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Abstract
We have recently developed a new understanding of probability in quantum grav-
ity. In this paper we provide an overview of this new approach and its implications. 
Adopting the de Broglie–Bohm pilot-wave formulation of quantum physics, we 
argue that there is no Born rule at the fundamental level of quantum gravity with 
a non-normalisable Wheeler–DeWitt wave functional Ψ . Instead the universe is in 
a perpetual state of quantum nonequilibrium with a probability density P ≠ |Ψ|2 . 
Dynamical relaxation to the Born rule can occur only after the early universe has 
emerged into a semiclassical or Schrödinger approximation, with a time-dependent 
and normalisable wave functional � , for non-gravitational systems on a classical 
spacetime background. In that regime the probability density � can relax towards 
|�|2 (on a coarse-grained level). Thus the pilot-wave theory of gravitation sup-
ports the hypothesis of primordial quantum nonequilibrium, with relaxation to the 
Born rule taking place soon after the big bang. We also show that quantum-gravita-
tional corrections to the Schrödinger approximation allow quantum nonequilibrium 
� ≠ |�|2 to be created from a prior equilibrium ( � = |�|2 ) state. Such effects are 
very tiny and difficult to observe in practice.

Keywords  de Broglie–Bohm theory · Pilot-wave theory · Born rule · Quantum 
nonequilibrium · Quantum gravity

1  Introduction

It has long been known that the pilot-wave theory of de Broglie and Bohm provides 
us with an objective and deterministic account of quantum physics [1–7]. Histori-
cally, the theory was constructed by de Broglie in a series of papers from 1922 to 
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1927, culminating in a pilot-wave dynamics for a many-body system.1 The theory 
was revived by Bohm in 1952, who extended the dynamics to field theory and, cru-
cially, showed in detail how the theory accounts for the general quantum theory of 
measurement [3, 4]. Despite this success, there remains a long-standing controversy 
concerning the status of the Born probability rule in this theory. In recent work we 
have argued that the status of the Born rule in pilot-wave theory changes radically 
when we consider a regime in which quantum-gravitational effects are important 
[8]. In this paper we provide an overview of these new ideas and results, with a 
minimum of technicalities, and with an emphasis on the conceptual implications.

In pilot-wave theory a system with configuration-space wave function �(q, t) has 
an actual trajectory q(t) whose velocity v = dq∕dt is determined by de Broglie’s law 
of motion or ‘guidance equation’, where for systems with conventional Hamiltonians 
v is proportional to the gradient �qS of the phase S of � = |�|eiS . For an ensemble 
of systems with the same wave function �(q, t) , the ensemble distribution �(q, t) of 
configurations is usually assumed to be given by the Born rule

It is a simple consequence of the equations of motion that if (1) holds at an initial 
time t = 0 it will hold for all t. On these grounds in the 1920s de Broglie simply took 
(1) as an assumption with no further explanation or justification [2]. This stance was 
however criticised by Pauli and by Keller, in 1953, who argued that such an ini-
tial condition was unjustified in a deterministic theory and should be derived from 
the dynamics [9, 10]. This criticism was partially met by Bohm in the same year 
when he argued that an ensemble of two-level molecules would relax to the state (1) 
when subjected to random collisions [11]. However, no general argument for relaxa-
tion was given. In 1954, citing difficulties with understanding relaxation to the Born 
rule, Bohm and Vigier abandoned the original deterministic theory and introduced 
random (subquantum) ‘fluid fluctuations’ that drive relaxation to the Born rule for 
a general system [12]. Since then, most authors have simply adopted de Broglie’s 
original position, with (1) in effect taken as an additional postulate (alongside the 
Schrödinger equation for � and de Broglie’s law for v) [5, 13–15].

This author has long argued that simply postulating (1) is a mistake, akin to arti-
ficially restricting classical mechanics to a state of thermal equilibrium [16–26]. In 
pilot-wave theory the Born rule (1) really describes a state of statistical equilibrium, 
or ‘quantum equilibrium’, analogous for example to the Maxwell distribution of 
molecular speeds for a gas in thermal equilibrium. Just as a classical ensemble can 
be in thermal nonequilibrium, with a distribution of velocities different from that of 
Maxwell, in pilot-wave theory an ensemble can be in quantum nonequilibrium with 
a distribution of configurations

(1)� = |�|2.

(2)� ≠ |�|2

1  By de Broglie’s own account his ideas originated in a paper of 1922 on blackbody radiation, although 
his first paper on pilot-wave theory proper did not appear until 1923, culminating in his theory of a 
many-body system presented at the 1927 Solvay conference (see Ref. [2, Chap. 2]).
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different from that of Born. For such an ensemble the statistical predictions of text-
book quantum mechanics would fail—raising the question of why such nonequilib-
rium phenomena have never been observed in the laboratory. The answer, at least as 
proposed by this author in 1991, is that all the systems we have access to have a long 
and violent history that traces back ultimately to the big bang. During that time there 
has been ample opportunity for dynamical relaxation � → |�|2 to take place (on a 
coarse-grained level)—a process of ‘quantum relaxation’ that is broadly analogous 
to classical thermal relaxation, and which presumably occurred in the early universe. 
This process has been studied in general terms and has been observed to take place 
efficiently in a wide range of numerical simulations [16–18, 20, 23, 26–34] . We can 
then understand why the Born rule holds to high accuracy today. At the same time, 
we understand that pilot-wave theory also contains a wider nonequilibrium physics, 
which may have been active in the early universe, and which could have left discern-
ible traces today—in the form of anomalies in the cosmic microwave background 
(CMB), as well as in relic cosmological particles that might today still display viola-
tions of the Born rule [20, 35–43].

On this view, quantum physics is merely a special case of a much wider physics 
in which the Born rule is broken. That wider physics allows violations of the uncer-
tainty principle as well as practical nonlocal signalling [17, 21, 22, 24]. According 
to pilot-wave theory, at least when correctly interpreted, textbook quantum mechan-
ics is merely an effective theory that emerges in the state of quantum equilibrium. 
Many supposedly fundamental quantum constraints are really peculiarities of equi-
librium and are broken for more general ensembles.

An alternative view has, however, long been championed by the ‘Bohmian 
mechanics’ school of de Broglie–Bohm theory—a distinctive approach to the sub-
ject first proposed by Dürr et al. in 1992 [13–15]. In this approach, the wave func-
tion Ψ of the whole universe is used to define a (supposedly) fundamental probabil-
ity (or ‘typicality’) measure |Ψ|2 , from which one can readily derive the Born rule 
(1) for subsystems with an effective wave function � . On this view the Born rule is 
built into the theory and there is no prospect of ever finding nonequilibrium viola-
tions, not even in the early universe. While this approach has been influential among 
some philosophers [44, 45], the argument is essentially circular: the Born rule is 
derived for subsystems only by assuming the Born rule for the whole universe at 
the initial time t = 0 . There is no reason why our universe should have started with 
those particular initial conditions—whether or not the universe began in equilibrium 
or nonequilibrium is ultimately an empirical question to be decided by observation 
and experiment, not by theoretical or philosophical fiat [19, 20, 26].

As we will see in this paper, the controversy over the Born rule in pilot-wave 
theory changes drastically when we consider a regime where quantum gravity is 
important. For in that regime there simply is no normalisable physical probabil-
ity (or typicality) measure |Ψ|2 for the whole universe, and the (circular) argument 
employed by the Bohmian mechanics school can no longer even be formulated. 
Instead, normalisable wave functions � emerge only in the semiclassical regime—
for systems evolving on a classical spacetime background—and in that regime the 
Born rule (1) can emerge by a dynamical process of quantum relaxation [8]. In this 
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way, considerations from quantum gravity vindicate the hypothesis of quantum 
nonequilibrium at the big bang, with relaxation to the Born rule taking place only 
afterwards.

Before presenting technical details of how all this works, let us first sketch the 
key ideas in simple terms. In canonical quantum gravity the geometry of 3-space is 
described by a metric tensor gij.2 If we include a matter field � we might expect the 
system to have a wave function (or functional) Ψ[gij,�, t] obeying a time-dependent 
Schrödinger equation i𝜕Ψ∕𝜕t = ĤΨ (with an appropriate Hamiltonian Ĥ and time 
parameter t). Instead, when we quantise the gravitational field we obtain a wave 
functional Ψ[gij,�] obeying a time-independent Wheeler–DeWitt equation [47, 48]

(with an appropriate Hamiltonian density operator Ĥ).3 Time makes no appearance 
in the equations. After more than half a century since it was first written down, the 
physical interpretation of this ‘timeless’ theory remains controversial.

Most workers in the field agree that a time-dependent Schrödinger equation 
i𝜕𝜓∕𝜕t = Ĥ𝜓 for a conventional wave functional �[�, t] can emerge only in a semi-
classical regime for a quantum field � propagating on a classical background space-
time. There is, however, controversy over precisely how an effective time parameter 
t can emerge from a fundamentally timeless theory. This question is known in the 
quantum gravity literature as the ‘problem of time’ [49–55].

Quantum-gravitational effects are expected to be significant at sufficiently early 
times in our cosmological history (certainly within a Planck time t

P
∼ 10−43 sec 

after the beginning). In such a deep quantum-gravity regime, the Wheeler–DeWitt 
equation (3) must be applied. Soon afterwards we expect the universe to emerge into 
a semiclassical or ‘Schrödinger’ regime, in which a conventional time-dependent 
wave equation can be applied. Previous discussion of the Born rule and of quan-
tum relaxation in pilot-wave theory has taken place within the semiclassical or 
Schrödinger approximation. Outside that approximation, however, the discussion 
must be carefully revised.

A pilot-wave theory of quantum gravity can be written down by supplementing 
the Wheeler–DeWitt equation (3) with de Broglie–Bohm trajectories gij(t) whose 
velocity �gij∕�t is proportional to a generalised phase gradient (see Sect.  5) 
[56–60].4 We might then expect ||

|
Ψ[gij,�]

|
|
|

2

 to define an equilibrium Born-rule 
probability density [56, 62]. But, as we will see, this cannot be correct. The math-
ematical structure of (3) ensures that the density ||

|
Ψ[gij,�]

|
|
|

2

 cannot be normalised 
and so cannot be a physical probability distribution. This point has caused contro-
versy and confusion in the literature. In our view, from a pilot-wave perspective, 
the implication is clear: in quantum gravity there simply is no physical Born-rule 
equilibrium state [8, 63]. A physical probability density P[gij,�, t] (for a 

(3)ĤΨ = 0

3  As we will see there is also a constraint on Ψ guaranteeing coordinate invariance.
4  For a recent review see Ref. [61].

2  In this paper we employ the traditional metric representation of the gravitational field. We expect simi-
lar conclusions to hold in loop quantum gravity [46].
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theoretical ensemble) must be normalisable by definition. Therefore it must differ 
from ||

|
Ψ[gij,�]

|
|
|

2

 at all times. We may say that the deep quantum-gravity regime is 
in a perpetual state of quantum nonequilibrium

In this regime there can be no quantum relaxation and no state of quantum 
equilibrium.

As we will see there are two immediate implications. First, as the early uni-
verse emerges from the deep quantum-gravity regime and settles into a semiclas-
sical regime described by the Schrödinger approximation, we can expect fields 
� propagating on the classical background to be in a state of quantum nonequi-
librium �[�, t] ≠ |�[�, t]|2—where � is the effective (normalisable) Schrödinger 
wave functional for � and the probability � emerges from P as a conditional prob-
ability. Second, quantum relaxation as previously understood can begin to take 
place only after the universe has settled into a conventional Schrödinger regime. 
Thus, even though there is no fundamental Born-rule equilibrium state in quan-
tum gravity, we still recover quantum relaxation in the Schrödinger approxima-
tion—and so we can still explain the Born rule as we see it today.

There is another remarkable result of this analysis. It is well known that the 
emergent Schrödinger equation is subject to small quantum-gravitational correc-
tions appearing in the effective Hamiltonian Ĥ . Perhaps surprisingly, some of the 
correction terms are non-Hermitian [64–68]. Such terms are of course inconsist-
ent with standard quantum mechanics, since the norm of � is no longer conserved 
and |�|2 cannot be interpreted as a probability density in the usual way. For this 
reason, in previous studies such terms have been dropped, with no clear justifica-
tion. In pilot-wave theory, in contrast, there is no inconsistency: such terms sim-
ply generate a gravitational instability of the Born rule, whereby an initial density 
� = |�|2 can evolve into a final density � ≠ |�|2 . As we will see, such effects 
are extremely small, but observable at least in principle. This means that, when 
quantum gravity is taken into account, it is no longer the case that once quantum 
equilibrium is reached we are trapped in that state forever. There is a way out, at 
least in principle.

To summarise, in this paper we have three new ideas to present: 

1.	 In quantum gravity there is no Born rule for a timeless Wheeler–DeWitt wave 
functional Ψ and the system is in a perpetual state of quantum nonequilibrium 
P ≠ |Ψ|2.

2.	 The Born rule � = |�|2 can emerge by quantum relaxation only in a semiclassical 
or Schrödinger approximation, for systems with an effective time-dependent wave 
function � on a classical background spacetime.

3.	 Tiny quantum-gravitational corrections to the Schrödinger approximation can 
make the Born rule unstable, with initial distributions � = |�|2 evolving to final 
distributions � ≠ |�|2.

To develop the details, we begin with a brief outline of some essential formalism.

(4)P ≠ |Ψ|2.
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2 � Quantum Gravity and Quantum Cosmology

In this section we provide a brief summary of the essential formalism of canonical 
quantum gravity [47, 48], together with a simple model of quantum cosmology.

2.1 � Canonical Quantum Gravity

The canonical quantisation of the gravitational field begins with a ‘3+1’ foliation of 
classical spacetime by spacelike slices Σ(t) labelled by a time parameter t. This can 
always be done (generally nonuniquely) for a spacetime that is ‘globally-hyperbolic’. 
The line element then takes the form

where N, Ni are respectively the ‘lapse function’ and ‘shift vector’, while gij is the 
3-metric on Σ(t) . For simplicity we can take Ni

= 0—so that lines of constant xi are 
normal to the slices—provided such lines do not encounter singularities. The object 
to be quantised is then a spatial 3-geometry represented by gij.

Beginning with the usual Einstein–Hilbert action, standard quantisation methods 
lead to the Wheeler–DeWitt equation, which for the pure gravitational field reads5 

where Ψ = Ψ[gij] and

We have written the kinetic term with a specific operator ordering but it should be 
understood that the ordering is ambiguous. The wave functional is also subject to a 
constraint

associated with spatial coordinate invariance (where Dj is a spatial covariant deriv-
ative). This constraint ensures that Ψ is a function of the coordinate-independent 
3-geometry and not of the coordinate-dependent 3-metric. Writing (6) and (8) as

the total Hamiltonian operator is given by

(5)d�2 = (N2
− NiN

i
)dt2 − 2Nidx

idt − gijdx
idxj,

(6)
�

−Gijkl

�
2

�gij�gkl
−
√
gR

�

Ψ = 0,

(7)Gijkl =
1

2
g−1∕2(gikgjl + gilgjk − gijgkl).

(8)−2Dj

�Ψ

�gij
= 0

ĤΨ = 0, Ĥ
i
Ψ = 0,

5  For a ‘functional’ Ψ[�] (mapping a function �(x) to a complex number Ψ ) the functional derivative 
�Ψ∕��(x) at a spatial point x is defined by �Ψ = ∫ d3x

[
�Ψ∕��(x)

]
��(x) for arbitrary infinitesimal vari-

ations ��(x).
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In the presence of a scalar matter field � with potential V(�) we have an extended 
Wheeler–DeWitt equation

for the wave functional Ψ = Ψ[gij,�] , where the gravitational term

in Ĥ = Ĥg + Ĥ
𝜙
 is supplemented by a matter term

while the constraint Ĥ
i
Ψ = 0 corresponding to (8) takes the form

2.2 � A Simple Model of Quantum Cosmology

It will be helpful to illustrate our ideas with a simple model of quantum cosmology.
Consider an expanding flat and homogeneous universe with scale factor a(t) and 

spacetime line element6

We assume that the universe contains a homogeneous matter field � with a potential 
V(�) . We then have a ‘mini-superspace’ model with two degrees of freedom (a,�).

This system has a Lagrangian [67–69]

where m2
P
= 3∕4�G is the square of a (rescaled) Planck mass. This implies canoni-

cal momenta

and a Hamiltonian

(9)Ĥ =
∫

d3x (NĤ + NiĤ
i
).

(10)(Ĥg + Ĥ
𝜙
)Ψ = 0

(11)Ĥg = −Gijkl

𝛿
2

𝛿gij𝛿gkl
−
√
gR

(12)Ĥ
𝜙
=

1

2

√
g

�

−
1

g

𝛿
2

𝛿𝜙2
+ gij𝜕i𝜙𝜕j𝜙

�

+
√
gV,

(13)−2Dj

�Ψ

�gij
+ �

i
�
�Ψ

��
= 0 .

(14)d�2 = dt2 − a2dx2.

(15)L = −
1

2
m2

P
aȧ2 +

1

2
a3𝜙̇2

− a3V,

(16)pa = −m2
P
aȧ, p

𝜙
= a3𝜙̇

6  Here dx2 = (dx1)2 + (dx2)2 + (dx3)2.
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(noting the sign difference between the kinetic terms).
Promoting the canonical momenta to operators p̂a = −i𝜕∕𝜕a and p̂

𝜙
= −i𝜕∕𝜕𝜙 , 

and choosing the factor ordering 1
a2
p̂aap̂a , the Wheeler–DeWitt equation ĤΨ = 0 for 

Ψ(a,�) reads [67, 68]

3 � Difficulties with the Born Rule in Quantum Gravity

In this section we discuss some of the key difficulties with trying to interpret |Ψ|2 as 
a probability density for a Wheeler–DeWitt wave funtional Ψ.

3.1 � Why |Ψ|2 is Non‑normalisable

We have said that, for solutions Ψ of the Wheeler–DeWitt equation, the quantity |Ψ|2 
cannot be a physical probability density because it is non-normalisable. To see why 
|Ψ|2 cannot be normalised, consider for simplicity the case of pure gravitation. The 
Wheeler–DeWitt equation (6) for the wave functional Ψ[gij] on the space of 3-met-
rics gij is mathematically analogous to the single-particle Klein–Gordon equation

for a wave �(x, t) on Minkowski spacetime. The analogy can be traced to the indefi-
nite character of the ‘DeWitt metric’ Gijkl [47]. This means that (6) is formally anal-
ogous to an infinite-dimensional Klein–Gordon equation with a ‘mass-squared’ term 
g1∕2R . As a result, the integral ∫ Dg

|
|
|
Ψ[gij]

|
|
|

2

 over the whole space of 3-metrics nec-
essarily diverges, just as the integral ∫ d3x ∫ dt |�(x, t)|2 over the whole of space-
time necessarily diverges. It might be thought that the divergence could be removed 
by an appropriate regularisation. But the divergence is deeper than that, reflecting a 
basic fact about wave propagation. Solutions �(x, t) of the wave equation (19) can be 
localised with respect to x but not with respect to t, and mathematically the same 
phenomenon occurs for solutions Ψ[gij] of the wave equation (6).

What we have just said is slightly simplified. We have not mentioned the con-
straint (8), which ensures that Ψ[gij] is not really a function on the space of coordi-
nate-dependent 3-metrics gij but in fact a function on the space of coordinate-inde-
pendent 3-geometries (a space commonly referred to as ‘superspace’). It might then 
be thought that the non-normalisability of ||

|
Ψ[gij]

|
|
|

2

 could just be an artifact of having 
to integrate over an infinite ‘gauge volume’ of 3-metrics representing the same 

(17)H = −
1

2m2
P

1

a
p2
a
+

1

2a3
p2
�
+ a3V

(18)
1

2m2
P

1

a

�

�a

(

a
�Ψ

�a

)

−
1

2a2
�
2
Ψ

��2
+ a4VΨ = 0.

(19)−
�
2
�

�t2
+ �

ij �
2
�

�xi�xj
− m2

� = 0
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3-geometry. But in fact the result still diverges even if we perform a physical integral 
over the space of 3-geometries (perhaps by factoring out the gauge volume in some 
way).

The simplest way to see this is to consider our mini-superspace model of quantum 
cosmology (Sect. 2.2). Each spacelike slice of constant t has a simple coordinate-
independent representation as a flat Euclidean 3-space with scale factor a(t). If we 
rewrite the Wheeler–DeWitt equation (18) for Ψ(a,�) in terms of � = ln a we find

This is a two-dimensional Klein–Gordon equation with a potential term. The free 
part (ignoring the potential) has the general solution

where f and g are packets travelling with the ‘wave speed’ c = m
P
 in the two-dimen-

sional ‘spacetime’ (�,�) . Thus

just as for a Klein–Gordon solution �(x, t) we have

Clearly the non-normalisability of Ψ has nothing to do with the (technically deli-
cate) issue of unphysical coordinate degrees of freedom. It is simply a consequence 
of the Klein–Gordon-like character of the Wheeler–DeWitt equation and the result-
ing wave-like propagation in the mini-superspace (�,�) . Similar conclusions must 
hold in the full theory.

3.2 � Naive Schrödinger Interpretation. I

It is in fact well known in quantum-gravity circles that |Ψ|2 cannot be a physical 
probability density [49–54]. While interpreted as such by Hawking and collabora-
tors in the 1980s [70–73], this came to be known as the ‘naive Schrödinger interpre-
tation’ [49]. Even leaving aside the question of non-normalisability, the interpreta-
tion is problematic because the putative probability density |Ψ|2 is time-independent. 
Attempts were made to repair this by some form of conditioning on a subset of the 
degrees of freedom, but this ‘conditional probability interpretation’ led to other 
problems [51, 52]. In any case, in our view the interpretation fails from the outset 
simply because a non-normalisable density cannot represent a physical probability 
distribution.

Historically, however, it has been more common to cite another reason for 
the failure of the naive interpretation of |Ψ|2 . It is claimed that treating |Ψ|2 as a 

(20)
1

m2

P

�
2
Ψ

��2
−

�
2
Ψ

��2
+ 2e6�VΨ = 0.

(21)Ψ
free

= f (� − m
P
�) + g(� + m

P
�),

(22)
∫ ∫

d�d� |
|Ψfree

|
|
2
= ∞,

(23)
∫

d3x
∫

dt |�(x, t)|2 = ∞.
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conventional probability is incorrect because ‘time’ is in effect hidden in the metric 
degrees of freedom gij . For example, in quantum cosmology with a wave function 
Ψ(a,�) , it is commonplace to treat the scale factor a as an effective time parameter. 
We can then try to recover a Born-rule-type probability for the remaining degrees of 
freedom at a given value of ‘time’. This approach has a long history, dating back to 
the pioneering work of DeWitt and Wheeler in the 1960s [47, 74], but to this day it 
remains controversial. Some authors have raised concerns about the bona fide tem-
poral properties of gravitational degrees of freedom [49]. For example, if the scale 
factor a plays the role of time, what happens to time in a universe that expands and 
recontracts? On the other hand, some supporters of quantum gravity argue that at 
the deepest level physics is genuinely timeless, and that our common-sense notions 
of ‘time’ emerge only approximately and in certain conditions [47, 75–82]. It is 
however not entirely clear whether quantum mechanics can be properly applied in 
a fundamentally timeless theory [46, 76, 80–84]. A relatively recent and exhaustive 
review of the ‘problem of time’ in quantum gravity runs to nearly a thousand pages 
and draws no definite conclusions [54], suggesting that the problem has yet to be 
satisfactorily resolved (though some may disagree).

In this paper we offer a new explanation for the failure of the naive Schrödinger 
interpretation. Our explanation is that, in the deep quantum-gravity regime, there is 
no such thing as the Born rule. As we shall see, we can discuss (time-dependent) 
probability densities such as P[gij,�, t] , but these are not tied to the Born rule and 
can never be. Necessarily, P[gij,�, t] ≠

|
|
|
Ψ[gij,�]

|
|
|

2

 always, since the left-hand side is 
normalisable (by definition) and the right-hand side is not. We may say that, at the 
Planck scale, a quantum-gravitational universe is in a perpetual state of quantum 
nonequilibrium. This, in our view, is the true physical significance of the non-nor-
malisability of the Wheeler–DeWitt wave functional Ψ.

To make sense of this idea, however, we need to look more closely at pilot-wave 
theory.

4 � Pilot‑Wave Theory and the Born Rule

When interpreted correctly, pilot-wave theory shows us that the Born rule is not an 
axiom or law, but instead represents a statistical state of quantum equilibrium (anal-
ogous to classical thermal equilibrium) [16–26]. At least, that is the case in non-
gravitational physics. As we shall see, in pilot-wave gravitation, in contrast, there 
is no state of quantum equilibrium and no possibility of obtaining the Born rule, 
except in the semiclassical regime.

Let us first consider pilot-wave theory for a general system with configuration 
q and wave function �(q, t) on a background classical spacetime with global time 
parameter t (corresponding to a foliation by spacelike slices Σ(t) ). Here q could rep-
resent particle or field configurations on the spacelike slice at time t. The wave func-
tion obeys a time-dependent Schrödinger equation
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with some Hamiltonian operator Ĥ . This implies a continuity equation for |�|2,

where �q is a gradient on configuration space and j satisfies

The ‘current’ j can be written in terms of � and its functional form depends on Ĥ 
[85].7 Given the expression j = j[�] = j(q, t) we can define a velocity field

and write down a de Broglie guidance equation

for the trajectory q(t). Equations (24), (27) and (28) define a deterministic dynamics 
for a general system with wave function �(q, t).8 Note that � is regarded as a physi-
cal field (or ‘pilot wave’) on configuration space that guides the trajectory q(t) of a 
single system. At the fundamental dynamical level there is no such thing as prob-
ability (as in classical mechanics).

If Ĥ happens to be quadratic in the momenta, we find that v is proportional to a 
phase gradient. For example, for a single low-energy particle of mass m we find

where � = |�|eiS , while for a many-body system the nth particle has velocity 
�n = (1∕mn)�nS.

We can now consider an ensemble of systems with the same wave function � . 
The systems evolve according to the velocity field v. By construction, then, the dis-
tribution �(q, t) of configurations evolves by the continuity equation

This matches the continuity equation (25) for |�|2 . It follows immediately that if 
� = |�|2 initially then � = |�|2 at later times. An ensemble obeying the Born rule is 

(24)i
𝜕𝜓

𝜕t
= Ĥ𝜓

(25)�|�|2

�t
+ �q ⋅ j = 0,

(26)𝜕q ⋅ j = 2Re
(
i𝜓∗Ĥ𝜓

)
.

(27)v(q, t) =
j(q, t)

|�(q, t)|2

(28)
dq

dt
= v(q, t)

(29)� =
1

m
Im

��

�
=

1

m
�S,

(30)
��

�t
+ �q ⋅ (�v) = 0.

7  The continuity equation (25) can also be derived from Noether’s theorem as the local conservation law 
associated with a global phase symmetry � → �ei� on configuration space [85].
8  We are assuming the wave function has a single component � . The method can be readily extended to 
spin systems with multi-component wave functions [6].
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in a state of ‘quantum equilibrium’. For such ensembles we recover the usual statisti-
cal predictions of textbook quantum mechanics [3–6].

There is, however, no reason of principle why we could not begin with a ‘quantum 
nonequilibrium’ ensemble with � ≠ |�|2 [16–18]. What happens then? In general 
we will find violations of the usual statistical predictions. For example, for single 
particles incident on a two-slit screen with incoming wave function � , an incident 
ensemble with � ≠ |�|2 will yield an anomalous distribution �(�, t) ≠ |�(�, t)|2 at 
the backstop, breaking the usual interference pattern. Similarly, atomic transitions 
will have non-standard probabilities, and so on. And yet, such nonequilibrium phe-
nomena have never been observed in the laboratory. Why not?

4.1 � Quantum Relaxation

In pilot-wave theory there is a straightforward answer. At some time in the remote 
past there took place a process of ‘quantum relaxation’—by which we mean the time 
evolution of � towards |�|2 (on a coarse-grained level). Quantum equilibrium was 
already reached, at least to a very good approximation, long before any of our exper-
iments were carried out. That is why we see the Born rule today [16–20, 23–26]. 
Bearing in mind the long and violent astrophysical and cosmological history of all 
known systems, quantum relaxation probably occurred in the very early universe.

Quantum relaxation can be understood, by analogy with thermal relaxation for 
an isolated classical system, in terms of the decrease of a coarse-grained H-function 
[16, 18]

where the overbars indicate coarse-graining over small cells in configuration space. 
This quantity is equal to minus the relative entropy of 𝜌̄ with respect to |�|2 . It is 
bounded below by zero, H̄ ≥ 0 , and H̄ = 0 if and only if 𝜌̄ = |𝜓|2 . If we begin at 
t = 0 with 𝜌̄ ≠ |𝜓|2 then H̄(0) > 0 . As the ensemble relaxes towards equilibrium, 
H̄(t) → 0 and 𝜌̄ → |𝜓|2 . This relaxing behaviour has been demonstrated in a wide 
variety of numerical simulations, yielding an approximately exponential decay [23, 
28, 30]

on a timescale � that is (very roughly) comparable to the quantum timescale 
Δt = ℏ∕ΔE (though � also depends on the coarse-graining length) [28]. Moreover 
the quantity (31) obeys a general coarse-graining H-theorem [16, 18]

assuming no initial fine-grained structure in � and |�|2 at t = 0 . Closer analysis 
shows that H̄(t) strictly decreases when � develops fine-grained structure—as tends 
to happen for velocity fields that vary over the coarse-graining cells [18, 26].

(31)H̄(t) =
∫

dq 𝜌̄ ln(𝜌̄∕|𝜓|2) ,

(32)H̄(t) ≈ H̄(0)e−t∕𝜏

(33)H̄(t) ≤ H̄(0),
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We have said that quantum relaxation probably took place in the early universe, 
soon after the big bang. This idea is potentially testable. According to inflation-
ary cosmology, primordial quantum fluctuations in a scalar inflaton field were the 
ultimate source of primordial inhomogeneities, which later grew by gravitational 
clumping to form large-scale structure, as well as seeding the small temperature 
anisotropies we see today in the cosmic microwave background (CMB) [86–88]. 
This means that the statistical properties of the CMB sky ultimately depend on the 
Born rule for quantum field fluctuations in the very early universe. If the Born rule 
was broken at sufficiently early times, this could show up as anomalies in the CMB 
today [35, 37]. Careful analysis shows that on expanding space quantum relaxation 
is suppressed for long-wavelength (super-Hubble) field modes, suggesting that a 
pre-inflationary era will end with a power deficit at long wavelengths, which could 
then carry over to an inflationary phase yielding a large-scale power deficit in the 
CMB [36, 38]. This scenario has been studied numerically, with some simplifying 
assumptions [39, 41]. A large-scale power deficit has in fact been reported in the 
CMB data [89], though its status remains controversial. Fitting the data to a quan-
tum relaxation model has yielded some tantalising results, but the data are too noisy 
for clear conclusions to be drawn [37, 90].

4.2 � Trapped Forever in Quantum Death?

According to pilot-wave theory, at least when correctly interpreted, we are currently 
trapped in a state of ‘quantum death’ that is broadly analogous to the state of clas-
sical thermodynamic ‘heat death’ which was much discussed in the nineteenth cen-
tury as a seemingly inevitable future end state of our world (in which all systems 
have reached the same temperature and it is no longer possible to convert heat into 
work) [6, 16–18]. According to pilot-wave theory, a subquantum analogue of the 
classical heat death has already happened (and a long time ago). In this state, all 
systems are subject to the same quantum noise, as described by the Born rule—just 
as, in the classical heat death, all systems are subject to the same thermal noise (at 
the same global temperature). In the state of quantum death, the uncertainty prin-
ciple prevents us from observing and controlling the underlying details of de Bro-
glie–Bohm trajectories. As a consequence, we are unable to control the underlying 
nonlocal dynamics of entangled systems, and in particular we are unable to employ 
entanglement for nonlocal signalling. But these limitations are not fundamental, 
they are merely peculiarities of the state of quantum death (just as the inability to 
convert heat into work is a peculiarity of the state of heat death). Locality emerges at 
the statistical level only if the Born rule holds exactly. As has been shown explicitly, 
nonequilibrium entangled systems generally allow instantaneous signalling [17, 21, 
22]—which can be understood as defining a preferred foliation of spacetime with a 
global time parameter t [91].

Here we are interested specifically in the status of the Born rule. Clearly, in pilot-
wave theory, the Born rule is not a law of nature, but holds only because we are 
confined to a certain state of statistical equilibrium. Moreover we seem to be for-
ever trapped in this state, which appears to be stable. The equations of motion of 
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pilot-wave theory guarantee that once quantum equilibrium is reached there is no 
way out (barring extremely rare fluctuations [18], analogous to putting a kettle of 
water on ice and waiting for the water to boil). There is one caveat, however. Our 
discussion applies to quantum systems on a classical spacetime background. What 
happens if spacetime itself is quantised? To answer that, we must turn to the pilot-
wave theory of gravity.

5 � Pilot‑Wave Gravitation

The pilot-wave theory of gravity appears to have been first written down and studied 
for a mini-superspace model by Vink [56] and in general terms by Horiguchi [57]. 
It has since been developed, and extensively applied to cosmology, in particular by 
Pinto-Neto and collaborators [59–61].

Beginning for simplicity with the case of pure gravitation, the Wheeler–DeWitt 
equation (6) for the wave functional Ψ[gij] is supplemented by a de Broglie guidance 
equation for the time evolution gij(t) of the 3-metric,

where S is the phase of Ψ and for simplicity we have set Ni = 0.9 The equation of 
motion (34) can be justified in two ways. We might simply identify the classical 
canonical momentum density pij (conjugate to gij ) with the phase gradient �S∕�gij 
and then use the well-known classical relation between pij and ġij to yield (34). 
Alternatively, (34) can be justified as the natural velocity field appearing in the 
equation

which follows from the Wheeler–DeWitt equation (6) (with an appropriate choice of 
operator ordering,10 inserting Ψ = |Ψ|eiS and taking the imaginary part), and which 
can be rewritten as

with ġij given by (34). Equations (34) and (6), together with the constraint (8), are 
taken to define the dynamics of a single system.

These equations are readily extended to include a matter field � . The 
Wheeler–DeWitt equation (10) for Ψ[gij,�] then includes a matter term (12) and Ψ 
is subject to the constraint (13). We still have the same guidance equation (34) for gij 
and in addition a guidance equation

(34)
�gij

�t
= 2NGijkl

�S

�gkl
,

(35)
�

�gij

(

|Ψ|2Gijkl

�S

�gkl

)

= 0,

(36)
�

�gij

(

|Ψ|2
�gij

�t

)

= 0

9  For Ni ≠ 0 there are additional terms DiNj + DjNi on the right-hand side of (34).
10  Specifically, with the ordering (�∕�gij)Gijkl(�∕�gkl) in the kinetic term.
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for � (again taking Ni = 0).11 As before the guidance equations can be justified by 
identifying the classical canonical momenta with a phase gradient, or by identifying 
the natural velocity fields appearing in the equation

(which now follows from the extended Wheeler–DeWitt equation (10)).
Before proceeding we should point out that, in the above dynamics, the status 

of the spacetime foliation is perhaps not fully understood. The arbitrary functions 
N, Ni should not affect the 4-geometry that is traced out by the evolving 3-metric 
(for given initial conditions). Shtanov [58] argued that the 4-geometry depends on 
N, suggesting that the theory breaks foliation invariance. In that case one might 
include a specific choice for N as part of the theory. On the other hand, work by 
Pinto-Neto and Santini [92] suggests that the 4-geometry is in fact independent of 
N, Ni . By writing the dynamics as a Hamiltonian system, it is argued that the time 
evolution of an initial 3-geometry yields the same 4-geometry for all N, Ni—with 
the caveat that the 4-geometry is non-Lorentzian. Local Lorentz invariance is broken 
(as expected in a nonlocal theory). If this argument is correct it seems to imply that, 
for a given solution Ψ and for a given initial 3-geometry, the resulting spacetime has 
an effective preferred foliation. Intuitively, this seems consistent with the first-order 
(or ‘Aristotelian’) structure of pilot-wave dynamics [93]. And, as already noted, for 
nonequilibrium ensembles of entangled systems we obtain statistical nonlocal sig-
nals [17, 21, 22], which arguably also define a preferred foliation of spacetime [91]. 
It would be of interest to study these matters in more detail.

The above dynamics has been applied extensively by numerous authors, in par-
ticular to quantum cosmology. Such applications have focussed on properties of the 
trajectories (such as singularity avoidance) without attempting to construct a theory 
of a quantum equilibrium ensemble [59–61]. In fact previous workers have avoided 
discussing ensembles, owing to the pathological (non-normalisable) nature of the 
density |Ψ|2 . By a curious twist, we then find ourselves in a position opposite to that 
of textbook quantum mechanics: we have a theory of single systems with trajecto-
ries, but no theory of ensembles or of probabilities. It has been suggested that this is 
understandable because (as argued by the Bohmian mechanics school [13, 14]) the 
notion of probability is (supposedly) meaningless for a single universe [61]. And yet 
theoretical cosmologists routinely discuss probabilities for primordial cosmological 
perturbations, and observational cosmologists employ measurements of the CMB to 
constrain the primordial power spectrum. In practice, by assuming statistical isot-
ropy and statistical homogeneity for a theoretical ensemble, we can and do discuss 
probabilities for our universe and constrain them by observation [26]. How, then, 
can we proceed with a theory of probability in pilot-wave gravitation?

(37)
��

�t
=

N
√
g

�S

��

(38)
�

�gij

(

|Ψ|2
�gij

�t

)

+
�

��

(

|Ψ|2
��

�t

)

= 0

11  For Ni ≠ 0 there is an additional term Ni
�i� on the right-hand side of (37).
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5.1 � Gravity Without the Born Rule

Our suggested answer is to accept that at the fundamental level there is no such 
thing as the Born rule [8]. An arbitrary theoretical ensemble with the same 
Wheeler–DeWitt wave functional Ψ[gij,�] will have an arbitrary initial probability 
distribution P[gij,�, ti] at time ti . By definition P[gij,�, ti] will be normalisable and 
so cannot be equal to ||

|
Ψ[gij,�]

|
|
|

2

 under any circumstances. The initial distribution 
P[gij,�, ti] is a contingency unconstrained by any law but which can, at least in prin-
ciple, be constrained by empirical observation. Furthermore, we can straightfor-
wardly study its time evolution. Each element of the ensemble evolves by the de 
Broglie velocity field (34) and (37), and so P[gij,�, t] necessarily evolves by the con-
tinuity equation12

We then have a theory for a general ensemble of gravitational systems evolving in 
time. One of our key claims is that this theory has no Born-rule equilibrium state [8, 
63]. At the deepest level of gravitational physics, the universe is in a perpetual state 
of quantum nonequilibrium

In Sect.  6 we shall illustrate these ideas with our simple model of quantum 
cosmology.

5.2 � Naive Schrödinger Interpretation. II

Some workers instead interpret |Ψ|2 as a probability density (as first suggested by 
Vink [56] and recently advocated by Dürr and Struyve [62]). This amounts to apply-
ing the naive Schrödinger interpretation to pilot-wave gravitation. However, while 
the presence of trajectories adds a new element, the interpretation remains unwork-
able because |Ψ|2 is non-normalisable.

It might be thought that equation (38) can be employed to motivate |Ψ|2 is an 
equilibrium probability density. But (38) is not a continuity equation but an infinity 
of equations (one per spatial point x). Following Dürr and Struyve [62], if we inte-
grate (38) over x we can write down what we call a ‘pseudo-continuity equation’13

(39)
�P

�t
+
∫

d3x
�

�gij

(

P
�gij

�t

)

+
∫

d3x
�

��

(

P
��

�t

)

= 0.

(40)P[gij,�, t] ≠
|
|
|
Ψ[gij,�]

|
|
|

2

.

13  For a single particle with a static density � and a current � , this is analogous to summing the equations 
�xjx = �yjy = �zjz = 0 to yield ��∕�t + � ⋅ � = 0.

12  We might also append a constraint of the form (13) on P, to ensure that it is a function on the space of 
coordinate-independent 3-geometries. We can avoid this complication by simply working with one repre-
sentation of the 3-geometry by one (coordinate-dependent) metric gij.
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(where for completeness we have inserted the vanishing term �|Ψ|2∕�t = 0 ). This 
is formally the same as the physical continuity equation (39) for P. We might then 
‘deduce’ that P = |Ψ|2 is an equilibrium state, as usually done for non-gravitational 
systems. On this basis Dürr and Struyve claim that |Ψ|2 can be employed as a quan-
tum equilibrium measure of ‘typicality’ for initial configurations of the universe 
(from which follows the Born rule for subsystems, along lines already advocated by 
the Bohmian mechanics school). But this novel application of the naive Schrödinger 
interpretation again founders on the fact that |Ψ|2 is not normalisable and cannot 
define a physical probability (or typicality) measure.

We should be wary of artificial attempts to make |Ψ|2 appear like a conventional 
density. In our view, to interpret |Ψ|2 as a Born-rule measure is a category mistake. 
At the fundamental level there is no Born rule. As we will see the usual Born-rule 
measure emerges only in the Schrödinger approximation (on a classical spacetime 
background).

6 � Pilot‑Wave Cosmology

Recall our quantum-cosmological model with degrees of freedom (a,�) and wave 
function Ψ(a,�) satisfying the Wheeler–DeWitt equation (18). Inserting Ψ = |Ψ|eiS 
and taking the imaginary part yields what we call a ‘pseudo-continuity equation’

for a density a2|Ψ|2 and with a velocity field

We can identify (43) as the natural de Broglie guidance equations for this system.14

A general theoretical ensemble of systems with the same wave function Ψ will 
have a probability distribution P(a,�, t) (with density defined with respect to dad� ). 
Since each element of the ensemble evolves according to the velocity field (43), the 
distribution P(a,�, t) necessarily evolves according to the continuity equation

(with ȧ , 𝜙̇ given by (43)). We then have a theory for a general ensemble of cosmo-
logical systems evolving in time.

(41)
�|Ψ|2

�t
+
∫

d3x
�

�gij

(

|Ψ|2
�gij

�t

)

+
∫

d3x
�

��

(

|Ψ|2
��

�t

)

= 0

(42)
𝜕

𝜕a

(
a2|Ψ|2ȧ

)
+

𝜕

𝜕𝜙

(
a2|Ψ|2𝜙̇

)
= 0

(43)ȧ = −
1

m2
P

1

a

𝜕S

𝜕a
, 𝜙̇ =

1

a3
𝜕S

𝜕𝜙
.

(44)
𝜕P

𝜕t
+

𝜕

𝜕a
(Pȧ) +

𝜕

𝜕𝜙

(
P𝜙̇

)
= 0

14  The same equations follow by identifying the canonical momenta (16) with a phase gradient.
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6.1 � Failure of the Born Rule

At this point we must be careful. In standard quantum theory equation (42) would 
be regarded as a continuity equation for a Born-rule-like probability density a2|Ψ|2 . 
The unusual factor a2 arises simply from the structure of our minisuperspace and 
if preferred could be eliminated by defining a density with respect to a2dad� 
instead of dad� . In any case, equation (42) seemingly suggests that the quantum 
probability to find the system in a range dad� is given by a2|Ψ|2dad� . This is the 
naive Schrödinger interpretation in a quantum-cosmological setting. As we saw in 
Sect.  3.2 this interpretation fails not only because the putative probability density 
a2|Ψ|2 has no explicit time dependence but also because it is non-normalisable.

In pilot-wave theory it might be argued that, because the respective evolution 
equations (44) and (42) for P and a2|Ψ|2 are identical (noting that �(a2|Ψ|2)∕�t = 0 ), 
if P = a2|Ψ|2 initially then P = a2|Ψ|2 at later times and we may identify this as 
a state of quantum equilibrium. This is again the naive Schrödinger interpretation 
applied to pilot-wave theory (Sect. 5.2), and again it is as untenable in pilot-wave 
theory as it is in standard quantum theory. For a general solution Ψ of the wave 
equation (18) we inevitably have

The equality P = a2|Ψ|2 is mathematically nonsensical since the left-hand side is 
(by definition) normalisable while the right-hand side is not.

To understand this theory we need to accept that in the deep quantum-gravity 
regime there is no Born-rule-like equilibrium state. There simply is no Born rule 
and no state of quantum equilibrium. In the context of our quantum-cosmological 
model, we must have

always (both initially and at later times).

6.2 � Impossibility of Quantum Relaxation

In terms of quantum relaxation, for this system the coarse-grained H-function

(minus the relative entropy of P̄ with respect to a2|Ψ|2 ) still obeys a coarse-graining 
H-theorem (33) but now has no lower bound. If we had

(45)
∫ ∫

dad� a2|Ψ(a,�)|2 = ∞.

(46)P ≠ a2|Ψ|2

(47)H̄(t) =
∫ ∫

dad𝜙 P̄ ln(P̄∕a2|Ψ|2)

(48)
∫ ∫

dad� a2|Ψ|2 = N



1 3

Foundations of Physics (2023) 53:6	 Page 19 of 36  6

for some finite N, it is easy to show that (47) would be bounded below by − lnN , 
with the lower bound attained if and only if P̄ =

1

N
a2|Ψ|2 [8]. For N → ∞ there is 

no lower bound. The function H̄(t) can decrease indefinitely without ever reaching 
a minimum. In this sense P̄ is always infinitely far away from the putative ‘equi-
librium’ state a2|Ψ|2 . Limited local relaxation might take place in some regions of 
configuration space, but to attain global equilibrium is mathematically impossible. 
Similar reasoning applies to the full gravitational theory [8].

7 � Quantum Relaxation in the Schrödinger Approximation

We have argued that, in the deep quantum-gravity regime, quantum relaxation can-
not take place because there is no physical equilibrium state to relax to. In effect a 
quantum-gravitational system is perpetually in nonequilibrium. How are we then to 
understand the ubiquity of the Born rule in our world today?

Our proposed answer is that quantum relaxation can take place in the semiclas-
sical regime, where the system propagates on an approximately classical spacetime 
background. In this ‘Schrödinger approximation’ we have an effective time-depend-
ent Schrödinger equation (24) for a conventional wave function �(q, t) , where q 
might represent for example a field configuration � on a background classical curved 
space and t is the time function associated with a preferred foliation. Since � is now 
normalisable, |�|2 can correspond to a physical probability distribution, which is 
attainable after appropriate relaxation.

To see how this works, we need to outline how the Schrödinger approximation 
is derived from the underlying quantum-gravitational theory (details are given in 
Sect. 9.1). Consider again the deep quantum-gravity regime with a matter field � and 
a Wheeler–DeWitt wave functional Ψ[gij,�] . We obtain an effective time-dependent 
wave function � , on an approximately classical spacetime background, when the 
solution Ψ[gij,�] of the Wheeler–DeWitt equation takes the approximate form

where Ψ
WKB

[gij] is a WKB wave functional for the 3-metric. The phase 
S
WKB

= Im lnΨ
WKB

 satisfies a classical Hamilton-Jacobi equation and generates 
classical trajectories gij = gij(t) for the background. If we evaluate �[�, gij] along a 
specific trajectory gij(t) , we can define an effective time-dependent wave functional

for the matter field � , with a time derivative

It can then be shown that �
eff

 satisfies an approximate time-dependent Schrödinger 
equation

(49)Ψ[gij,�] ≈ Ψ
WKB

[gij]�[�, gij],

(50)�
eff
[�, t] = �[�, gij(t)]

(51)
𝜕

𝜕t
=
∫

d3x ġij
𝛿

𝛿gij
.



	 Foundations of Physics (2023) 53:6

1 3

6  Page 20 of 36

for the field � on the classical background, where Ĥ
eff

 is an effective Hamiltonian 
(which of course depends on the background).

This method of deriving the Schrödinger approximation has a long history. The 
WKB trajectories for the classical background allow us to define an effective time 
parameter t, which historically has often been called ‘WKB time’ [94]. The origin 
of such trajectories is unclear in standard quantum mechanics, where they are really 
being inserted by hand. In pilot-wave theory, in contrast, the WKB trajectories are 
simply de Broglie–Bohm trajectories evaluated in the WKB approximation, and so 
the above construction is conceptually clear.

We can now return to the question of quantum relaxation and the Born rule. Once 
the very early universe enters the semiclassical or Schrödinger regime, fields and 
particles propagating on the (approximate) classical background will satisfy a time-
dependent Schrödinger equation of the form (52), with a conventional and normalis-
able wave function �

eff
 . As we will see in Sect. 9.1, the de Broglie guidance equa-

tion also takes the standard form (in terms of �
eff

 ). We then find ourselves in the 
domain which has already been much studied in pilot-wave theory as briefly sum-
marised in Sect. 4.1. If at the beginning of the Schrödinger regime we have a non-
equilibrium probability distribution � ≠ |

|�eff
|
|
2 , then in appropriate circumstances 

quantum relaxation will ensure that � →
|
|�eff

|
|
2 on a coarse-grained level, at least 

to a good approximation and in particular for short-wavelength (sub-Hubble) field 
modes. In this way, despite the complete absence of a Born rule in the deep quan-
tum-gravity regime, we can nevertheless understand the emergence of the Born rule 
in the semiclassical or Schrödinger approximation, at scales relevant to laboratory 
physics, after appropriate quantum relaxation.

We have said that, once we have an approximate time-dependent Schrödinger 
equation, conventional quantum relaxation can take place. But is there any reason to 
expect nonequilibrium � ≠ |

|�eff
|
|
2 at the start of the semiclassical regime? Indeed 

there is. Fundamentally we have a perpetual nonequilibrium ensemble with distribu-
tion P[gij,�, t] ≠

|
|
|
Ψ[gij,�]

|
|
|

2

 . As we enter the semiclassical regime, say at some ‘ini-
tial’ time ti (approximately marking the beginning of that regime), the field � will 
have a conditional probability density

where on the right-hand side it is understood that we have inserted the actual value 
of the classical background 3-metric gij at time ti . Because here

it follows that

(52)i
𝜕𝜓

eff

𝜕t
= Ĥ

eff
𝜓
eff

(53)�[�, ti] =
P[gij,�, ti]

(
∫ P[gij,�, ti]D�

) ,

(54)
P[gij,�, ti] ≠

|
|
|
Ψ[gij,�]

|
|
|

2

≈
|
|
|
Ψ

WKB
[gij]

|
|
|

2|
|
|
�[�, gij]

|
|
|

2

=
|
|
|
Ψ

WKB
[gij]

|
|
|

2
|
|�eff

[�, ti]
|
|
2
,
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(unless it so happens that P[gij,�, ti] = Π[gij]
|
|�eff

[�, ti]
|
|
2 for some Π[gij] ). We 

then expect to find quantum nonequilibrium at the start of the semiclassical or 
Schrödinger regime, with the Born rule emerging only later after an appropriate 
period of quantum relaxation.

8 � Instability of the Born Rule in Quantum Gravity

We have outlined how the time-dependent Schrödinger equation (52) for the effec-
tive wave function �

eff
 emerges in the semiclassical approximation. We then have 

a normalisable wave function and quantum relaxation to equilibrium � →
|
|�eff

|
|
2 

can proceed in the usual way. The Schrödinger equation (52) is, however, subject to 
small quantum-gravitational corrections to the effective Hamiltonian Ĥ

eff
 . Remark-

ably, some of the correction terms are non-Hermitian [64–68]. These terms have no 
consistent interpretation in standard quantum mechanics as they violate the conser-
vation of probability. In pilot-wave theory, in contrast, probability is by construction 
conserved and (as we shall see) the non-Hermitian terms simply render the Born 
rule unstable.

The derivation of the correction terms will be presented in the next section. Here 
we first show how pilot-wave theory is able to accommodate such terms consistently.

The corrections are calculated by performing a ‘semiclassical expansion’ of the 
Wheeler–DeWitt equation (Sect. 9). Dropping for simplicity the subscript ‘eff’, we 
find an effective Hamiltonian of the form

where Ĥ
𝜙
 is the usual field Hamiltonian and the Hermitian operators Ĥa , Ĥb repre-

sent tiny quantum-gravitational corrections. There is a Hermitian correction Ĥa and 
a non-Hermitian correction iĤb . Writing Ĥ1 = Ĥ

𝜙
+ Ĥa and Ĥ2 = Ĥb , the effective 

Schrödinger equation for �[�, t] takes the form

Applying the same semiclassical expansion to the de Broglie guidance equation, we 
find an effective guidance equation of the form

where j1 is the usual current associated with the Hermitian part Ĥ1 only. Thus, 
while the Schrödinger equation (57) has a non-Hermitian correction iĤ2 , this does 
not affect the guidance equation (58). As we show in the next section, these results 
follow directly and without ambiguity from the underlying quantum-gravitational 
equations in a semiclassical expansion.

(55)�[�, ti] ≠
|
|�eff

[�, ti]
|
|
2

(56)Ĥ = Ĥ
𝜙
+ Ĥa + iĤb,

(57)i
𝜕𝜓

𝜕t
= (Ĥ1 + iĤ2)𝜓 .

(58)
��

�t
=

j1

|�|2
,
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To see the consequences note that (57) implies a continuity equation (writing 
j1 = |𝜓|2𝜙̇)

where �
�
⋅ (...) = ∫ d3x �∕��(x) (...) is a divergence in field configuration space and

For an ensemble of systems with the same wave function � , each element of the 
ensemble evolves by the de Broglie velocity field (58). The probability density 
�[�, t] then evolves by the usual continuity equation

For s ≠ 0 there is a mismatch between Eqs. (59) and (61). It follows that an initial 
distribution � = |�|2 can evolve into a final distribution � ≠ |�|2 . The Born rule is 
unstable. This can be quantified in terms of the ratio f = �∕|�|2 , which is no longer 
conserved along trajectories. From (59) and (61) we find

(where d∕dt = 𝜕∕𝜕t + ∫ d3x 𝜙̇.𝛿∕𝛿𝜙(x) is the time derivative along a trajectory in 
field configuration space). It is also worth noting that the squared-norm ∫ D� |�|2 
of � changes with time,

We see from the above equations that the usual Born-rule equilibrium state 
� = |�|2 is unstable. As a result of quantum-gravitational corrections, nonequilib-
rium � ≠ |�|2 is created on a timescale �

noneq
 which can be estimated from the rate 

of change of the (fine-grained) H-function H(t) = ∫ D� � ln(�∕|�|2) . From (59) and 
(61) we find15 

Close to equilibrium ( � ≈ |�|2 ) we have

(59)𝜕|𝜓|2

𝜕t
+ 𝜕

𝜙
⋅ (|𝜓|2𝜙̇) = s,

(60)s = 2Re
(
𝜓

∗Ĥ2𝜓

)
.

(61)
𝜕𝜌

𝜕t
+ 𝜕

𝜙
⋅ (𝜌𝜙̇) = 0.

(62)
df

dt
= −

sf

|�|2

(63)
d

dt ∫
D𝜙 |𝜓|2 =

∫
dq s = 2

⟨
Ĥ2

⟩
.

(64)
dH

dt
= −

∫
D�

�

|�|2
s.

(65)
dH

dt
≈ −

∫
D𝜙 s = −2

⟨
Ĥ2

⟩
.

15  When s = 0 the exact H is constant but the coarse-grained value decreases (if there is no initial fine-
grained structure) [16].
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Defining �
noneq

 as the timescale over which H changes by a factor of order unity, we 
have the estimate

Note however that, for such effects to build up over time, nonequilibrium must be 
created faster than relaxation can remove it, which requires conditions where

Some quantum-gravity theorists have long been puzzled by the non-Hermitian 
terms iĤ2 (first found in 1991 and re-derived in more recent papers), which signal a 
violation of unitarity (the usual norm of � is not conserved) [64–68]. Because the 
non-Hermitian terms are inconsistent with the standard interpretation of |�|2 as a 
probability density, they are often regarded as an artifact to be ignored by fiat. Some 
authors have advocated formally eliminating these terms by appropriate redefini-
tions of the wave function [66, 95]. We suggest that such redefinitions may turn out 
to be an artificial means of disguising genuine physical effects. Our experience with 
quantum systems on a classical spacetime background teaches us that the Hamilto-
nian must be Hermitian, but that experience is limited to conditions where quantum-
gravitational effects are negligible. As we have seen, non-Hermitian terms are per-
fectly consistent with pilot-wave theory, according to which they simply generate a 
gravitational instability of the Born rule: an initial density � = |�|2 can evolve into a 
final density � ≠ |�|2.

The derivation of the non-Hermitian terms will now be discussed in more detail.

9 � Semiclassical Expansion

Quantum-gravitational corrections to the Schrödinger equation (52) were derived 
by Kiefer and Singh [64] from a semiclassical expansion

of the extended Wheeler–DeWitt equation (10) for Ψ[gij,�] , where � = c2∕32�G 
(dimensions mass per length). Inserting (68) into the left-hand side of (10), terms of 
the same order in � are collected and their sum set to zero. The orders that appear 
are �2 , � , �0 , �−1 ... .

To a first approximation we obtain the usual Schrödinger equation (52) for a 
field � on a classical background spacetime. We then obtain gravitational correc-
tions to (52), in the form of (very small) Hermitian and non-Hermitian terms in 
the Hamiltonian. The results found by Kiefer and Singh are summarised below. In 
pilot-wave theory we must also consider how the semiclassical expansion affects 
the de Broglie guidance equation (37) for � . As we will see, the guidance equa-
tion retains its standard form. Thus, if the semiclassical expansion is to be trusted, 

(66)𝜏
noneq

≈
1

2
|
|
|

⟨
Ĥ2

⟩|
|
|

.

(67)𝜏
relax

> 𝜏
noneq

.

(68)Ψ = exp i
(
�S0 + S1 + �

−1S2 +⋯

)
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it follows from the fundamental equations of quantum gravity that the emergent 
Born rule is unstable.

9.1 � Lowest‑Order Schrödinger Approximation

At order �2 the expansion (68) yields 
(
�S0∕��

)2
= 0 so that S0 = S0[gij] depends 

only on gij , while at order � it is found that S0 satisfies a classical Hamilton-Jacobi 
equation whose solution defines a classical background spacetime. The trajectories 
of the classical background can be used to define an effective time parameter t (cf. 
Eq. (51)).

Order �0 yields an equation for S1 , which can be written as an effective time-
dependent Schrödinger equation for a zeroth-order (uncorrected) wave functional 
�

(0)
[�, t] on a classical background with metric gij . Defining

for an appropriate functional D[gij] , it can be shown that

where Ĥ
𝜙
 is given by (12). This is the standard Schrödinger equation for a massless 

(minimally-coupled) real scalar field � with potential V(�) on a classical spacetime 
background.

As expected, to this order the Wheeler–DeWitt wave functional Ψ[gij,�] takes the 
WKB form (49), with Ψ

WKB
[gij] = (1∕D) exp

(
iMS0

)
 and �[�, gij] = �

(0)
[�, t].

In pilot-wave theory we must also consider the de Broglie guidance equation (37) 
for � . To this order, how is the field velocity 𝜙̇ related to the effective wave func-
tional � (0)

[�, t] ? We can find out by inserting the expansion (68) into (37) (where 
S = Im lnΨ ), yielding

The factor D in (69) can be chosen to be real, so that ReS1 is equal to the phase of 
�

(0) . To lowest order we then have a de Broglie velocity,

where S(0) = Im ln� (0) is the phase of � (0).16 This is the standard de Broglie guid-
ance equation for a field � with wave functional � (0)

[�, t] [96].

(69)�
(0)

= D exp(iS1)

(70)i
𝜕𝜓

(0)

𝜕t
=
∫

d3x NĤ
𝜙
𝜓

(0)

(71)
��

�t
=

N
√
g

�

��

�
ReS1 + �

−1ReS2 +⋯

�
.

(72)
�
��

�t

�(0)

=
N
√
g

�S(0)

��
,

16  This result is of course expected from the WKB form (49) (with � = �
(0)).
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Thus, in this approximation we recover the usual pilot-wave dynamics of a field 
on a classical spacetime background, and so we can expect quantum relaxation to 
the Born rule to occur in the usual way.

9.2 � Gravitational Corrections

Following Ref. [64] we now consider higher orders in the semiclassical expan-
sion (68). At order �−1 Kiefer and Singh obtain an equation for S2 . Writing 
S2 = �2[gij] + �[�, gij] for appropriately chosen �2 , the corrected matter wave 
functional

is found to satisfy a corrected Schrödinger equation

where

and

are both Hermitian (employing the convenient shorthand 𝛿∕𝛿𝜏 = ġij𝛿∕𝛿gij , with 
ġij = 2NGijkl𝛿S0∕𝛿gkl , to denote a ‘many-fingered time derivative’ on the back-
ground). To this order we have a total effective Hamiltonian of the form (56) with

As noted we have Hermitian and non-Hermitian corrections Ĥa and iĤb 
respectively.17

We can now consider the next order in the semiclassical expansion (68) of the de 
Broglie guidance equation (37). Because the term �2[gij] in S2 is independent of � , 
the de Broglie velocity (71) takes the form

The corrected wave functional (73) has a total phase

(73)�
(1)

= �
(0) exp(i�∕�)

(74)i
𝜕𝜓

(1)

𝜕t
=
∫

d3x N
(
Ĥ

𝜙
+ Ĥa + iĤb

)
𝜓

(1),

(75)Ĥa =
1

8𝜇

1
√
gR

Ĥ
2

𝜙

(76)Ĥb =
1

8𝜇

𝛿

𝛿𝜏

�
Ĥ

𝜙

√
gR

�

(77)Ĥ
𝜙
=
∫

d3x NĤ
𝜙
, Ĥa = ∫

d3x NĤa, Ĥb = ∫
d3x NĤb.

(78)
��

�t
=

N
√
g

�

��

�
ReS1 + �

−1Re� +⋯

�
.

17  In an expanding cosmological background the ratio of iĤb to Ĥa is roughly of order ∼ H∕E , where 
H = ȧ∕a is the Hubble parameter and E is a typical energy for the field [64].
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and so the corrected de Broglie velocity (78) can once again be written in the stand-
ard form,

where now S(1) = Im ln� (1) is the phase of � (1).
To conclude, despite the non-Hermitian term in the corrected Schrödinger equa-

tion (74), the de Broglie velocity (80) continues to take the standard form (now in 
terms of � (1) ). In other words, the expression for the velocity remains that associated 
with the original (uncorrected) Hermitian part Ĥ

𝜙
 of the Hamiltonian. The non-Her-

mitian term affects the time evolution of � (1)—and so indirectly affects the trajecto-
ries—but does not change the form of the guidance equation itself. As we have seen, 
this implies that the Born rule for � is unstable.

More recently, Brizuela et  al. [67, 68] have derived similar results for a mini-
superspace model of quantum cosmology. The classical background is defined by 
a scale factor a(t) and a homogeneous field �(t) . Quantum scalar perturbations (of 
the background metric combined with the inflaton perturbation) are described by 
the Mukhanov–Sasaki variable �

�
 in Fourier space. The wave function Ψ

�
(a,�, �

�
) 

satisfies a Wheeler–DeWitt equation for the mode � , which is solved by means of a 
semiclassical expansion

in powers of m2
P
 . Inserting this into the left-hand side of the Wheeler–DeWitt equa-

tion, terms of the same order in m
P
 are collected and their sum set to zero. By this 

means, Brizuela et  al. derive a Schrödinger equation for an effective wave func-
tion � (1)

�
= �

(1)

�
(�

�
, t) , where the corrections in the effective Hamiltonian have both 

Hermitian and non-Hermitian parts. The same expansion can again be applied to 
the de Broglie guidance equation for the perturbations �

�
 [8]. We again find that 

the de Broglie velocity takes the standard form proportional to the gradient of the 
phase s(1)

�
= Im ln�

(1)

�
 of � (1)

�
 , and so remains equal to the velocity generated by the 

(uncorrected) Hermitian part of the Hamiltonian. As in the general case this implies 
that the Born rule is unstable.

10 � Examples of Quantum Instability

The gravitational instability of the Born rule has been studied for several examples. 
These include a scalar field on de Sitter space, a scalar field close to an evaporating 
black hole, and an atomic system in the gravitational field of the earth. Here we out-
line the results obtained so far and some of the potential implications.18

(79)Im ln� (1)
= ReS1 + �

−1Re�,

(80)
�
��

�t

�(1)

=
N
√
g

�S(1)

��
,

(81)Ψ
�
= exp

[
i
(
m2

P
S0 + m0

P
S1 + m−2

P
S2 +⋯

)]

18  For more details see Ref. [8].
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10.1 � Inflationary Perturbations on De Sitter Space

In Ref. [8], taking the results of Brizuela et  al. [67, 68] as a starting point, we 
derived a simplified model for inflationary perturbations in a far slow-roll limit, on 
a background with an approximate de Sitter expansion, a ∝ eHt , where the Hubble 
parameter H is almost constant. The resulting equations define a tractable cosmo-
logical model of quantum instability in the early inflationary universe.

The perturbations are described by (real) Fourier field components q
�
 . The cor-

rected Schrödinger equation for the effective wave function � (1)

�
(q

�
, t) is found to be

where

is the uncorrected (zeroth-order) Hamiltonian for the field mode, � (0)

�
 is the uncor-

rected (zeroth-order) wave function, and

where � is an arbitrary lengthscale associated with spatial integration in the classical 
action (to be interpreted as an infrared cutoff) [69]. In the same limit the de Broglie 
guidance equation for q

�
 is found to be

where s(1)
�

= Im ln�
(1)

�
 is the phase of � (1)

�
 . This is the standard de Broglie veloc-

ity for Fourier components of a scalar field, with Hamiltonian (83), on a classical 
expanding background [35].

For a theoretical ensemble with the same wave function � (1)

�
(q

�
, t) , the probability 

density �(1)
�
(q

�
, t) will evolve by the continuity equation

where q̇
�
 is the velocity field (85). In contrast, from (82) we find that ||

|
�

(1)

�

|
|
|

2

 satisfies

where in the notation of Sect. 8 the ‘source’ s is given by (60) where here

(82)i
𝜕𝜓

(1)

�

𝜕t
= Ĥ

�
𝜓

(1)

�
−

k̄3

2m2
P
H2

1

𝜓
(0)

�

[
1

a3
(Ĥ

�
)
2
𝜓

(0)

�
+ i

𝜕

𝜕t

(
1

a3
Ĥ

�

)

𝜓
(0)

�

]

𝜓
(1)

�
,

(83)Ĥ
�
= −

1

2a3
𝜕
2

𝜕q2
�

+
1

2
ak2q2

�

(84)k̄ =
1

�
,

(85)
dq

�

dt
=

1

a3

�s
(1)

�

�q
�

,

(86)
𝜕𝜌

(1)

�

𝜕t
+

𝜕

𝜕q
�

(

𝜌
(1)

�
q̇
�

)

= 0 ,

(87)
𝜕
|
|
|
𝜓

(1)

�

|
|
|

2

𝜕t
+

𝜕

𝜕q
�

(
|
|
|
𝜓

(1)

�

|
|
|

2

q̇
�

)

= s,
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These equations can be used to calculate the gravitational production of quantum 
nonequilibrium during inflation, employing the differential equation (62) for the rate 
of change of the ratio f

�
= �

�
∕||��

|
|
2 along trajectories. Taking � (0)

�
 to be the Bunch-

Davies vacuum wave function, approximate calculations show that the gravitational 
instability of the Born rule generates a nonequilibrium deficit ∼ 1∕k3 in the primordial 
cosmological power spectrum. It has been shown elsewhere that there is no significant 
relaxation during inflation [37, 97], so the condition (67) will be satisfied and the gen-
erated nonequilibrium will persist over time. However, the magnitude of the effect on 
the power spectrum is far too small to observe in the CMB (for details see Ref. [8]).

By considering only the Hermitian terms in the Hamiltonian, Brizuela et al. [67, 
68] show that the gravitationally-corrected wave function induces a similar ∼ 1∕k3 
correction to the power spectrum but of opposite sign (hence a power excess). How-
ever, the calculations of Ref. [8] are too approximate to precisely compare the over-
all magnitudes of these physically-distinct effects.

10.2 � Evaporating Black Holes

It is also of interest to consider quantum instability for a field in the background spa-
cetime of an evaporating Schwarzchild black hole. It was argued by Kiefer et al. [98] 
that in this case the quantum-gravitational corrections to the effective Schrödinger 
equation will be as in Eqs. (74)–(76) but with the replacement

where the Schwarzchild radius r
S
= 2GM∕c2 (for a black hole of mass M) provides a 

natural lengthscale. The non-Hermitian term in (74) reads

where we have inserted � = c2∕32�G as well as ℏ and c. With the replacement (89), 
(90) takes the approximate form

where Ĥ
𝜙
 is the uncorrected field Hamiltonian (neglecting the rate of change of Ĥ

𝜙
 

compared with the rate of change of the background geometry). Kiefer et al. sug-
gested that this term might alleviate the problem of black-hole information loss 
(though such a term is inconsistent with the standard quantum formalism).

Taking the phenomenological time dependence [99, 100]

(88)Ĥ
2
= −

k̄3

2m2

P
H2

1

𝜓
(0)

�

𝜕

𝜕t

(
1

a3
Ĥ

�

)

𝜓
(0)

�
.

(89)
√
gR → −16�GM∕c2,

(90)iĤb = i
4𝜋ℏG

c4 ∫
d3x N

𝛿

𝛿𝜏

�
Ĥ

𝜙

√
gR

�

,

(91)iĤb ≃ −i
ℏ

4c2
d

dt

(
1

M

)

∫
d3x NĤ

𝜙
= i

ℏ

4c2
1

M2

dM

dt
Ĥ

𝜙
,
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with M0 the initial mass, � a numerical factor, and here m
P
=
√
ℏc∕G ≃ 10−5 g the 

standard Planck mass, we have dM∕dt ≃ −
1

3
�(m

P
∕t

P
)
(
m

P
∕M

)2 . According to (91) 
the Hamiltonian Ĥ

�
 of a field mode then acquires a non-Hermitian correction iĤ2 (in 

the notation of Sect. 8) with

This correction is significant in the final stage of evaporation when M approaches 
m

P
 , suggesting that the final burst of Hawking radiation could contain significant 

departures from the Born rule.19

Quantum nonequilibrium is expected to be created on a timescale �
noneq

 of order 
(66), which depends inversely on the equilibrium mean energy E

�
=
⟨
Ĥ

�

⟩
 . If we 

take E
�
∼ k

B
T
H
 where

is the Hawking temperature, then from (66) and (93) we have

Corrections to the Born rule will be significant if �
noneq

 is not too large compared to 
the evaporation timescale t

evap
 . Taking 1∕t

evap
∼ (1∕M)|dM∕dt| we have

and a ratio

(the factor � cancels). Again it seems clear that significant deviations from the Born 
rule can be generated in the outgoing radiation only in the final stage of evaporation 
when M approaches m

P
.

It is however not known if such deviations could survive quantum relaxation, 
which may well be significant in the final stage of evaporation when the background 
spacetime is changing rapidly. Quantum nonequilibrium will build up over time only 

(92)M(t) ≃ M0

(

1 − �

m3
P

M3
0

(
t

t
P

))1∕3

,

(93)Ĥ2 ≃ −
1

12
𝜅

(m
P

M

)4

Ĥ
�
.

(94)k
B
T
H
=

ℏc3

G

1

8�M
=

1

8�
m

P
c2
m

P

M

(95)�
noneq

∼
48�

�
t
P

(
M

m
P

)5

.

(96)t
evap

∼
3

�
t
P

(
M

m
P

)3

(97)
�
noneq

t
evap

∼
48�

3

(
M

m
P

)2

19  The creation of quantum nonequilibrium by evaporating black holes was previously suggested as a 
possible mechanism for resolving the information-loss puzzle [35, 63, 96, 101], but without a clear theo-
retical underpinning.
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if (67) is satisfied in the regime where M approaches m
P
 . Thus we need to know how 

�
relax

 scales with M and to compare this with our estimate �
noneq

∝
(
M∕m

P

)5 . This is 
a matter for future work.

Should nonequilibrium survive in the outgoing radiation, at least in principle the 
emitted photons could show anomalies in their two-slit interference pattern or in 
their polarisation probabilities [102]. Realistically, Hawking radiation in the �-ray 
region might be detected from exploding primordial black holes (which may form 
a significant component of dark matter [103]). However, only the very final burst is 
likely to show significant deviations from the Born rule, making detection difficult.

10.3 � An Atom in the Gravitational Field of the Earth

We might ask if the Born rule could be unstable for an atomic system in the gravi-
tational field of the earth. We saw in Sect. 10.2 that the non-Hermitian correction to 
a field Hamiltonian in the spacetime of a Schwarzchild black hole can plausibly be 
obtained from (90) by replacing 

√
gR by −8�r

S
 where r

S
= 2GM∕c2 is the natural 

lengthscale of the background. In the gravitational field of the earth we might expect 
instead to make a replacement of the form

where r
c
 is the local radius of curvature ( r

c
≃ 1013 cm at the surface of the earth).20 

Inserting this in (90), and writing Ĥ
𝜙
 as Ĥa where Ĥa = ∫ d3x NĤa is the atomic 

Hamiltonian, we find an estimated non-Hermitian term

where l
P
 and t

P
 are respectively the Planck length and time.

The term (99) is non-zero only if the (uncorrected) atomic Hamiltonian Ĥa is time 
dependent. The magnitude of (99) is roughly the change in Ĥa over a Planck time 
suppressed by the ratio l

P
∕r

c
 . Needless to say, in ordinary laboratory conditions, 

this term will be utterly negligible. Furthermore, if Ĥa changes rapidly (to maxim-
ise the effect), the atomic wave function will be a superposition of multiple energy 
eigenstates, and we expect to find quantum relaxation over timescales 𝜏

relax
≪ 𝜏

noneq
 . 

Even if we could probe an atomic ensemble over times ∼ �
noneq

 (far longer than the 
age of the universe), any gravitationally-generated nonequilibrium will have long-
since relaxed. It then appears that the gravitational creation of quantum nonequi-
librium in ordinary laboratory systems—with a dynamical Hamiltonian in a back-
ground curved space—is likely to be of theoretical interest only.

(98)
√
gR → −8�r

c
,

(99)iĤb ∼ −i
ℏG

c4
1

r
c
∫

d3x N
𝛿

𝛿𝜏

(
Ĥa

)
∼ −i

l
P

r
c

𝜕Ĥa

𝜕t
t
P
,

20  A similar suggestion was made by Kiefer and Singh [64], who considered the effect of the Hermitian 
correction on atomic energy levels.
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11 � Conclusion

We have argued that, in the deep quantum-gravity regime, with a non-normalisable 
Wheeler–DeWitt wave functional Ψ , there is no Born rule and the universe is in 
a perpetual state of quantum nonequilibrium with a probability density P ≠ |Ψ|2 . 
Quantum relaxation to the Born rule can occur only when the early universe 
emerges into a semiclassical or Schrödinger approximation, with a time-dependent 
and normalisable effective wave functional � for a system on a classical space-
time background, for which the probability density � can evolve towards |�|2 (on a 
coarse-grained level). We conclude that the long-standing hypothesis of primordial 
quantum nonequilibrium, with relaxation to the Born rule taking place soon after the 
big bang, follows naturally from the internal logic of quantum gravity (as interpreted 
in de Broglie–Bohm pilot-wave theory). Furthermore, quantum-gravitational cor-
rections to the Schrödinger approximation, in the form of tiny non-Hermitian terms 
in the effective Hamiltonian, generate a (very slight) instability of the Born rule, 
whereby quantum nonequilibrium � ≠ |�|2 can be created from a prior equilibrium 
( � = |�|2 ) state. To observe such effects will be difficult in practice, though possible 
at least in principle.

When restricted to the Born-rule equilibrium state, the pilot-wave or de Bro-
glie–Bohm formulation of quantum theory is experimentally indistinguishable from 
textbook quantum mechanics. Wider support for this formulation is likely to be 
forthcoming should we find experimental evidence for violations of the Born rule—
or if the theory allows us to make decisive progress in understanding some vital 
aspect of fundamental physics. From the results presented here we suggest that this 
little-used formulation of quantum theory allows us to understand and solve three 
problems in canonical quantum gravity: (a) to explain why the naive Schrödinger 
interpretation does not work, (b) to account for the emergence of the Born rule in a 
semiclassical regime, and (c) to give a consistent meaning to non-Hermitian quan-
tum-gravitational corrections to the effective Schrödinger equation.

The results of this paper also impact on certain philosophical debates concern-
ing the status of the Born rule in de Broglie–Bohm theory. As we have noted, and 
discussed in detail elsewhere [26], the ‘Bohmian mechanics’ school employs an 
essentially circular argument to obtain the Born rule for subsystems by assuming the 
Born rule for the whole universe at some initial cosmological time.21 We have seen 
that, when quantum gravity is taken into account, such an argument has no starting 
point, since there is no fundamental Born-rule measure for a universe governed by 
the Wheeler–DeWitt equation (despite attempts by some workers [56, 62] to apply 
the naive Schrödinger interpretation to pilot-wave gravitation).

It is one hundred years since de Broglie started on the path that, after five years 
of remarkable developments, brought him in 1927 to pilot-wave theory as we know 
it today. It is seventy years since the revival and further development of pilot-wave 
theory in Bohm’s papers of 1952. And yet the theory is still not widely known or 
used, and is often misunderstood. The historical development of pilot-wave theory 

21  In a remarkable reply to Ref. [26], Dürr and Struyve [104] invoke similar circular reasoning in their 
account of classical coin tossing.
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is in certain respects reminiscent of the historical development of the kinetic theory 
of gases. Beginning with the pioneering work of Bernoulli in the early 18th cen-
tury, and of Herapath and Waterston in the early 19th century, kinetic theory was 
more or less ignored until it was taken up by Clausius in an influential paper of 1857 
[105]. Another half a century had to pass, with decisive contributions in particular 
by Maxwell, Boltzmann and Einstein, before theorists were able to interpret Brown-
ian motion as evidence for atoms and kinetic theory. Whether or not a comparable 
empirical breakthough awaits pilot-wave theory remains to be seen.

Why were physicists in the late nineteenth-century still reluctant to accept the 
existence of atoms and molecules, long after chemists had already deduced their 
detailed shapes and compositions? In part there was philosophical opposition from 
Mach and others, who emphasised the role of sensory perception in physics, while 
the idea of an objective reality beyond the immediate reach of our senses came to 
be widely derided as unscientific and metaphysical. Similarly, today there remains 
widespread opposition to realism in quantum physics. For as long as the details of 
de Broglie–Bohm trajectories cannot be observed (the uncertainty principle reigns 
for as long as we are confined to quantum equilibrium) those trajectories will con-
tinue to be dismissed as unphysical.

A decisive breakthrough, with an end to seemingly endless philosophical debates, 
will occur only by extending the boundaries of physics beyond what is currently 
known and understood. The prospects do not seem entirely remote. As we have 
argued in this paper, gravitation may hold the key to unlocking the hidden physics of 
pilot-wave theory.
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