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Abstract
The relational interpretation of quantum mechanics (RQM) has received a growing
interest since its first formulation in 1996. Usually presented as an interpretational
layer over the usual quantum mechanics formalism, it appears as a philosophical per-
spective without proper mathematical counterparts. This state of affairs has direct
consequences on the scientific debate on RQM which still suffers from misunder-
standings and imprecise statements. In an attempt to clarify those debates, the present
paper proposes a radical reformulation of the mathematical framework of quantum
mechanics which is relational from the start: fact-nets. The core idea is that all state-
ments about the world, facts, are binary entities involving two systems that can be
symmetrically thought of as observed and observer. We initiate a study of the fact-nets
formalism and outline how it can shed new relational light on some familiar quantum
features.
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1 Introduction

The standard formulation of quantum mechanics relies heavily on the framework of
Hilbert spaces. It is an effective piece of mathematics that encodes the physical notion
of a pure state and provides ground for the superposition principle.

Historically, the introduction of the notion of a ‘state’ understood as awave-function
came as a relief to the unease of matrix mechanics. Schrödinger recovered the results
of the latter by solving a differential equation, rather than using linear algebra. Besides,
the idea of a wave seemed to provide a useful image to understand quantum phenom-
ena. It continued de Broglie’s idea of waves of matter [1].

However, this intuition breaks down whenever multiple particles are considered.
Indeed, the wave-function is not a function over space anymore, but instead a function
over the configuration space. This was already pointed out sadly by Schrödinger at
the Solvay conference in 1927 [2, p. 447].

Another trouble is coming from the so-called measurement problem, for instance
in the context of the Wigner’s friend thought experiment. It can be stated as the
incompatibility between the statements:

1. All physical systems are quantum.
2. The wave-function is observer-independent.
3. The evolution of an isolated system is unitary.
4. A measurement is a collapse of the wave-function.

The Copenhagen interpretation rejects the first, relational quantummechanics (RQM)
the second, collapse models the third and many-worlds the fourth statement.

Here we stick to a relational interpretation, which implies that the wave-function
is only a useful bookkeeping device relative to an observer, which can be any other
system. This stance is surprising for anyone who was taught quantum mechanics à la
Schrödinger, like in von Neumann’s book where it is said

it is evident that everything which can be said about the state of a system must
be derived from its wave function [3].

It is said implicitly that the wave function is an absolute physical quantity, i.e. pertain-
ing only to a system in itself, without any reference to an observer. In this perspective,
the wave-function is the new entity that gathers the properties of a system and the chal-
lenge consists in solving the Schrödinger equation, which describes the probabilistic
evolution of these properties.

Relational quantummechanics points out the important role of the observer. The line
of separation between the system and the observer is usually called the Heisenberg cut.
Relational quantum mechanics insists on the idea that this cut can be located between
any two systems. In other words, any system can be taken as a reference, and thus
promoted to an observer. This departs from the usual use of the word ‘observer’ which
is often loaded with the idea that the system should be macroscopic.
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This stance shifts the focus from the system itself to the relation between an observer
and the system. In themeasurement problem,Wigner and his friend, after the friend has
measured the system, do not attribute the same state to the system. So the state is not
a property of the system itself, but a description of a relation between the system and
another system called the observer. The relative state encodes information obtained
through past interactions between the system and the observer. The interaction drives
a ‘quantum event’ or a ‘fact’ that persists in the form of a correlation between the
system and the observer.

Since its initial formulation in 1996 [4], the relational interpretation has evolved.
It is not yet a fixed dogma, but still a living flow of ideas stemming from the same
initial corpus, and trying to merge into a consistent common vision of the world. Many
questions certainly remain to be answered [5–10]. The objections which have been
formulated against it mainly arise from the unfortunate mixture between standard
quantum mechanical conceptions and relational statements. This confusion can be
partly explained by the use of the same mathematical formalism, so that the relational
interpretation distinguishes itself from others only on the level of the interpretation of
the formalism.

We believe that some confusion would be waived if the distinction from other
interpretations was brought to the level of the formalism, so that it would becomemore
than an interpretation, but indeed a theory. A formalism, like a grammar, imposes some
constraints upon what is even expressible. So far, the relational interpretation has to
deal with a standard format of quantum mechanics, which is not well-adapted. The
challenge would be to reformulate quantum mechanics with a better-suited language,
where the relational aspect is already implemented in the basic grammar. In this article,
we propose a route towards such a formalization. Similar efforts have been recently
pushed in this direction [11], but our approach is essentially independent. Here, we
start by building upon the idea, present in the most recent formulation of the relational
interpretation, that the primordial entities are the relative facts [8, 12].

This article organizes as a pedestrian investigation that slowly builds a consistent
framework to incorporate step by step what we know about quantum mechanics. It
subdivides into the following sections:

I. Facts: we explain what a relative fact is, and we define fact-nets.
II. Amplitudes: we define the amplitude, investigate its properties, its physical

meaning and show how it can be used to compute conditional probabilities.
III. Composite systems: we show how fact-nets can account for composite systems.
IV. Measurement: we show how measurements transform fact-nets.
V. Recovering the Hilbert space formalism: we show how the standard formalism

of quantum mechanics can be recovered.
VI. Self-space of a system: we show an alternative representation of systems in

fact-nets in terms of Hilbert spaces.
VII. Amplitude maps: we show how the amplitude can be captured as a map between

relative Hilbert spaces, and fact-nets as diagrams.
VIII. Quantum reference frames: we show how changes of quantum reference frames

can be described within a triangle fact-net.
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2 Facts

The assumed ontology of relational quantum mechanics was not etched in stone in
the first paper [4]. In its early stages, the key concept seemed to be the information
exchanged between systems. In its most recent formulation, the ontology is based on
facts or quantum events, both expressions being used interchangeably. We stick to the
conception of facts as presented in [8]:

[Facts] happen in interactions between any two systems and can be described
as the actualization of the value of a variable of one system relative to the
other.

The term ‘quantum event’ shouldmaybe be preferred because it is discrete, ephemeral,
sparse, while ‘fact’ has a connotation of something more absolute or enduring in time.
But the term ‘quantum event’ is also loaded with a space-time connotation, which is
not really wanted. So we stick to the name of fact, which is already more spread in
the literature, presents the morphological advantage of being short and sounds like the
brief detonation it must be.

A fact persists in the formof a correlation between systems.Oneof the crucial claims
at the basis of relational quantummechanics is thatmeasurements are not ontologically
different from interactions between two systems: a measurement of system A by
system B is nothing more than an interaction between systems A and B viewed from
the perspective of B. Therefore, from the point of view of an observer, i.e. any of
the two reference systems implied in the interaction, the interaction is a measurement
and a fact is an outcome of the measurement. Beware that the terms of observers and
measurements are often loaded with additional assumptions, like macroscopicity. We
do not make such an assumption here. In our language, the same fact can be regarded
symmetrically as the measurement of one system by another or vice-versa.

The facts are sometimes completed with an epithet as relative facts to underline
that facts are relative to systems. In [12], it is said that facts are relative to one system.
However, since facts are also about one system, it actually requires two systems to have
a fact. So facts must be labelled by the two systems which interact, and they can be
described alternatively as a fact about one system relative to the other, or vice-versa.

The intuitive picture that emerges is that of a network of systems related by facts.
Thus, we will assume that the basic structure of any physical situation can be repre-
sented by a graph, with systems as nodes and sets of possible facts as links in-between.
For instance, consider

D

A B E

C

x
y z

w
v

(1)

There are five systems A, B, C, D, E. Between two systems, a set of lines represent a
set of possible facts. The variables v,w, x, y, z label the possible facts between two
systems.
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It is important to notice the move from more standard descriptions of physics. The
usual grammar (some might say ontology) of physics has systems (humans, bananas)
that carry properties (tall, yellow). Here, systems do not have properties. Instead, there
are facts between systems. It is only in special cases that these facts can be understood
as properties of a system. Besides, no foundational hierarchy is set between ‘systems’
and ‘relations’: they co-appear in fact-nets.

This presentation is contrasting with what is often taken as an axiom of quantum
mechanics: ‘the state of a system is described by a vector in a Hilbert space’. The
latter formulation pertains to the usual grammar of physics, where the state gathers
the properties of a system. This is hiding the role of the observer, which is only implicit.
Bringing the observer back on stage suggests our change of grammar.

2.1 Definition 1: Fact-nets

The core of our formulation of relational quantummechanics are fact-nets, a synthetic
way to present the multiple potential results of interactions between systems.

A fact-net F is a multi-graph1 whose vertices are called systemsand edges facts. The
fact-set of edges between two systems A and B is denoted FAB . The set of all edges
incident to one vertex A is denoted FA. We say that a fact f involves a system A
when f ∈ FA, so that FA is the set of all facts involving A. We say that the system
A is related to the system B if the fact-set FAB is non-empty. We call a system A
finite if FA is such. The set of all systems related to A is denoted NA and called the
neighbourhood or environment of A.

We see that, in a fact-net, the role of the systems is minimal: they are only here
to organize facts. Then, any property assigned to a system can only come from the
facts involving it. A fact always involves two systems, which can be interpreted as an
observer and an observed or vice-versa. This is the implementation of the foundational
principle of relational quantum mechanics that nothing should be said about a system
without an explicit reference to the observer. The edges are not oriented because we
assume the relations to be symmetric in the sense of involving both systems in the
same way, akin to the action/reaction principle. Several edges are allowed between
two systems to account for multiple possible facts.

One may wonder whether fact-nets themselves are relative to a choice of observer.
In [10], it is argued that the existence of a fact is an absolute fact, i.e. observer-
independent, while only the value of that fact is relative. This would imply that the
fact-net also is absolute. However, we can be agnostic about this to use and develop
the fact-net formalism. It is perfectly possible to think that fact-nets themselves only
make sense with respect to an observer.

1 A multi-graph is a graph where we allow more than one edge between two vertices.
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3 Amplitude

A reason why Hilbert spaces have become central in standard introductions of QM is
that they are the natural mathematical object to formalize the superposition principle.
However, the superposition principle brings on board some doubtful preconceptions
about what is real. In popular science, a superposed state of positions is often inter-
preted as the particle being in two places at the same time. Most physicists recognize
this statement is too rough. It is more appropriate to say that the state is a superposition
of potentialities, while the position of the particle is not definite yet. Understood as
such, the superposition principle is a statement about correlations between earlier and
later measurements, rather than a statement about the actual properties of the system.
This view remains closer to the experimental content of the principle.

Let us now show how a superposed state looks in the fact-net formalism.

3.1 Example 1: Two Directions of Spin

Consider two Stern–Gerlach apparatuses Sz and Sx , respectively oriented along the
z and x axes. They both interact with a 1/2-spin particle S. For each direction, x or
z, there are two possible facts, up or down, denoted (0, 1) for Sz and (+,−) for Sx .
This is summarized as

Sz S Sx
0

1

+
− (2)

It is a matter of experiment that the facts {0, 1} and {−,+} are correlated. In the stan-
dard formalism of quantum mechanics, these facts would be understood as properties
of the particle (spin z and spin x) and expressed as states related by

|±〉 = 1√
2

(|0〉 ± |1〉) . (3)

Hence the idea that a cat can be both dead and alive, or that a particle can occupy
two positions at the same time. But this is a very loose way of speaking, relying on
the metaphysical postulate that systems have properties independently of them being
measured. The spin can certainly be observed in the spin + but there is a conceptual
leap to say that this is a superposition of 0 and 1. What is actually observed are only
facts: +,−, 0 or 1 and the conditional probabilities between them. So what matters
for the completeness of our physical theory is the ability to compute the conditional
probabilities between different facts. This is done with the help of an amplitude W ,
which takes two facts as input and gives back a complex number. In our example we
have

WS(0,±) = 1√
2

WS(1,±) = ± 1√
2
.

(4)
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These equations have the same information content as Eq. (3) but present it in a way
more adapted to the grammar of facts: an amplitude evaluates a degree of interdepen-
dence between facts involving a common system. This can be translated in terms of
conditional probability. For instance

PS(0|+) = |WS(0,+)|2
|WS(0,+)|2 + |WS(1,+)|2 = 1

2
. (5)

3.2 Example 2: Position/Momentum

Let’s provide another example. Consider a particle S, a ruler X and an apparatus P
that measures momentum. The picture is the following

X S P
x p

(6)

All the physics of the situation can be computed from the amplitude

WS(x, p) = e
i
�

px . (7)

W is a tool that enables us to interpret some facts in relation to others. In the two
examples above, the systems in the neighbourhood NS play the role of measurement
apparatuses associated to observables defining sets of possible facts about S. In the
case of the position/momentum, the two observables have different physical units, so
the amplitude contains a conversion factor, �.

3.3 Definition 2: Amplitude

Here we come to generalize the previous examples to general fact-nets.
A quantum theory over a fact-net consists in describing the pairwise correlations

between facts. Formally, for each system S, we have a function, called the amplitude,
WS : FS × FS → C that takes two facts involving S and gives a complex number. The
physical interpretation of the amplitude is given in terms of conditional probability
as

PS(a|b) = |WS(a, b)|2
∑

a′∈FS A
|WS(a′, b)|2 , (8)

with a ∈ FS A and b ∈ FSB .
This probability is an epistemic quantity relative to the common system S involved

by the two facts. The probability PS(a|b) is interpreted as the conditional probability,
from the perspective of S, of fact a to be actualized knowing that fact b has already
been actualized.

This formula is analogous to Born’s rule. It is the bridge from the mathematical
formalism to the physical tests of the theory. One can check that the formula produces a
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real number between 0 and 1. Note that when the denominator vanishes, the numerator
vanishes too, so that the conditional probability is not well-defined in such a case.

Let’s point out that in this framework, the physical probabilities are always con-
ditional probabilities, which means that the probability of a fact is always relative
to another fact. This point of view is in-line with the general philosophy of RQM:
conditional probabilities are the expected consequence of considering only relative
properties.

In the standard formalism, the amplitude can usually be computed from the states
as

WS(a, b) = 〈a〉b. (9)

But our framework shifts the focus from the states to the amplitude so that we want
to define the amplitude without introducing the states. By doing so, we retain all the
physically relevant content.

We will now investigate, through examples, what are the generic properties to be
expected of W .

3.4 Hermiticity

First, we require W being hermitian or conjugate symmetric:

∀ f , g ∈ FS, WS(g, f ) = WS( f , g). (10)

This property expresses a fundamental symmetry between the facts. However, this
symmetry does not get through to the conditional probability because of the denomi-
nator in Eq. (8), so that in general we have

PS(a|b) 	= PS(b|a). (11)

For instance, consider the following fact-net

A S B
a0 b

(12)

with a single fact between A and S. Then we have, for any b ∈ FSB ,

PS(a0|b) = |WS(a0, b)|2
|WS(a0, b)|2 = 1, (13)

while P(b|a0) can take any real value between 0 and 1:

PS(b|a0) = |WS(b, a0)|2
∑

b′ |WS(b′, a0)|2 . (14)

123



Foundations of Physics (2023) 53 :26 Page 9 of 33 26

This example shows that, when there is a single fact within a fact-set, the fact is certain,
while otherwise facts are only potentialities.

3.5 Incompatibility of Parallel Facts

Consider the case when WS(a, b) = 0, for two facts a, b ∈ FS . Then

PS(a|b) = PS(b|a) = 0. (15)

Conversely, the amplitude vanishes if the conditional probabilities do. In such a case,
a and b are mutually excluding each other: we say the two facts are incompatible. We
expect that this can never happen if a = b, in which case we shall have instead

PS(a|a) = 1. (16)

Two different facts within the same fact-set are said to be parallel. Motivated by
the examples above, we will assume that parallel facts are always incompatible. This
implies that for two different facts a0, a1 ∈ FS A we have

WS(a0, a1) = 0. (17)

This condition suffices to guarantee (16). However, for simplicity, since this is the case
in all the considered examples, we will assume a slightly stronger condition

WS(ai , a j ) = δi j . (18)

This simply corresponds to the normalisation of states that represent facts, as we will
see in the coming sections.

3.6 Chain Property

We now discuss a property that is not required for a generic fact-net, but appears in
numerous cases with interesting consequences. Let’s consider an environment made
of three systems:

A S B

C

a b

c (19)

We say that the chain property holds for a ∈ FAS and b ∈ FBS with respect to C if

WS(a, b) =
∑

c∈FC S

WS(a, c)WS(c, b). (20)
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If the property holds for all a ∈ FAS and b ∈ FBS , we say that it holds for A and
B with respect to C . If the property holds for any such triple in NS , we say that S is
chain-complete.

This is a strong condition that implies powerful features of the theory. It has already
been identified as an important property of quantum theory in [13].

3.7 Example 3: Three Directions of Spins

As an example, consider a spin- 12 particle with three surrounding Stern-Gerlach
devices:

Sz S Sx

Sy

0

1

+
−

i −i (21)

Equation (4) already gives the amplitude between facts in FSz S and FSx S . We must
complete the definition of W to account for the facts in FSy S :

WS(0,±i) = 1√
2

WS(1,±i) = ± i√
2

(22)

and

WS(+,±i) = 1 ± i

2

WS(−,±i) = 1 − ±i

2

(23)

This gives the right probability amplitudes between different possible outcomes of the
relevant experiments. One can then check that such system S is chain-complete. In
fact, by assuming that S is chain-complete, one can compute (23) from (4) and (22).

3.8 Example 4: Propagator

Let’s provide another example of a chain-complete system. Consider a free particle
of mass m moving in a 1-dimensional space and a position measurement device X
turned on three times t0, t1, t2. In this setup, time is an external parameter and X
generates three different fact-sets, each labelled by a different moment in time. So, on
the fact-net, X appears as three different systems:

123



Foundations of Physics (2023) 53 :26 Page 11 of 33 26

X0 S X1

X2

x0 x1

x2 (24)

Then the amplitude is

WS(xi , x j ) =
(

1

2π(i�(ti − t j )/m + σ 2)

)1/2

e
− (xi −x j )

2

2(i�(ti −t j )/m+σ2) (25)

where σ is the precision of X , i.e. the smallest distance that X can resolve. This is
the standard formula for the propagator of a free particle. One checks easily that WS

is hermitian. The incompatibility of parallel facts as expressed by Eq. (18) is taken
as a definition of the amplitude within the same fact-set. With some more work, one
can check that S is chain-complete. Interestingly, no ordering between t0, t1 and t2
is required for these properties to hold. Besides, one can compute the conditional
probability density

PS(xi |x j ) =
(

2π

(
�
2(ti − t j )

2

m2σ 2 + σ 2
))− 1

2

e

− (xi −x j )
2

�2(ti −t j )
2

m2σ2
+σ2

(26)

We see that a non-zero σ is necessary to get a non-trivial probability and indeed, in
experiments, the precision on X is never perfect. So the fact-sets FSX is not really R,
as we have assumed to perform the integration to get (26), but rather a discrete set of
possible intervals of size σ .

In standard quantum mechanics, the time evolution of an isolated system is
described as a unitary transformation of states within the same Hilbert space. In the
fact-net framework, this evolution appears as a relation between sets of potential facts
associated with measurement apparatuses at different moments in time. So there is no
such thing as the time evolution of a fact-net because time must be already included
within the fact-net.

The description of time evolution illustrates a slight departure from the more com-
mon use of the word ‘system’ by physicists. The traditional denomination implicitly
assumes the existence of an operational labelling t and identifies different snapshots as
the same system. Our convention enlarges the use of the word ‘system’ to refer to the
snapshots themselves, which are believed to be ontologically primary. It is mainly a
matter of word, but we believe our convention ismore in linewith a generally covariant
philosophy.

As we will see in Sect. 8, it is still possible to express WS as a unitary map between
the facts at different moments of time, looking like

∑

x0,x1

WS(x0, x1)|x0〉〈x1|. (27)
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However, one should bear in mind the important conceptual difference with standard
quantummechanics: we are not assuming the existence of an intrinsic evolution of the
state in between the measurements (the facts).

3.9 Example 5:ˇ-Decay

For the reason just mentioned, the fact-net formalism is also more suitable to express
the time-reversal symmetry of quantum mechanics. Indeed, in standard quantum
mechanics, the quantum state attributed to a system in-between two measurements
is not time-reversal symmetric. This was shown in [14] with a striking example:

We can describe the β-decay of a nucleus by means of the electron wave func-
tion concentrated on the nucleus, slowly leaking out in all directions until the
electron gets detected by a Geiger counter at some distance. The time reversed
phenomenon -the Geiger apparatus emits an electron that is then captured by
the nucleus- is perfectly possible, but it is not described by a wave function that
converges symmetrically onto the nucleus.

This argument was raised against a realistic interpretation of the quantum state. The
fact-net corresponding to this example is

Nucleus Electron Geiger counter
1

0 x
(28)

The facts 0 and 1 tell whether the nucleus has decayed or not, so for instance, whether
the nucleus is carbon-14 or nitrogen-14. The facts x correspond to a click of the Geiger
counter in position x . In standard quantum mechanics, knowing that the nucleus is
initially carbon-14 allows describing the evolution of the state of the electron at all
times later, until the electron is detected somewhere outside, by the Geiger counter.
However, the backward evolution of this state disagrees with what standard quantum
mechanics would predict for the evolution of the state of an electron that would be
emitted by the Geiger counter. In that sense, standard quantum mechanics is not time-
reversal symmetric. The fact-net formalism carries an easy solution to the difficulty:
there is no continuity of the evolution to be assumed in-between a pair of facts.

3.10 Example 6: Entanglement

In the examples above, the central system S was thought of as the system observed
by the surrounding measurement apparatuses. However, the formalism of fact-nets
is symmetric and thus admits a mirror interpretation where S plays the role of an
observer, observing its neighbour systems. Consider the following fact-net

A O B
0

1

0

1
(29)
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where A and B are qubits and O the observing system. Then the amplitude

WO(i A, jB) = δi A, jB√
2

, (30)

for i A, jB ∈ {0, 1}, describes an entangled state of the coupled system A ∪ B. It
corresponds to the Bell state

1√
2

(|00〉 + |11〉) , (31)

and should be understood as a state of A ∪ B relative to O , or, equivalently, a state of
O relative to A ∪ B. The description of composite systems in the fact-net formalism
is a subject of Sect. 4.

3.11 Example 7: Spinor

In the example of the β-decay, we have seen a fact-net where the fact-sets don’t have
the same cardinality. Let’s see another such example: a particle for which one can
measure both the position and the spin. The fact-net is

Sz S X
0

1

x

(32)

We use the variable σ for the facts of spins and the variable x for the facts of position.
Then the amplitude is a function W (x, σ ), that is usually called a spinor. It expresses
a correlation between the spin and the position. In the standard formalism, this would
correspond to an entangled state between spin and position variables, like

∑

x,σ

WS(x, σ )|x〉|σ 〉. (33)

If there are only two facts x0 and x1 available between S and X we can model a
particle going through a Stern-Gerlach by the amplitude, for i ∈ {0, 1}

WS(i, x j ) = δi j√
2
, (34)

which is analogous to (30). Indeed, the Stern–Gerlach creates a correlation between a
spin orientation and a position.

3.12 What is the Amplitude?

From the different examples above, we see that the interpretation ofW is very different
depending on the physical situation that the fact-net is meant to represent. There are
two main ways to look at it:
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• A map that performs a change of basis or a unitary time evolution.
• A state of a bipartite system, which covers cases like a spinor (one system with
several degrees of freedom) or Bell’s states (two systems with correlated d.o.f).

The duality between these views is provided by the usual Choi–Jamiołkowski isomor-
phism.

This dual interpretation of the amplitude adds to another form of duality in the
interpretation of the fact-nets. Indeed, in all cases encountered so far, the fact-net
was star-shaped, with one central system surrounded by a few others, which are not
related to each other by any facts. There are two main ways to consider such a fact-
net. Either the central system is regarded as a quantum system and the surrounding
ones as measurement apparatuses, or the central system is thought of as a classical
observer and the surrounding systems are a collection of quantum observed systems.
It is noticeable that these two symmetric cases are treated identically in the fact-net
formalism. This is because fact-nets do not assume any preferential interpretations
as observed or observer: both perspectives are allowed. In Sect. 9, we will encounter
different types of fact-nets, with triangles of systems, which are suitable to describe
changes of the quantum reference frames.

4 Composite Systems

The union of two systems is again a system. Consider the fact-net

A S B (35)

Another description could be given by a fact-net of the following form

S A ∪ B , (36)

where the systems A and B are composed into a single system, and we consider facts
to be pairs of facts from the original diagram

FS,A∪B = FS,A × FS,B . (37)

However, from (35) to (36), some information is lost because the non-trivial amplitude
W (a, b) only appears in (35). Both situations can also fit on the same fact-net as

A S B

A ∪ B

(38)

What should be the amplitude between the facts (a0, b) ∈ FS,A∪B and a1 ∈ FS A? We
expect the probability of getting (a0, b) conditioned on a1 to be zero if a0 	= a1 and
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PS(b|a0) otherwise, i.e.

PS((a0, b)|a1) = δa0,a1 PS(b|a1). (39)

For the amplitude, it implies

WS((a0, b), a1) ∝ δa0,a1WS(b, a1). (40)

The value of WS((a, b), a) is not further constrained, but the simplest choice would
clearly be

WS((a0, b), a1) = δa0,a1WS(b, a1). (41)

We thus treat (41) as completing the definition of the amplitude for the fact-net (38).
Notice here that for the system S in (38) the chain property does not hold for any
configuration of facts and intermediate systems.

So far, we have not said anything about the facts between a system and itself. We
can now remark the following. If one maintains the rule 37 when S = A, a condition
is imposed on the cardinality of |FAA|. Indeed, FAA = ∅ would imply FA,A∪B = ∅,
which does not seem reasonable. However, one can take instead that |FAA| = 1, which
would mean that each system has one fact with itself, the fact of being itself. Then
it would imply FA,A∪B = FAB = FB,A∪B , which can be understood as follows: a
subsystem can only relate to the bigger system by relating to its complement.

4.1 Yes/NoMeasurement

Reciprocally, it is also possible to decompose a fact-net by splitting a system into
subsystems. The maximal decomposition is done in terms of qubits corresponding to
yes/no measurements. Consider two systems like

A S
ai

(42)

Each fact ai ∈ FS A can be promoted to an interacting qubit (yes/no measurement),
and we get the equivalent fact-net:

. . . ai . . .

a1 S aN
0

1

(43)

Because of the incompatibility of parallel facts in (42), we must have, for i 	= j ,

WS(1i , 1 j ) = 0. (44)
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Conversely, it is possible to reduce a fact-net from (43) to (42) provided (44) is satisfied.
However, doing so, one loses the information contained in WS(0i , 0 j ) and WS(0i , 1 j )

which does not appear in (42).
Concretely, one could think of a particle moving on a circle with a discrete but high

number N of possible sites xi . In this case, one could assume the equiprobability of
sites which leads to the conditional probabilities

PS(1i |0 j ) = 1 − δai a j

N − 1
PS(0i |1 j ) = 1 − δai a j

PS(0i |0 j ) = N − 2 + δai a j

N − 1

(45)

In the limit of large N , these probabilities are satisfied by the amplitude

WS(0i , 0 j ) = 1

WS(0i , 1 j ) = 0.
(46)

5 Measurement

A fact-net provides the structural relations between a set of interacting systems. The
different facts within the same fact-set are different possibilities for the result of the
interaction. So a fact-net gathers many potential configurations of facts.

During a measurement procedure, only one fact in the fact-set is actualized. When
one fact is chosen for each fact-set, the restricted fact-net can be seen as a branch of
the world, to mimic the language of many-worlds. More generally, one can consider
restrictions of the fact-sets, where not just a single fact is selected, but a full subset of
a fact-set. This would correspond to a post-selection of the possible facts. It results in
a new fact-net with a new amplitude W ′ as we now explain.

A measurement relative to a reference system O is a process MO that sends a fact-
net to another fact-net. The new fact-net has the same systems, but the fact-sets are
restricted to a subset MO A ⊂ FO A for all A ∈ NO .

After the restriction, the amplitude W is still hermitian and parallel facts are still
incompatible. However, the chain property is generally broken. Yet, it is always pos-
sible to restore the chain property for a chosen ordering of NO by defining a new
amplitude W ′.

First, choosing an ordering of NO amounts to introduce a local and primitive notion
of time: the facts happen in successive order. Let’s then exemplify the construction of
W ′ for the following fact-net with an ordering of NS going from A to D.

B C

A S D

(47)
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We first define W ′ for closest neighbours in the ordering of NO , i.e.

W ′
S(a, b)

def= WS(a, b)

W ′
S(b, c)

def= WS(b, c)

W ′
S(c, d)

def= WS(c, d)

(48)

Then, the other W ′ are defined by imposing the chain property on intermediate facts:

W ′
S(a, c)

def=
∑

b∈RSB

WS(a, b)WS(b, c).

W ′
S(b, d)

def=
∑

c∈RSC

WS(b, c)WS(c, d)

W ′
S(a, d)

def=
∑

b∈RSB

∑

c∈RSC

WS(a, b)WS(b, c)WS(c, d). (49)

This construction generalizes easily for an arbitrary number of neighbours. For an
ordering of them like X0 → X1 → ... → Xn , the chain property is satisfied between
any Xi and X j with respect to any Xk with i < k < j .

5.1 Double-Slit Experiment

We can apply the previous construction to understand the double-slit experiment. The
latter can be constructed as a post-selection from the fact-net of the propagator (24).
Usually, one proceeds the other way around and starts from the double-slit experiment,
and then progressively increases the number of slits, until the slits give way to free
space. Thismotivates the Feynman path-integral, which enables the computation of the
propagator. Here, we illustrate the measurement process on fact-nets by considering
that the slits are a positionmeasurement device that only keeps two facts in the fact-set.
Similarly, the source measures the position of the electron with only one possible fact.
So the situation is the following:

Sli ts

Source Electron Screen

A B
1 x

(50)

We assume that the electron first leaves the source, then goes through the slits A and
B located at a distance �1 from the source and separated by a distance 2d, and finally
reaches the screen at a distance �2 from the slits. This scenario carries a local ordering
of the facts for the electron: source, slits, screen. The amplitude can be deduced from
that of the propagator, Eq. (25). Between the source and the slits, and the slits and
the screen, the formula only requires an easy adaptation to transform the difference of
times (ti − t j ) into distances �:
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W ′
E (A, 1) =

(
1

2π(i�21 + σ 2)

)1/2

e
− d2

2(i�21+σ2)

W ′
E (x, A) =

(
1

2π(i�22 + σ 2)

)1/2

e
− (x−d)2

2(i�22+σ2)

(51)

Then the amplitude between the source and the screen must be so that the chain
property is satisfied, which is necessary to get the right prediction of the interference
pattern. So we define

W ′
E (x, 1)

def= W ′
E (x, A)W ′

E (A, 1) + W ′
E (x, B)W ′

E (B, 1). (52)

With the amplitude defined as such, the chain property is only satisfied between the
source and the screen with respect to the slits, i.e. for the ordering of NElectron which
is implied by the local clock.

6 Recovering the Hilbert Space Formalism

One of the goals for developing the fact-net formalism is to kick Hilbert spaces out of
quantum mechanics. However, it is important to show that we are not losing anything
crucial. In this section, we show that fact-nets are sufficient to recover the standard
description of quantum physics.

6.1 Relative Hilbert Spaces

Consider the fact-net
A S (53)

In the spirit of RQM, we first define the Hilbert space of S relative to A as

HS|A
def= l2(FAS). (54)

It is the complex vector space freely generated by the facts in FAS , i.e. any vector
reads:

∑

a∈FAS

ca |a〉, (55)

with ca ∈ C so that

∑

a∈FAS

|ca |2 < ∞. (56)

The scalar product is defined so that the basis {|a〉|a ∈ FAS} is orthonormal, so that
W (ai , a j ) = δi j = 〈ai 〉a j .
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The notion of relative Hilbert space introduces in the language an asymmetry
between the observed system and the reference system (the observer). However, this
distinction is not present at the level of the fact-net, and for this reason, we have
HS|A = HA|S .

It should be noted that, in this framework, the Hilbert space HS|A of S relative to
A comes with a preferred basis. Indeed, the set of possible facts between two systems
is not derived from an a priori definition of the systems, but it is instead part of the
definition of what the interaction between two systems is. In other words, systems are
characterized by the way they can connect to their environment. This feature of the
formalism is simply the translation of: (1) in relational quantummechanics interactions
are ontologically of the same nature than measurements, and (2) measurements come
with a preferred basis.

We are now going to add other systems in NS and express them as operators on
HS|A. Consider a system B ∈ NS :

A S B . (57)

Notice, first, that a consequence of (37) is that

HS|A∪B ∼= HS|A ⊗ HS|B, (58)

so that a relative Hilbert space of a composite system is given by the tensor product,
as expected. Generally speaking, one could consider the extended Hilbert space of S:

Hext
S

def=
⊗

A∈NS

HS|A (59)

It is the Hilbert space of S relative to its whole environment.
Then, the amplitude WS enables to express a fact b ∈ FSB as a vector inHS|A

|b〉 def=
∑

a∈FAS

WS(a, b)|a〉. (60)

The system B can then be expressed as a relative observable, i.e. a self-adjoint operator
B̂ ∈ L(HS|A), defined by the spectral decomposition:

B̂
def=

∑

b∈FSB

f (b)|b〉〈b|, (61)

with a function f : FSB → R. In our framework, the facts b are elements of an abstract
set FSB and this explains the need to introduce the function f to turn these facts into
numerical outcomes of measurements, so that the fact-sets become sample spaces.
The choice of the function f is conventional and includes specifying a coordinate or
a unit system. It is of course possible to label the fact-set directly by the eigenvalues
that one expects for B so that f is the identity.
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Now consider a third system C ∈ NS

A S B

C

a b

c (62)

Then, it is easy to show that two facts b ∈ FSB and c ∈ FSC satisfy the chain property
with respect to A if and only if

〈b〉c = WS(b, c). (63)

If S is chain-complete, then this equality is always true, so that all the facts involving
S are expressed as states inHS|A and WS gives the value of their scalar product.

We have thus recovered the main features of the standard formulation of quantum
mechanics. The salient point of this construction is the need to take one system (here A)
as a reference system, with respect to which the other facts are described. This departs
from the fact-net formalism, where all systems are treated on the same ground.

As an example, consider a particle S, a ruler X and an apparatus P that measures
momentum. The fact-net is

X S P
x p

(64)

The fact-sets are indexed by real variables x, p ∈ R. The amplitude is

WS(x, p) = e
i
�

px (65)

The Hilbert space of S relative to X , denoted HS|X , is spanned by the |x〉. Then, the
facts p can be represented as states in HS|X ,

|p〉 def=
∑

x

e
i
�

px |x〉 (66)

X and P can be represented as observables on HS|X ,

X̂ =
∑

x

x |x〉〈x | ,
∑

x

def=
∫

dx

P̂ =
∑

p

p|p〉〈p| ,
∑

p

def=
∫

dp

2π�

(67)

Here, the function f is the identity because the fact-sets are already labelled by the
value of the measurement outcome. The momentum operator then reads
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P̂ =
∑

x,x ′,p

p e
i
�

p(x−x ′)|x〉〈x ′|

=
∑

x,x ′
(−i�)∂x (δ(x − x ′))|x〉〈x ′|, (68)

and we recover the canonical commutation relations

X̂ P̂ − P̂ X̂ =
∑

x,x ′
(−i�)(x − x ′)∂x (δ(x − x ′))|x〉〈x ′|

=
∑

x,x ′
i� δ(x − x ′)|x〉〈x ′|

= i�1HS|X .

(69)

7 Self-space of a System

Let’s consider a system S in a fact-net surrounded by systems Ai . We have already
introduced the relative Hilbert spaces HS|Ai describing S from the point of view of
Ai . The communication between those relative Hilbert spaces is governed by the W
maps. One can wonder if it is possible to assign to each system a Hilbert space that
is not relative to any other system in particular but is wide enough to account for the
points of view of all the other systems, in the same way that the Hilbert space of the
usual framework of quantummechanics can account for the points of view of different
measuring devices.

In this section, we will investigate under which condition we can assign such a
self-space HS to S. In this self-space, we want all facts f , g ∈ FS to be represented by
normalized vectors | f 〉S, |g〉S ∈ HS such that 〈 f 〉gS = WS( f , g). We already know
that this is the case for the relative Hilbert spaceHS|A, provided S is chain-complete.
Our task is now to construct such a Hilbert space, called the self-spaceHS , so that we
always have WS(b, c) = 〈b〉c, even if the chain property is not satisfied.

Let’s start by introducing the Hilbert space:

H⊕
S

def= l2(FS), (70)

with the scalar product defined such that {| f 〉| f ∈ FS} forms an orthonormal basis.
Note thatH⊕

S = ⊕
i HS|Ai . We can then define a linear endomorphismW S : H⊕

S →
H⊕

S as:

W S|g〉S =
∑

f ∈FS

WS( f , g)| f 〉S . (71)

123



26 Page 22 of 33 Foundations of Physics (2023) 53 :26

The following Lemma holds:

Lemma 1 (Self-space of a system) A finite system S admits a self-space if and only if
W S is positive semi-definite.

Proof Assuming that HS exists, consider the linear map H : H⊕
S → HS defined as

| f 〉 �→ | f 〉S . We can compute:

〈 f |W S|g〉 = WS( f , g) = 〈 f 〉gS = 〈 f |H†H |g〉, (72)

where the first equality holds by definition, the second is the assumption on HS , and
the third is the definition of H . So we have W S = H†H which means that W S is
positive semi-definite. In other words, for all vectors |x〉, 〈x |W S|x〉 ≥ 0.

Conversely, assuming thatWS is hermitian semi-definite positive, it can be unitarily
diagonalized into a diagonal matrix D with non-negative coefficients. We then have

W S = U †DU where U is a unitary matrix on H⊕
S . We define HS

def= Im(D) and an
isometry P : Im(D) → H⊕

S such that D′ = P†D P is a full rank diagonal matrix
with non-negative coefficients and P D′ P† = D. Then we can write D′ = �†�

with �
def= √

D′. Finally, we have WS = U †P�†�P†U . Setting H
def= �P†U

provides the desired decomposition, i.e. a surjective map H : H⊕
S → HS such that

for | f 〉S
def= H | f 〉 we have:

〈 f 〉gS = 〈 f |H†H |g〉 = 〈 f |WS|g〉 = WS( f , g), (73)

and since the equality holds for arbitrary facts f and g, the constructed HS is a self-
space for S. ��

Note that this construction depends on the chosen decomposition H†H for WS ,
which is unique only up to a unitary since H†U †U H = H†H . Hence, the self-space
�H is defined up to unitary transformations, unlike the relative Hilbert spaces that
come equipped with preferred bases. Note that the dimension ofHS is the rank ofW S .
Moreover, our convention about parallel facts implies that W S has identity diagonal
blocks of size |FS Ai |. It follows that the dimension of HS is bounded by mini |FAi |
below and |FS| = ∑

i |FAi | above. One can easily embed the relative Hilbert spaces
as subspaces of HS by restricting the map H .

This construction is in linewith the relational idea that a system is nothingmore than
the potentialities of interactions with its environment. Hence, the self-space represents
the internal degrees of freedom of the system as emerging from the facts involving it.
Let’s move to concrete examples.

For the very simple fact-net
A B (74)

we see that the self-space matches with the relative one

HA ∼= HA|B . (75)

Indeed, the matrixWS is then the identity onH⊕
S so that the map H can be any unitary.
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As a less simple illustration, consider the setup of two Stern-Gerlach devices as
depicted in (2). We have four facts in FS , so that H⊕

S = C4. The matrix W S in the
{0, 1,+,−} basis reads

W S =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 1√
2

1√
2

0 1 1√
2

− 1√
2

1√
2

1√
2

1 0
1√
2

− 1√
2

0 1

⎤

⎥
⎥
⎥
⎥
⎦

=
[
1 H
H 1

]

, (76)

and upon diagonalization gives W S = U DU † with:

D = 2

[
0 0
0 1

]

, and U = 1√
2

[
H H
−1 1

]

. (77)

Clearly, the image of D is two-dimensional, so the self-space is HS ∼= C2. In this
simple case, it is isomorphic to both relative Hilbert spaces HS|	x and HS|	z , which
was to be expected for a chain-complete system.

The matrix H† is here 1
2

(
H 1

)
. The columns of H† give us the decomposition of

the vectors corresponding to the facts of FS in an orthonormal basis of HS . Notice
that multiplying H by a unitary on the left provides another acceptable representation
of the facts in FS .

8 AmplitudeMaps

Consider the fact-net
A S B (78)

The amplitude WS enables to define a linear map, called the amplitude map, W S
AB :

HS|B → HS|A given on the basis by

W S
AB |b〉B =

∑

a∈FS A

WS(a, b)|a〉A. (79)

This representation of the amplitude provides a novel perspective on the chain property
and can be seen as a tool for translating the relative observables between different
relative Hilbert spaces. W S

AB is unitary when the chain property is satisfied between A
and B with respect to themselves. For a chain-complete system, the amplitude maps
are all unitary. As an example, for the pair of Stern–Gerlach devices, fact-net (2), we
have
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W S
SxSz

=
⎡

⎣
1√
2

1√
2

1√
2

− 1√
2

⎤

⎦ . (80)

For simplicity we now focus our attention on a star-shaped fact-net, with an arbitrary
number of systems in NS , although we only draw three below

A

S

B C

. (81)

The WS specifies the amplitude maps

W S
AB : HB ∼= HS|B → HS|A ∼= HA (82)

and so on. They can be all depicted on a single diagram in Hilbert spaces and linear
maps

HA

HB HC .

W S
C AW S

AB

W S
C B

(83)

This diagram fully represents the fact-net (81). In a way, the system S of the star-
shaped diagram is only auxiliary in the sense that all the relevant information—the
physics—is contained in themutual relations, encoded by the amplitudemaps, between
the surrounding systems A, B and C . The direction of the arrow is reversed by taking
the hermitian conjugate since we have W A

BC = (W A
C B)†.

8.1 Chain Property as Commutativity

Finite chain-complete systems in star-shaped fact-nets are neatly characterized by the
commutativity of the diagram of the amplitude maps, as the following Lemma shows.

Lemma 2 (Chain-completeness as commutativity) A finite system S in a star-shaped
diagram is chain-complete if and only if all triangles composed from the amplitude
maps are commutative. In such a case, all these maps are unitary.

Proof We calculate W S
C A ◦ W S

AB and show that it equals W S
C B if and only if the chain

property holds for C and B with respect to A. We have
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W S
AB =

∑

a,b

WS(b, a) A|a〉〈b|B,

W S
C A =

∑

c,a′
WS(a′, c) C|c〉〈a′|A,

(84)

and we can calculate

W S
C A ◦ W S

AB =
∑

a,a′,b,c

WS(b, a)WS(a′, c)C|c〉〈a′〉a〈b|B

=
∑

a,b,c

WS(b, a)WS(a, c)C|c〉〈b|B

=
∑

b,c

WS(b, c)C|c〉〈b|B = W S
C B,

where we have first used orthogonality of the {|a〉} basis, and then the chain property
for C and B with respect to A. Clearly, the equality can be accomplished only if the
third equality holds, i.e. this chain property can be used. Generalization to arbitrary
number of systems surrounding S is straightforward.

To see that the amplitude maps need to be unitary, take B = C in the calculation
above. We get

(W S
AB)† ◦ W S

AB =
∑

b,b′
WS(b, b′)C|b′〉〈b|B = I dHB . (85)

The other composition works the same way, the calculation can be done for any
amplitude map. We can then conclude that they are all unitary maps. ��

8.2 Translating Relative Observables

In Sect. 6, we have shown that a system B ∈ NS can be expressed as a self-adjoint
operator B̂ on HS|A, where A ∈ NS . To make explicit that B̂ lives in L(HS|A), let’s
add an index A, so that (61) becomes

B̂A
def=

∑

b∈FSB

f (b) A|b〉〈b|A. (86)

B̂A is the observable B from the perspective of A. Given another system C ∈ NS , one
can also consider B̂C , the observable B from the perspective of C . Then, if the chain
property is satisfied between B and C with respect to A, the amplitude map W S

AC

enables to relate B̂A and B̂C as

B̂C = W S
C A B̂AW S

AC (87)

123



26 Page 26 of 33 Foundations of Physics (2023) 53 :26

If A and C represent an observer at two different times, then W S
AC is unitary and

Eq. (87) shows the usual evolution of an observable B in the Heisenberg picture.
Within the usual formulation of quantum mechanics, all the relative Hilbert spaces

of a chain-complete system are identified and understood as “the Hilbert space of the
system”. For example, in a multiple Stern–Gerlach setup, “the Hilbert space of S” is
said to be just C2, without any specific choice of basis or a reference system. In such
a case all the relative Hilbert spaces are isomorphic to the self-space HS , which has
no preferred basis, so we can say that the self-spaceHS is what is usually considered
as “the Hilbert space of the system”. Then we consider different operators, all acting
onHS , that correspond to different directions of the spin measurement in this simple
example. Each of them can be diagonalized by a unitary change of basis.

In our framework,we can alsowork in the self-space of the system.Assuming chain-
completeness, all the amplitude maps can be considered as endomorphisms of the
self-space, and each basis of eigenvectors of a relative observable can be considered as
a basis ofHS , thanks to the inclusionsφS A : HS|A → HS , which are nowunitarymaps.
Under such identification, the amplitudemaps are precisely the unitary transformations
that one needs to perform to change the basis ofHS from that associated via relevant
φ to the eigenvectors of, e.g., ÂA, to that of eigenvectors of B̂B . To see this, notice
that |b〉A = WAB |b〉B , which are now considered as vectors in HS . We then have

B̂A =
∑

b∈FSB

f (b)A|b〉〈b|A

=
∑

b∈FSB

f (b)WAB |b〉B B〈b|WB A

= WAB B̂B WB A,

which is a special case of the formula (87).

8.3 More Commutative Triangles

Each relative Hilbert spacesHS|A is included as a subspace of the self-spaceHS . This
is captured by an isometry φS A : HS|A → HS , such that

φS A
def= H

∣
∣HS|A : |a〉A = |a〉S, (88)

where the notation from the Lemma 1 is used. The diagram (83) can then be completed
to include also the self-space of the system S, so that the fact-net (81) is represented
as a following diagram of Hilbert spaces and linear maps
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HA

HS

HB HC

φS A W S
C A

φSB

W S
AB

φSC

W S
BC

. (89)

We always consider the maps in both directions, they come in pairs: a map and its
hermitian conjugate. This way we get a bunch of commutative triangles. To see this,
let us calculate

(φS A)† ◦ φSB =
∑

a,b

A|a〉〈a|S|b〉〈b|B

=
∑

a,b

A|a〉〈a〉bS〈b|B

=
∑

a,b

A|a〉WS(a, b)〈b|B = W S
AB .

If S is chain-complete, we also have

φS A ◦ W S
AB =

∑

a,a′,b
WS(a, b)S|a′〉〈a′|A A|a〉〈b|B

=
∑

a,b

WS(a, b)S|a〉〈b|B

=
∑

b

S|b〉〈b|B = φSB,

It is compatible with the Lemma 2, since if all such triangles commute, so does the
big ones consisting of the amplitude maps only.

For a chain-complete S all the Hilbert spaces on (89) are isomorphic. Indeed,
HS|A ∼= HA since A is not related to any other system, but alsoHS ∼= HS|A due to the
chain-completeness. Hence, in such a case, all the isometries φ’s need to be onto, so in
fact, they are all unitary. Without this assumption, they are isometries for star-shaped
fact-nets and partial isometries in general.

8.4 Maps as States

The linearmaps introduced above can be interpreted as states on the composite systems
via the Choi-Jamiołkowski isomorphism. For example, the map φS A can be thought
of as representing the correlation between the measuring apparatus A and the quan-
tum system S. Indeed, being unitary as maps, the states corresponding to them are
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maximally entangled

|φ〉S A =
∑

a∈FS A

|a〉A ⊗ |a〉S . (90)

The amplitude maps can also be understood similarly. For example, the state cor-
responding to the amplitude map W S

AB reads

|W 〉S
AB =

∑

b∈FAB

|b〉B ⊗ W S
AB |b〉B

=
∑

a,b

WS(b, a)|b〉B ⊗ |a〉A

(91)

The amplitude, that expresses a correlation between the fact-sets FS A and FSB , is here
captured as an entangled state on HS|A ⊗ HS|B relative to the system S. Indeed, the
amplitude map is exactly the set of equations relating the basis vectors of the relative
Hilbert spaces, like in Eq. (60). The interpretation of the amplitude as a kind of relative
state will be illustrated further below in the context of quantum reference frames.

9 Quantum Reference Frames

So far, our examples were focused on star-shaped fact-nets. Such fact-nets enable
a clear distinction between the centre and the surrounding systems. The centre is
either seen as a quantum system surrounded by classical measurement devices or
alternatively, the centre is a classical observer, surrounded by quantum systems. Such
cases encompassmost situations that were so far experienced in laboratories. However,
if one believes that any quantum system can serve as a reference system, one is led to
also consider different situations, like the following triangle-shaped fact-net:

A

B C

(92)

Such fact-nets open up the possibility to compare different perspectives, which is the
subject of quantum reference frames (QRF). A concrete question to ask is: given a
state for the joint system BC relative to A, what can be said about the state of AB
relative to C?

Although the subject is already old, the interest in it was renewed in [15] where a
concrete proposal was made to describe a change of quantum reference frame. The
work was later extended in [16] with a group-theoretic formalism. To address the issue
in the fact-net formalism, let’s first provide an example taken from [16].

9.1 Example: Three Qubits

Let’s consider three qubits, like three 1/2-spins. In standard quantum mechanics, one
would describe their states as up |↑〉 or down |↓〉. But in relational quantummechanics,
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such an orientation up/down is relative to another orientation, so that the relative facts
are ‘aligned’ or ‘anti-aligned’ that we denote respectively 0 and π . The fact 0 could
correspond to ↑↑ or ↓↓. So we have the following triangle fact-net:

A

B C
0

π

0

π

0

π

On the one hand, the amplitude WA gives a state of BC relative to A. Take for instance

|W 〉A = (|0〉A
B + |π〉A

B) ⊗ |0〉A
C . (93)

It can also be written as an amplitude map W A
BC : HC|A → HB|A:

W A
BC =

(
1 0
1 0

)

(94)

On the other hand, the amplitude WB gives the state of AC relative to B. By a sort
of transitivity argument and a linearity principle, the QRF literature argues that WB is
not free, but constrained and deducible from WA. The argument is as follows:

1. A state |0〉A
B |0〉A

C means that B is aligned with A which is itself aligned with C , so
that B is aligned with C and so the corresponding state relative to B is |0〉B

A|0〉B
C .

2. Similarly, a state |π〉A
B |0〉A

C , implies that B is anti-aligned with C , so that the
corresponding state relative to B is |π〉B

A|π〉B
C .

3. By requiring linearity, the state WB , deduced from (93), must be

|W 〉B = |0〉B
A|0〉B

C + |π〉B
A|π〉B

C . (95)

As a map the latter reads:

W B
AC =

(
1 0
0 1

)

. (96)

The surprising conclusion of this first computation is that a system B, in a superposed
state relative to A (Eq. 93), perceives A in a state entangled with the rest of the world
(eq. (95)). Similarly, one can deduce the view from C :

|W 〉C = |0〉C
A ⊗ (|0〉C

B + |π〉C
B). (97)

or as a map

W C
AB =

(
1 1
0 0

)

. (98)

The consistency of the three views is expressed by the relation

W A
BC = W C

B AW B
AC (99)
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which means the commutation of the triangle

HA|B ∼= HB|A HC|A ∼= HA|C

HB|C ∼= HC|B

W A
BC

W C
B AW B

AC

With the Choi-Jamilkowski isomorphism CJ, the relation reads

|W 〉B = CJ[JC(|W 〉A) ◦ JC(|W 〉C )]. (100)

9.2 Change of QRF

Let us generalize the example by considering a triangle fact-net (ABC) with general
fact-sets. Suppose that W A gives the state

| f 〉A
B |h〉A

C (101)

with f ∈ FAB and h ∈ FAC . The fact f is common to A and B, but it can be viewed
from two perspectives as | f 〉A

B or | f 〉B
A . So, when we switch to the perspective of B,

the relative state becomes

| f 〉B
A|g〉B

C (102)

with some g ∈ FBC .
We assume that the fact g is deducible from f and h. Therefore, there must be a

function GA such that g = GA(h, f ). Similarly, there must exist a function GB( f , g)

and GC (g, h). For the consistency of the picture, when we switch to the view of C , we
must recover the fact h, so we must have conditions such as

f = GC (g,GB( f , g)). (103)

9.3 Fact-groups

In [16], a concrete proposal was made to specify the operators GA,GB ,GC above. It is
done in the special case where the fact-sets all carry the same group structure G. More
precisely, the group structure is given by bijective maps which send facts to group
elements:

I A
B : FAB → G. (104)

The maps satisfy the property that IB
A ( f ) = I A

B ( f )−1. So, one fact f ∈ FAB gives
rise to two elements of the group, IB

A ( f ) and I A
B ( f ), inverse to each other, which can

be understood as transformations to match the perspectives of A to B, and vice versa.
Then, all relative Hilbert spaces are isomorphic to L2(G). In the three qubits exam-

ple above, the groupwas Z2 and theHilbert spaceC2. By convention, one associates the
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neutral element e to the fact between a system and itself. So for instance, a factorized
state relative to A reads

|e〉A
A| f 〉A

B |h〉A
C . (105)

Then, the view from B must be of the form

| f 〉B
A|e〉B

B |g〉B
C , (106)

where g must be a function of f and h. In [16], the following transformation is
advocated:

g =
(
IB

C

)−1
(I A

C (h) · IB
A ( f )). (107)

This defines the change of QRF from A to B on a basis. By linearity, it suffices to
define a general operator

U A→B : HB|A ⊗ HC|A → HA|B ⊗ HC|B (108)

such that

U A→B
(
| f 〉A

B |h〉A
C

)
= | f 〉B

A|
(
IB

C

)−1
(I A

C (h)IB
A ( f ))〉

B

C
. (109)

The notation used here is different from that used in [16]. Indeed, the variable g
that labels the ket |g〉 has a slightly different meaning. For us, |g〉A

B must become |g〉B
A

because g is a fact shared symmetrically by A and B. In [16] instead, |g〉A
B must corre-

spond to |g−1〉B
A because g labels a transformation from A to B. The relation between

the two notations is given by the maps I A
B which turn facts into transformations.

10 Conclusion

In this paper, we introduced the fact-nets formalism as a proposal for a mathemati-
cal framework fitted to the relational interpretation of quantum mechanics. The main
points to take from the fact-nets are:

• Hilbert spaces are not postulated primarily but derived from relative facts. They
come equipped with a preferred basis. All properties of systems are relational and
derived from relative facts involving them.

• The relations between systems are symmetric: no fundamental distinction between
an observer and the observed is being made.

• The same fact-netwith the sameamplitude candescribe verydifferent experimental
situations, depending on which system is taken as the observer. So fact-nets enable
to express and reveal formal analogies.
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• The correlation between facts is encoded in complex amplitudes. They are used
to compute probabilities, which are always conditional, by design.

• Measurement appears as a restriction of fact-sets accompanied by a local ordering
of systems. It is understood as a restriction of a theoretical fact-net to adjust for
the physical setup that is being realized in time, in the lab.

• A fact-net of finite systems can be represented as a diagramwith finite-dimensional
Hilbert spaces and maps understood as entangled states.

• Relative states, quantum reference frame and changes of perspectives are natural
concepts within the formalism.

We only sketched here the premiss of a theory of fact-nets. It motivates some lines
of research to be developed in the short or medium term:

• Weenvisage that time can be accommodated in the fact-net formalism as a labelling
for nodes that connect to a system, each connection corresponding to different
instance the system interacts with its surroundings. (This was illustrated in the
propagator example, Eq. 24.)

• TheWigner’s friend scenario, non-locality, and other quandaries should be formu-
lated and analysed in the fact-net framework, hoping some light could be shed on
them.

• Our focus on facts between systems instead of the systems themselves has a clear
category-theoretic inspiration. Further investigations toward a representation the-
ory of fact-nets as diagrams in the category of Hilbert spaces and partial isometries
are currently carried out in the hope to close the gap with previous attempts of
Yang [11] to replace quantum states by relation matrices between states.

• Our construction of the self-space of a system has only been thoroughly presented
in the finite case, and still has to be extended to infinite fact-sets equipped with
measurable structures.

• The information-theoretic flavour of the relational interpretation is not yet reflected
in the fact-net formalism. However, one can already see how the structure of a fact-
net allows systems to acquire varying amounts of information on one another. A
formal correspondence involving von Neumann entropy still has to be figured out.

• Through examples, we have already seen that quantum reference frames are a
promising field of application of fact-nets. Extensions of fact-nets to situations
involving gauge symmetries are under development, and the links with the per-
spective neutral approach [17] and the measurement-theoretic setup of [18] are
investigated.Dropping the assumptionof the incompatibility of parallel facts seems
a promising move towards encompassing general POVM and imperfect quantum
reference frames.

• Finally, the emergence of classicality and causality in fact-nets still has to be
clarified, notably by a more in-depth study of the chain property.

By developing fact-nets, our main aim is to clarify the debate on the relational inter-
pretation, allowing it to take place on a more formalized ground. We hope that this
framework will be as relevant for those trying to sharpen devastating no-go theorems
for RQM as for those who desire to establish the relational interpretation as a matter
of facts.
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