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Abstract
We present a classical hydrodynamic analog of free relativistic quantum particles 
inspired by de Broglie’s pilot wave theory and recent developments in hydrody-
namic quantum analogs. The proposed model couples a periodically forced Klein–
Gordon equation with a nonrelativistic particle dynamics equation. The coupled 
equations may represent both quantum particles and classical particles driven by the 
gradients of locally excited Faraday waves. Exact stationary solutions of the cou-
pled system reveal a highly nonlinear mechanism responsible for the self-propulsion 
of free particles, leading to the onset of unsteady motion. Although the model is 
essentially nonrelativistic, a stabilizing mechanism for any particle traveling close to 
the wave signaling speed emerges through the coupling with the wavefield. Conse-
quently, inline particle oscillations comparable to de Broglie’s wavelength are real-
ized through this fully-classical model, suggesting a new classical interpretation for 
the motion of relativistic quantum particles.

Keywords Matter waves · De Broglie · Particle–wave interactions · Hydrodynamic 
analog · Relativistic dynamics

1 Introduction

In 1924, de Broglie proposed that particles may be associated with an intrinsic 
clock, oscillating at the Compton frequency. He envisaged a particle as an infinite 
yet localized field guided by a pilot wave while exchanging rest-mass energy with 
field energy [1]. Interactions between the particle generating the wave-field and, in 
turn, the wavefield guiding the particle constituted de Broglie’s realistic picture of 
matter throughout his years of research [2]. De Broglie’s double-solution pilot wave 
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may therefore be regarded as an attempt to reconcile quantum mechanics and rela-
tivity using realistic wave mechanics.

In his original work de Broglie did not define a specific guiding wavefield; how-
ever, he did suggest several candidates for such waves, including the Klein–Gordon 
equation  [3], Dirac equation, and others. The phase of the waves determined the 
guiding of particles by the pilot wave. De Broglie’s phase waves were generally real-
ized as monochromatic plane waves or at least quasi-monochromatic, as appeared in 
later notes [3], using optical geometry considerations.

Whether the pilot wave conceptualized by de Broglie describes a realistic pic-
ture of matter or not, there is reason to believe that it should constitute much more 
complex two-way coupled particle–wave interactions that were not realized by de 
Broglie. Similar nonlinear particle–wave interactions are frequently encountered in 
fluid dynamics; since the introduction of the Madelung transformation [4], multifold 
attempts have been made  to realize quantum mechanics relying on fluid mechan-
ics principles. De Broglie–Bohm theory  [5], Nelson’s theory  [6], and Stochastic 
electrodynamics  [7] raised the possibility that underlying physics—so-called ‘hid-
den variables’—govern the dynamics of quantum particles giving rise to the quan-
tum statistical signature, somewhat similar to Brownian motion. However, in con-
trast to Brownian motion, quantum statistics emerge from an unknown physical 
mechanism [8].

Deterministic hydrodynamic analogies of quantum mechanics were also recently 
developed. One of these most successful analogies was found by Couder and Fort, 
who experimentally observed millimetric oil droplets bouncing over a vibrating 
bath that remarkably feature the statistical behavior of many quantum mechanical 
systems [9–11]. In this hydrodynamic quantum analogy (HQA), droplets interact in 
resonance with a quasi-monochromatic wavefield they generate and exhibit a self-
propelling mechanism. This analog has extended the range of classical physics to 
include many features previously thought to be exclusively quantum, including tun-
neling [12–15], Landau levels  [16–18], the quantum harmonic oscillator  [19, 20], 
the quantum corral [21–25], the quantum mirage [24], and Friedel oscillations [26].

For de Broglie’s theory, and in particular the notion of harmony of phases, which 
associates the particle oscillations in any frame of reference, relativistic consider-
ations are imperative. Despite the success of HQA in reproducing many quantum 
mechanical features, the relation between this analog and the relativistic aspect of 
de Broglie’s theory remains elusive. It is, therefore, instructive to follow macro-
scopic analogies that involve similar wave mechanics from first principles that are 
described by deterministic classical equations. As we shall see, such similarities 
may inspire new relativistic interpretations of quantum mechanics based on fully 
classical hydrodynamic analogs. Notable recent studies deal with classical mechan-
ics and fluid dynamics to interpret nonrelativistic and relativistic quantum mechani-
cal behavior [27–31]. Jamet and Drezet considered classical models in which parti-
cles and waves are coupled through a holonomic constraint [32].

Recently, we developed a hydrodynamically-inspired quantum theory [33] (HQFT), 
a theoretical model of relativistic quantum dynamics inspired by de Broglie’s pilot wave 
theory. In this framework, the particle is assumed as a localized yet infinite oscillating 
disturbance, externally forcing a Klein–Gordon wave equation. A relativistic dynamic 
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equation couples the motion of the localized particle to the wave. Using this determin-
istic framework, several features of quantum mechanics are revealed. The most intrigu-
ing is probably the particle momentum in this analogy, which is associated with inline 
oscillations that correspond to the relation p = ℏk , realized through interactions with 
the wave field. Notably, the particle speed modulations are averaged at the de Broglie 
wavelength and modulated by the relativistic frequency kc. Although the nonlinear sys-
tem of free particles in HQFT is chaotic in nature, and inline oscillations may be char-
acterized by multiple modes, de Broglie wavelength is most pronounced and may be 
realized as quasi-monochromatic modulation of the particle motion.

Excitation of motion and the waveform of HQFT at non-relativistic speeds were 
examined by Durey and Bush  [20], who revealed the wave generation and self-pro-
pelling mechanism for the coupled wave-particle system, and provided a fundamental 
analytical validity to the subsequent work on the hydrodynamic field theory.

However, due to the highly nonlinear relativistic terms, no similar analysis has been 
performed so far for a particle at relativistic speeds. Although the pilot wave theory of 
de Broglie was somewhat put aside with the astounding success of the Copenhagen 
Interpretation, its wavelength formula has proved most successful. Note that the relativ-
istic de Broglie’s wavelength �B may be written in terms of the Compton wavelength, 
�c , the particle velocity, and the Lorentz boost factor, � , as

where h is the Planck constant, V is the particle speed, m its rest mass, c is the speed 
of light and � = V∕c.

Any classical relativistic analogy should account for the behavior derived from de 
Broglie’s wavelength. To further explore the extent to which such a theory may be real-
ized as a viable interpretation of de Broglie’s theory and relativistic quantum dynam-
ics, a fully classical non-relativistic dynamic system is considered in the present work. 
This is in contrast to our previous study [33], where a relativistic equation of motion is 
introduced to properly satisfy a Lorentz covariant formulation. The current formula-
tion allows the isolation of the role of classical wave mechanics in producing relativ-
istic quantum signatures. Moreover, this model closely correlates to the hydrodynamic 
analog, which is essentially non-relativistic.

A simplified analytical model is derived here to reveal the fundamental interactions 
between a localized particle and waves.

2  Particle‑Wave Model

We consider a Klein–Gordon wave equation, forced by a localized periodically oscillat-
ing disturbance,

(1)�B∕�c =
h∕�mV

h∕mc
=

1

��
,

(2)�2�

�t2
− c2

�2�

�x2
+ �2

c
� = f (t)�

(
x − xp

)
,
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where � represents a real one-dimensional wave, �c is the Compton frequency, f(t) 
is a time-dependent function, which as in our previous study [33], will be realized 
here as a periodic function, with an angular frequency of 2�c.

The forcing term is localized about the particle location, xp , by the Dirac delta 
function, � . Particle dynamics are modeled as a classical non-relativistic equation of 
motion driven by wave gradients,

where m is the particle mass, D is a drag coefficient, and the rightmost term repre-
sents the wave forcing term, where � is a coupling constant.

The set of Eqs. (2–3) represents the free particle motion driven by wave gradi-
ents, as appears in HQA. In both systems, the particle may lock into a quasi-steady 
motion about a constant average speed [33]. In both systems, in the limit of low par-
ticle mass, quantum statistics emerge. We, therefore, assume that the inertial term of 
Eq. (3) is negligible, and m → 0 . Hence, the particle speed in our model is dictated 
solely by local wave gradients similar to the model of relativistic HQFT [33].

3  Waveform Generated by a Steady Moving Particle

To analytically examine the waveform generated by a particle moving at an arbitrary 
constant speed, we introduce the following transformation of coordinates of Eq. (2),

by which we can write the dimensionless wave equation in a frame of reference (�, �) 
moving at the particle’s speed V = ẋp:

where � = mc∕ℏ . Equation 5 is a function of two variables only, � and �.
We may further simplify the equation by seeking stationary wave solutions in the 

particle frame of reference. Although much simplified, by strobing the system at the 
Compton frequency [33] and by strobing the hydrodynamic system [11] at the Fara-
day frequency, similar stationary solutions were found. Moreover, if the forcing term 
is realized as a periodic function at the Compton frequency, then it will only depend 
on the spatial coordinate when strobed. This is also the case for a droplet bouncing 
at the Faraday frequency in HQA. We shall, therefore, arbitrarily choose f (�) to be 
constant and seek stationary solutions for the coupled system. Hence, after some 
manipulations, Eq. (5) takes the stationary form

(3)mẍp + Dẋp = −𝛼
𝜕𝜓

𝜕x

|
||
|x=xp

,

(4)� = �(x − Vt); � = �ct; �(x, t) = �(�, �),

(5)�2c2
�2�

��2
+ �2(V2 − c2)

�2�

��2
+ �2c2� − 2�2Vc

�2�

����
= f (�)�(�) ,

(6)
�2�

��2
− �2� = −�2�(�) ,
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which is a screened Poisson equation. Here, � =
1

√
(1−V2∕c2)

 is a constant, markedly 
similar to the Lorentz factor for a particle moving at the constant speed V. It should 
be noted, however, that this Lorentz-like factor was not imposed in this study. This is 
key for our analogy since the Klein Gordon equation may also represent classical 
non-relativistic water waves. Here, however, the boost factor emerges as a result of 
the translation of the KG equation reference frame.

Solutions for the stationary wavefield and its gradient are of the form

where c1 and c2 are constants that can be determined at � = 0 . We shall now set the 
wave field at � = 0 to be the constant �0 so that �(0) = c1 + c2 = �0 .

As in the hydrodynamic walker system in HQA [11], we assume that the parti-
cle motion is gradient driven. Hence, since our model is continuous, as opposed to 
HQA, we may also associate a wave gradient with a particle moving at a specific 
speed. As such, a wave-gradient corresponding to the velocity V is defined here as 
the velocity of the moving frame of reference, (�, �) , providing the boundary condi-
tion at � = 0,

from which the coefficients,

are extracted. Thus the wavefield takes the form

Here, � =
V

c
 is assumed constant, and all other constants are absorbed into the new 

unknown coupling coefficient, �̃� . Note that in this formulation, for a certain particle 
speed � , we have two unknowns: the wave coupling constant, and the wave ampli-
tude at � = 0.

The waveform generated by a localized particle as viewed from the particle’s 
frame of reference is demonstrated in Fig. 1a, and its spatial gradient in Fig. 1b. For 
these parameters, we can observe different waveforms emerging for different particle 
speeds.

In the low speed limit, � → 0 , � → 1 , and the first (hyperbolic cosine) term of 
Eq. (11) is dominant. Thus, the waveform at low speeds is symmetric about the par-
ticle location. When increasing the speed, the wave becomes asymmetric, where 
amplitudes decrease for positive values of � . With further increase of the particle 

(7)�(�) = c1e
�� + c2e

−�� ;

(8)
��

��
= c1�e

�� − c2�e
−�� ,

(9)V = −�
��

�x x=xp

= −��
��

�� �=0

= −��(c1� − c2�) ,

(10)c1 =
1

2

(

𝜑0 −
𝛽

�̃�𝛾

)

; c2 =
1

2

(

𝜑0 +
𝛽

�̃�𝛾

)

,

(11)𝜑(𝜉) = 𝜑0 cosh(𝛾𝜉) −
𝛽

�̃�𝛾
sinh(𝛾𝜉) .
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speed, the wave amplitude at large positive values of � becomes negative due to the 
hyperbolic sine term of Eq. (11). However, further increasing � to velocities close to 
the speed of light, we observe a remarkable change of trend: as a jump in the wave-
field appears, the wavefield becomes symmetric again, and its gradients increase 
significantly. When the particle speed increases enough, eventually, the two terms 
of Eq.  (11) will be equal, which leads to a singular speed at which the wavefield 
spatially nullifies. The nonlinear interaction leads to a jump in the waveform, and 
its gradient, which can be clearly seen in Fig. 1b. This highly nonlinear behavior is 
due to the boost factor � , which is dominant while the particle’s speed is close to the 
speed of light.

4  Particle Dynamics

4.1  Quasi‑Steady Particle Motion

We proceed by analyzing the particle response to the wavefield for a particle trave-
ling at different speeds through the equation of motion (3). Though the assumption 
so far was a steady moving frame of reference at speed � , we may now extend our 
analysis to assess the response of a particle to a deflection about its steady trajectory. 
Denoting the deflection by �� , which corresponds to a velocity addition of �̇�𝜉 , we 
may now write the equation of motion for a deflected particle in the steady moving 
frame of reference,

using Eqs. (3) and (8).

(12)𝛽 + �̇�𝜉 = −�̃�
𝜕𝜑

𝜕𝜉

|||
|𝜉=𝛿𝜉

= −�̃�𝜑0𝛾 sinh(𝛾𝛿𝜉) + 𝛽 cosh(𝛾𝛿𝜉),

(a) (b)

β β

Fig. 1  Waveform (a) and gradient of the wave (b) at the particle frame of reference, color-coded by parti-
cle speed from � = 0 to � = 0.99 ; the coupling constant is set to � = 10 , and �0 = 0.04
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Note that this analysis corresponds to the low memory limit in HQA, in which 
the particle is driven by wave gradients at the steady trajectory but is not affected by 
previously generated waves as it deflects from this trajectory.

In the limit of �� → 0 , the RHS converges to � , and therefore �̇�𝜉 → 0 as 
expected, to satisfy the boundary conditions. The phase map diagram in Fig.  2 
shows the particle added velocity �̇�𝜉 as a function of the deflection from the 
steady trajectory ( � = 0 ). At � = 0 , the particle responds to any deflection from 
the steady trajectory by an additional velocity in the opposite direction. This sug-
gests a stable behavior. We may also identify this behavior in the hydrodynamic 
system, where droplets at low memory tend to show stationary stable bouncing.

However, increasing � , the deflection velocity reveals an unstable behavior 
as gradients become positive for positive values of �� , which suggests that any 
deflection of the particle will quickly increase its velocity. Further increasing � , 
gradients become steeper and slightly asymmetric - and the particle more unsta-
ble. Remarkably, close to the speed of light (for example, at � = 0.99 as shown in 
Fig. 2), the system is stabilized again due to the nonlinear function � appearing in 
the first term of the RHS of Eq. (12). Under these conditions, the hyperbolic sine 
function is dominant, significantly changing the waveform. Gradients at such high 
speeds are extremely large, suggesting a quick decay of any perturbation about 
the steady trajectory; any deflection—positive or negative—will be responded to 
by a stabilizing deflection speed. Hence, at the limit of � → 1 , it is expected that 
the particle will travel exactly at the speed of light without any inline oscillations. 
Note that this analysis depends on the choice of �̃� and �0 . However, choosing 
other values for these coefficients does not seem to change the overall behavior of 
the system.

Hence, this simplified model demonstrates a complex classical dynamic 
behavior for any particle deflected from its steady trajectory: small deflections 
result in an increase in deflection speeds until the boost term is dominant.

(a) (b)

β β

Fig. 2  a Phase diagram of a particle deflected from its steady trajectory at zero memory, color-coded by 
steady particle speeds from � = 0 to � = 0.99 ; the coupling constant is set to � = 10 , and �0 = 0.04 . b a 
closeup view of the phase diagram showing low speeds and the maximal speed � = 0.99
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This may provide a new, fully classical explanation for the origins of the onset 
of unstable inline oscillations in quantum mechanics [11, 33], and their decay at 
close to the speed of light.

4.2  Emergence of de Broglie Wavelength

We may now extend our discussion and interpret the results of Figs. 1 and 2 in terms 
of inline oscillations. As mentioned in Sect. 4.1, as the steady speed of the frame of 
reference increases, the wave gradients gradually change for relatively low speeds but 
are inverted drastically for speeds closer to the speed of light. This, in turn, should yield 
indefinite particle acceleration for low speeds and deceleration at higher speeds. A par-
ticle inline oscillation mechanism may thus be realized, for which the turning points 
would be determined by the deflection �� at which the added speed �̇�𝜉 is nullified. Math-
ematically, this condition is satisfied when the LHS of the equation (12) equals � , that 
is

Two distinct solutions of Eq.  13 reveal a trivial solution �� = 0 at the boundary 
� = 0 , and a nontrivial solution of the equation

which may be written explicitly as

Here 𝛿𝜉 denotes the solution for a ‘quasi-steady’ deflection, about which we expect 
the particle to oscillate. It may therefore represent a characteristic length-scale for 
half the inline particle oscillations we observe in HQFT  [33], where a relativistic 
covariant formulation is assumed. Figure  3 demonstrates how this length-scale, 
which is extracted here from Eq. (15), is closely related to de Broglie’s relativistic 
wavelength �B

�c
=

1

��
.

It should be noted that the choice of �0 is rather arbitrary, and since we currently do 
not have a proper physical interpretation for the coupling constant � or the initial wave 
amplitude �0 , we set �̃� = 0.02, 0.05 and φ0 = 0, without the loss of generality. How-
ever, smaller and larger values of �̃� also seem to reasonably capture the overall trend.

At the limit � → 1 , � → ∞ and 𝛿𝜉 → 0 , the model properly zeros any inline oscil-
lation, as in de Broglie’s relativistic theory. On the other hand, at the low-speed limit 
� → 0 , � → 1 , a real solution for the nonlinear equation is not found. This result is 
expected since, at this limit of very low velocities, the hyperbolic cosine function of 
Eq. 11 dominates, and the solution is expected to be stable (see also zero � curve in 
Fig. 2b). This is in contrast to the runaway solutions predicted by de Broglie, i.e., infi-
nite wavelengths for stationary particles.

(13)𝛽 = −�̃�𝜑0𝛾 sinh(𝛾𝛿𝜉) + 𝛽 cosh(𝛾𝛿𝜉) .

(14)−
𝛽

�̃�𝛾
=

sinh(𝛾𝛿𝜉)

1 − cosh(𝛾𝛿𝜉)
,

(15)𝛿𝜉 =
2

𝛾
coth

−1

(
𝛽

�̃�𝛾

)

.
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5  Conclusions

A new classical hydrodynamic interpretation for relativistic particle dynam-
ics is suggested. Following our recent study  [33], a particle dynamic equation 
is coupled to a Klein–Gordon wave field. In contrast to our previous study, the 
particle equation of motion here is fully classical and non-relativistic. Thus, this 
system may represent classical water waves interacting with gradient-driven par-
ticles as in other recent hydrodynamic analogs [11].

By translating both the wave equation and the equation of motion at a constant 
speed, new exact analytical solutions are found for a waveform as it is observed 
from the particle frame of reference, assuming a stationary waveform. Notably, 
although no relativistic restrictions are imposed in this study, a Lorentz-like boost 
term appears through the translation of coordinates and interactions with the 
wavefield.

The particle response to a deflection from its steady motion is conceptualized 
using the new wave solutions, revealing highly nonlinear dynamics and unsteady 
characteristics at low to intermediate particle speeds. Any deflection at these con-
ditions results in acceleration in the direction of the deflection. However, at high 
enough speeds, due to the highly nonlinear boost term, this trend is inverted, and 
at speeds close to the speed of light, a stabilizing mechanism is revealed as a con-
cequence of the boost factor.

This classical dynamic realization suggests a more general oscillatory mecha-
nism for any particle, driven by nonlinear particle–wave interactions yet limited 
to subluminal speeds. Although simplified, spatial quantum statistics comparable 
to de Broglie wavelength may also be interpreted from our analytical framework. 

Fig. 3  Classical hydrodynamic interpretation of inline particle oscillations in solid lines showing similar 
trends as de Broglie’s wavelength, �

B
=

1

��
 (dashed black line). Coupling constant arbitrarily chosen as 

�̃� = 0.02, 0.05 for comparison
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Thus, it may suggest a simple deterministic model for a long-sought ‘hidden vari-
able’ mechanism to reconcile relativity and quantum dynamics.
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