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Abstract
It is generally believed that the de Broglie-Bohm model does not admit a particle 
interpretation for massive relativistic spin-0 particles, on the basis that particle 
trajectories cannot be defined. We show this situation is due to the fact that in the 
standard (canonical) representation of the Klein-Gordon equation the wavefunction 
systematically contains superpositions of particle and anti-particle contributions. 
We argue that by working in a Foldy-Wouthuysen type representation uncoupling 
the particle from the anti-particle evolutions, a positive conserved density for a par-
ticle and associated density current can be defined. For the free Klein-Gordon equa-
tion the velocity field obtained from this current density appears to be well-behaved 
and sub-luminal in typical instances. As an illustration, Bohmian trajectories for a 
spin-0 boson distribution are computed numerically for free propagation in  situa-
tions in which the standard velocity field would take arbitrarily high positive and 
negative values.

Keywords Foundations of quantum mechanics · Relativistic quantum theory · De 
Broglie-Bohm model · Klein-Gordon equation · Bohmian trajectories

1 Introduction

The de Broglie-Bohm interpretation of quantum mechanics [1, 2] has played and 
still plays an important role in our understanding of quantum mechanics. Not that 
one should necessarily endorse the ontological package and mechanisms put for-
ward by the Bohmian model as describing the “real” behavior of quantum systems. 
The strength of the Bohmian model lies, in our view, elsewhere: by proposing an 
account of dynamical processes for which the orthodox interpretation tells us we 
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should give up any attempt to explain them, the de Broglie-Bohm interpretation 
improves our understanding and our intuition of quantum phenomena.

However, this situation holds for non-relativistic quantum mechanics based on the 
Schrödinger equation. In the relativistic domain, the Bohmian model suffers from 
several difficulties. In particular, it seems impossible, to define trajectories for spin-0 
bosons described by the Klein-Gordon equation (see Ch. 11 of Ref. [3]). Obviously, 
one might expect that in the high-energy regimes in which particles can be created or 
destroyed, the usual Bohmian framework based on continuous trajectories would need 
to be replaced by a different picture based on quantum field theory. But it might appear 
surprising that even in low energy regimes, it is not possible to give a de Broglie-Bohm 
trajectory description of a spin-0 particle propagating in free space.

The aim of this work is to examine the underlying reasons for the breakdown of 
the Bohmian model for systems obeying the Klein Gordon equation, point out how the 
problems can be repaired, and effectively introduce Bohmian trajectories from a newly 
defined Klein-Gordon current. In a nutshell, our view is that in relativistic quantum 
mechanics, a quantum state intrinsically superposes particles and anti-particles. In par-
ticular, causality only holds if the time evolution operator includes the propagator for 
the particle and anti-particle sectors. So a generic state describing a particle (with a 
positive density everywhere) will develop anti-particle components, and the density 
will become negative in some spatial regions. This leads to superluminal velocities and 
closed loops in space-time [4], a feature that is deemed "inconsistent" (see Sec. 10.4 of 
Ref. [3], or [5]) with the guidance formula at the basis of the Bohmian model. This is 
why in the past some radical solutions have been proposed, such as restricting the set 
of admissible states to those that lead to positive only densities [6], or employing the 
absolute value of the density in order to define trajectories [7]. The first solution does 
not work, as remarked by Bell (see footnote in [6]), while the second one still leads to 
superluminal velocities for the Bohmian particle. Other approaches have also been sug-
gested [8–11].

The solution we will advocate will be to work in a representation that uncouples the 
particle and anti-particle sectors. In momentum space, this is well-known to be possi-
ble through Foldy-Wouthuysen-type transformations [12–14] (see also [15] for a recent 
review). Then a new density needs to be defined in this representation. A locally con-
served current different from the canonical one can indeed be defined in a given refer-
ence frame, though it is known that such currents do not transform as a 4-vector [16].

We will begin (Sec.2) by recalling how the Bohmian velocity field naturally appears 
in non-relativistic quantum mechanics, even without imposing the guidance formula. 
We will then examine why the same procedure does not work with the Klein-Gordon 
equation in its canonical form. In Sec. 3 we will introduce the representation separat-
ing the particle and anti-particle sectors and introduce the density and corresponding 
current defined directly in that representation. We will then define de Broglie-Bohm 
trajectories in that representation and compute trajectories for the free Klein-Gordon 
equation (Sec.4). We close with a few concluding remarks (Sec.5).
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2  Density Current and Particle Velocity

2.1  Non‑Relativistic Guidance Equation

In the usual non-relativistic de Broglie-Bohm approach, the particle velocity 
vj(x, t) is obtained from the standard Schrödinger current jNR(x, t) through

where

is the probability density, whose conservation takes the form

(to simplify the notation, we will assume a free Hamiltonian and stay in one spatial 
dimension). Recall that vj(x, t) defines a velocity field, and that the Bohmian particle 
follows the streamlines of the current: the trajectory x(t) is obtained by integrating 
the guidance equation

with an initial condition x(t0) = x0.
The current can be written as the symmetrized combination of the momentum 

operator P and a spatial projection:

and the average of the current density is easily seen to yield

where V ≡ P∕m can be seen as a velocity operator. Hence the average Schrödinger 
current gives the average velocity of the system.

It is also straightforward to write Eq. (5) as

(1)vj(x, t) =
jNR(x, t)

�NR(x, t)

(2)�NR(x, t) = �⟨x��⟩�2

(3)
��NR

�t
+ �xjNR(x, t) = 0

(4)
dx

dt
= vj(x(t), t)

(5)jNR(x, t) =
1

2m
(⟨��P�x⟩⟨x��⟩ + ⟨��x⟩⟨x�P��⟩),

(6)⟨jNR(t)⟩ = � dxjNR(x, t) = ⟨��P
m
��⟩ ≡ ⟨��V��⟩

(7)jNR(x, t) = �⟨x��⟩�2
�
1

2

�
⟨�� P

m
�x⟩

⟨��x⟩ +
⟨x� P

m
��⟩

⟨x��⟩
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Comparing with Eqs. (1) and (2), we see that the term between [...] is precisely the 
velocity (1) that we can rewrite as

The expression on the right handside is sometimes known as the weak value of the 
velocity operator1. The important point is that the velocity of the particle in the non-
relativistic de Broglie-Bohm approach is naturally defined from the wavefunction 
and the velocity operator.

2.2  Klein‑Gordon Equation

2.2.1  Current and Density in the Canonical Formulation

The Klein-Gordon equation in its usual “ canonical” form is [19]

and the associated density reads

m is the rest mass and c the light velocity and the �t term entering the definition of 
the scalar product is due to the presence of a second order time derivative in Eq. (9). 
The density is not positive definite (this will become clearer below), and � is there-
fore interpreted as a charge density. Note that in the free case plane waves with both 
positive and negative energies are solutions of Eq. (9), associated with particles and 
anti-particles respectively [19].

The corresponding conserved current obeying �t� + �xj = 0 can be written in the 
same form as the Schrödinger current (5), namely

We therefore also have as for the Schrödinger current average

But in a relativistic context, p/m is not the classical velocity of a particle (it is not 
even bounded); the classical expression for the relativistic velocity is

(8)vj(x, t) = Re
⟨x�V��⟩
⟨x��⟩ .

(9)(iℏ�t)
2� =

(
P2c2 + m2c4

)
�

(10)�(x, t) =
iℏ

2mc2

(
�∗(x, t)�t�(x, t) − �(x, t)�t�

∗(x, t)
)
;

(11)j(x, t) =
1

2m
(⟨��P�x⟩⟨x��⟩ + ⟨��x⟩⟨x�P��⟩).

(12)⟨j(t)⟩ = ⟨��P
m
��⟩.

1 This expression was first obtained in Ref. [17]; see [18] for a brief review on weak values, including a 
discussion on the current density.
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where Ep ≡
√
p2c2 + m2c4 . Hence there is no analog for the right hand-side of Eq. 

(6). Moreover the current cannot take the form (7), as �⟨x��⟩�2 does not represent the 
conserved density.

2.2.2  Klein‑Gordon Equation in Hamilton Form

As is well-known [19], the Klein-Gordon (KG) equation can be written in a form 
involving a first order time derivative,

where �i are the usual Pauli matrices (generally denoted �i in other contexts). The 
wave-function

is now a 2-dimensional vector whose components are related to the solutions of the 
canonical KG equation (9) by

The positive and negative energy plane-wave solutions of the canonical KG equation 
become

The density (10) and current (11) take the form

(13)vcl =
pc2

Ep

=
p

�m
,

(14)iℏ�tΨ =

[(
�3 + i�2

) P2

2m
+ �3mc

2

]
Ψ

(15)Ψ =

(
�

�

)

(16)� = � + �

(17)iℏ�t� = mc2(� − �).

(18)Ψ+ =
1

2

√
mc2Ep

(
mc2 + Ep

mc2 − Ep

)
e−i(Ept−px)∕ℏ

(19)Ψ− =
1

2

√
mc2Ep

(
mc2 − Ep

mc2 + Ep

)
ei(Ept−px)∕ℏ.

(20)� = ⟨Ψ��3�x⟩⟨x�Ψ⟩ = ��(x)�2 − ��(x)�2

(21)j =
1

2

�
⟨Ψ��3�x⟩⟨x�

�
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�P
m
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�
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Note that the right hand-side of Eq. (20) indicates that �(x) contributes to a negative 
charge and can thus be seen as an anti-particle contribution. The �3 matrix in the dual 
vector is the signature of the pseudo-Hermitian character of the KG formalism [20] , 
the (non-positively defined) inner product being given by ⟨Ψ1

��Ψ2⟩KG = ⟨Ψ1
���3��Ψ2⟩. 

The momentum operator is multiplied by �3 + i�2, changing the sign of the anti-par-
ticle contribution.

2.2.3  Standard Bohmian Particle Velocity

The Hamiltonian formulation of the KG equation—a system of two coupled linear 

equations—is handy in showing that a normalized initial state Ψ(t0, x) =
(
�(t0, x)

0

)
 

with positive charge � = ||�(t0, x)||
2 everywhere at t = t0 will become at an evolved time 

Ψ(t, x) =

(
�(t, x)

�(t, x)

)
, so that typically �(t, x) will become negative in some regions. 

Attempting to define a Bohmian velocity through

(22)v(t, x)
?

=
j(t, x)

�(t, x)

Fig. 1  The canonical Klein-Gordon density �(x, t) of an ultra-relativistic spin-0 boson (a) at t = 0 and 
(b) at t = 2 (natural units ℏ = c = m = 1 are used). At t = 0 the distribution is a Gaussian (with mean 
momentum p0 = 3 , mean position x0 = 0 and unit spatial width) that is everywhere positive, but the den-
sity becomes negative in some regions as the wavefunction evolves

Fig. 2  The velocity field 
defined by Eq. (22) in a given 
space-time region for the initial 
density shown in Fig. 1a (natu-
ral units are used). The velocity 
field is superluminal in some 
spatial regions
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will lead to regions of infinitely high velocities. This happens in the vicinity of a 
point for which �(t, x) = 0, but this does not necessarily imply that j(x) → 0 . Indeed, 
according to Eq. (20), an equal amount of positive and negative charge yields a van-
ishing density, i.e. |�(x)| → |�(x)| ⟹ �(x) → 0.

An illustration is given in Fig. 1: an initial positive charged Gaussian (Fig. 1a) 
quickly develops regions of negative charge density (Fig. 1b). The velocity field, as 
defined by Eq. (22) is shown in Fig. 2. Regions of superluminal velocities are read-
ily visible, as expected when �(t, x) goes through 0 and changes sign. The wavefunc-
tions were computed semi-analytically from the wavepacket expansion of the time-
evolved Gaussian in the Hamiltonian representation (see [21] for details).

While it is generally acknowledged that having a superluminal motion ruins a 
particle trajectory interpretation of spin-0 bosons [3, 4, 22], some authors, beginning 
with de Broglie [23] (see also [24]) have asserted that this type of motion is not a 
problem as long as it does not have experimental consequences (that is, this type of 
behavior for individual particles is washed out by the intrinsically statistical nature 
of the quantum formalism). One of us has argued elsewhere [25, 26] on general 
grounds why, if the de Broglie-Bohm interpretation is taken as a realist construal of 
quantum phenomena, such arguments should be rejected, as they undermine realism 
(since any fundamental dynamical law can be postulated as long as the statistical 
predictions are recovered) and employ the same type of strategy as the Copenhagen 
interpretation: what matters in the predictive agreement with experiments, and an 
experiment that would specifically measure velocities will never detect superlumi-
nal aspects2. For this reason, in our view a particle interpretation for spin-0 bosons 
hinges on the existence of well-behaved trajectories.

3  Separating Particles from Anti‑Particles

3.1  Pseudo‑Unitary Transformations

Representations decoupling the positive and energy components were looked for 
soon after the classic Newton-Wigner work [27] on the correct form of the position 
operator in relativistic quantum mechanics. This was first worked out in the context 
of the Dirac equation by Foldy and Wouthuysen [12], and then generalized to the 
Klein-Gordon case and particles of arbitrary spin [13, 14]. It was indeed realized 
[15, 28] that the representation in which X is the position operator is not the stand-
ard Dirac one, nor in the KG case the Hamilton formulation given by Eq. (14), but 
a representation in which the particle and anti-particle components are not coupled.

The unitary transformation (or rather, pseudo-unitary in the KG case) depends on 
the specific Hamiltonian of the problem. It is known in explicit form in a few special 
cases, including the free Hamiltonian. For the free particle KG Hamiltonian (14), a 
well-known operator [19] that separates particles from anti-particles is

2 De Broglie wittingly notes the similarity between his reasoning and Bohr’s argumentation, see p. 135 
in [23].
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Note that U is pseudo-unitary in the sense that U† ≠ U−1 but �3U†�3 = U−1 . The 
positive and negative energy solutions (18) and (19) become

Φ+(p, t) defines indeed a state with pure particle contribution. The KG equation (14) 
becomes

with

Since the Hamiltonian in this representation—which, contrary to Eq. (14), has the 
same form as the classical relativistic Hamiltonian—is diagonal, the evolution oper-
ator will conserve the pure particle character of an initial particle wavepacket, with-
out the appearance of any anti-particle contribution.

3.2  Density and Current

The standard KG density and current, given by Eqs. (20) and (21) can be written 
in the uncoupled representation, but this will not change the property or the val-
ues taken by these quantities. We should instead define a new density and a new 
current density directly from the uncoupled wavefunction.

Let us assume we have a particle wavepacket, taken as a linear superposition

that we can rewrite more simply as

with Φ(x, t) ≡ (�(x, t), 0) . �(x, t) obeys the upper line of Eqs. (26–27), an equation 
that is sometimes known as the Salpeter or relativistic Schrödinger equation [29].

Let us define the density �(x, t) by

(23)U =

(
mc2 + Ep

)
− �1

(
mc2 − Ep

)

√
4mc2Ep

.

(24)Φ+(p, t) = UΨ+ =

(
1

0

)
e−i(Ept−px)∕ℏ

(25)Φ−(p, t) = UΨ− =

(
0

1

)
ei(Ept−px)∕ℏ.

(26)iℏ�tΦ = HΦΦ

(27)HΦ = UHU−1 = �3

√
p2c2 + m2c4,

(28)Φ(x, t) = ∫ dpg(p)Φ+(p, t),

(29)�(x, t) = ∫ dpg(p)e−i(Ept−px)∕ℏ
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�(x, t) is of course positive by definition. It can then be shown [29] that the quantity

defines a current density obeying the continuity equation �t� + �xJ = 0 . By integrat-
ing over x, it is straightforward to obtain

This expression is the average of an operator that is the quantized counterpart of the 
classical relativistic velocity. This was not the case with the average of the canonical 
KG current, given by Eq. (12), although in the non-relativistic case, the average of 
the Schrödinger current (6) does match the expression for the average (non-relativ-
istic) velocity.

4  Defining de Broglie‑Bohm Trajectories in the Uncoupled 
Representation

4.1  Velocity Field

We have argued above that the trouble in defining de Broglie-Bohm trajectories 
from the canonical KG current comes from the fact that in the canonical representa-
tion particles and anti-particles are mixed, so that the resulting charge density and 
current results from the quantum superposition of particle and anti-particle contri-
butions. We propose to introduce the Bohmian velocity field from the density and 
current defined from the uncoupled representation. Using Eqs. (30) and (31), this 
gives

(30)�(x, t) = |�(x, t)|2 = ∫ dkdpg∗(k)g(p)e−i(Ep−Ek)t∕ℏe−i(k−p)x∕ℏ.

(31)J(x, t) = c2 ∫ dkdp
p + k

Ep + Ek

g∗(k)g(p)e−i(Ep−Ek)t∕ℏe−i(k−p)x∕ℏ

(32)⟨J(t)⟩ = ⟨��Pc
2

Ep

��⟩.

Fig. 3  The uncoupled Klein-Gordon density of a spin-0 boson (a) at t = 0 and (b) at t = 2 (in natural 
units). The density at t = 0 was chosen to be identical to the one shown in Fig. 1a. By construction, the 
density (30) remains positive as the initial state evolves, as can be seen in panel (b)
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By construction, this velocity field will not suffer from the problems due to the fluc-
tuating sign of �(x, t) that affect the velocity field (22) defined from the canonical 
KG density. As an illustration, we reconsider the example shown in Figs. 1 and 2. 
The evolution of the same Gaussian leads to a density that is everywhere positive 
(Fig. 3a, b). Even though this is a highly relativistic regime ( p0 = 3mc ), the veloc-
ity field (33) is well-behaved—it takes values around the classical velocity (13) of a 
particle of momentum p0 and does not lead to the appearance of superluminal veloc-
ities, as pictured in Fig. 4.

4.2  Bohmian Trajectories

Bohmian trajectories are obtained in the usual way by solving for dx∕dt = v[x(t), t)] , 
with the initial condition x(0) = x0 , where x0 lies within the initial distribution 
�(t = 0) . An illustration is given in Fig.  5, in which trajectories and velocities 
obtained from the uncoupled density and current density are shown, for an initial 

(33)v(t, x) =
J(x, t)

�(x, t)
.

Fig. 4  The velocity field defined 
by Eq. (33) (uncoupled Klein-
Gordon velocity field) is shown 
(in natural units) in a given 
space-time region when the 
initial state is the one shown in 
Fig. 3a. The values are all very 
close to the value of the classi-
cal velocity field of a particle 
having momentum p0 (compare 
with the canonical velocity field 
shown in Fig. 2)

Fig. 5  a Bohmian trajectories x(t) for spin-0 bosons in the uncoupled Klein-Gordon representation. The 
initial state is similar to the Gaussian shown in Fig. 3a except for the mean momentum, taken here to be 
p0 = 0 (the momentum distribution has therefore both positive and negative components). The initial 
position x0 of each trajectory can be read off on the vertical axis. b Velocity ẋ = dx(t)∕dt of each Bohm-
ian trajectory plotted in panel (a). Note that all the velocities remain sub-luminal (natural units are used, 
with c = 1)
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state identical to the one displayed in Fig. 3a except for the value of p0 that is taken 
as p0 = 0. Note that these trajectories are similar in shape to the well-known non-
relativistic de Broglie-Bohm trajectories, and show no pathological behavior, con-
trary to the ones defined from the canonical KG quantities.

We have not been able nevertheless to obtain strict conditions on the initial distri-
bution ensuring that v(x, t) remains subluminal, even in the case of free propagation. 
Numerical simulations starting from normalizable densities, including with interfer-
ing distributions and the presence of nodal structures, have all shown Bohmian tra-
jectories with subluminal velocities, with J(x, t) → 0 as �(x, t) vanishes.

One particular instance for which a superluminal velocity might appear concerns 
the exponentially small propagation of the wavefunction beyond the light cone. This 
is a feature obtained when a wavefunction with initial compact support is evolved 
with the particle (positive energy sector) propagator only. The issues with causal-
ity are usually disregarded, although the fundamental implications of this effect are 
poorly understood. Note that this feature is neither specific to the de Broglie Bohm 
formulation nor to the uncoupled representation; while the propagator in the canoni-
cal representation is fully causal, the position eigenfunctions are not delta functions 
but have a certain width of the order of the Compton wavelength (so that a position 
eigenfunction lying slightly outside the lightcone will overlap with the propagated 
wavefunction).

5  Conclusion

We have seen in this paper how de Broglie-Bohm trajectories for massive particles 
obeying the Klein-Gordon equation can be obtained by working with densities and 
currents defined from the wavefunctions in an uncoupled representation—a repre-
sentation in which the particle (positive energy) and anti-particles (negative energy) 
sectors are separated. This solves in principle the main specific issues affecting 
Bohmian trajectories obtained from the canonical representation of the KG equa-
tion, that we have attributed to the superposition of positive and negative energy 
contributions. It should be emphasized that the uncoupled representation is instru-
mental in order to understand the physical meaning of the quantum operators and to 
establish relations involving semi-classical expansions, the classical limit, and the 
non-relativistic limit as well.

However, additional work is needed in order to understand the dynamical proper-
ties of the trajectories, for different initial distributions and in the presence of poten-
tial and vector couplings. The matrix U uncoupling the particle from the anti-parti-
cle components depends on the Hamiltonian and can seldom be obtained in closed 
form as was the case in Eq. (23). For Hamiltonians with arbitrary potentials one 
must then resort to iterative methods [15, 30] in order to find the Foldy-Wouthuysen 
transformation. Another aspect that calls for further work concerns the generaliza-
tion to the many-particle case. This is particularly important in order to study the 
trajectories of entangled particles, that are expected to display non-local features.
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Most of the issues will actually hinge on the properties of the uncoupled den-
sities and current densities. These quantities are not well-known, and their use 
remains controversial (see e.g. the recent criticism [31] and the reply [32]). The 
main fundamental issue is the lack of manifest covariance of the density [33]: no 
covariant 4-current can be constructed if Eq. (30) is taken as the 0-component of 
such a current [16]. Note that the existence of a preferred frame, hypothesized 
by Bell [34], necessarily appears in one form or another in relativistic Bohm-
ian mechanics [35, 36]. For the many-particle case, the current density cannot 
be obtained in the form given by Eq. (31); a proper generalization needs to be 
obtained in a different form. Finally it should remembered that the first quan-
tized formalism breaks down when particle creation and annihilation cannot be 
neglected. At this point a proper quantum field theory treatment is needed; QFT 
accounts within the de Broglie-Bohm viewpoint have been proposed [37–39].

To sum up, we have introduced a method to define and compute Bohmian tra-
jectories for the massive Klein-Gordon equation. As a proof of principle we have 
determined such trajectories for a free Hamiltonian, and checked that their prop-
erties are devoid of the serious problems that have led up to now to renounce to 
a trajectory interpretation for spin-0 bosons. This work hence fills a gap between 
the non-relativistic trajectories and the quantum field theory accounts of the de 
Broglie-Bohm model.
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