
Vol.:(0123456789)

Foundations of Physics (2021) 51:95
https://doi.org/10.1007/s10701-021-00499-w

1 3

The Weirdness Theorem and the Origin of Quantum 
Paradoxes

Alessio Benavoli1   · Alessandro Facchini2 · Marco Zaffalon2

Received: 5 January 2021 / Accepted: 8 September 2021 / Published online: 28 September 2021 
© The Author(s) 2021

Abstract
We argue that there is a simple, unique, reason for all quantum paradoxes, and that 
such a reason is not uniquely related to quantum theory. It is rather a mathemati-
cal question that arises at the intersection of logic, probability, and computation. 
We give our ‘weirdness theorem’ that characterises the conditions under which 
the weirdness will show up. It shows that whenever logic has bounds due to the 
algorithmic nature of its tasks, then weirdness arises in the special form of negative 
probabilities or non-classical evaluation functionals. Weirdness is not logical incon-
sistency, however. It is only the expression of the clash between an unbounded and 
a bounded view of computation in logic. We discuss the implication of these results 
for quantum mechanics, arguing in particular that its interpretation should ultimately 
be computational rather than exclusively physical. We develop in addition a proba-
bilistic theory in the real numbers that exhibits the phenomenon of entanglement, 
thus concretely showing that the latter is not specific to quantum mechanics.
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1  Introduction

We are interested in defining bounds on the algorithmic capabilities of a mathemati-
cal theory and in analysing their implications. We articulate our views from a logical 
standpoint, by postulating the following principle of rationality: 

	(Coherence)	 The theory should be logically consistent.

This is what we essentially require to each well-founded mathematical theory: it has 
to be based on a few axioms and rules from which we can unambiguously derive 
its mathematical truths. The next postulate defines the computational limitations we 
want our theory to be subject to: 

	(Computation)	 Inferences in the theory should be computable in polynomial time.

The second postulate will turn out to be central. It requires that there should be an 
efficient way to execute the theory, and in fact we are going to adopt the metaphor of 
a computer that executes the theory, i.e., that yields inferences out of it.

In what follows, we shall develop our considerations with regard to the special 
case of a theory of uncertainty. It will essentially coincide with the Bayesian theory 
once it is freed of the constraint of completeness (or precision); loosely speaking, 
such a theory is equivalent to modelling uncertainty with sets of probabilities. This 
choice will define a perimeter for the mathematical technicalities, while focusing on 
a case of wide interest and impact.

The postulates of coherence and computation are apparently in conflict with each 
other: intuitively, if the computer can only execute polynomial tasks, the theory will 
be consistent only up to what polynomial calculus allows. This is a view from out-
side the computer, however; it is the view of a hypothetical ‘classical’ observer with 
no computational limitations and thus external to the theory. An observer that is 
instead internal to the theory and behaves according to it is still subject to the coher-
ence of the theory; it will therefore be impossible to prove any inconsistency from 
the inside. This is an instance of what we call an external-internal clash. 

1.	 We formalise such a clash by what we refer to as ‘the weirdness theorem’. It 
shows that any theory of ‘algorithmic rationality’, that is, one that obeys the two 
postulates of coherence and computation, necessarily departs in a very peculiar 
way from the probabilistic point of view. In particular, the theorem proves that 
all models compatible with the theory will present some negative ‘probabilities’ 
(these models are sometimes referred to as ‘quasi-probabilities’ in the literature). 
Negative probabilities are however incompatible with classical rationality, and 
for this reason a hypothetical classical observer may regard the internal world 
as incoherent. Equivalently, to a classical observer the behaviour of the internal 
world may appear to be incompatible with so-called classical evaluation function-
als (a concept used in particular in quantum logic).

2.	 We then define a theory of probability on a continuous space of complex vectors 
that complies with the two postulates of coherence and computation, and we show 
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that its deductive closure (internal view) is tantamount to quantum theory (QT). 
The complex vectors represent the possible states of the computer while it runs 
the theory, and any such state bears within it the properties of the particles in QT, 
such as their directions or angles of polarisation.

	   By framing it as a theory of rationality, we therefore view QT as a normative 
theory guiding an agent to assess her subjective beliefs on the results of a quantum 
experiment. As we are going to stress all along the paper, we ground the norma-
tivity of QT on three aspects: firstly, its deductive structure is tantamount to a 
logical theory, and therefore it is based on a requirement of consistency (coher-
ence)—to follow the rule of QT is to be assured to be consistent. Secondly, the 
model is based on a possibility (phase) space whose elements are interpreted as 
states of the world. Finally, we advance that the specific features of our world that 
ground the use of QT is its being a computation.

	   The external-internal clash, when transposed to QT, is thus a clash between a 
computational view and a view stemming from classical physics, the weirdness 
theorem providing its formal, mathematical formulation. When we try to give a 
classical physical interpretation to QT we fail, because classical physics, in our 
common understanding, needs classical probability, and the latter grounds its 
normativity essentially only on its internal consistency, given the fact that it does 
not require any limitations on the computational resources available for executing 
its inferences. As such, to an external observer, QT presents a number of weird 
phenomena, such as entanglement, and is made up of negative probabilities or is 
characterised by a non-Boolean structure of events. We will show that this weird-
ness follows by the computational postulate.

	   There is also more to it. In our framework QT is naturally based on sets of (or 
imprecise) probabilities: in fact, requiring the computation postulate is similar 
to defining a probabilistic model using only a finite number of moments;1 and 
therefore, implicitly, to defining the model as the set of all the (quasi-)probabili-
ties compatible with the given moments’ constraints.

3.	 As mentioned above, quantum paradoxes appear to be entirely a consequence of 
the weirdness theorem; in particular, the weirdness does not follow from having 
to deal with complex number or quantised states.

	   We enforce this view by working out another example theory, which is unre-
lated to QT. Such a theory uses real numbers to model the experiment of tossing 
a classical coin under algorithmic rationality. Eventually the theory turns out 

1  In classical probability, given a (real) variable x and an expectation operator E, the n-th (non-central) 
moment of x is defined as mn ∶= E[xn] (we can also define multivariate moments, e.g., E[xn

1
xm
2
] ). Given a 

sequence of moments m0,m1,m2,… ,mn , there exist infinitely many probability distributions correspond-
ing to the same moments and they form a convex set. A sequence of scalars m0,m1,m2,… ,mn is a valid 
sequence of moments provided that they satisfy certain consistency constraints. For instance, the moment 
matrix, obtained by organizing that sequence into a matrix (in a certain way), must be positive semi-
definite, see for instance [1]. As we will show in this paper, this gives reason for the constraint � ≥ 0 for 
density matrices in QT.
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to be based on Bernstein polynomials2 and to admit entanglement. This shows 
in addition that the quantum-logic and the quasi-probability foundations of QT 
are two faces of the same coin, being natural consequences of the computation 
principle, as formalised by the weirdness theorem.

In order to develop the results mentioned above, we rely on a dual3 characterisa-
tion of probability in terms of lotteries (or gambles). In doing so, we thus provide 
a subjective foundation, à la de Finetti, of so-called generalised probability theo-
ries. Compared to algebraic or information-based extensions of probability theories 
(e.g., [3, 4]), a gambling foundation, which emphasises the notion of logical con-
sistency, ensures soundness, and naturally provides a ground for comparing differ-
ent theories—it boils down to assess the compatibility of their different notions of 
consistency.

1.1 � Related Work

The perspective given in this paper may be related to the agent-centered interpreta-
tion of QT advanced by QBism [5, 6]. However, by grounding the use of QT par-
ticularly in the world as being a computation, we depart from QBism, which puts 
at the center the Born rule but, for now, is unable to ground its use on something 
else than a coherence constraint. In this, our view looks more similar to the one 
advanced by Pitowsky [7], whose empirical premise in the derivation of the Born 
rule is that the structure corresponding to the outcomes of incompatible measure-
ments is a non-Boolean algebra.4

There is a long tradition of denying to quantum states any reference to the outside 
world that can be traced back at least to Bohr, and more broadly to the Copenha-
gen interpretation of QT. Similar contemporary views are labelled as �-epistemic. 
In addition to QBism, they include for instance Healey’s quantum pragmatism [8], 
Rovelli’s relational quantum mechanics [9], and the empiricist interpretation of de 
Muynck [10].5 All these interpretations “do not view the quantum state as an intrin-
sic property of an individual system and they do not believe that a deeper reality is 
required to make sense of quantum theory” [12, p. 72]. Opposite to this tradition 
stand �-ontic views such as the many world interpretation [13, 14], hidden vari-
able theories like Bohmian mechanics [15, 16], collapse theories [17–20], or the 
transactional interpretations [21–24], the common trait being that quantum states are 
regared as descriptions of physical systems.

4  Notice that, in our perspective, the non-boolean structure is a consequence of algorithmic rationality as 
it follows from ‘the weirdness theorem’: the non-boolean structure arising from the non-standard evalua-
tion functionals.
5  See for instance [11] for an overview of these views.

2  Given � ∈ [0, 1] , univariate Bernstein polynomials of degree n are defined as b�,n(�) ∝ ��(1 − �)n−� for 
� = 0, 1,… , n . This definition can be extended to multivariate polynomials.
3  A duality, generally speaking, translates concepts or mathematical structures into other concepts or 
structures. Two dual concepts or mathematical structures can be regarded equivalent, as essentially the 
same. “Fundamentally, duality gives two different points of view of looking at the same object” [2].
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About the quantum-classical probability clash, since QT foundation, there have 
been two main ways to explain it. The first one, which goes back to Birkhoff and von 
Neumann [25], explains this differences with the premise that, in QT, the Boolean 
algebra of events is taken over by the ‘quantum logic’ of projection operators on a 
Hilbert space. The second one is based on the view that the quantum-classical clash 
is due to the appearance of negative probabilities [26]. More recently, this research 
programme has been explored following different avenues: extending Boolean logic 
[25, 27, 28], using operational primitives [3, 29–31], using information-theoretic 
postulates [3, 32–39], building upon the subjective foundation of probability [5–7, 
40–47], and starting from the phenomenon of quantum nonlocality [3, 33, 34, 48, 
49].

Without aiming at reconstructing QT, the present manuscript provides an alter-
native and original explaination of the differences between quantum and classical 
probability: the algorithmic intractability of classical probability theory contrasted 
to the polynomial-time complexity of QT.

1.2 � Outline of the Paper

Section 2 is concerned with the coherence postulate. We recall the relatively little 
known fact that (imprecise) probability is the mathematical dual6 of a coherent logi-
cal theory. Addressing consistency (coherence or rationality) in such a setting is a 
standard task in logic; in practice, it reduces to prove that a certain real-valued func-
tion is nonnegative.

Section  3 details the computation postulate and its role in developing a model 
of algorithmic rationality. We consider the problem of verifying the nonnegativity 
of a function as above. This problem is generally undecidable or, when decidable, 
NP-hard. We make the problem polynomially solvable by redefining the meaning of 
(non)negativity. We give our fundamental weirdness theorem (Theorem 1) showing 
that such a redefinition is at the heart of the clash between classical probability and 
algorithmic rationality.

We show in Sect. 4 that QT is a special instance of algorithmic rationality and 
hence that Theorem 1 is the distinctive reason for all quantum paradoxes: the case of 
entanglement is detailed in Sect. 4.3; in Sect. 4.4 we show that the witness function, 
in the fundamental ‘entanglement witness theorem’, is nothing else than a negative 
function whose negativity cannot be assessed in polynomial time—whence it is not 
‘negative’ in QT.

Section 5 devises a further theory related to the experiment of tossing a classical 
coin under algorithmic rationality, which is hence unrelated to QT. We show that the 
theory admits entangled states, as prescribed by the weirdness theorem.

We give our concluding views in Sect. 6.

6  More precisely, here we refer to conic duality [50]. A coherent set of desirable gambles is a pointed 
closed convex cone and the 1-norm cross-section of its dual cone is a closed convex set of probabilities. 
We review this result in Sect. 2.
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Appendix A discussed more in detail the relation of our view of QT highlight-
ing in particular some aspects of our theory as well as some connection with other 
research fields. Appendix B contains the proofs of formal statements.

2 � Classical Rationality

De Finetti’s subjective foundation of probability [51] is based on a notion of ration-
ality (consistency or coherence). The idea is that of introducing a betting scheme 
and defining bettors as rational if their stakes are placed so as to avoid a sure loss 
(this is traditionally called a Dutch book; Economics refers to it as ‘arbitrage’). De 
Finetti shows that avoiding sure loss is equivalent to representing a bettor’s beliefs 
through classical (subjective) probability, thus providing a solid foundation for the 
latter.

2.1 � Desirability

What is less known, however, is that de Finetti’s bright intuition has greatly been 
extended in [52, 53], giving rise to the so-called theory of desirable gambles (TDG). 
This can equivalently be regarded as a reformulation of the well-known Bayesian 
decision theory (à la Anscombe-Aumann [54]) once it is freed of the constraint to 
deal with complete preferences [55, 56]. TDG is a dual theory of probability in the 
sense that probability is recovered from TGD through standard mathematical dual-
ity. In such a dual form, TDG appears just as a set of logical axioms.

These axioms have a natural interpretation as rationality requirements in the way 
a ‘classical’ subject (we call him Isaac), accepts gambles on the results of an uncer-
tain experiment. For instance, Isaac might claim ‘I find the gamble that returns 1 
utiles7 if the coin lands heads (H) and −2 utiles if it lands tails (T) to be desirable’. 
This means that he is willing to accept the gamble g = (1,−2) , that is, g(H) = 1 and 
g(T) = −2 : that is, to commit to both win 1 utile if the coin lands heads and lose 2 
utiles if it lands tails.

Gambles are thus rewards about the uncertain outcome of an ‘experiment’, such 
as tossing a coin in the example above. We denote with � its possibility space (e.g., 
{heads, tails} , ℝn , ℂn ). For many experiments, there may be more than one possi-
bility space of interest to the ‘experimenter’, �1,�2,… ,�k . A possibility space 
describing the joint outcome of this k-valued experiment can be constructed as the 
Cartesian product � = �1 ×�2 ×⋯ ×�k.8 Formally, a gamble g on � is a bounded 
real-valued function of �.

In an experiment, not all the quantities are observable and, therefore, bettable; 
we denote by LR the restricted set of all ‘permitted gambles’ on � . We assume that 
LR is a linear space (a vector space) including the constant functions. The subset of 

7  Abstract units of utility, we can approximately identify it with money provided we deal with small 
amounts of it [57, Sect. 3.2.5]
8  In other words, the outcomes of different experiments are assumed to be logically independent.
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all nonnegative gambles in LR , that is, of gambles for which Isaac is never expected 
to lose utiles, is denoted as L≥

R
∶= {g ∈ LR ∶ inf g ≥ 0} (analogously negative 

gambles are denoted as L<

R
∶= {g ∈ LR ∶ sup g < 0} ). In the following, with 

G ∶= {g1, g2,… , g|G|} ⊂ LR we denote a finite set of gambles that Isaac finds desir-
able:9 these are the gambles that he is willing to accept and thus commits himself to 
the corresponding transactions.

The crucial question is how to provide a criterion for a set G  of gambles, repre-
senting assessments of desirability, to be regarded rational. As we said, rationality is 
traditionally imposed by avoiding sure losses: that is, by requiring that Isaac should 
not be forced to find a negative gamble desirable as a logical consequence of his 
initial assessments of desirability. An elegant way to formalise this intuition is to 
regard LR as an algebra of formulas on top of which to define a logic. This leads us 
directly to formulate rationality as logical consistency.

To proceed on this route, we first need to define an appropriate logical calculus 
(characterising the set of gambles that Isaac must find desirable as a consequence of 
having desired G  in the first place) and based on it to characterise the family of con-
sistent sets of assessments.

First of all, since nonnegative gambles may increase Isaac’s utility without ever 
decreasing it, we first have that: 

	A0.	 L
≥

R
 should always be desirable.

This defines the tautologies of the calculus.
Moreover, whenever f, g are desirable for Isaac, then any positive linear combi-

nation of them should also be desirable (this amounts to assuming that Isaac has a 
linear utility scale, which is a standard assumption in probability). Hence the corre-
sponding deductive closure of a set G  is given by: 

	A1.	 K ∶= posi (L≥

R
∪ G).

Here ‘ posi ’ denotes the conic hull operator.10

In the betting interpretation given above, a sure loss for an agent is represented by 
a negative gamble: by accepting a negative gamble an agent will lose utiles no mat-
ter the output of the experiment. We are led therefore to the following:

Definition 1  (Coherence postulate) A set K of desirable gambles is coherent if and 
only if 

	A2.	 L
<

R
∩K = �.

9  The case when G  is infinite is analogous, but see Footnote  10. However, we will only consider the 
finite case in this paper because it suffices to the end of deriving finite-dimensional QT.
10  The conic hull of a set of gambles A  is defined as posi (A) = {

∑
i �igi ∶ �i ∈ ℝ

≥, gi ∈ A} . A techni-
cality is that when G  is not finite, A1 should require in addition that K is topologically closed.
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Note that K is incoherent if and only if −1 ∈ K ; therefore −1 can be regarded as 
playing the role of the Falsum in logic and hence A2 can be reformulated as 

	A2′.	−1 ∉ K.

An example that gives an intuition of the postulates is given in Fig. 1.
Postulate A2 (resp. A2′ ), which presupposes postulates A0 and A1, provides 

the normative definition of TDG, referred to by T  . Moreover, as simple as it looks, 
alone it is the pillar of the foundation of classical subjective probability.

2.2 � Probability (The Desirability Dual)

Let us show that probability is dual to desirability as described in Sect. 2.1. First of 
all, however, let us make some terminology precise: when we write probability, as 
a function, we mean probability charge, i.e., a finitely additive probability.11 In fact 
the Analysis literature calls ‘charge’ a finitely additive set function [58, Chap. 11]. 
It coincides then with what we have called a quasi-probability; if we instead want 
to refer to an actual probability, we have to use the qualified expression probability 
charge.

Assume K is coherent. We give K a probabilistic interpretation by first observing 
that, since LR is a topological vector space,12 we can consider its dual space L∗

R
 of 

all bounded linear functionals L ∶ LR → ℝ . Then the dual of K is defined as:

where � = {L ∈ L
∗

R
∣ L(1) = 1, L(h) ≥ 0 ∀h ∈ L

≥

R
} is the set of (belief) states; 

L(1) = 1 means that linear functionals preserve the unitary gamble (normalisation). 
L(g) ≥ 0 means that L(g) must be a nonnegative real number for all gambles g ∈ G  
that Isaac finds desirable.13 To K◦ we can then associate its extension K∙ in M  , that 
is, the set of all probability charges on � extending an element in K◦.

In other words, we can write L(g) as an expectation with respect to a probability: 
L(g) = ∫

�
g(�)d�(�) . One can then show that the extension K∙ is equal to:

(1)K
◦ = {L ∈ � ∣ L(g) ≥ 0, ∀g ∈ G},

11  Historically, de Finetti works with finitely additive probabilities, while Kolmogorov stays within the 
special case of sigma additivity.
12  Equipped with the supremum norm, LR constitutes a Banach space, and its topological dual L∗

R
 is the 

space of all bounded linear functionals on it. We assume the weak∗ topology on L∗

R
.

13  Technically, one can show that K is a closed convex cone and K◦ is a section of the dual cone of K . K◦ 
is a closed convex set. Note also that, given a closed convex set R ⊆ � of states L, we can define its dual 
cone as

which is a coherent set of desirable gambles (it satisfies A0–A2 ′  ). Therefore there is a bijection between 
coherent sets of desirable gambles and closed convex sets of states. Since this relation preserves all rel-
evant operations, such as conditioning and marginalisation, the two views (in terms of sets of desirable 
gambles and of convex sets of states) are, mathematically, the same.

(3)R
◦ = {g ∈ LR ∣ L(g) ≥ 0, ∀L ∈ R},
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where � = {� ∈ M ∣ inf� ≥ 0, ∫
�
d�(�) = 1} is the set of all probability charges 

in � , and M  the set of all charges on �.
Equation (3) states that, whenever an agent is coherent, desirability of g corresponds 

to nonnegative expectation, that is ∫
�
g(�)d�(�) ≥ 0 for all probabilities in P . When 

K is incoherent, P turns out to be empty—there is no probability compatible with the 
assessments in K . Stated otherwise, satisfying the axioms of classical probability—that 
is being a nonnegative function that integrates to one—is tantamount of being in the 
dual of a set K satisfying the coherence postulate (‘no-Dutch book’).

(2)P ∶= K∙ =

{
� ∈ �

|||�
�

g(�)d�(�) ≥ 0, ∀g ∈ G

}
,

(a) (b) (c)

(d) (e) (f)

Fig. 1   How tall was Albert Einstein? Do you want to bet on it? Let us denote Einstein’s height with x 
and consider the possibility space � = [1.5, 2]m . A gamble g is a bounded function from � to the real 
numbers; an example is given in Plot (a). The meaning of g is as follows: if you accept g then you for 
instance commit yourself to receive 0.75 utiles if x = 1.8m ; to lose 0.75 utiles if x = 1.63m . A0 says 
that, if you are rational, you should accept any gamble in Plot  (b) (the tautologies, L≥

R
= {g ∶ g ≥ 0} ) 

because, no matter Einstein’s height, they may increase your wealth without ever decreasing it. Assume 
you have accepted all gambles in the green area and in addition gambles g1, g2 in Plot (c)—note that the 
acceptance of g1, g2 depends on your beliefs about Einstein’s height. Since you have accepted g1, g2 then 
you should also accept, because of A1, all gambles �1g1(x) + �2g2(x) + h(x) with �i ≥ 0 and h ∈ L

≥ . 
Some of these gambles are depicted in Plot (d). Assume that instead of Plot (c), you have accepted the 
green area and g1, g2 in Plot (e). Then you must also accept g1 + g2 , because of A1. However, g1 + g2 is 
always negative: it is the blue function in Plot (f). You always lose utiles in this case. In other words, by 
accepting g1, g2 you incur a sure loss—A2 is violated and so you are irrational (Color figure online)
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3 � Algorithmic Rationality

Let us reconsider the classical theory introduced in the previous section. Assume 
that Isaac makes an initial (finite) set of assessments G  , which represent his ini-
tial beliefs about an experiment. In order to evaluate Isaac’s desirability of a further 
gamble f ∈ LR , we need to solve the membership problem f

?

∈ K . This can equiva-
lently be expressed as the following nonnegativity decision problem:

If the answer is ‘yes’, then the gamble f belongs to K , which is the conic closure of 
G ∪L

≥

R
 , and this proves its desirability. Note that checking whether K is coherent or 

not is tantamount to solving (4) for f = −1.

3.1 � Algorithmic Desirability

However, computing such an inference may be ‘costly’, if not virtually unfeasible. 
Indeed, when � is infinite (later on we shall consider the case 𝛺 ⊂ ℂ

n ) and for 
generic functions f , gi , the nonnegativity decision problem is undecidable. In this 
paper, we consider the case where gambles are (complex) multivariate polynomi-
als of degree at most d. In this case, by Tarski-Seidenberg’s quantifier elimination 
theory [59, 60], the problem (4) becomes decidable but still intractable, being in 
general NP-hard. From this perspective, the classical theory is therefore not suitable 
for constituting a realistic model of rationality.

The idea of modifying the standard theory by considering computational issues 
traces back to the work of Good [61] and Simon [62]. Since then there have been 
two main approaches to the problem, either by charging an agent for doing costly 
computation (as initiated in [63]), or by limiting the computation that agents can 
do (as initiated in [64], and first used in the context of decision theory in [65]14). 
In what follows, we take inspiration from the second approach, and, employing a 
terminology stemming from [66], develop a model of algorithmic rationality for the 
framework under consideration. Our subject in such an algorithmic world is now 
called Alice, to distinguish her from Isaac, who lives in the classical world.

The intuition behind our approach is the following. Assume that, due to computa-
tional, or other types of, limits, Alice can only work out the decision problem (4) for 
a closed subcone �≥ of the nonnegative gambles L≥

R
:

(4)∃�i ≥ 0 ∶ f −

|G|∑
i=1

�igi ∈ L
≥

R
.

(5)∃�i ≥ 0 ∶ f −

|G|∑
i=1

�igi ∈ �≥.

14  This work was originally presented on the 2003 Review of Economic Studies Tour.
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This means in particular that there will be a nonnegative gamble f ∈ L
≥

R
 that Alice 

cannot actually assess as nonnegative; thus she may well decide not to accept it. 
Similarly, Alice’s initial set of assessments G  may contain a negative gamble but 
this notwithstanding the answer to the corresponding coherence decision problem 
may be positive (solving (5) for f = −1 may lead to a negative answer).

Should these behaviours be counted as rational? Logic claims that they should: in 
fact, from the perspective of an agent whose rationality is constrained by �≥ , a collec-
tion of assessments is logically consistent whenever its deductive closure contains all 
tautologies as given by �≥ but does not contain −1 , the Falsum.

In other words, an algorithmic TDG, which we denote by T⋆ , should be based on a 
logical redefinition of the tautologies, i.e., by stating that 

	B0.	 �≥ should always be desirable,

in the place of A0, where �≥ is a closed subcone of L≥

R
 whose corresponding member-

ship problem (5) delimits the type of computation that an agent can actually do.
The rest of the theory follows exactly the footprints of T  . In particular, the deductive 

closure for T⋆ is defined by: 

	B1.	 C ∶= posi (�≥ ∪ G).

And finally the coherence postulate is simply reformulated by stating that a set C of 
desirable gambles is said to be A-coherent if and only if 

	B2.	 −1 ∉ C,

where ‘A’ stands for the the fact that in T⋆ the algorithmic bounds of the coherence 
problem for a finite set of assessments are established according to the particular choice 
of �≥.

Hence, T⋆ and T  have the same deductive apparatus; they just differ in the consid-
ered set of tautologies, and thus in their (in)consistencies. An example that gives an 
intuition of the postulates is given in Fig. 2.

3.2 � Quasi‑Probability (The Algorithmic Desirability Dual)

Interestingly, as we did previously, we can associate a ‘probabilistic’ interpretation to 
the desirability calculus, now defined by B0–B2, through the dual of an A-coherent set.

So let us consider again the dual space L∗

R
 of all bounded linear functionals 

L ∶ LR → ℝ . With the additional condition that linear functionals preserve the unitary 
gamble, the dual cone of an A-coherent C ⊂ LR is given by

where � = {L ∈ L
∗

R
∣ L(1) = 1, L(h) ≥ 0 ∀h ∈ �≥} is the set of states. To C◦ we 

can associate its extension C∙ in M  , that is, the set of all charges on � extending an 
element in C◦ . In other words, we can attempt to write L(g) as an ‘expectation’, that 

(6)C
◦ = {L ∈ � ∣ L(g) ≥ 0, ∀g ∈ G},
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is, an integral with respect to a charge: L(g) = ∫
�
g(�)d�(�) . In general however 

this set does not yield a classical probabilistic interpretation to T⋆ : in fact, whenever 
𝛴≥ ⊊ L

≥

R
 , there are negative gambles that Alice, given her rationality constrains, 

does not recognise as such and therefore, from her perspective, do not lead to a sure 
loss. This is stated more precisely by the following:

Theorem 1  (The weirdness theorem) Assume that �≥ includes all positive constant 
gambles and that it is closed (in LR ). Denote by 𝛴< the interior of −�≥ . Let C ⊆ LR 
be an A-coherent set of desirable gambles. The following statements are equivalent: 

1.	 C includes a negative gamble that is not in 𝛴<.
2.	 posi (L≥

R
∪ G) is incoherent, and thus P is empty.

3.	 C
◦ is not (the restriction to LR of) a closed convex set of mixtures of classical 

evaluation functionals.15

4.	 The extension C∙ of C◦ in the space M  of all charges in � includes only non-
probabilistic charges (those with some negative value).

Theorem 1 is the central result of this paper (its proof is in Appendix B).
It states that whenever C includes a negative gamble (item 1), there is no classi-

cal probabilistic interpretation for it (item 2). The other points suggest alternative 
solutions to overcome this deadlock: either to change the notion of evaluation func-
tional (item 3) or to use quasi-probabilities as a means for interpreting T⋆ (item 4). 
The latter case means that, when we write L(g) = ∫

�
g(�)d�(�) , then �(�) satisfies 

1 = L(1) = ∫
�
d�(�) = 1 but it is not a probability charge.

Observe that requiring polynomial time complexity is just one way to create the 
conditions for Theorem 1 to hold. But there are others, in that it is enough that one 
single negative gamble belongs to C to make the theorem hold. In other words, even 
if we allowed for exponential time complexity, there would still be gambles whose 
negativity we would not be able to evaluate (those that lead to undecidability). This 
is the reason why we use the terminology ‘algorithmic’ rationality, which appears to 
faithfully capture the idea that our capabilities are limited by the very fact of reason-
ing algorithmically.

However, and since we are particularly concerned with physics in this paper, we 
also embrace Aaronson’s point of view in [67]:

… while experiment will always be the last appeal, the presumed intractability 
of NP-complete problems might be taken as a useful constraint in the search 
for new physical theories

as a reason to focus on a polynomial-time complexity definition of algorithmic 
rationality.

15  Here ‘closed’ is with respect to the weak∗-topology, which is the coarsest topology on the dual space 
making the evaluation functions continuous. Note also that evaluation functionals or, more in general the 
elements of the dual space, can informally be interpreted simply as states.
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4 � QT as a Theory of Algorithmic Rationality

We are going to show that QT can be deduced from a particular instance of the theory 
T
⋆ . As a consequence, we get that the computation postulate, and in particular B0, is 

the unique reason for all its paradoxes, which all boil down to a rephrasing of the vari-
ous statements of Theorem 1 in the considered quantum context.

4.1 � Setting

Let us initially focus on the possibility space we shall use. Consider first a single 
particle n-level system and let

In some cases we can interpret an element x ∈ ℂ
n
 as ‘input data’ for some classical 

preparation procedure. For instance, in the case of the spin-1/2 particle ( n = 2 ), if 
� = [�1, �2, �3] is the direction of a filter in the Stern-Gerlach experiment, then x is 
its one-to-one mapping into ℂ

2
 (apart from a phase term). For spin greater than 1/2, 

ℂ
n
∶= {x ∈ ℂ

n ∶ x†x = 1}.

(a) (b) (c)

(d) (e)

Fig. 2   Let us reconsider Einstein’s height example. Assume we can split the nonnegative gambles in two 
groups: (i) those whose nonnegativity can be assessed in polynomial time (orange colour in Plot (a)); (ii) 
those whose nonnegativity cannot be assessed in polynomial time (blue colour in Plot  (a)). If you are 
an algorithmically rational agent, then you should surely accept all the orange gambles: they are non-
negative and you can evaluate their nonnegativity in polynomial time. A-coherence demands that you 
should accept all nonnegative orange gambles, Plot (b), and avoid all negative orange gambles, Plot (c). 
Assume that you have accepted all nonnegative orange gambles and g1 (red), g2 (green) in Plot (d). Then 
you must also accept g1 + g2 because of B1. Note that g1 + g2 is always negative. However, according to 
A-coherence, you are algorithmically irrational only if g1 + g2 is of type orange, that is, if you can evalu-
ate in polynomial time that g1 + g2 is negative, Plot (d). In case g1 + g2 is of type blue Plot (e), although 
you are indirectly accepting a gamble that is negative, you are not algorithmically irrational. The reason 
is that you may not be able to evaluate its negativity (Color figure online)
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however, the element x ∈ ℂ
n
 cannot directly be interpreted only in terms of a ‘filter 

direction’. In our framework element x is thus better interpreted as the state of the 
ontological world, which we have sketched in the Introduction. It is a world that is 
not directly accessible to an observer inside the theory (Alice), albeit it has implica-
tions for observables within such a theory.

For a composite systems of m particles (each one is an nj-level system), the joint 
possibility space is the Cartesian product

Having defined the possibility space, the next step is the definition of the observa-
bles, which define the gambles in our setting. Let us recall that in QT any real-valued 
observable is described by a Hermitian operator. This naturally imposes restrictions 
on the type of ‘permitted gambles’ g on a quantum experiment. For a single particle, 
given a Hermitian operator G ∈ H

n×n (with Hn×n being the set of Hermitian matri-
ces of dimension n × n ), a gamble on x ∈ ℂ

n
 can be defined as:

Since G is Hermitian and x is bounded ( x†x = 1 ), g is a real-valued bounded func-
tion ( g(x) = ⟨x�G�x⟩ in ‘bra-ket’ notation). For a composite systems of m particles, 
the gambles are m-quadratic forms:

with G ∈ H
n×n , n =

∏m

j=1
nj , and where ⊗ denotes the tensor product between vec-

tors regarded as column matrices. Therefore, we have that

is the restricted set of ‘permitted gambles’ in a quantum experiment. We can also 
define the subset of nonnegative gambles L≥

R
∶= {g ∈ LR ∶ min g ≥ 0} and the 

subset of negative gambles L<

R
∶= {g ∈ LR ∶ max g < 0}.16

Remark 1  (Hidden-variable theories) The model we have just presented has origi-
nally been discussed by Holevo in [68, Sect. 1.7], who treats it as a hidden-variable 
model. For a single particle ( m = 1 ), Holevo shows that this model does not contra-
dict the existing ‘no-go’ theorems for hidden-variables. For m ≥ 2 entangled parti-
cles, ‘no-go’ theorems apply to this model; in [68, Supplementary 3.2] Holevo dis-
cusses a way this model could still be considered a hidden variable model. We will 
detail these points in Appendices A.2 and A.3.

� = ×m
j=1

ℂ
nj
.

g(x) = x†Gx.

(7)g(x1,… , xm) = (⊗m
j=1

xj)
†G(⊗m

j=1
xj),

(8)
LR = {g(x1,… , xm) = (⊗m

j=1
xj)

†G(⊗m
j=1

xj) ∣ G ∈ H
n×n, x = [x1,… , xm] ∈ 𝛺}

16  Notice that, since g is a polynomial and � is bounded, min g = inf g and max g = sup g.
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Remark 2  (The tensor product) In our setting the tensor product is ultimately a 
derived notion, not a primitive one, as it follows by the properties of m-quadratic 
forms (see Appendix A.2).

4.2 � Polynomial Inference and Agreement with Born’s Rule

For m = 1 (a single particle), evaluating the nonnegativity of the quadratic form 
x†Gx boils down to checking whether the matrix G is positive semi-definite (PSD) 
and therefore the membership problem

can be solved in polynomial time and so can be problem (4). This is no longer true 
for m ≥ 2 : indeed, in this case there exist polynomials of type (7) that are nonnega-
tive, but whose matrix G is indefinite (it has at least one negative eigenvalue). More-
over, it turns out that problem (4) is not tractable:

Proposition 1  ([69]) The problem of checking the nonnegativity of functions of type 
(7) is NP-hard for m ≥ 2.

What to do? As discussed previously, we could change the meaning of ‘being 
nonnegative’ by considering a subset 𝛴≥ ⊊ L

≥ for which the membership problem, 
and thus (4), is in P. For functions of type (7), we can extend the notion of nonnega-
tivity that holds for a single particle to m > 1 particles:

That is, the function is ‘nonnegative’ whenever G is PSD. Note that �≥ is the so-
called cone of Hermitian sum-of-squares polynomials (see Sect. A.4), and that in �≥ 
the nonnegative constant functions take the form g(x1,… , xm) = c(⊗m

j=1
xj)

†I(⊗m
j=1

xj) 
with c ≥ 0.

Now, consider any set of desirable gambles C satisfying B0–B2 with the given 
definition of (10); this results in an algorithmic rationality theory that is precisely 
QT. In other words, from the algorithmic rationality axioms and the given definition 
of (10), we can derive the first postulate of QT (see for instance Postulate 1 in [70, 
p. 110]):

Associated to any isolated physical system is a complex vector space with 
inner product (that is, a Hilbert space) known as the state space of the system. 
The system is completely described by its density operator, which is a positive 
operator � with trace one, acting on the state space of the system.

Indeed, although the possibility space � is infinite (e.g., the ‘directions’ of the parti-
cle’s spins), the vector space of gambles LR is finite dimensional: any polynomial 
(⊗m

j=1
xj)

†G(⊗m
j=1

xj) ∈ LR can then be written as the inner product of a vector of 
complex coefficients, coming from the matrix G, and a vector of complex 

(9)g(x) = x†Gx
?

∈ L
≥

R

(10)𝛴≥ ∶= {g(x1,… , xm) = (⊗m
j=1

xj)
†G(⊗m

j=1
xj) ∶ G ≥ 0}.
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monomials: the elements of the matrix (⊗m
j=1

xj)(⊗
m
j=1

xj)
† that constitute the basis of 

the vector space LR . Therefore the dual space L∗

R
 is finite dimensional too and cor-

responds to the space of linear operators L̃ ∶ ℂ → ℂ , whose basis is given by the 
elements of the matrix L̃((⊗m

j=1
xj)(⊗

m
j=1

xj)
†) (where L̃ is applied component-wise to 

(⊗m
j=1

xj)(⊗
m
j=1

xj)
†).

Said that, let G  be a finite set of assessments, and K the deductive closure as 
defined by B1; it is not difficult to prove that the dual of K is

where S = {� ∈ H
n×n ∣ � ≥ 0, Tr(�) = 1} is the set of all density matrices. As 

before, whenever the set C representing Alice’s beliefs about the experiment is 
coherent, Eq. (11) means that desirability implies nonnegative ‘expected value’ for 
all models in Q . Note that in QT the expectation of g is Tr(G�) . This follows by 
Born’s rule, a law giving the probability that a measurement on a quantum system 
will yield a given result.

The agreement with Born’s rule is an important constraint in any alternative axi-
omatisation of QT. This is also the case of our theory, but in the sense that Born’s 
rule can be derived from it. In fact, in the view of a density matrix as a dual opera-
tor, � is formally equal to

Example 1  Consider the case n = m = 2 , then

this follows by the linearity of the trace operator. The expression 
L̃
(
(⊗2

j=1
xj)(⊗

2
j=1

xj)
†
)
 means that the operator L̃ is applied component-wise to the 

elements of the matrix (⊗2
j=1

xj)(⊗
2
j=1

xj)
†:

where the monomials inside the above matrix constitute the basis of LR and 
L̃ ∶ ℂ → ℂ , so:

(11)Q = {� ∈ S ∣ Tr(G�) ≥ 0, ∀g ∈ G},

(12)𝜌 = L̃
(
(⊗m

j=1
xj)(⊗

m
j=1

xj)
†
)
.

L̃
(
(x1 ⊗ x2)

†G(x1 ⊗ x2)
)
= Tr

(
GL̃

(
(⊗2

j=1
xj)(⊗

2
j=1

xj)
†
))

;

(13)

L̃
�
(⊗2

j=1
xj)(⊗

2
j=1

xj)
†
�
= L̃

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

x11x
†

11
x21x

†

21
x
†

11
x12x21x

†

21
x11x

†

11
x
†

21
x22 x

†

11
x12x

†

21
x22

x11x
†

12
x21x

†

21
x12x

†

12
x21x

†

21
x11x

†

12
x
†

21
x22 x12x

†

12
x
†

21
x22

x11x
†

11
x21x

†

22
x
†

11
x12x21x

†

22
x11x

†

11
x22x

†

22
x
†

11
x12x22x

†

22

x11x
†

12
x21x

†

22
x12x

†

12
x21x

†

22
x11x

†

12
x22x

†

22
x12x

†

12
x22x

†

22

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠
,

(14)𝜌 ∶= L̃
�
(⊗2

j=1
xj)(⊗

2
j=1

xj)
†
�
=

⎡
⎢⎢⎢⎢⎣

𝜌11 𝜌12 𝜌13 𝜌14
𝜌
†

12
𝜌22 𝜌23 𝜌24

𝜌
†

13
𝜌
†

23
𝜌33 𝜌34

𝜌
†

14
𝜌
†

24
𝜌
†

34
𝜌44

⎤
⎥⎥⎥⎥⎦
,
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𝜌11 = L̃(x11x
†

11
x21x

†

21
) ∈ ℂ , 𝜌12 = L̃(x

†

11
x12x21x

†

21
) ∈ ℂ , etcetera.

Hence, when a projection-valued measurement characterised by the projectors 
�1,… ,�n is considered, it holds that

Since �i ≥ 0 and the polynomials (⊗m
j=1

xj)
†𝛱i(⊗

m
j=1

xj) for i = 1,… , n form a parti-
tion of unity, i.e.:

we have that

which is Born’s rule.

Remark 3  (Discrete vs. continuous space probability) Quantum measurements 
are discrete: when we perform a measurement, we observe a detection along one 
of the directions �i . This phenomenon of quantisation is one of the major differ-
ences between quantum and classical physics. We took it into account in the choice 
of the framework, the possibility space being (only) the ‘directions’ of the parti-
cle’s spins and the measurement apparatus sensing only certain fixed ‘directions’ 
( x†�ix = x†viv

†

i
x is a function of two ‘directions’ x and vi ). Despite its centrality, we 

want however to point out that quantisation is not the source of Bell-like inequalities 
and entanglement. As said before, this is because ‘quantum weirdness’ is intrinsic to 
any theory of algorithmic rationality as above, and is hence not confined to QT only.

It is often claimed that QT includes classical probability theory (CPT) as a special 
case, or better that QT includes discrete-space CPT.17 However, as the possibility 
space � is infinite (e.g., the ‘directions’ of the particle’s spins), in this paper when 
we speak about CPT (and compare it with QT), we mean continuous-space clas-
sical probability theory (in the complex numbers). Hence again, since both B1,B2 
and A1,A2 are the same logical postulates parametrised by the appropriate meaning 
of ‘being negative/nonnegative’, the only axiom truly separating (continuous-space) 
classical probability theory from the quantum one is  B0 (with the specific form 
of (10)), thus implementing the requirement of computational efficiency.

In other words, we claim that QT is ‘easier’ than CPT because, once the appro-
priate possibility space, observables and queries are specified, evaluating the 

L̃((⊗m
j=1

xj)
†𝛱i(⊗

m
j=1

xj)) = Tr(𝛱iL̃((⊗
m
j=1

xj)(⊗
m
j=1

xj)
†)) = Tr(𝛱i𝜌).

n∑
i=1

(⊗m
j=1

xj)
†𝛱i(⊗

m
j=1

xj) = (⊗m
j=1

xj)
†I(⊗m

j=1
xj) = 1,

Tr(�i�) ∈ [0, 1] and

n∑
i=1

Tr(�i�) = 1,

17  In the present framework, such a view is due to properties of quadratic forms. Indeed 
x†�1x,… , x†�nx form a partition of unity, and therefore E[x†�ix] = Tr(�i�) = pi , whenever 
� = E[xx†] =

∑n

i=1
pi�i (with pi ≥ 0 and 

∑n

i=1
pi = 1).
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consistency of the theory is NP-hard for CPT. In QT, we realise this clearly when 
we try to address the question of whether or not an experimentally generated state is 
entangled. We will discuss in Sect. 4.3 that determining entanglement of a general 
state is equivalent to proving the nonnegativity of a polynomial that, as we discussed 
in Proposition 1, is NP-hard. In fact, we can reformulate the entanglement witness 
theorem as the clash between the classical notion of coherence and A-coherence 
(see Theorem 2).

Remark 4  (Truncated moment matrices vs. density matrices) In a single particle sys-
tem of dimension n, 𝜌 = L̃(xx†) . In such case, � can be interpreted as a truncated 
moment matrix, i.e., there exists a probability distribution on the complex vector 
x ∈ � such that

In fact, consider the eigenvalue-eigenvector decomposition of the density matrix:

with �i ≥ 0 and vi ∈ ℂ
n being orthonormal. We can define the probability 

distribution

where �vi is an atomic charge (Dirac’s delta) on vi . Then it is immediate to verify that

In Sect. 4.4, we will extend this result to separable states. Note also that a truncated 
moment matrix does not uniquely define a probability distribution, i.e., for a given � 
there may exist two probability distributions �1(x) ≠ �2(x) such that

This means that, if we interpret � as a truncated moment matrix and thus defining 
via (15) a closed convex set of probabilities (more precisely charges), QT is a theory 
of imprecise probability [53]. We will discuss more on this topic in Sect. A.3. In 
fact, Karr [71] has proved that the set of probabilities, which are feasible for the 
truncated moment constraint, e.g., 𝜌 = L̃(xx†) , is convex and compact with respect 
to the weak∗-topology. Moreover, the extreme points of this set are probabilities that 
have at finite number of distinct points of support (e.g., they are finite mixtures of 

(15)� =
∫x∈�

xx†d�(x).

� =

n∑
i=1

�iviv
†

i
,

�(x) =

n∑
i=1

�i�vi(x),

∫x∈�

xx†d�(x) =

n∑
i=1

�iviv
†

i
= �.

� =
∫x∈�

xx†d�1(x) =
∫x∈�

xx†d�2(x).
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Dirac’s deltas). A similar characterisation for POVM measurements is discussed in 
the QT context in [72].

The case of a many-particle system is discussed in the next sections.

4.3 � Entanglement

Entanglement is usually presented as a characteristic of QT. In this section we are going 
to show that it is actually an immediate consequence of algorithmic rationality.

To illustrate the emergence of entanglement from A-coherence, we verify that the 
set of desirable gambles whose dual is an entangled density matrix �e includes a nega-
tive gamble that is not in 𝛴< , and thus, although being logically coherent, it cannot be 
given a classical probabilistic interpretation.

In what follows we focus only on bipartite systems �A ×�B , with n = m = 2 . The 
results are nevertheless general.

Let (x, y) ∈ �A ×�B , where x = [x1, x2]
T and y = [y1, y2]

T . We aim at showing that 
there exists a gamble h(x, y) = (x⊗ y)†H(x⊗ y) satisfying:

The first inequality says that h is desirable in T⋆ . That is, h is a gamble desirable 
to Alice whose beliefs are represented by �e . The second inequality says that h is 
negative and, therefore, leads to a sure loss in T  . By B0–B2, the inequalities in (16) 
imply that H must be an indefinite Hermitian matrix.

Assume that n = m = 2 and consider the entangled density matrix:

and the Hermitian matrix:

This matrix is indefinite (its eigenvalues are {1,−1,−1,−3} ) and is such that 
Tr(H�e) = 1 . Since Tr(H�e) ≥ 0 , the gamble

is desirable for Alice in T⋆.

(16)
Tr(H𝜌e) ≥ 0 and

h(x, y) = (x⊗ y)†H(x⊗ y) < 0 for all (x, y) ∈ 𝛺A ×𝛺B.

�e =
1

2

⎡⎢⎢⎢⎣

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

⎤⎥⎥⎥⎦
,

H =

⎡⎢⎢⎢⎣

0.0 0.0 0.0 1.0

0.0 − 2.0 1.0 0.0

0.0 1.0 − 2.0 0.0

1.0 0.0 0.0 0.0

⎤⎥⎥⎥⎦
.

(17)
(x⊗ y)†H(x⊗ y) = −2x1x

†

1
y2y

†

2
+ x1x

†

2
y1y

†

2
+ x1x

†

2
y
†

1
y2 + x

†

1
x2y1y

†

2

+ x
†

1
x2y

†

1
y2 − 2x2x

†

2
y1y

†

1
,
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Let xi = xia + �xib and yi = yia + �yib with xia, xib, yia, yib ∈ ℝ , for i = 1, 2 , denote 
the real and imaginary components of x, y. Then

This is the essence of the quantum puzzle: C is A-coherent but (Theorem 1) there 
is no P associated to it and therefore, from the point of view of Isaac, who holds a 
classical probabilistic interpretation, it is not coherent: in any classical description 
of the composite quantum system, x and y appear to be entangled in a way unusual 
for classical subsystems.

As previously mentioned, there are two possible ways out from this impasse: 
to claim the existence of either non-classical evaluation functionals or of negative 
probabilities. Let us examine them in turn. 

(1)	 Existence of non-classical evaluation functionals: From an informal betting per-
spective, the effect of a quantum experiment on h(x, y) is to evaluate this polyno-
mial to return the payoff for Alice. By Theorem 1, there is no compatible classi-
cal evaluation functional, and thus in particular no values x, y ∈ �A ×�B such 
that h(x, y) = 1 . Hence, if we adopt this point of view, we have to find another, 
non-classical, explanation for h(x, y) = 1 . The following evaluation functional, 
denoted as ev(⋅) , may do the job: 

 Note that x1y1 =
√
2

2
 and x2y1 = 0 together imply that x2 = 0 , which contra-

dicts x2y2 =
√
2

2
 . Similarly, x2y2 =

√
2

2
 and x1y2 = 0 together imply that x1 = 0 , 

which contradicts x1y1 =
√
2

2
 . Hence, as expected, the above evaluation func-

tional is non-classical. It amounts to assigning a value to the products xiyj but 
not to the single components of x and y separately. Quoting Holevo in [68, 
Supplement 3.4]:

	 entangled states are holistic entities in which the single components only 
exist virtually.

(2)	 Existence of negative probabilities: Negative probabilities are not an intrinsic 
characteristic of QT. They appear whenever one attempts to explain QT ‘clas-

(18)

(x⊗ y)†H(x⊗ y) = −2x2
1a
y2
2a
− 2x2

1a
y2
2b
+ 4x1ax2ay1ay2a + 4x1ax2ay1by2b

− 2x2
1b
y2
2a
− 2x2

1b
y2
2b
+ 4x1bx2by1ay2a + 4x1bx2by1by2b

− 2x2
2a
y2
1a
− 2x2

2a
y2
1b
− 2x2

2b
y2
1a
− 2x2

2b
y2
1b

= −(
√
2x1ay2a −

√
2x2ay1a)

2 − (
√
2x1ay2b −

√
2x2ay1b)

2

− (
√
2x1by2b −

√
2x2by1b)

2 − (
√
2x2by1a −

√
2x2ay1b)

2 < 0.

ev

⎛⎜⎜⎜⎝

⎡⎢⎢⎢⎣

x1y1
x2y1
x1y2
x2y2

⎤⎥⎥⎥⎦

⎞⎟⎟⎟⎠
=

⎡⎢⎢⎢⎢⎣

√
2

2

0

0√
2

2

⎤⎥⎥⎥⎥⎦
, which implies ev

�
(x⊗ y)†H(x⊗ y)

�
= 1.
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sically’ by looking at the space of charges on � . To see this, consider �e , and 
assume that, based on (12), one calculates: 

 Because of Theorem  1, there is no probability charge � satisfying these 
moment constraints, the only compatible being quasi-probabilities. Table  1 
reports the nine components and corresponding weights of one of them: 

 Note that some of the weights are negative but 
∑9

i=1
wi = 1 , meaning that we 

have an affine combination of atomic charges (Dirac’s deltas). Consider for 
instance the first monomial x1x

†

1
y1y

†

1
 in (12), its expectation w.r.t. the above 

charge is 

The charge described in Table 1 is one among the many that satisfy (12) and has 
been derived numerically. Explicit procedure for constructing such negative-proba-
bility representations have been developed in [73–76].

Again, we want to stress that the two above paradoxical interpretations are a con-
sequence of Theorem 1, and therefore can emerge when considering any instance of 
a theory of A-coherence in which the hypotheses of this result hold.

4.4 � Entanglement Witness

Do quantum and classical probability sometimes agree? Yes they do, but when 
at play there are density matrices � such that Eq. (16) does not hold, and thus in 

(19)
∫

⎡
⎢⎢⎢⎢⎣

x1x
†

1
y1y

†

1
x
†

1
x2y1y

†

1
x1x

†

1
y
†

1
y2 x

†

1
x2y

†

1
y2

x1x
†

2
y1y

†

1
x2x

†

2
y1y

†

1
x1x

†

2
y
†

1
y2 x2x

†

2
y
†

1
y2

x1x
†

1
y1y

†

2
x
†

1
x2y1y

†

2
x1x

†

1
y2y

†

2
x
†

1
x2y2y

†

2

x1x
†

2
y1y

†

2
x2x

†

2
y1y

†

2
x1x

†

2
y2y

†

2
x2x

†

2
y2y

†

2

⎤
⎥⎥⎥⎥⎦
d�(x, y) =

1

2

⎡
⎢⎢⎢⎣

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

⎤
⎥⎥⎥⎦
.

(20)�(x, y) =

9∑
i=1

wi�{(x(i),y(i))}(x, y) with (wi, x
(i), y(i)) as in Table 1.

∫
x1x

†

1
y1y

†

1

(
9∑
i=1

wi�{(x(i),y(i))}(x, y)

)
dxdy =

9∑
i=1

wix
(i)

1
x
(i)

1

†
y
(i)

1
y
(i)

1

†

= 0.4805(−0.0963 − 0.6352�)(−0.0963 + 0.6352�)(−0.3727

− 0.3899�)(−0.3727 + 0.3899�)

+ 0.7459(0.251 − 0.9665�)(0.251 + 0.9665�)(−0.1628

+ 0.561�)(−0.1628 − 0.561�)

+…

+ 0.1755(−0.1255 − 0.3078�)(−0.1255 + 0.3078�)(0.0933

− 0.4588�)(0.0933 + 0.4588�) =
1

2
.
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particular for separable density matrices. We make this claim precise by providing a 
link between Eq. (16) and the entanglement witness theorem [77, 78].

We first report the definition of entanglement witness [79, Sect. 6.3.1]:

Definition 2  (Entanglement witness) A Hermitian operator W ∈ H
n1×n2 

is an entanglement witness if and only if W is not a positive operator but 
(x1 ⊗ x2)

†W(x1 ⊗ x2) ≥ 0 for all vectors (x1, x2) ∈ �1 ×�2.18

The next well-known result (see, e.g., [79, Theorem 6.39, Corollary 6.40]) pro-
vides a characterisation of entanglement and separable states in terms of entangle-
ment witness.

Proposition 2  A state �e is entangled if and only if there exists an entanglement wit-
ness W such that Tr(𝜌eW) < 0 . A state is separable if and only if Tr(�eW) ≥ 0 for all 
entanglement witnesses W.

Assume that W is an entanglement witness for the entangled density matrix �e 
and consider W � = −W . By Definition 2 and Proposition 2, it follows that

The first inequality states that the gamble (x1 ⊗ x2)
†W �(x1 ⊗ x2) is strictly desirable 

for Alice (in theory T⋆ ) given her belief �e . Since the set of desirable gambles (B1) 
associated to �e is closed, there exists 𝜖 > 0 such that W � = W � − �I is still desirable, 
i.e, Tr(�eW �) ≥ 0 and

where we have exploited that (x1 ⊗ x2)
†𝜖I(x1 ⊗ x2) = 𝜖 . Therefore, (21) is equiva-

lent to

which is the same as (16).
Hence, by Theorem 1, we can equivalently formulate the entanglement witness 

theorem as an arbitrage/Dutch book:

Theorem 2  Let C = {g(x1,… , xm) = (⊗m
j=1

xj)
†G(⊗m

j=1
xj) ∣ Tr(G𝜌̃) ≥ 0} be the set of 

desirable gambles corresponding to some density matrix 𝜌̃ . The following claims are 
equivalent: 

(21)Tr(𝜌eW
�) > 0 and (x1 ⊗ x2)

†W �(x1 ⊗ x2) ≤ 0.

(x1 ⊗ x2)
†W �(x1 ⊗ x2) = (x1 ⊗ x2)

†W �(x1 ⊗ x2) − 𝜖 < 0,

(22)Tr(𝜌eW
�) ≥ 0 and (x1 ⊗ x2)

†W �(x1 ⊗ x2) < 0,

18  In [79, Sect.  6.3.1], the last part of this definition says ‘for all factorised vectors x1 ⊗ x2 ’. This is 
equivalent to considering the pair (x1, x2).
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1.	 𝜌̃ is entangled;
2.	 posi (C ∪L

≥

R
) is not coherent in T .

This result provides another view of the entanglement witness theorem in light 
of A-coherence. In particular, it tells us that the existence of a witness satisfying 
Eq. (21) boils down to the disagreement on rationality (coherence) between Isaac’s 
classical probabilistic interpretation and Alice’s theory T⋆ , and therefore that when-
ever they agree it means that �e is separable. This connection explains why the prob-
lem of characterising entanglement is hard in QT: it amounts to proving the negativ-
ity of a function, which is NP-hard. We can also prove the following

Corollary 1  Let 𝜌̃ be separable, then 𝜌̃ is a truncated moment matrix.

In other words, when 𝜌̃ are separable, we have an agreement between the Isaac’s 
classical view and Alice’s theory T⋆ of rationality, and therefore we can give 𝜌̃ a 
fully classical probabilistic interpretation by regarding it as a truncated moment 
matrix.

5 � A Theory of Algorithmic Rationality and Entanglement in the Reals

In this section we are going to present an example of entanglement in an A-coherent 
theory of probability that is different from QT. For this purpose, we consider two 
classical coins, which we denote as l (left) and, respectively, r (right), and define

where Hi, Tj denote the outcome heads and, respectively, tails for the left or right 
coin. We consider the possibility space

Note that the following marginal relationships hold:

As the space of gambles LR , we consider the set of all polynomials of the unknowns 
� = [�1, �2, �3] of degree 2:19

⎡⎢⎢⎢⎣

�1
�2
�3

1 − �1 − �2 − �3

⎤⎥⎥⎥⎦
= Prob

⎡⎢⎢⎢⎣

HlHr

TlHr

HlTr
Tl, Tr

⎤⎥⎥⎥⎦
,

(23)� =
{
� ∈ ℝ

3 ∶ �1, �2, �3 ≥ 0, 1 − �1 − �2 − �3 ≥ 0
}
.

�Hl
= Prob(Hl) = �1 + �3, �Hr

= Prob(Hr) = �1 + �2.

19  Degree 2 polynomials allow Alice to express desirability judgments about the probability that the 
outcome is HlHr , e.g., is the gamble �1 − 0.5 desirable?, and also about the probability of the outcome 
HlHr ,HlTr , e.g., is the gamble �1�2 − 0.25 desirable? Therefore, this choice of LR is expressive; we have 
fixed the maximum degree to 2 just to keep small the dimension of LR.
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For instance, these are two elements of LR:

Evaluating the nonnegativity of polynomials in LR is in general NP-hard. Therefore, 
Alice may not have the computational resources to enforce full rationality, A0–A2, 
or, equivalently, to solve (4).

However, she can use a quick algorithm to prove a sufficient condition for a poly-
nomial in LR to be nonnegative: a polynomial of � is nonnegative in � if its coeffi-
cients are nonnegative. For instance, under this criterion, Alice can easily verify that 
g2(�) is nonnegative.

Proposition 3  Let C ∈ LR be a set of desirable gambles satisfying B0, B1, with LR 
defined in (24) and �≥ defined as follows:20

which is the cone of (multivariate) Bernstein’s polynomials of degree less than, 
equal to 2. A-coherence of C (or equivalently B2) can be proven in polynomial time 
by solving a linear programming problem.

Therefore, the definition of nonnegativity (27) gives an algorithmic efficient way 
to assess rationality: linear programming.

Also in this case, we can define the dual operator L̃ . First of all, observe that 
the vector of monomials b(�) = [1, �1, �2, �3, �1�2, �1�3, �2�3, �

2
1
, �2

2
, �2

3
] constitues a 

basis for LR in (24). Therefore, the dual space L∗

R
 corresponds to the space of lin-

ear operators L̃ ∶ ℝ → ℝ , whose basis is given by the elements of the matrix L̃(b) , 
where L̃ is applied component-wise to the elements of b(�) . The dual of an A-coher-
ent set of desirable gambles C is

where � = {L̃ ∈ L
∗

R
∣ L̃(1) = 1, L̃(g) ≥ 0 ∀g ∈ 𝛴≥} is the set of states.

(24)LR = {g(�) ∶ g(�) is a degree 2 polynomial}.

(25)g1(�) = �2
1
− �2

2
+ 2�1�3 + 2�2�3 − �1 − �3,

(26)g2(�) = �1 + �2
2
+ 3�3.

(27)

�≥ =

{ ∑
�i≥0,�1+�2+�3+�4≤2

u�1�2�3�4�
�1
1
�
�2
2
�
�3

3
(1 − �1 − �2 − �3)

�4 ∶ u�1�2�3�4 ∈ ℝ
≥

}
,

(28)C
◦ = {L ∈ � ∣ L(g) ≥ 0, ∀g ∈ G},

20  Note that �≥ is the set of all degree 2 polynomials of � that have nonnegative coefficients; the sub-
script in u�1�2�3�4 is just an index that allows us to define the coefficients for the elements in the sum (e.g., 
for �1 = 1, �2 = 0, �3 = 1, �4 = 0 , the term is u1010�1�3).
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Consider for instance the state:

which, as it can be verified, belongs to � . We aim at showing that there exists a gam-
ble h ∈ LR such that:

Consider the polynomial gamble:

with 𝜖 > 0 and g1 defined in (26). It can be shown that h(�) ≤ −� and so the polyno-
mial is negative. However, its ‘expectation’ w.r.t. the state (29) is equal to

Therefore, we have violated an inequality that holds in classical probability 
( E(h) ≤ −� in T  ), although the set of desirable gambles

with L̃ defined in (29), is logically consistent in T⋆ (A-coherent). This is the essence 
of Bell’s type inequalities: the quantum weirdness that is also present in this 
example.

It is then possible [80] to set up a thought experiment where two coins are drawn 
from a bag in the state (29). If we give the left coin to Alice and the right coin to her 
friend Bob as depicted in Fig. 3, then we can show that after the coins move apart, 
there are ‘matching’ correlations between the output of their toss. That is, if Alice 
measures (through a toss) the bias of one coin, then she can predict with certainty 
the outcome of the measurement (toss) on the other coin. This correlation cannot be 
explained classically, because there does not exist any classical correlation model 
that can violate the Bell’s type inequality (30). We have entanglement!

6 � Discussions

This paper grew out of our desire to understand QT, in the sense of giving it a mean-
ing clear to us. We have been favoured in this by the fact that we have quite a strong 
background on the foundations of probability, and QT, mathematically, can be 

(29)

L̃(𝜃1) = 1∕3L̃(𝜃2
1
) = 1∕3

L̃(𝜃2) = 1∕6L̃(𝜃2
2
) = 0

L̃(𝜃3) = 1∕6L̃(𝜃2
3
) = 0

L̃(𝜃1𝜃2) = 0L̃(𝜃1𝜃3) = 0

L̃(𝜃2𝜃3) = 1∕6L̃(1) = 1,

(30)
L̃(h) ≥ 0 and

h(𝜃) < 0 for all 𝜃 ∈ 𝛺.

h(�) = g1(�) − �,

L̃(h) = L̃(𝜃2
1
) − L̃(𝜃2

2
) + L̃(2𝜃1𝜃3) + L̃(2𝜃2𝜃3) − L̃(𝜃1) − L̃(𝜃3) − L̃(𝜖) =

1

6
− 𝜖 ≥ 0.

C = {g ∈ LR ∣ L̃(g) ≥ 0},
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regarded as a generalised theory of probability. But, given this, why is probability 
generalised in such a way, and what does it mean?

We believe that the present paper, without aiming at reconstructing QT, provides 
a new way to explain the differences between classical and quantum probability: the 
algorithmic intractability of classical probability theory contrasted to the polyno-
mial-time complexity of QT.

We have obtained this result in a setting that is more general than QT itself. Our 
‘weirdness theorem’ establishes that the weirdness of QT is not exclusive to QT: it 
appears in any probabilistic theory that is (i) logically consistent and (ii) computa-
tionally bounded.21 QT is just a special case, in the same way as our theory of Bern-
stein polynomials is another special case.

Yet, our result does talk in particular of QT. And hence it is interesting to know, 
for one thing, that QT is logically consistent, in the sense that it is a mathematical 
theory that cannot be proven inconsistent from the inside, by Alice. But it is actually 
inconsistent from the ‘outside’, i.e., from the point of view of our external observer 
Isaac that has unbounded computational capabilities, who, in other words, identifies 
rationality with the logical consistency of classical probability theory. This is the 
essence of the clash between classical and quantum physics. It also explains why 
QT is so peculiarly hard for us to grasp: because to classic eyes there is a degree of 
incoherence in it; and we tend be able to actually understand only logically consist-
ent theories or ideas.

We believe that such a degree of incoherence is also the reason why we should 
abandon our attempt to reconcile traditional physics with quantum theory. In our 
narration, such an abandonment is embodied by the metaphor of a computer that 
‘runs the universe’. This is not a new idea at all [86]. However, it is new in the sense 
that the computer has limits due to the algorithmic nature of its tasks; and this is the 
reason for the weirdness of QT. Stated differently, what follows from this work, in 
our view, is that there is room for the idea of a more fundamental reality than classi-
cal physics, a reality that is just computational. It is by detaching computation from 
classical physics, in such a way, that we can finally have a solid grip on the meaning 
of QT and eventually being able to identify the specific features of our world that 
ground its use.

In order to hold onto some purely physical intuition, instead, one might want to 
consider for instance the many-worlds interpretation of QT [13], as many physicists 
do nowadays. It is certainly a fascinating view of QT, of which we feel the appeal. 
However, we perceive also the discomfort of having to embrace an interpretation 
that appears to require an incommensurably huge, and possibly infinite, amount of 
resources in order to have a universe that branches continuously in multiple cop-
ies of itself. Our own algorithmically bounded theory is much more parsimonious. 

21  Note that there have been previous investigations into the computational nature of QT but they have 
mostly focused on topics of undecidability and of potential computational advantages of non-standard 
theories involving modifications of quantum theory [81–84]. In particular, the undecidability results in 
QT are usually obtained via a limiting argument, as the number of particles goes to infinity (see, e.g., 
[85]). These results do not apply to our setting as we rather take the stance that the Universe is a finite 
physical system.
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It tells us that we can implement a quantum world in polynomial time, by defini-
tion, and such a world would obey the usual axioms of QT: Bob might then as well 
believe that he is living in one of many worlds, but he would just be wrong. So 
should we, as entities of our universe, really go as far as postulating the existence of 
many worlds in presence of such a more parsimonious alternative? Is it not there any 
Occam’s razor issue at stake here?

Of course one could still criticise our appeal to a more fundamental algorithmic 
reality on the basis of our postulating the existence of a computer that executes the 
universe. We have been careful in referring to this as a metaphor, however: in that it 
need not be a computer that someone has built and in particular there is no need of 
a programmer. It can simply be another level of reality, which can be interpreted as 
a computer;22 in a sense, our picture only suggests that there can be more levels of 
reality, one nested into the other.

One might also wonder why we humans perceive the quantum-physical clash 
given that we, as Alice, are subjects within the quantum theory—in our narrative 
the inconsistencies of QT are observed from Isaac’s point of view, externally to the 
theory. The explanation that we give to ourselves about this point is that we are used 
to the illusion of living in a classical universe. This is just in our minds, however, 
as we cannot make any physical experiment that reveals an actual inconsistency in 
our wonderland. And yet, we believe that this illusion can be explained within our 
framework: classical rationality emerges from algorithmic rationality when we con-
sider the joint state of a system of many identical particles. We plan to address this 
issue in future work.

Finally, we think that the foundation of generalised probability theory via algo-
rithmic rationality provided in this paper could possibly be useful outside the con-
text of QT, for instance in decision theory. We also plan to address this research 
direction in future work.

Fig. 3   Coin toss experiment

22  Reality is for instance interpreted as a computer in a recent conjecture that the holographic universe 
could just act as a quantum-correcting code [87]; in a sense, our view is similar in spirit.
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Appendix: Additional Discussion on QT in Relation to Other Notions

In the present section we shall discuss a few main questions that our view of QT 
appears to raise.

The Class of Hermitian Sum‑of‑Squares

The class �≥ of nonnegative gambles, defined in Sect. 4, is the closed convex cone 
of all Hermitian sum-of-squares in LR = {(⊗m

j=1
xj)

†G(⊗m
j=1

xj) ∣ G ∈ H
r×r} , that is, 

of all gambles g(x1,… , xm) ∈ LR for which G is PSD. In particular this means that 
Alice can efficiently determine whether a gamble belongs to �≥ or not. But is this 
class the only closed convex cone of nonnegative polynomials in LR for which the 
membership problem can be solved efficiently (in polynomial-time)? It turns out that 
the answer is negative (see for instance [88, 89]): in addition of Hermitian sum-of-
squares (the one that Nature has chosen for QT) one could also consider real sum-
of-squares in LR , that is, polynomials of the form (⊗m

j=1
xj)

†G(⊗m
j=1

xj) that are sum-
of-squares of polynomials of the real and imaginary part of xj.

A separating example is the polynomial in (17), which is not a Hermitian sum-of-
squares but it is a real sum-of-square, as it can be seen from (18). This polynomial 
was used in our example because it can be constructed by inspection and its non-
negativity follows immediately by (18). Clearly, there exist nonnegative polynomials 
in LR that are neither Hermitian sum-of-squares nor real sum-of-squares.

Why has Nature chosen Hermitian sum-of-squares? This is an open question that 
we will investigate in future work. A possible explanation may reside in the different 
size of the corresponding optimisation problems [89]. Another possible explanation 
is that the class of Hermitian sum-of-squares is always strictly included in the class 
of real sum-of-squares polynomials. Therefore the former may be the smallest class 
of gambles that allows one to efficiently determine whether a gamble is nonnegative 
according to it, but that is still expressive enough [90, Proposition 6].

On the Use of Tensor Product

In Sect.  4 we saw that the possibility space of composite systems of m particles, 
each one with nj degrees of freedom, is given by � =

∏m

j=1
ℂ

nj . We saw that gam-
bles on such a space are actually bounded real functions 
g(x1,… , xm) = (⊗m

j=1
xj)

†G(⊗m
j=1

xj) , where ⊗ denotes the tensor product between 
vectors, understood as column matrices.

In what follows, we justify the use of the tensor product, and more specifically 
the type of gambles on the possibility space of composite systems, as a consequence 
of the way a multivariate theory of probability is usually formulated.
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As a start, let us consider the case of classical probability. In CPT, under the rea-
sonable assumption that since agents are expressing beliefs about physical systems, 
the underlying notion of dependence/independence should be compatible with that 
of a generative model,23 structural judgements of independence/dependence are 
expressed via products: given factorised gambles g(x1,… , xm) =

∏m

j=1
gj(xj) , 

x1,… , xm are said to be independent if E[
∏m

j=1
gj(xj)] =

∏m

j=1
E[gj(xj)] for all gj , 

where E[⋅] denotes the expectation operator. With this in mind, let us go back to our 
setting. Marginal gambles are of type gj(xj) = x

†

j
Gjxj . This means that structural 

judgements are performed by considering factorised gambles of the form ∏m

j=1
x
†

j
Gjxj . It is then not difficult to verify that

By closing the set of factorised gambles under the operations of addition and scalar 
multiplication, one finally gets a vector space whose domain domain coincides with 
the collection of all gambles of the form (⊗m

j=1
xj)

†G(⊗m
j=1

xj) . Hence, structural 
judgements of independence/dependence are stated considering the desirability of 
gambles belonging to LR.

Hidden Variable Models

In [91], Kochen and Specker gave a hidden variable model for QT.24 Their idea 
amounts to introducing a ‘hidden variable’ for each observable H producing stochas-
ticity in outcomes of measurement of H. The totality of all such hidden variables is 
then the phase space variable � of the model.

In case of a single n-dimensional quantum system, our model based on the phase 
space

can also be understood as a hidden variable model, and essentially coincides with the 
one introduced by Holevo in [68, Sect. 1.7]. The point is that for a single quantum 
system, both �≥ = L

≥

R
 and 𝛴< = L

<

R
 , meaning that Alice will never accept negative 

gambles. Hence, in such a case, the density matrix � = L(xx†) can be interpreted as 
a truncated moment matrix and it is therefore compatible with (can be extended to) 
a probability distribution over � . Now, as there may be more the one probability 

m∏
j=1

x
†

j
Gjxj = (⊗m

j=1
xj)

†(⊗m
j=1

Gj)(⊗
m
j=1

xj).

� = {x ∈ ℂ
n ∶ x†x = 1},

24  We do not aim to review all literature on hidden variable models. Clearly, it would be interesting to 
place our work within the ‘ �-ontic/�-epistemic’ interpretation of QT [12, 92, 93] agreeing with the 
Born’s rule but not preserving the structure of functional dependencies in QT.

23  There are other definitions of dependence/independence, such as epistemic irrelevance [53], that are 
not compatible with a notion of generative model.
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compatible with it,25 such model does not fulfil one of the key requirement imposed 
in many existing ‘no-go’ theorems, namely the uniqueness of the associated classi-
cal description.

However, despite the fact that a hidden variable theory would necessarily treat as 
distinct two probabilities that define the same density matrix, they are underdeter-
mined by the observations and therefore they can be regarded as corresponding to 
two unidentifiable, or undistinguishable, classical models. In fact, since any real-val-
ued observable is described by a Hermitian operator and the expectation of a Her-
mitian operator w.r.t. a given density matrix (truncated moment matrix) � is unique 
( Tr(G�) ), � is sufficient to provide an adequate characterisation of these two prob-
abilities. To sum up, if we accept the view that, because of the underdeterminisation 
of classical models by observations, the requirement of a one-to-one correspondence 
between classical and quantum states is not grounded and hence can be relaxed, a 
hidden-variable model may be simply defined as the equivalence class of all prob-
abilities associated to a given truncated moment matrix.26

What about the case when there are m > 1 particles? In this case, Theorem  1 
applies, and it therefore can be read as a no-go theorem pointing to two ways to 
extend the classical model either by allowing negative probabilities or by redefining 
the notion of evaluation functionals. Moreover, the result elucidates the role of the 
tensor product. In order to see this, let us consider two quantum systems A and B, 
with corresponding Hilbert spaces HA and HB . By duality, the density matrix (state) 
of the joint system lives in the tensor product space HA ⊗HB . Indeed, we have that

and L((⊗2
j=1

xj)(⊗
2
j=1

xj)
†) belongs to HA ⊗HB . However, as mentioned before, 

when (16) holds, we may justify entanglement hypothesising the existence of non-
classical evaluation functions or, equivalently, a larger possibility space (Theo-
rem 1). This is clearly discussed in [68, Supplement 3.4]:

“Since the set of pure states of the composite system � is larger than Cartesian 
product �A ×�B , the phase space of the classical description of the composite 
system will be larger than the product of phase spaces for the components: 
�A ×�B ⊊ � . Therefore this classical description is not a correspondence 
between the categories of classical and quantum system preserving the opera-
tion of forming the composite systems. Moreover, it appears that there is no 
way to establish such a correspondence. In any classical description of a com-
posite quantum system the variables corresponding to observables of the com-
ponents are necessarily entangled in the way unusual for classical subsystems.”

L((⊗2
j=1

xj)
†G(⊗2

j=1
xj)) = L(Tr(G(⊗2

j=1
xj)(⊗

2
j=1

xj)
†))

= Tr(G L((⊗2
j=1

xj)(⊗
2
j=1

xj)
†)),

25  See Sect. 4 but also [68, Sect. 1.7, and Supplem. 3.2]. Notice that, when it corresponds to a pure quan-
tum state, that is to a truncated moment matrix of rank one, the model is compatible with exactly one 
probability.
26  Such nonuniqueness argument is also developed in [94] and [68, Supplementary 3.2].
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To sum up, �A ×�B ⊊ � may be understood as another manifestation of algorith-
mic rationality.

Sum‑of‑Squares Optimisation

The theory of moments (and its dual theory of positive polynomials) are used 
to develop efficient numerical schemes for polynomial optimisation, i.e., global 
optimisation problems with polynomial functions. Such problems arise in the 
analysis and control of nonlinear dynamical systems, and also in other areas such 
as combinatorial optimisation. This scheme consists of a hierarchy of semidefi-
nite programs (SDP) of increasing size which define tighter and tighter relaxa-
tions of the original problem. Under some assumptions, it can be showed that the 
associated sequence of optimal values converges to the global minimum, see for 
instance [1, 95]. Note that every polynomial in

is a (Hermitian) sum-of-squares because it can be rewritten as:

with G = HH†.
In QT, SDP has been used to numerically prove that a certain state is entan-

gled [96–104]. The work [97, 98] realised that the set of separable quantum states 
can be approximated by sum-of-squares hierarchies. This leads to the SDP hier-
archy of Doherty-Parrilo-Spedalieri, which is extensively employed in quantum 
information.

The present, purely foundational, work differs from these approaches by stat-
ing that the (microscopic) world is actually running on a ‘computer’ that solves 
SOS optimisation problems.

Technicalities

Sections 2 and 4

The proofs of the results in Sect. 2.2 were derived in [105]. Hereafter, we extend 
those results to prove Theorem 1.

We define the dual of a subset K of L  as:

By an argument analogous to that by [106, Th. 4], it is easy to check that:

Proposition 4  The map

𝛴≥ ∶= {g(x1,… , xm) = (⊗m
j=1

xj)
†G(⊗m

j=1
xj) ∶ G ≥ 0},

(⊗m
j=1

xj)
†HH†(⊗m

j=1
xj) =

k∑
i=1

|(H†(⊗m
j=1

xj))i|2,

(31)K∙ =

{
� ∈ M ∶

�
gd� ≥ 0, ∀g ∈ K

}
.
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establishes a bijection between coherent sets of desirable gambles and non-empty 
closed convex sets of states.

It is also easy to verify the following characterisation of the dual of a closed 
convex cone which is not coherent.

Proposition 5  Let K be a non empty closed convex cone. Then the following are 
equivalent: 

1.	 K ≠ L  and K is not coherent;
2.	 K

∙ ⊈ M
≥;

3.	 K
∙ ∩ {𝜇 ∈ M ∣ ⟨1,𝜇⟩ = 1} ⊈ S;

4.	 {0} ⊊ K
∙ and K∙ ∩ S = �.

Essentially, Proposition 5 is telling us that, from the dual point of view, non-degen-
erated closed convex cones of gambles that are not coherent are characterised by quasi-
probabilities (charges).

Proof of Theorem 1  Assume that LR includes all positive constant gambles and that 
�≥ is closed (in LR ). Let C ⊆ LR be an A-coherent set of desirable gambles. We 
have to verify that the following statements are equivalent: 

1.	 C includes a negative gamble that is not in 𝛴<;
2.	 posi (L≥ ∪ G) is incoherent, and thus P is empty;
3.	 C

◦ is not (the restriction to LR of) a closed convex set of mixtures of classical 
evaluation functionals;

4.	 The extension C∙ of C◦ in the space M  of all charges in � includes only quasi-
probabilities.

First of all, notice that the restriction to LR of the set of all normalised charges that cor-
respond to a bounded linear functionals coincides with C∙ . Given this, the equivalence 
between (3) and (4) is immediate, whereas the equivalence between (2) and (4) is given 
by Proposition 5. We finally verify the equivalence between (1) and (3). In this case, 
the direction from left to right being obvious, the other direction is due to the fact that 
g ≤ f  , for every g ∈ C and f ∈ posi (L≥ ∪ C) ⧵ C . 	�  ◻

Section 4: Duality in QT

Recall from Sect. 3 that the set 
{
L ∈ L

∗

R
∣ L(g) ≥ 0, L(1R) = 1, ∀g ∈ C

}
 is the dual 

of C ⊂ LR.
The monomials ⊗m

j=1
xj form a basis of the space LR . Define the Hermitian matrix of 

scalars

K ↦ P ∶= K
∙ ∩ S
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and let {zij} ∈ ℂ
d , with d =

n(n+1)

2
 and n =

∏m

j=1
nj , be the vector of variables 

obtained by taking the elements of the upper triangular part of Z. Given any gamble 
g, we can therefore rewrite L(g) as a function of the vector {zij} ∈ ℂ

d . This means 
that the dual space L∗

R
 is isomorphic to ℂd , and we can then define the dual maps (⋅)◦ 

between LR and ℂd as follows.

Definition 3  Let C be a closed convex cone in LR . Its dual cone is defined as

where L(g) is completely determined by {zij} via the definition (32).

In discussing properties of the dual space, we need the following well-known 
result from linear algebra:

Lemma 1  For any M ∈ Hd×d and v ∈ ℂ
d , it holds that

By Lemma 1 and the definitions of g and Z, we obtain the following result.

Proposition 6  Let g(x1,… , xm) = (⊗m
j=1

xj)
†G(⊗m

j=1
xj) and G Hermitian. Then for 

every z ∈ ℂ
d , it holds that L(g) = Tr(GZ) , where Z is defined in (32).

It is then possible to verify that:

Proposition 7  Let C be an A-coherent set of desirable gambles. The following holds:

Proof  By A-coherence, C includes �≥ , which is isomorphic to the closed convex 
cone of PSD matrices. We have that

From a standard result in linear algebra, see for instance [68, Lemma 1.6.3], this 
implies that Z ≥ 0 , i.e., it must be a PSD matrix. 	�  ◻

In what follows, we verify that the dual C◦ is completely characterised by a 
closed convex set of states. But before doing that, we have to clarify what is a 
state in this context.

In an algorithmic TDG, postulate A0 is replaced with postulate B0. Hence, to 
define what a state is, one cannot anymore refer to nonnegative gambles but to 
gambles that are A-nonnegative. This means that states are linear operators that: 

(32)Z ∶= L
(
(⊗m

j=1
xj)(⊗

m
j=1

xj)
†
)
,

(33)C◦ =
{
z ∈ ℂ

d ∶ L(g) ≥ 0, ∀g ∈ C
}
,

(34)Tr(M(vv†)) = Tr((vv†)M) = v†Mv.

(35)C◦ =
{
z ∈ ℂ

d ∶ L(g) = Tr(GZ) ≥ 0, Z ≥ 0, ∀g ∈ C
}
.

L(g) = Tr(GZ) ≥ 0 ∀g ∈ 𝛴≥ ⊆ C.
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(1) assign nonnegative real numbers to A-nonnegative, and (2) preserve the unit 
gamble. In the context of Hermitian gambles, the unitary gamble is

where I is the identity matrix. Therefore, we want that

Hence, the set of states is

By reasoning exactly as for Theorem 4, we then have the following result.

Theorem 3  The map

is a bijection between A-coherent set of desirable gambles in LR and closed convex 
subsets of SB.

We can therefore identify the dual of an A-coherent set of desirable gambles C , 
with the closed convex set of states

Notice that since matrices corresponding to states are density matrices, (39) is in 
fact equivalent to

meaning that we can identify the set SB with the set of density matrices and denote 
its elements as usual with the symbol �.
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(36)1R(x1,… , xm) = (⊗m
j=1

xj)
†I(⊗m

j=1
xj) =

m∏
i=1

xj
†xj = 1,

(37)

L
(
(⊗m

j=1
xj)

†I(⊗m
j=1

xj)
)
= L

(
Tr
(
I (⊗m

j=1
xj)(⊗

m
j=1

xj)
†
))

= Tr
(
I L

(
(⊗m

j=1
xj)(⊗

m
j=1

xj)
†)

))

= Tr(I Z) = Tr(Z) = 1.

(38)SB = {z ∈ ℂ
d ∶∣ Z ≥ 0, Tr(Z) = 1}.

C ↦ Q ∶= C
◦ ∩ SB

(39)Q =
{
z ∈ SB ∶ L(g) = Tr(GZ) ≥ 0, ∀g ∈ C

}
.

{
� ∈ H

n×n ∶ � ≥ 0, Tr(�) = 1, Tr(G�) ≥ 0, ∀G ∈ C
}
,
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