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Abstract
Why does time reversal involve two operations, a temporal reflection and the opera-
tion of complex conjugation? Why is it that time reversal preserves position and 
reverses momentum and spin? This puzzle of time reversal in quantum mechanics 
has been with us since Wigner’s first presentation. In this paper, I propose a new 
solution to this puzzle. First, it is shown that the standard account of time reversal 
can be derived based on the assumption that the probability current is reversed by 
the time reversal transformation. Next, this assumption is justified and the meaning 
of time reversal is clarified by analyzing the relationship between the rates of change 
and the instantaneous quantities which determine them. Finally, I explain how the 
new analysis help solve the puzzle of time reversal in quantum mechanics.

Keywords Quantum mechanics · Time reversal · Continuity equation · Probability 
current

1 Introduction

Why does time reversal involve two operations, a temporal reflection and the opera-
tion of complex conjugation in quantum mechanics? Why is it that time reversal pre-
serves position and reverses momentum and spin? This puzzle of time reversal has 
been with us since Wigner’s [1] first presentation, although some progress has been 
made to solve it recently (see, e.g. [2–4]). According to some authors, time reversal 
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“can involve nothing whatsoever other than reversing the velocities of the particles" 
([5], p. 20), and “It does not make sense to time-reverse a truly instantaneous state 
of a system” [6].1 While according to others [9, 10, 3], this is not the case. In this 
paper, I will try to solve this puzzle of time reversal. I will first give a new derivation 
of the standard account of time reversal in quantum mechanics based on the assump-
tion that the probability current is reversed by the time reversal transformation. 
Then, I will argue that this assumption can be justified by analyzing the relationship 
between the rates of change and the instantaneous quantities which determine them. 
Finally, I will explain how the new analysis help solve the puzzle of time reversal in 
quantum mechanics.

2  A New Derivation

Consider the Schrödinger equation for a spin-0 quantum system in an external scalar 
potential:

where ℏ is Planck’s constant divided by 2� , �(�, t) is the wave function of the sys-
tem, m is the mass of the system, and V(�, t) is an external scalar potential. From this 
equation we can derive the continuity equation:

where �(�, t) = |�(�, t)|2 and �(�, t) = ℏ

2mi
[�∗(�, t)∇�(�, t) − �(�, t)∇�∗(�, t)] are 

probability density and probability current density, respectively.
Now I will show how the standard account of time reversal in quantum mechan-

ics can be derived based on the assumption that the probability current is reversed 
by the time reversal transformation. First, according to this assumption we have 
T�(�, t) = −�(�,−t) , where T is the time reversal operator. Next, it can be argued 
that time reversal does not change the probability density. From a physical point of 
view, the probability density of finding a particle in certain position in space does 
not depend on the direction of time. Moreover, from a mathematical point of view, it 
can be proved that any transformation of �(�, t) , F(�(�, t)) , which satisfies the nomal-
ized condition ∫ F(�(�, t))d� = 1 for any �(�, t) , must be an identity transformation.2 
Then, we have T�(�, t) = �(�,−t) . These two transformation rules ensure the time 
reversal invariance of the continuity equation.

(1)iℏ
��(�, t)

�t
=

[
−
ℏ2

2m
∇2 + V(�, t)

]
�(�, t),

(2)
��(�, t)

�t
+ ∇ ⋅ �(�, t) = 0,

2 I thank Phil Pearle and Rodi Tumulka for showing me a proof of this result.

1 It has also been argued that the transformation referred to as ‘time reversal’ in quantum mechanics 
does not deserve the name, and it should be more appropriately described as motion reversal ([7], p.377; 
[8], p.266).
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By writing the wave function in the polar form � = ReiS∕ℏ , where R and S are real 
functions, we can obtain the following relation:

By using the transformation rules for �(�, t) and �(�, t) , we have 
TS(�, t) = −S(�,−t) + C0 , where C0 is a real constant. Then we can obtain the stand-
ard antiunitary transformation rule for the wave function: T�(�, t) = �∗(�,−t) when 
ignoring an overall constant phase. Based on this transformation rule for the wave 
function, we can derive the transformation rule for every observable from its defini-
tion (or its operation on the wave function). For example, for position � , we have 
T�T−1 = � , and for momentum � = −iℏ∇ , we have T�T−1 = −� , and for angular 
momentum � = � × � , we have T�T−1 = −�.

In addition, by analyzing the probability current acceleration:

where �(�, t) =
�(�,t)

�(�,t)
 is the local velocity for the probability current, and 

Q(�, t) =
ℏ2

2m

∇2R(�,t)

R(�,t)
 , we can obtain the transformation rule for the scalar potential: 

TV(�, t) = V(�,−t) . Notably this transformation rule applies to the electric scalar 
potential T�(�, t) = �(�,−t) . Using the definition � = −∇� , we can obtain the 
transformation rule for the electric field T�(�, t) = �(�,−t) . Furthermore, by ana-
lyzing the continous equation for a charged system in an electromagnetic field, we 
can also obtain the transformation rules for the magnetic potentials and fields. The 
probability current density for a spin-0 system with mass m and charge Q in an 
external electromagnetic field is

where �(�, t) is the magnetic vector potential. Then T�(�, t) = −�(�,−t) requires 
T�(�, t) = −�(�,−t) . Using the definition � = ∇ × � , we can obtain the transfor-
mation rule for the magnetic field T�(�, t) = −�(�,−t).

Lastly, we can also obtain the time reversal transformation rule for spin in a simi-
lar way. The probability current for a spin-s system with mass m and charge Q and 
magnetic moment �s in an external electromagnetic field is

where � is the spin operator. Then T�(�, t) = −�(�,−t) requires T�(�, t) = −�(�,−t) . 
Based on the transformation rules for spin and the wave function, we can also derive 
the result T2 = −I for spin-1/2 systems.

(3)�(�, t) =
1

m
�(�, t)∇S(�, t).

(4)
��(�, t)

�t
=

1

m
[∇Q(�, t) − ∇V(�, t)],

(5)�(�, t) =
1

m
�(�, t)[∇S(�, t) − Q�(�, t)],

(6)
�(�, t) =

1

2m
[(�∗(�, t)��(�, t) − �(�, t)��∗(�, t)) − 2Q�(�, t)�(�, t)]

+
�s

s
∇ × (�∗(�, t)��(�, t)),



 Foundations of Physics (2022) 52:114

1 3

114 Page 4 of 7

The above analysis provides a new derivation of the standard time reversal trans-
formation rules in quantum mechanics, which ensures that the Schrödinger equa-
tion is time reversal invariant. The analysis can be extended to relativistic quantum 
mechanics.

3  Understanding Time Reversal in Quantum Mechanics

In the following, I will argue that the assumption that the probability current is 
reversed by the time reversal transformation can be justified. I will also explain how 
the new analysis help solve the puzzle of time reversal in quantum mechanics.

First of all, this assumption is in accordance with our intuition that time reversal 
reverses the direction of a current. However, it should be pointed out that unlike 
the standard velocity in Newtonian mechanics, the probability current is not defined 
as the rate of change of an instantaneous configurational quantity; rather, it is also 
an instantaneous quantity, though not configurational. This means that one cannot 
directly determine the transformation rule for the probability current by its def-
inition, and this is different from the situation of standard velocity in Newtonian 
mechanics.3

Next, as noted before, it has been debated whether an instantaneous quantity 
should be changed by time reversal. According to some authors, it does not make 
sense to time-reverse a truly instantaneous quantity [6], and time reversal can involve 
nothing other than reversing the rates of change of instantaneous quantities such as 
velocities of particles [5]. This is a nonstandard view of time reversal. On this view, 
time reversal will keep the probability current density, as well as the probability den-
sity, unchanged. Then, in the time-reversed world, when the net probability current 
flows into a volume, the probability in the volume does not increase but decrease. In 
other words, this nonstandard view violates the continuity equation.

Note that different from the Schrödinger equation for the wave function, the con-
tinuity equation for the probability density and current density has a direct physical 
meaning. It is a local and stronger form of the probability conservation law. A weak 
version of the probability conservation law says that the total probability of obtain-
ing all possible results is one. The continuity equation says that when the probability 
density changes continuously or the probability current is continuous, the increase/
decrease of the probability in a volume is equal to the net probability that flows into/
out the volume. The probability conservation law is comprehensible, and its validity 
is justified by its physical meaning. The total probability of obtaining all possible 
results can only be one, not be any other value such as one third. And when the net 
probability current flows into a volume, the probability in the volume must increase 

3 Note that even though in the de Broglie-Bohm theory we can determine the transformation rule for the 
velocity of a Bohmian particle by its definition, which is assumed to be equal to the current velocity, we 
still need to resort to the time reversal invariance of the guiding equation to derive the standard trans-
formation rule for the wave function. Then, why not directly assume the time reversal invariance of the 
Schrödinger equation? In my view, the de Broglie-Bohm theory does not help much in solving the puzzle 
of time reversal in quantum mechanics (cf. [11]).
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and cannot decrease. This is a requirement of logic and definition. Thus it is argu-
able that the continuity equation should also be valid in the time-reversed world. In 
other words, the continuity equation should be time reversal invariant.

Then, what is wrong with the nonstandard view of time reversal? and why should 
an instantaneous quantity such as probability current be reversed by the time rever-
sal transformation? In my view, when the rate of change (of a time reversal invari-
ant quantity) is determined by an instantaneous quantity, this instantaneous quantity 
should also be reversed by the time reversal transformation as the rate of change. 
If this is not true, then the reversed rate of change cannot be explained in the time-
reversed world.4 The nonstandard view’s violation of the continuity equation is just 
such a case. By the continuity equation, the change of the probability density over 
time is produced and determined by the probability current. If the rate of change 
of the probability density is time-reversed but the probability current is not time-
reversed, then the change of the probability density over time cannot be explained in 
the time-reversed world, and the probability conservation law will also be violated. 
For example, in the time-reversed world, when the net probability current flows into 
a volume, the probability in the volume does not increase but decrease. Then the 
decrease of the probability in the volume cannot be explained, and the continuity 
equation is also violated. Note, however, that if an instantaneous quantity does not 
determine the rate of change of something invariant by time reversal, then it is argu-
able that this instantaneous quantity should not be reversed by time reversal, as the 
nonstandard view rightly holds.

The above analysis provides a possible way to solve the puzzle of time reversal 
in quantum mechanics. First, the probability density is arguably not changed by the 
time reversal transformation, and thus the rate of change of the probability density 
is reversed by the time reversal transformation. Next, since the rate of change of the 
probability density is determined by the probability current according to the conti-
nuity equation, it is arguable that the probability current should be reversed by the 
time reversal transformation. Then why time reversal involves complex conjugation 
is because the phase of the wave function is an integral of the probability current 
density (divided by the probability density) and time reversal reversing the probabil-
ity current (and keeping the probability density unchanged) amounts to taking the 
complex conjugation of the wave function.5 Moreover, why time reversal reverses 
momentum, spin, and magnetic fields is because these quantities appear in the prob-
ability current density, and reversing the probability current requires reversing them.

4 This argument can also be used in Newtonian mechanics and Maxwell’s theory of electromagnetism. 
For example, in Newtonian mechanics, not only the standard velocity, which is defined as the derivative 
of position with respect to time, but also the intrinsic velocity [12], which determines the standard veloc-
ity, should be reversed by the time reversal transformation.
5 Several authors have given a similar account [2, 9, 13].
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Finally, two points need to be emphasized. First, the above solution to the puz-
zle of time reversal is independent of the measurability of the probability current.6 
Moreover, the solution is also independent of the physical meaning of the wave 
function or the ontology of quantum mechanics (cf. [14]). Next, the density and cur-
rent density in the continuity equation can be measured by protective measurements, 
and the continuity equation may thus have a deeper ontological meaning. According 
to the principle of protective measurement [15–18], when the wave function of a 
single quantum system is known, one can measure both � and � by a series of pro-
tective measurements on the system. Let the explicit form of the measured wave 
function at a given instant t be �(x) , and the measured observable A be (normalized) 
projection operators on small spatial regions Vn having volume vn:

A protective measurement of A then yields

which is the average of the density �(x) = |�(x)|2 over the small region Vn . Similarly, 
we can measure another observable B =

ℏ

2mi
(A∇ + ∇A) . The measurement yields

This is the average value of the current density j(x) in the region Vn . Then when 
vn → 0 and after performing measurements in sufficiently many regions Vn we can 
measure �(x) and j(x) everywhere in space. When assuming the psi-ontic view 
[19], �(x) and �(x) , when multiplied by the mass and charge of the system, can be 
explained as the mass and charge density and current density [20],7 and the conti-
nuity equation can also be explained as the local form of the conservation law for 
mass and charge. This may provide further support for the validity of the continuity 
equation.

(7)A =

{
1

vn
, if x ∈ Vn,

0, if x ∉ Vn.

(8)⟨A⟩ = 1

vn ∫Vn

��(x)�2dv,

(9)⟨B⟩ = 1

vn ∫Vn

ℏ

2mi
(�∗∇� − �∇�∗)dv =

1

vn ∫Vn

j(x)dv.

6 There have been worries about the measurability of the probability current in the continuity equation. 
For example, Sakurai wrote, “we would like to caution the reader against a too literal interpretation of j 
as � times the velocity defined at every point in space, because a simultaneous precision measurement of 
position and velocity would necessarily violate the uncertainty principle.” (Sakurai, 1996, pp.102, 103).
7 Take �(x) as an example. When assuming the psi-ontic view, the density �(x) = |�(x)|2 will be a physi-
cal property of the measured system. Then, what density is the density �(x) ? Since a measurement must 
always be realized by a certain physical interaction between the measured system and the measuring 
device, the density must be, in the first place, the density of a certain interacting charge. For instance, if 
the measured system is charged and the measurement is realized by an electrostatic interaction between 
the measured system and the measuring device, then the density multiplied by the charge of the meas-
ured system Q, namely Q�(x) , will be the charge density of the measured system in position x. Similarly, 
Q� will be the charge current density of the measured system in position x. A detailed analysis of the ori-
gin of the charge density and charge current density can be found in [20].
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4  Conclusion

In this paper, I have argued that the standard account of time reversal in quantum 
mechanics can be derived based on the assumption that the probability current is 
reversed by the time reversal transformation. Moreover, this assumption is justified 
and the meaning of time reversal is clarified by analyzing the relationship between 
the rates of change and the instantaneous quantities which determine them. This 
analysis provides a new solution to the puzzle of time reversal in quantum mechan-
ics. It remains to be seen whether this solution is fully satisfying and whether there 
are other better and complete solutions.
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