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Abstract
We give a conceptually simple proof of nonlocality using only the perfect corre-
lations between results of measurements on distant systems discussed by Einstein, 
Podolsky and Rosen—correlations that EPR thought proved the incompleteness of 
quantum mechanics. Our argument relies on an extension of EPR by Schrödinger. 
We also briefly discuss nonlocality and “hidden variables” within Bohmian 
mechanics.

Keywords Nonlocality · Maximally entangled quantum states · Perfect correlations 
between distant events · No hidden variable theorems

1 Introduction

The implications of the Einstein Podolsky Rosen paradox and Bell’s theorem have 
fascinated many physicists and physics students for decades. While there is essen-
tially universal agreement that something important has been proven, exactly what 
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that is is controversial. There are those who take the position that the “hidden vari-
ables" whose existence was asserted by EPR do not exist, which in turn leads some 
authors to doubt the existence of “objective reality." (See [9, 28, p. 172], and [39, 
55]).1

In concurrence with other authors we claim that it is rather nonlocality which 
is the inescapable conclusion of the combinations of the arguments of EPR and of 
Bell (see, for example, [1, 5, 7, 12, 22, Section 8], [31, 35, 36, 41, 42, 46] and [56]). 
However, the originality of our analysis is to use an observation by Schrödinger [49] 
implying that the perfect correlations alone suffice to establish nonlocality. Thus, no 
additional relationship on the observables, e.g., Bell’s inequalities, must be empiri-
cally tested to establish that conclusion.

Many authors argue correctly that a consequence of the theorems on the non-
existence of “hidden variables" (such as Theorem  4.1 below or variants of it) is 
that quantum observables cannot have values pre-existing their measurement (see 
for example, [33, 34, 40, 45]). But few explain how that is nonetheless compatible 
with the existence and success of what is arguably the most natural hidden variable 
approach to quantum mechanics—and indeed the most natural and obvious version 
of quantum mechanics itself–namely Bohmian mechanics (see, for example, [4, 6, 
43] and see also Sect. 7).

To explain our reasoning, let us start with a physically classical situation: con-
sider the proverbial Alice and Bob, situated far away from each other, and simulta-
neoulsy tossing coins, over and over. One would expect the results on both sides to 
be random and uncorrelated. But suppose that the results appear indeed random but 
are also perfectly correlated: each time Alice’s toss results in heads, Bob’s toss also 
results in heads and similarly for tails.

Obviously such a strange situation would cry out for an explanation. One pos-
sibility is the following. First, Alice and Bob are able to manipulate their coin tosses 
so as to obtain whichever results they desire and second, they agree in advance on an 
apparently random sequence of results and manipulate their coin tosses so as to both 
obtain that sequence when they toss their coins.

This looks extravagant, but is there any other possibility? Well, yes, there exists 
an even more extravagant one: that when Alice tosses her coin, she instantly affects 
the trajectory of Bob’s coin, so that Bob’s coin falls on the same side as Alice’s coin.

Of course, this looks even more incredible than the previous scenario. But we 
may still ask: is there a third possibility? We don’t see any and we will assume from 
now on that the reader agrees with us on that point.

In 1935, Einstein, Podolsky and Rosen (EPR) [26] (reprinted in [54]) described a 
situation which is quite similar to the one above that will be discussed in Sect. 6. In a 
reformulation of their argument due to David Bohm ([10]), one considers spin one-
half particles, which means here that, if one measures a spin component one obtains 
only two possible values, which agree up to sign. Accordingly, if one measures the 
spin component in any given direction using a Stern-Gerlach apparatus, the two val-
ues correspond to the particle going either in the given direction or in the opposite 

1 The most extreme position might be that of Mermin, who told us that (due to a variant of Theorem 4.1 
below) the moon is demonstrably not there when nobody looks [38, p. 397].
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direction. In the first situation, we say that the spin is up in the chosen direction, and 
denote its quantum state by � ↑⟩ , and, in the second situation, we say of the spin is 
down in that direction, and denote its quantum state by � ↓⟩.

Bohm considered two such spin one-half particles 1 and 2, moving in opposite 
spatial directions, in the spin state

where the right factors refer to particle 1 and left ones to particle 2. One might ask 
to which spin direction do � ↑⟩ and � ↓⟩ refer. But it does not matter because it is a 
mathematical property of the state (1.1) to have the same form for all spin directions.

The state (1.1) also has the property that the result of the measurement of the spin 
of one particle in any given direction is “up" or “down" with probability one-half 
and, more importantly, is perfectly anti-correlated with the result of the measure-
ment of the spin of the other particle in the same direction, no matter how far apart 
the particles are: if the result of the measurement of the spin of particle 1 is “up", the 
result for particle 2 will be “down" and vice-versa.

This raises the same question as the one about coin tosses: how does one explain 
that? But here the first possibility is much more plausible, a priori, than the analo-
gous one about the coin tosses of Alice and Bob. We must simply assume that each 
particle carries with it “instructions" telling it how to react (“up" or “down") when 
its spin is measured in any given direction, and that the two particles have opposite 
instructions.

The problem is that the quantum state (1.1) does not include such instructions for 
individual particles. It says only that the probability of “up" and “down" are both 
equal to 1

2
 , in any direction, but with the results for both particles being perfectly 

anti-correlated.
Hence, said EPR, in one of the most misunderstood, yet simple, arguments in the 

history of physics, the quantum state is an incomplete description of physical reality. 
It does predict the correct statistics, but does not describe completely the physical 
state of individual systems. Stated more precisely, it says that we must describe this 
pair of particles not only by their joint quantum state but also by other variables, 
often called “hidden," that determine the behavior of those particles when one meas-
ures their spin in a given direction.

What could be wrong with this conclusion? In 1964, John Bell showed that sim-
ply assuming the existence of these variables leads to a contradiction with the quan-
tum predictions for the results of measuring the spin of those particles in different 
directions, one for the first particle and another for the second one (see [24] for a 
simple proof of this contradiction). Those predictions have been amply verified after 
Bell’s publication (see [29] for a review).

But what does this imply? That we have no choice but to accept the analogue 
of the second branch of the alternative proposed about the coin tosses of Alice and 

(1.1)�Ψ⟩ = 1√
2

�
� ↑⟩� ↓⟩ − � ↓⟩� ↑⟩

�
,
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Bob: that the measurement of the spin on one side affects instantaneously (if the 
measurements on both sides are made simultaneously),2 in some way, the result on 
the other side. This is what is called nonlocality or “action at a distance." We write 
“in some way" because this argument does not indicate how that action takes place 
and provides only an indirect proof of its existence.

We will use here an extension of the EPR argument due to Schrödinger [49–51] 
to provide a more direct proof of nonlocality. We will also briefly sketch how non-
locality occurs in Bohmian mechanics. We will use very little mathematics and refer 
to the literature for proofs.

2  Schrödinger’s Maximally Entangled States

Schrödinger’s extension of EPR argument relies on the use of special quantum 
states, called maximally entangled, for pairs of physical systems that may be located 
far apart. These states have the property that, for each quantum observable of one of 
the systems, there is an associated observable of the other one such that the result 
of the measurement of that observable is perfectly correlated with the result of the 
measurement of the first one.

Consider a finite dimensional (complex) Hilbert space H , of dimension N, and 
orthonormal bases �n and �n in H (we will assume below that all bases are ortho-
normal). A unit vector, or state, Ψ in H⊗H is maximally entangled if it is of the 
form

Since we are interested in quantum mechanics, we will associate, by convention, 
each space in the tensor product with a “physical system," namely we will consider 
the set {�n}

N
n=1

 as a basis of states for physical system 1 and the set {�n}
N
n=1

 as a basis 
of states for physical system 2.

These states have the following fundamental properties (see [16] for a proof): 

1 The representation (2.1) is basis independent in the sense that, if we choose a 
basis {��

n
}N
n=1

 for system 1, instead of {�n}
N
n=1

 , there is a basis {� �
n
}N
n=1

 for system 
2 such that Ψ can be written as: 

2 Given a maximally entangled state Ψ , we may associate to every operator of the 
form 1⊗ O (acting non-trivially on system 1) an operator of the form Õ⊗ 1 (act-

(2.1)Ψ =
1√
N

N�

n=1

𝜓n ⊗𝜙n.

(2.2)Ψ =
1√
N

N�

n=1

𝜓 �
n
⊗𝜙�

n
.

2 For simplicity, we take for granted in this paper a non-relativistic framework.
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ing non-trivially on system 2)3 such that, if (�n)
N
n=1

 are the eigenstates of O, with 
eigenvalues �n , 

 the vectors (�n)
N
n=1

 are the eigenstates of Õ , also with eigenvalues �n : 

 (when Ψ is of the form (2.1)).

Remark 2.1 A simple example of a maximally entangled state is given in (1.1). In 
this situation, we simply have, for any spin component O, that Õ = −O and the cor-
relations mentioned below become anti-correlations.

Let us now see what this notion of maximally entangled state implies for quan-
tum measurements.

Suppose that we have a pair of physical systems, whose states belong to the same 
finite dimensional Hilbert space H (like spin states). And suppose that the quantum 
state Ψ of the pair is maximally entangled, i.e. of the form (2.1).

Any observable acting on system 1 is represented by a self-adjoint operator O, 
which has therefore a basis of eigenvectors. Since the representation (2.1) holds in 
any basis (for an appropriate choice of the basis {�n}

N
n=1

 ), let the set {�n}
N
n=1

 in (2.1) 
be the eigenstates of O and let �n be the corresponding eigenvalues, see (2.3).

If one measures that observable O, the result will be one of the eigenvalues �n , 
each having equal probability 1

N
 . If the result is �k , the (collapsed) state of the sys-

tem after the measurement will be 𝜓k ⊗𝜙k . Then, the measurement of observable Õ 
(with eigenstates �n ), on system 2, will necessarily yield the value �k.

Reciprocally, if one measures an observable Õ on system 2 and the result is �l , the 
(collapsed) state of the system after the measurement will be 𝜓l ⊗𝜙l , and the meas-
urement of observable O on system 1 will necessarily yield the value �l.

To summarize, we have derived the following consequence of the quantum 
formalism:

Principle of Perfect Correlations In any maximally entangled quantum state, 
see (2.1), there is, for each operator O acting on system 1, an operator Õ acting on 
system 2, such that, if one measures the physical quantity represented by operator 
Õ on system 2 and the result is the eigenvalue �l of  Õ , then measuring the physical 
quantity represented by operator O on system 1 will yield with certainty the same 
eigenvalue �l , and vice-versa.

3  Schrödinger’s Paradox

The following property will be crucial in the rest of the paper.

(2.3)O�n = �n�n,

(2.4)Õ𝜓n = 𝜆n𝜓n,

3 Both operators O and Õ act on the same Hilbert space H.
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Locality If systems 1 and 2 are spatially separated from each other, then measur-
ing an observable on system 1 has no instantaneous effect whatsoever on system 2 
and measuring an observable on system 2 has no instantaneous effect whatsoever 
on system 1.

Finally, we must define:
Non-contextual value-maps Suppose there are situations in which the result of 

measuring an observable A of a quantum system is determined already, before the 
measurement. Suppose, that is, that A has, in these situations, a pre-existing value 
v(A) revealed by measurement and not merely created by measurement. And sup-
pose that there is a situation in which we have a pre-existing value v(A) for every 
quantum observable A ∈ A , the set of self-adjoint operators on the Hilbert space H 
of the system.

We would then have a non-contextual value-map, namely a map v ∶ A → ℝ that 
assigns the value v(A) to any experiment associated with what is called in quantum 
mechanics a measurement of an observable A. There can be different ways to meas-
ure the same observable. The value-map is called non-contextual because all such 
experiments, associated with the same quantum observable A, are assigned the same 
value.4 Of course, that value map v would be a property of a given quantum system 
and vary from one system to the other, even if they are “similar" (e. g. if they are all 
electrons).

A non-contextual value-map has the fundamental property that if Ai , i = 1,… , n , 
are mutually commuting self-adjoint operators on H , [Ai,Aj] = 0,∀i, j = 1,… , n , 
then, if f is a function of n variables and B = f (A1,… ,An),

It is a well-known property of quantum mechanics that, since all the operators 
A1,… ,An,B commute, they are simultaneously measurable with results that must 
satisfy (3.1).

But, and this is important to emphasize, (3.1) follows trivially from the non-con-
textualilty of the value-map. Indeed, a valid quantum mechanical way to measure 
the operator B = f (A1,… ,An) is to measure A1,… ,An and, denoting the results 
�1,… , �n , to regard �B = f (�1,… , �n) as the result of a measurement of B . Since, 
by the non-contextuality of the map v, all the possible measurements of B must yield 
the same results, (3.1) holds.

Now we will use the perfect correlations and locality to establish the existence of 
a non-contextual value-map v for a maximally entangled quantum state of the form 
(2.1). By the principle of perfect correlations, for any operator O on system 1, there 
is an operator Õ on system 2, which is perfectly correlated with O through (2.3, 2.4).

Thus, if we were to measure Õ , obtaining �l , we would know that

concerning the result of then measuring O. Therefore, v(O) would pre-exist the 
measurement of O. But, by the assumption of locality, the measurement of Õ , asso-
ciated with the second system, could not have had any effect on the first system, and 

(3.1)v(B) = f (v(A1),… , v(An)).

(3.2)v(O) = �l

4 As we shall see in Sect. 7, contextual value-maps occur naturally in Bohmian mechanics.
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thus, this value v(O) would pre-exist also the measurement of Õ and this would not 
depend upon whether Õ has actually been measured. Letting O range over all opera-
tors on system 1, we see that there must be a non-contextual value-map O → v(O).

For what follows in Sect.  4, it is important to stress that the value map so 
obtained is non-contextual – that v(O) depends only on the observable O and not on 
the detailed procedure for measuring O. This is so because the perfect correlations 
in the maximally entangled state themselves depend only on the observables and not 
on the procedure for measuring them. More explicitly, in the preceding argument, 
consider different procedures for measuring O, and always the same procedure for 
measuring Õ . These procedures, though different, must yield the same value, namely 
�l.

For example, suppose that O commutes with both O′ and O′′ , while the latter 
don’t commute. Then one might measure O together with O′ or O together with O′′ . 
The corresponding procedures must be different since O′ and O′′ don’t commute. 
However the value map discussed above must assign the same value to O in both 
cases.

To summarize, we have shown:
Schrödinger’s paradox Let A be the set of self-adjoint operators on the com-

ponent Hilbert space H of a physical system in a maximally entangled state (2.1). 
Then, assuming locality and the principle of perfect correlations, there exists a non-
contextual value-map v ∶ A → ℝ.

Remark 3.1 That the existence of a non-contextual value map is “paradoxical" will 
be shown in the next section.

4  The Non‑existence of Non‑contextual Value‑Maps

The problem posed by the non-contextual value-map v whose existence is implied 
by Schrödinger’s paradox is that such maps simply do not exist. Indeed, one has the:

Non-existence of non-contextual value-maps Let A be the set of self-adjoint 
operators on the Hilbert space H of a physical system. Then there exists no non-
contextual value-map v ∶ A → ℝ.

This is an immediate consequence of the following purely mathematical result, 
since (4.1, 4.2, 4.3) are consequences of (3.1) ((4.2, 4.3) follow from (3.1) by taking 
n = 2 and f (x, y) = x + y or f (x, y) = xy):

Theorem  4.1 Let H be a finite dimensional Hilbert space of dimension at least 
four, and let A be the set of self-adjoint operators on H. There does not exist a map 
v ∶ A → ℝ such that: 

(1) ∀O ∈ A , 

(4.1)v(O) is an eigenvalue of O.
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(2) Either 

∀O,O� ∈ A with [O,O�] = OO� − O�O = 0, or 

∀O,O� ∈ A with [O,O�] = 0.

See [16] for a discussion of the proof of the Theorem, originally due to John Bell 
[4] and to Kochen and Specker [33], with simplified proofs due to David Mermin 
[37], and to Asher Peres [47, 48].

5  Nonlocality

The conclusions of Schrödinger’s paradox and the non-existence of non-contextual 
value-maps plainly contradict each other. So the assumptions of at least one of them 
must be false. However, Theorem 4.1 that implies the non-existence of non-contextual 
value-maps is a purely mathematical result. And Schrödinger’s paradox assumes only 
the perfect correlations and locality. The perfect correlations are an immediate conse-
quence of quantum mechanics. The only remaining assumption is locality. Hence we 
can deduce:

Nonlocality The predictions of quantum mechanics are incompatible with 
locality.

Remark 5.1 For a discussion of the relation between this proof and other proofs of 
nonlocality, including [2, 18, 19, 27, 32, 52], see [16, Sections 5, 7].

6  EPR’s Original Argument

In their original paper [26], Einstein, Podolsky and Rosen considered the following for-
mal maximally entangled state for two particles in one dimension:

Here and below, we set ℏ = 1 . We say formal because this state is not in the Hilbert 
L2(ℝ2) of the 2-particle system. It is similar to a maximally entangled state because 
the family of functions (�p(x) = exp(ixp))p∈ℝ is a generalized basis in the Hilbert 
space L2(ℝ) . Thus (6.1) is similar to (2.1) with 1√

N
 times the sum replaced by an 

integral:

(4.2)v(O + O�) = v(O) + v(O�),

(4.3)v(OO�) = v(O)v(O�),

(6.1)ΨEPR(x1, x2) =∫
∞

−∞

dp exp(i(x1 − x2 + x0)p).

(6.2)ΨEPR = ∫
∞

−∞

dp 𝜓p ⊗𝜙p
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where �p = eix0p�−p is a similar generalized basis.
Using a standard identity for distributions ( ∫ ∞

−∞
dp exp(ixp) = 2��(x) ) one can 

rewrite the state (6.1) as:

This state has, according to standard quantum mechanics, the property that, if one 
measures the position operator Q1 of particle 1 and obtains the result x, then the 
measurement of the position operator Q2 of particle 2 will yield x + x0 , with a simi-
lar conclusion if one first measures Q2 . And, if one measures the momentum opera-
tor P1 = −i

d

dx1
 of particle 1 and obtains the result p, then the measurement of the 

momentum operator P2 = −i
d

dx2
 of particle 2 will yield −p.

Using this fact, EPR claimed to have established that there are pre-existing values 
for Q and P (for are least one of the particles and in fact, by symmetry, for both) for 
a quantum system in the state (6.1). For them, this proved the incompleteness of 
ordinary quantum mechanics, since it shows that certain quantities that are not part 
of the quantum formalism (the precise values of position and momentum) must exist 
(of course, here, they assumed locality).

Note that to obtain their conclusion of incompleteness it would have sufficed to 
consider just Q (or just P) (this argument is discussed in detail by Maudlin [36, 3rd 
edn, pp. 128–132]). In arguing for pre-existing values for both Q and P they estab-
lished, assuming locality, the absolutely shocking conclusion that, despite the uncer-
tainty principle, both position and momentum could have values at the same time. 
However, in so arguing, they somewhat obscured what they wished to establish: that 
the wave function of a quantum system does not provide its complete description, 
for which consideration of Q alone would have sufficed.

Remark 6.1 What Schrödinger did was to recognize the full power of a maximally 
entangled state such as that of EPR, along the lines described earlier in this paper. 
He did not realize that the pre-existing values so obtained were impossible. He did, 
however, realize that they were deeply puzzling, as follows: let O be the energy of 
the harmonic oscillator, O =

1

2
(P2 + �2Q2) with P = −i

d

dx
 . It is well known that the 

eigenvalues of the operator O are of the form �(n + 1

2
) , n = 0, 1, 2,… . But, argued 

Schrödinger, if these values v(O) can be determined by measuring a similar opera-
tor Õ acting on a distant system, they must pre-exist the measurement of O, and that 
should hold true for every value of � . Similarly values v(Q) and v(P) of the position 
operator Q and the momentum operator P of the first system must also pre-exist 
their measurements.

It would be natural to suppose, argued Schrödinger, that 
v(O) =

1

2
(v(P)2 + �2v(Q)2) . But values satisfying this relation for all � are impos-

sible: the quantities v(O) can’t belong to the set {�(n + 1

2
)|n = 0, 1, 2,…} , for all 

values of � for any given values of v(Q) and v(P).
However, Schrödinger recognized that, since Q and P do not commute, the rela-

tion v(O) = 1

2
(v(P)2 + �2v(Q)2) need not hold and thus, that one cannot derive the 

(6.3)ΨEPR(x1, x2) =2��(x1 − x2 + x0).
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above contradiction.5 Schrödinger concluded from the apparent contradiction that in 
fact v(O) , v(P), and v(Q) can’t be related in the same way as the operators O, P, and 
Q are, and he raised the question of exactly how the values are in fact related and 
indeed whether they are related at all: He raised the possibility that all these values, 
including v(O) for all the different choices of � , are independent, so that these quan-
tities would correspond to an infinite dimensional set of possibilities.

Remark 6.2 If Schrödinger had realized that the pre-existing values that he had 
established assuming locality were impossible, as we indicated earlier in this paper, 
he would have proven that quantum mechanics is indeed nonlocal, using whatever 
observables he wished to use for the contradiction. We note, however, that one can 
in fact also derive a contradiction from the pre-existing values of the original EPR 
variables using a Theorem of Robert Clifton [20] instead of Theorem 4.1, see [17].

7  Nonlocality and Bohmian Mechanics

In Bohmian mechanics, or pilot-wave theory, the complete state of a closed physical 
system composed of N particles is a pair (�Ψ⟩,�) , where �Ψ⟩ is the usual quantum 
state, and � = (X1,… ,XN) is the configuration representing the positions of the par-
ticles, that exist, independently of whether one measures them or not (each Xi ∈ ℝ

3).
These positions are the “hidden variables" of the theory, in the sense that they 

are not included in the purely quantum description �Ψ⟩ . However, they are not at all 
hidden: it is only the particles’ positions that one detects directly, in any experiment 
(think, for example, of the impacts on the screen in the two-slit experiment). Both 
objects, the quantum state and the particles’ positions, evolve according to determin-
istic laws: 

1. The wave function evolves according to the usual Schrödinger’s equation.
2. The particle positions � = �(t) evolve in time, and their velocities are func-

tions of the wave function evaluated at the positions of all the particles at time t: 
(X1(t),… ,XN(t)).

  We will not discuss how this theory works and reproduces the quantum predic-
tions, which in fact it does, but we will sketch the answer to the following ques-
tions (for elementary introductions to this theory, see [1, 15, 53] and for more 
advanced ones, see [8, 11, 13, 14, 21, 23, 25, 30, 44]): 

1 Since Bohmian mechanics is deterministic, the result of any experiment or 
measurement must be predetermined by the initial conditions of the system 
(possibly including those of the apparatus). But shouldn’t that allow us to 
construct a non-contextual value map, whose mere existence is ruled out by 
Theorem 4.1?

2 How does nonlocality manifests itself in Bohmian mechanics?

5 Thus he did not make the mistake made by von Neumann (see [17] for a discussion of that mistake).
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   To answer the first question, one must analyze what “measurements" really 
are in Bohmian mechanics. The latter introduces, besides the wave function, only 
particles and their trajectories. In particular, it does not introduce pre-existing 
values of the spin, for example, or of any other quantum “observable."

What are called “measurements" in ordinary quantum mechanics are, in Bohmian 
mechanics, certain interactions between a particle and a measuring device. These 
interactions will affect the trajectories of the particles. But, for whatever “observa-
ble" we claim to “measure," at the end of the experiment one detects particles’ posi-
tions: a particle goes “up" or “down" in a Stern–Gerlach experiment for example, or 
is detected at some distance from its starting point after a given time in a momentum 
measurement. The statistics of those positions will, according to Bohmian mechan-
ics, agree with the quantum predictions.

Moreover, one can show that these measurements are actually contextual, in the 
sense that the result will not depend only on the initial configuration and quantum 
state of the measured system, but also on the way the measuring device is setup. For 
example, in a Stern–Gerlach experiment “measuring" the spin of a particle, if we 
consider two experiments starting with exactly the same wave function and the same 
position of the particle, we can obtain the “up" or “down" result depending on the 
way the apparatus is set up, see [16], and see [43] for a detailed account of spin in 
Bohmian mechanics. The same contextuality holds for the measurement of momen-
tum, see [17].

That is why we put here “measurements" of quantum observables in quota-
tion marks: they do not reveal any pre-existing value of the observables that does 
not depend upon how they are “measured." That is also why Bohmian mechanics 
does not provide a non-contextual value map, and is therefore not contradicted by 
Theorem 4.1.

But then, of course, Bohmian mechanics must be nonlocal. Its nonlocality follows 
from the fact that the velocities of the particles are functions of the wave function 
evaluated at the instantaneous positions of all the particles of the system. To illus-
trate this by an example, consider the entangled state (1.1) and assume that the wave 
function of particle 1 is localized in a region A, while that of particle 2 is localized 
in region B, both regions being situated far apart from each other. Then introducing 
a potential, for example a magnetic field in a Stern–Gerlach apparatus, in region A, 
will affect not only the state (1.1) and therefore the velocity and the motion of parti-
cle 1, but also those of particle 2, because the values of the wave function acting on 
that particle depend also on the position of particle 1.

8  Conclusions

The fact that Bohmian mechanics is nonlocal is a virtue rather than a defect of that 
theory, since any physical theory reproducing some elementary quantum predictions 
(the perfect correlations of Sect. 2) must be nonlocal.

Returning to what had puzzled EPR and Schrödinger, they thought that quan-
tum mechanics was incomplete and that, in order to obtain a complete physical 
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description, the description through the quantum state had to be supplemented by 
what we call a non-contextual value map. But that is because they believed that non-
locality was unthinkable.

Later investigations by Bell [4] and by Kochen-Specker [33] showed that such a 
non-contextual value map could not exist. Meanwhile, Bell had also shown that non-
locality was unavoidable in any physical theory reproducing some quantum predic-
tions concerning correlations between measurements made on distant systems [3].

But, maybe more importantly, Bohm [11] had shown how to supplement the ordi-
nary quantum description by introducing particle trajectories in a manner that hap-
pens to yield a nonlocal theory that (thus) does not imply the existence of a non-con-
textual value map. The upshot is that quantum mechanics can indeed be completed, 
as EPR and Schödinger thought, but not in the way they expected: not by introduc-
ing a non-contextual value map, but by giving up their assumption of locality.

References

 1. Albert, D.: Quantum Mechanics and Experience. Harvard University Press, Cambridge (1992)
 2. Aravind, P.K.: Bell’s theorem without inequalities and only two distant observers. Found. Phys. 

Lett. 15, 399–405 (2002)
 3. Bell J.S.: On the Einstein–Podolsky–Rosen paradox, Physics 1, 195–200 (1964). Reprinted as 

Chap. 2 in [8]
 4. Bell J.S.: On the problem of hidden variables in quantum mechanics, Rev. Modern Phys. 38, 447–

452 (1966). Reprinted as Chap. 1 in [8] and [54, p. 397]
 5. Bell, J.S.: Atomic cascade photons and quantum mechanical nonlocality, Comments Atomic Mol. 

Phys. 9, 121–126 (1980). Reprinted as Chap. 13 in [8, p. 105]
 6. Bell, J.S.: On the impossible pilot wave, Found. Phys. 12, 989-999 (1982). Reprinted as Chap. 17 in 

[8, p. 159]
 7. Bell, J.S.: Bertlmann’s socks and the nature of reality, J. de Physique 42 C2 41-61 (1981). Reprinted 

as Chap. 16 in [8, p. 139]
 8. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Collected Papers on Quantum Phi-

losophy, 2nd edn, with an introduction by Alain Aspect, Cambridge University Press, Cambridge, 
2004; 1st edn 1987. Many of the works by Bell which are of concern to us may be found in this 
reference. See also [9]. This is a complete collections of Bell’s papers on quantum foundations

 9. Bethe, H.: My experience in teaching physics; Hans Bethe’s accceptance speech for the 1993 Oer-
sted Medal presented by the American Association of Physics Teachers 13 April 1993. Am. J. Phys. 
61, 972–973 (1993)

 10. Bohm, D.: Quantum Theory. Dover Publications, New York (1989)
 11. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden variables”, Parts 1 

and 2, Phys. Rev. 89, 166–193 (1952). Reprinted in [54] pp. 369–390
 12. Bohm, D., Hiley, B.J.: On the intuitive understanding of nonlocality as implied by quantum theory. 

Found. Phys. 5, 93–109 (1975)
 13. Bohm, D., Hiley, B.J.: The Undivided Universe. Routledge, London (1993)
 14. Bricmont, J.: Making Sense of Quantum Mechanics. Springer, Berlin (2016)
 15. Bricmont, J.: Quantum Sense and Nonsense. Springer International Publishing, Cham (2017)
 16. Bricmont, J., Goldstein, S., Hemmick, D.L.: Schrödinger’s paradox and proofs of nonlocality using 

only perfect correlations. J. Stat. Phys. 180, 74–91 (2020)
 17. Bricmont, J., Goldstein, S., Hemmick, D.L.: EPR-Bell-Schrödinger proof of nonlocality using posi-

tion and momentum. In: Allori, V., Bassi, A., Dürr, D., Zanghi, N. (eds.) Do wave functions jump? 
Perspectives on the work of G.C. Ghirardi, pp. 5–33. Springer, New York (2021)

 18. Brown, H.R., Svetlichny, G.: Nonlocality and Gleason’s lemma Part I: deterministic theories. Found. 
Phys. 20, 1379–1386 (1990)



1 3

Foundations of Physics (2022) 52:53 Page 13 of 14 53

 19. Cabello, A.: Bell’s theorem without inequalities and without probabilities for two observers. Phys. 
Rev. Lett. 86, 1911–1914 (2001)

 20. Clifton, R.: Complementarity between position and momentum as a consequence of Kochen–
Specker arguments. Phys. Lett. A 271, 1–7 (2000)

 21. Dürr, D., Goldstein, S., Zanghí, N.: Quantum equilibrium and the origin of absolute uncertainty. J. 
Stat. Phys. 67, 843–907 (1992)

 22. Dürr, D., Goldstein, S., Zanghí, N.: Quantum equilibrium and the role of operators as observables in 
quantum theory. J. Stat. Phys. 116, 959–1055 (2004)

 23. Dürr, D., Teufel, S.: Bohmian Mechanics. The Physics and Mathematics of Quantum Theory, 
Springer, Berlin (2009)

 24. Dürr, D., Goldstein, S., Tumulka, R., Zanghì, N.: John Bell and Bell’s theorem. In: Borchert, D.M. 
(ed.) Encyclopedia of Philosophy. Macmillan Reference, New York (2005)

 25. Dürr, D., Goldstein, S., Zanghí, N.: Quantum Physics Without Quantum Philosophy. Springer, Ber-
lin (2012)

 26. Einstein, A., Podolsky, B., Rosen, N.: Can quantum mechanical description of physical reality be 
considered complete? Phys. Rev. 47, 777–780 (1935)

 27. Elby, A.: Nonlocality and Gleason’s Lemma. Part 2. Found. Phys. 20, 1389–1397 (1990)
 28. Gell-Mann, M.: The Quark and the Jaguar: Adventures in the Simple and the Complex. W.H. Free-

man, New York (1994)
 29. Goldstein, S., Norsen, T., Tausk, D.V., Zanghì, N.: Bell’s theorem. Scholarpedia 6(10), 8378 (2011)
 30. Goldstein S: Bohmian mechanics, The Stanford Encyclopedia of Philosophy, Edward N. Zalta (ed.) 

(Spring 2013 Edition), available on: https:// plato. stanf ord. edu/ archi ves/ spr20 13/ entri es/ qm- bohm/
 31. Herbert, N.: Quantum Reality. Doubleday, New York (1985)
 32. Heywood, P., Redhead, M.L.G.: Nonlocality and the Kochen–Specker Paradox. Found. Phys. 13, 

48–499 (1983)
 33. Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 

17, 59–87 (1967)
 34. Laloë, F.: Do we really understand quantum mechanics? Strange correlations, paradoxes, and theo-

rems. Am. J. Phys. 69, 655–701 (2001)
 35. Maudlin, T.: Space-time in the quantum world. In: Cushing, J., Fine, A., Goldstein, S. (eds.) Bohm-

ian Mechanics and Quantum Theory: An Appraisal, pp. 285–307. Kluwer, Dordrecht (1996)
 36. Maudlin, T.: Quantum Non-locality and Relativity: Metaphysical Intimations of Modern Physics. 

Wiley, Oxford (2011)
 37. Mermin, N.D.: Hidden variables and the two theorems of John Bell. Rev. Modern Phys. 65, 803–

815 (1993)
 38. Mermin, N.D.: Quantum mysteries for anyone. J. Philos. 78, 397–408 (1981)
 39. Mermin, N.D.: Bringing home the atomic world: quantum mysteries for anybody. Am. J. Phys. 49, 

940–943 (1981)
 40. Mermin, N.D.: Simple unified form for the major no-hidden-variables theorems. Phys. Rev. Lett. 65, 

3373–3376 (1990)
 41. Norsen, T.: Einstein’s boxes. Am. J. Phys. 73, 164–176 (2005)
 42. Norsen, T., John, S.: Bell’s concept of local causality. Am. J. Phys. 79, 1261–1275 (2011)
 43. Norsen, T.: The pilot-wave perspective on spin. Am. J. Phys. 82, 337–348 (2014)
 44. Norsen, T.: Foundations of Quantum Mechanics: An Exploration of the Physical Meaning of Quan-

tum Theory. Springer International Publishing, Cham (2017)
 45. Pagels, H.R.: The Cosmic Code. Simon and Schuster, New York (1982)
 46. Penrose, R.: Shadows of the Mind: A Search for the Missing Science of Consciousness. Oxford Uni-

versity Press, Oxford (1994)
 47. Peres, A.: Incompatible results of quantum measurements. Phys. Lett. A 151, 107–108 (1990)
 48. Peres, A.: Two simple proofs of the Kochen–Specker theorem. J. Phys. A 24, L175–L178 (1991)
 49. Schrödinger E.: Die gegenwärtige Situation in der Quantenmechanik, Naturwissenschaften 23, 

807–812; 823–828; 844–849 (1935). English translation: The present situation in quantum mechan-
ics, translated by J.- D. Trimmer, Proceedings of the American Philosophical Society 124, 323–338 
(1980). Reprinted in [54] pp. 152–167

 50. Schrödinger, E.: Discussion of probability relations between separated systems. Math. Proc. Camb. 
Philos. Soc. 31, 555–563 (1935)

 51. Schrödinger, E.: Probability relations between separated systems. Math. Proc. Camb. Philos. Soc. 
32, 446–452 (1936)

https://plato.stanford.edu/archives/spr2013/entries/qm-bohm/


 Foundations of Physics (2022) 52:53

1 3

53 Page 14 of 14

 52. Stairs, A.: Quantum logic, realism and value-definiteness. Philos. Sci. 50, 578–602 (1983)
 53. Tumulka, R.: Understanding Bohmian mechanics: a dialogue. Am. J. Phys. 72, 1220–1226 (2004)
 54. Wheeler, J.A., Zurek, W.H. (eds.): Quantum Theory and Measurement. Princeton University Press, 

Princeton (1983)
 55. Wigner, E., Interpretation of quantum mechanics in [54, p. 260]
 56. Wiseman, H.M.: From Einstein’s theorem to Bell’s theorem: a history of quantum nonlocality. Con-

temp. Phys. 47, 79–88 (2006)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.


	From EPR-Schrödinger Paradox to Nonlocality Based on Perfect Correlations
	Abstract
	1 Introduction
	2 Schrödinger’s Maximally Entangled States
	3 Schrödinger’s Paradox
	4 The Non-existence of Non-contextual Value-Maps
	5 Nonlocality
	6 EPR’s Original Argument
	7 Nonlocality and Bohmian Mechanics
	8 Conclusions
	References




