fundamental semi-period T is postu-
lated to be given by the relation

Fundamental properties of the m  parameter. The following are properties of m 
that are obtained directly from the relation (4.1): 

(1)	 Since the semi-period T is an attribute of the physical system under considera-
tion, the mass parameter m is also an attribute that increases with the complexity 
of the system.

(2)	 For any Hamilton–Randers system, the mass parameter m is necessarily non-
negative, with the minimum value for the parameter m being equal to m = 0 , 
that corresponds to T = T

min
.

(3)	 As long as the period T is preserved for each fundamental cycle of the U
t
 dynam-

ics, the mass parameter m is preserved and remains the same for each cycle of 
the U

t
 and the U� dynamics.

(4)	 Since the value of the semi-period is linked to the ergodic properties of the 
system, T is a measure of the complexity of the system. Hence m is a measure 
of the complexity of the system as well.

The properties (1)-(3) make it reasonable to identify the parameter m given by 
the relation (4.1) as the mass parameter of the Hamilton–Randers system. From 
the above points the emergent origin of the mass parameter m given by the rela-
tion (4.1) as a measure of the complexity of the system is also direct.

The above interpretation of the parameter m is associated to the definition 
of this class of t-parameters. Indeed, given any positive t-parameter for the U

t
 

dynamics, one could obviously define m by the relation (4.1), but in general, 
such a parameter m will not be associated with the Hamilton–Randers system, 
none of the properties (1)-(4) above will hold good.

(4.1)m =
ℏ

T
min

c2
log

(

T

T
min

)

.
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4.1 � Inertia as Emergent Phenomenon

Within the above context of associating the mass parameter m with the complex-
ity of the system and the emergence of the notion of mass, it is reasonable to 
expect that coherent changes in the state of the system will be more difficult to be 
continuously kept as the complexity of the system increases. In the theory devel-
oped above, the mass parameter m as given by the relation (4.1) is related to the 
complexity of the fundamental cycles, which is related to the semi-period: the 
greater the complexity of the system, the larger the mass parameter m. Hence m is 
also becomes a measure of the opposition to coherent changes in the state of the 
system. Thus the tendency of an object is to resist a change in its state, and the 
resistance of change is greater when the mass m is larger. Therefore, the emer-
gent nature of the inertia law and the identification of m with the inertial mass 
becomes apparent by the above argument.

5 � Periods and Mass Parameter for Composite Hamilton–Randers 
Systems

Let us consider two arbitrary Hamilton–Randers systems a, b with semi-periods 
T
a
 and T

b
 . When the sub-systems a and b do not interact between each other, or 

if they interact, the effect of the interactions can be neglected, the joint Hamil-
ton–Randers system a ⊔ b describing the joint sub-systems a and b can be defined 
as follows. From the point of view of the quantum mechanical description, such 
physical systems are described by elements of the tensor product of the corre-
sponding Hilbert spaces. From the point of view of Hamilton–Randers theory, 
if the sub-quantum molecules determining the quantum system a do not interact 
with the sub-quantum molecules defining the quantum system b and the corre-
sponding structures are (M

a
, (�

a
, �

a
)) and (M

b
, (�

b
, �

b
)) respectively, then there is 

a natural Randers structure constructed from the structures a and b which is the 
product structure,

This structure defines the Hamilton–Randers system a ⊔ b.
If the systems a and b do not interact and the corresponding semi-periods are T

a
 

and T
b
 , then we further can assume that the semi-period for a ⊔ b is given by the 

multiplicative rule

Note that this rule is not satisfied for a generic t-time parameter, since for the joint 
system a ⊔ b one can choose an arbitrary t-time parameter to describe the U

t
 dynam-

ics. Conversely, the condition (5.1) can be taken as the definition of non-interacting 
systems at the quantum mechanical level.

The above discussion shows two general features of the theory:

(

M
a
×M

b
,
(

𝛼
a
⊗ 𝛼

b
, 𝛽

a
⊗ 𝛽

b

))

.

(5.1)T
a⊔ b

∶= T
a
T
b
.
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•	 The semi-period associated with a composite system should increase exponen-
tially with the number of independent, non-interacting components of the sys-
tem.

•	 From the relation (5.1) the mass M and the semi-period T given by the relation 
(3.1) and such that the t-parameters such that T

min
= 1 , it follows that the mass 

parameter of a composite non-interacting system a ⊔ b is additive, 

5.1 � Models for the Semi‑periods of the Internal Dynamics

Although the U
t
 dynamics is manifestly t-time re-parametrization invariant (see 

[14]), the interesting features of the t-parameters for which the relations (3.1), (5.1) 
(5.2) hold good invite to consider the construction of specific models for a special 
class of t-parameters.

A fundamental characteristic of a Hamilton–Randers system is the number 
of sub-quantum degrees of freedom N. Also, we would like to point out that the 
dynamics U

t
 preserves N. Thus N(t) is constant for any choice of the t-parameter. In 

a process where the system can be subdivided into two parts, the number N is also 
subdivided: if there is a process of the form 1 → 2 ⊔ 3 , then we assume the condition

Thus the number of degrees of freedom of a composite system is the sum of the 
independent degrees of freedom; then N

min
 appears as the number of degrees of 

freedom of a common border and is subtracted in order to do not count twice such 
degrees of freedom.

In the following, we consider two models relating the semi-period T as function 
of the number of degrees of freedom N.

Model 1. Let us consider the following model for the semi-period,

where � is a positive constant that does not depend upon the specific Hamil-
ton–Randers system, nor on the number of sub-quantum degrees of freedom N

a
 . 

Then it is clear that T
a
 is a measure of the complexity of the system. The model (5.4) 

for the semi-period is consistent with the relation (3.1), but does not reproduce the 
multiplication rule (5.1) when the relation N1 = N2 + N3 − N

min
 holds good.

Model 2. A model that it is consistent with (5.3) is the exponential model

where � is a constant relating the mass parameter m and the number of degrees of 
freedom:

(5.2)M
a⊔ b

= M
a
+ M

b
.

(5.3)N1 = N2 + N3 − N
min

.

(5.4)
T

T
min

∶=
T(N)

T
min

= N
� ,

(5.5)T = T
min

exp

(

�T
min

c2

ℏ

(

N − N
min

)

)

,
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In the model given by (5.5) N
min

 corresponds to T
min

 . Furthermore, when 
T = T

min
 , then m = 0 and in addition if T

min
= 1 , then the model (5.5) is such that 

T
a∪b = T

a
⋅ T

b
 . According to this model, the mass parameter m is equivalent to the 

number N of sub-quantum degrees of freedom, making therefore m a measure of 
the quantity of sub-quantum matter, in analogy of the notion of mass as amount of 
matter in classical mechanics. Furthermore, from the definition (4.1) of the mass 
parameter m and the relation (5.6), preservation of the number of lines N in the 
sense of the relation (5.3) implies additivity of the mass parameter m. These proper-
ties makes Model 2 a very appropriate model for the semi-period T.

6 � Emergence of an Energy‑Time Uncertainty Relation from Emergent 
Quantum Mechanics

The relation (3.1) is not equivalent to the quantum energy-time uncertainty relation, 
since the t-parameter is not an external time parameter. This is because the relation 
between m and T is given by logT rather than being linear with T−1 , as should be 
expected for an energy-time uncertainty quantum relation. Furthermore, according to 
the relation (3.1), m increases monotonically with T.

However, if we consider the variation of the parameter m due to a variation of the 
period 2 T  in the relation (3.1), we have that

The variation in the mass can be conceived as a variation due to a continuous inter-
action of the system with the environment; ΔT∕T

min
 is the number of fundamental 

dynamical cycles that contribute to the stability of the quantum system. In a theory 
with maximal acceleration spacetime geometry, as we assume to be the case of the 
models (Mk

4, �, �) for each sub-quantum degree of freedom under consideration, the 
expression mc2 is the energy of a system measured by an observer instantaneously 
co-moving with the system [14], when the system has zero proper acceleration. If 
there is an associated local coordinate system associated with the Hamilton–Randers 
system in a way which is in some sense instantaneously co-moving with the system, 
then we can apply the relativistic expression for the energy [27]. The value of the 
semi-period T is a characteristic of the quantum system associated in such a local 
coordinate frame. From the definition of T

min
 we have that ΔT∕T

min
≥ 1 . Then

with the spread of energy defined as

Therefore, the uncertainty in the energy at rest E associated with the system is 
related to the inverse T−1 of the semi-period.

(5.6)m = �
(

N − N
min

)

.

Δ
(

mc
2
)

= (Δm) c2 =
ℏ

T
min

ΔT

T
.

(6.1)ΔE T ≥ ℏ

(6.2)ΔE ∶= Δ(mc
2) = Δ(m) c2.
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One natural interpretation of the energy-time relation (6.1) is to think the quantity 
ΔE as the minimal exchange of energy between the Hamilton–Randers system and 
the environment in such a way that the system is stable at least during a whole cycle 
of semi-period T. This energy exchange is measured in an instantaneous inertial ref-
erence frame in co-motion with the system just before the system changes to another 
different state or it decays to another different type of quantum system. Identifying 
the t-time parameter describing the U

t
 evolution of the sub-quantum degrees of free-

dom with a macroscopic coordinate time of a co-moving system with the quantum 
system and assuming that the average lifetime � is much longer than T, one obtains 
the standard energy-time quantum uncertainty relation,

This interpretation is fully consistent with T as a parameter associated with the U
t
 

evolution and at the same time, an intrinsic parameter associated to the system.

7 � Discussion

In this paper the relation between certain t-time parameters and the emergent origin 
of mass has been discussed in the context of Hamilton–Randers theory [14]. In the 
discussion, it is essential to consider the 2-time character of the dynamics. Dynami-
cal systems where time is represented by two parameters exist in the literature. In 
classical dynamics, fast/slow variables are defined, just to split in a convenient way 
the dynamics of different classes of degrees of freedom. In such models, there is a 
diffeomorphism between the different time parameters [28], so indeed, there is only 
one time flow, but labelled by different parameters. More related to our theme, this 
type of fast/slow dynamics appears in the theory of emergent quantum mechanics 
according to ’t Hooft [15, 16]. However, such a diffeomorphic relation between the 
t-time parameters and the �-time parameters is absent in Hamilton–Randers theory, 
because the time parameters used in the quantum dynamics have an emergent char-
acter [14, 29] and are essentially discrete (although approximated by a continuum), 
while the t-parameters do not have such an emergent origin. Let us also mention 
that the notion of 2-dimensional time that we use is different from the 2-dimen-
sional time that occurs in 2T-time physics models of I. Bars [30]. In Bars’ theory, 
the 2-dimensional character of time is embedded in the signature of the 10-dimen-
sional spacetimes of the underlying string theory models, while in Hamilton–Rand-
ers theory such a link with the geometry of the spacetime is in principle absent. This 
is because of the emergent character of �-time parameters from the cyclic structure 
of the underlaying U

t
 dynamics.

The relation between the expression (5.3) and the relation (4.1) leads to an inter-
esting interpretation of massless systems. From one side, the relation (5.3) can be 
interpreted as associating N

min
 to the number of degrees of freedom in borders: when 

a system S1 is joined with system S2 , the degrees of freedom at the topological bor-
der of the joint region should be counted only once. Hence one needs to subtract the 
degrees of freedom at the joint region, namely N

min
 . On the other side, the number 

(6.3)ΔE � ≥ ℏ.
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of degrees of freedom corresponds to a massless quantum system, according to the 
relation (4.1) and the model of the semi-period (5.5). This implies that massless 
quantum particles should be interpreted as borders between bulks that corresponds 
to massive systems. Thus massive particles as regions with non-empty interiors of 
T∗TM . Also, that for all massless systems have associated the same number of sub-
quantum degrees of freedom, namely N

min
.

It is also very suggestive to compare the relation (4.1),

with the expression of the entropy in terms of microstates,

where k
B
 is the Boltzmann constant and V is the phase space volume compatible 

with the coarse grained description of the system. To relate m and S given by the 
above expressions implies to relate the quantities T with V. Let us note that while the 
mass of a quantum system is to be expected to be preserved, if the system evolves 
freely, then the entropy is only preserved when it is maximal. Therefore, an entropic 
interpretation of mass based on the relation of T with V is subjected to this con-
straint. On the other hand, when thinking in terms of sub-quantum degrees of free-
dom, a dimensional argument suggests that

where Ṽ  is the volume of the phase space of each sub-quantum degree of freedom. A 
maximum entropy state S̃ corresponds to stable systems, for any Hamilton–Randers 
system. If (7.1) holds good and because Ṽ  is a geometric invariant, then there is an 
emergent and general covariant definition of mass of the system,

where V
min

 corresponds to T
min

 . One is then tempted to re-define the entropy of the 
system in the form

providing an entropic character to the mass m̃ . Note that S̃ corresponds to the 
entropy of N independent sub-quantum degrees of freedom. However, the condition 
of independent (or non-interacting) sub-quantum degrees of freedom is indeed not 
adequate, due to the highly non-trivial U

t
 dynamics.

Finally, we should remark that, given the emergent nature of inertial mass and if 
the weak equivalence principle holds good, then the passive gravitational mass must 
be also emergent, providing another argument in favour of the emergent character 
of gravity, consistently with the general mechanism found in the context of Hamil-
ton–Randers theory [14, 31].

m =
ℏ

T
min

c2
log

(

T

T
min

)

,

S = k
B
logV ,

(7.1)T ∼ c Ṽ
1∕16,

(7.2)m̃ =
1

16
k
B
N log

Ṽ

Ṽ
min

,

S̃ = k
B
N log Ṽ ,
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8 � Conclusion

An emergent concept of inertial mass has been discussed in the framework of 
Hamilton–Randers systems. The idea brings to light a new perspective on several 
fundamental notions, among them the law of inertia and the energy-time uncertainty 
relation. Furthermore, the emergent nature of inertial mass, together with the inertial 
mass/gravitational mass equality, implies an additional argument in favour of the 
emergent character of gravity. Indeed, the ideas described in this paper are part of a more 
ample program of research where fundamental notions of current physics are viewed as 
emergent notions from a fundamental theory beneath quantum theory [14, 24].
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