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Abstract
According to a popular narrative, in 1932 von Neumann introduced a theorem that 
intended to be a proof of the impossibility of hidden variables in quantum mechan-
ics. However, the narrative goes, Bell later spotted a flaw that allegedly shows its 
irrelevance. Bell’s widely accepted criticism has been challenged by Bub and Dieks: 
they claim that the proof shows that viable hidden variables theories cannot be theo-
ries in Hilbert space. Bub’s and Dieks’ reassessment has been in turn challenged by 
Mermin and Schack. Hereby I critically assess their reply, with the aim of bringing 
further clarification concerning the meaning, scope and relevance of von Neumann’s 
theorem. I show that despite Mermin and Schack’s response, Bub’s and Dieks’ 
reassessment is quite correct, and that this reading gets strongly reinforced when 
we carefully consider the connection between von Neumann’s proof and Gleason’s 
theorem.

Keywords  Quantum mechanics · Hidden variables · John von Neumann · Gleason’s 
theorem

1  Introduction

John von Neumann is a prominent character in the history of quantum mechanics. 
Most notably, we owe him the standard axiomatization of quantum mechanics in 
Hilbert space. Along with this contribution, he introduced a theorem that, accord-
ing to many historians and philosophers, intended to be a proof of the impossibility 
of hidden variables [1, pp. 205–211]. According to a popular narrative, this proof 
contributed to establish a hostile environment towards the hidden variables program. 
However, three decades after its formulation, Bell [2] leveled a criticism against the 
theorem that turned the tide. After Bell’s critique, the proof came to be regarded as a 
rather unimportant result. Hermann [3] had prefigured Bell’s attack decades earlier, 
but her argument did not make a significant impact on the community.
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This widely accepted account has been recently challenged by Bub [4] and Dieks 
[5]. They claim that there has been a huge misunderstanding, even from the early 
stages of our story. Although they of course agree with the standard narrative in that 
it is not an impossibility proof, they claim that von Neumann’s result is nevertheless 
important. The core idea in Bub’s reassessment, which is shared by Dieks, is that 
what von Neumann really showed is that hidden variables theories cannot represent 
their physical quantities (beables) by means of Hermitian operators, so such theories 
cannot be theories in Hilbert space. Both authors also agree in that von Neumann 
correctly understood the meaning and restricted scope of his theorem, and Dieks 
adds that although Hermann’s criticism relies on a misunderstanding, she (unlike 
Bell) did grasp the right lesson to be learned from it.

In a recent paper, Mermin and Schack [6] presented a critical reply to Bub and 
Dieks. As we will see in detail, Bell’s criticism consists in that a premise in von 
Neumann’s proof constitutes a physically unjustified and unnatural assumption for 
hypothetical hidden variables theories. Bell argued that this premise amounts to the 
silly imposition of additivity of expectation values for experimentally incompatible 
quantities and hypothetical deterministic quantum states (determined by hidden vari-
ables). However, Bub and Dieks affirm that Bell missed the real foundation and goal 
of von Neumann’s assumption: to allow the mathematical representation of quanti-
ties like f (R,S) when the quantities R and S are experimentally incompatible. Cor-
rectly understood, Bub and Dieks claim, there is nothing wrong with it. Mermin and 
Schack have now replied that the premise in question is superfluous, for its goal can 
be allegedly attained with the rest of von Neumann’s (uncontroversial) assumptions. 
Furthermore, they claim that their rebuttal of Bub’s and Dieks’ stance was already 
contained in Hermann’s critical assessment of the proof.

In this paper I critically examine the points of controversy leveled by Mermin 
and Schack. Their main argument brings a new perspective on the evaluation of von 
Neumann’s debated premise, so a careful consideration of their reply can lead us to 
further clarification and to a deeper understanding of the relevance and scope of the 
proof. I show that the assumption is not superfluous, and that its precise meaning 
and goal are better understood if we keep in mind that the original formulation of 
the theorem did not involve issues about hidden variables—this is a crucial fact that 
has not been sufficiently taken into account in the discussion. Then, making use of 
my reading of the relevance and content of the debated premise, I propose a novel 
characterization of von Neumann’s understanding of his theorem, which, I think, fits 
better with the textual evidence. I also defend Dieks’ reading of Hermann’s stance, 
and bring to attention that Jammer [7] prefigured an interpretation of the theorem 
along the same line of Bub and Dieks.

A second goal in this paper is to correctly characterize the connection between 
von Neumann’s proof and Gleason’s theorem. The link between them has been spot-
ted along the discussion, but so far it has not been carefully analyzed. I show that 
if, once again, we consider von Neumann’s theorem in its initial formulation, we 
see that although it is true that Gleason’s proof is more powerful in the sense that it 
establishes the same result on the basis of weaker premises, von Neumann’s is, after 
all, an equally valuable achievement. First, the same result for hidden variables that 
we obtain from von Neumann’s theorem, we can obtain from Gleason’s. Secondly, 
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Gleason’s theorem yields a vindication of von Neumann’s debated premise. That is, 
after Gleason’s theorem and a right reading of the original goal of von Neumann’s 
theorem, we see that in the end there is nothing questionable or misleading in the 
debated assumption.

2 � The Story So Far

In order to have all the cards on the table, I will first review the essentials and the 
successive stages in the debate about the interpretation of von Neumann’s theorem. I 
present an outline of the 1932 proof, Hermann’s and Bell’s critical reactions, Bub’s 
and Dieks’ reassessment, and Mermin and Schack’s subsequent reply.

2.1 � von Neumann, 1932

In his seminal book Mathematical Foundations of Quantum Mechanics, published 
in 1932, von Neumann [1] presented the theorem at issue. As I mentioned above, 
it has been usually understood as an attempted proof of the impossibility of hidden 
variables in quantum mechanics.1 Its premises are the following [1, pp. 201–205]:

A′. If the quantity R is by nature non-negative (if, for example, it is the square of 
another quantity S ) then also Exp(R) ≥ 0.
B′. If R , S ,… are arbitrary quantities, and a , b ,… are real numbers, then 
Exp(aR + bS + ⋅ ⋅ ⋅) = aExp(R) + bExp(S) + ⋅ ⋅ ⋅.
I. If the quantity R has the operator R , then the quantity f (R) has the operator 
f (R).
II. If the quantities R , S ,… have the operators R , S,…, then the quantity 
R + S + ⋅ ⋅ ⋅ has the operator R + S + ⋅ ⋅ ⋅.

Assuming these premises, von Neumann derives the trace rule Exp(R) = Tr (UR) 
[1, pp. 205–207, see Appendix 1], and from this result he proves two corollaries. 
First, that the trace rule does not admit dispersion-free (deterministic) states, that 
is, states such that, for any quantity R , Exp

(
R2

)
=
[
Exp(R)

]2 [1, pp. 208–209, see 
Appendix 2]. Now, if a state is dispersive, von Neumann remarks that it can always 
be decomposed in two sub-ensembles such that Exp(R) = �Exp�(R) + �Exp��(R) , 
where 𝛼 > 0 , 𝛽 > 0 , and � + � = 1 . Then he defines a homogeneous (pure) state as a 
state for which it holds that Exp(R) = Exp�(R) = Exp��(R) for any sub-ensembles. 
As a second corollary, he proves that a state is homogeneous iff the density operator 
U that represents it is a projector onto a unit vector [1, pp. 209–210, see Appendix 
3].

The introduction of hidden variables should yield dispersion-free states, and with 
suitable values for the hidden parameters a dispersive state could be decomposed 

1  For a treatment of the general attitude towards hidden variables among leading physicists by the early 
1930s, see [9].
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in deterministic sub-ensembles, so with hidden variables a dispersive state cannot 
be homogeneous. However, the first corollary shows that dispersion-free states are 
impossible, and the second corollary shows that there are dispersive homogeneous 
states. Von Neumann then concludes that:

In fact, we have even established that it is impossible for the same physical 
quantities to exist with the same functional connections (i.e., for I and II to 
hold) if other variables (i.e., “hidden parameters”) exist in addition to the 
wave functions. Nor would it help if there existed other, as yet undiscovered, 
physical quantities in addition to those represented by the operators in quan-
tum mechanics because the relations assumed by quantum mechanics (i.e., I 
and II) would have to fail already for the by-now-known quantities […]. It is 
therefore not, as is often assumed, a question of the reinterpretation of quan-
tum mechanics—the present system of quantum mechanics would have to be 
objectively false for a description other than the statistical description of ele-
mentary processes to be possible. [1, pp. 211–212]

2.2 � Hermann, 1935

In Section  7 of an essay published in 1935, entitled Natural-Philosophical Foun-
dations of Quantum Mechanics, Grete Hermann criticized von Neumann’s proof 
by challenging premise B′. Hermann starts out by underscoring that the theorem 
crucially relies on it: “Neumann assumes that Exp(R + S) = Exp(R) + Exp(S) . In 
words: the expectation value of a sum of physical quantities is equal to the sum of 
the expectation values of the two quantities. Neumann’s proof stands or falls with 
this assumption” [3, p. 251–252]. She comments that B′ is a natural assumption 
in classical mechanics, and that in quantum mechanics it is also unproblematic for 
compatible quantities for which uncertainty relations do not hold—i.e., for quanti-
ties represented by commuting Hermitian operators. In the case of two such quanti-
ties A and B , the value of the quantity A + B is simply the sum of the values of A 
and B , and from this it follows that the expectation values are also additive.

However, for experimentally incompatible quantities represented by non-com-
muting operators, the assumption, she claims, does become problematic: “for the 
so-defined concept of the sum of two quantities that are not simultaneously measur-
able, the formula given above [B′] requires a proof” [3, p. 252]. Hermann remarks 
that B′ is indeed the case for states represented by a wavefunction (i.e., by a density 
operator), and she claims that this is the proof that von Neumann is providing for B′:

Neumann relies on the fact that, in the context of the formalism, the rule 
((R + S)�,�) = (R�,�) + (S�,�) holds for the symbol (R�,�),2 which repre-
sents a number and is interpreted as the expectation value of the quantity R in 
the state � . (Here R and S are the mathematical operators assigned to the quan-

2  Hermann follows von Neumann’s notation, in which (R�,�) denotes the inner product ⟨��R��⟩.
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tities R and S ; � specifies the wave function of the systems under considera-
tion.) From this rule Neumann concludes that for ensembles of systems with 
equal wave functions, and therefore for all ensembles generally, the addition 
theorem for expectation values holds also for quantities that are not simultane-
ously measurable. [3, p. 252]

 But this maneuver is circular, Hermann states, because we are excluding from the 
outset the possibility of dispersion-free sub-ensembles, characterized by “new fea-
tures” beyond wavefunctions. For such sub-ensembles, claims Hermann, the linear 
additivity of expectation values in premise B′ should not be expected for incom-
patible quantities represented by non-commuting Hermitian operators. She then 
concludes that the proof is question begging, for a justification of B′ relying on the 
additivity that holds for quantum mechanical states given by wavefunctions—i.e., 
dispersive states represented by density operators U in the trace rule—amounts to 
exclude in advance the possibility of dispersion-free quantum sub-ensembles speci-
fied by hidden variables. In her own words,

one has implicitly absorbed into the interpretation the unproven assumption 
that there can be no distinguishing features, of the elements of an ensemble 
of physical systems characterized by � , on which the result of the R-meas-
urement depends. However, the impossibility of such features is precisely the 
claim to be proven. Thus the proof runs in a circle. [3, p. 252]

2.3 � Bell, 1966

In an article entitled On the Problem of Hidden Variables in Quantum Mechanics, 
published three decades after Hermann’s critique, Bell [2] introduced a somewhat 
similar rebuttal of von Neumann’s impossibility proof. Bell identifies what he con-
siders the crucial assumption in the proof, namely that “any real linear combination 
of any two Hermitian operators represents an observable, and the same linear com-
bination of expectation values is the expectation value of the combination” [2, pp. 
448–449]—i.e., the conjunction of II and B′. Then he states that for dispersion-free 
states, the expectation value of a quantity is given by one of the eigenvalues of the 
operator that represents the quantity. However, in the case of non-commuting opera-
tors that represent experimentally incompatible quantities, their eigenvalues are, 
in general, not linear-additive. Thus, Bell states, B′ cannot hold for dispersion-free 
states, so if we assume this premise, such states are not possible.

But Bell then argues that the imposition of B′ for hypothetical dispersion-free 
states is unjustified. In the same line as Hermann, he complains that if we consider 
experimentally incompatible quantities, the description of dispersion-free states by 
means of hidden variables would make it natural that for such states expectation 
values are not additive, while additivity does hold when the states are averaged over 
the values of hidden variables (resulting in dispersive states described by wavefunc-
tions/density operators):

The essential assumption can be criticized as follows. At first sight the required 
additivity of expectation values seems very reasonable, and it is rather the 
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nonadditivity of allowed values (eigenvalues) which requires explanation. Of 
course the explanation is well known: A measurement of a sum of noncom-
muting observables cannot be made by combining trivially the results of sep-
arate observations on the two terms—it requires a quite distinct experiment 
[…]. But this explanation of the nonadditivity of allowed values also estab-
lishes the nontriviality of the additivity of expectation values. The latter is a 
quite peculiar property of quantum mechanical states, not to be expected a pri-
ori. There is no reason to demand it individually of the hypothetical dispersion 
free states, whose function it is to reproduce the measurable peculiarities of 
quantum mechanics when averaged over. [2, p. 449]

Bell then concludes that von Neumann’s proof misses the mark. Since B′ is an unjus-
tified assumption for hypothetical dispersion-free states specified by hidden varia-
bles, a proof of the impossibility of hidden variables that relies on it is a non-starter: 
“It was not the objective measurable predictions of quantum mechanics which ruled 
out hidden variables. It was the arbitrary assumption of a particular (and impossi-
ble) relation between the results of incompatible measurements” [2, p. 449]. In other 
words, to Bell’s eyes von Neumann’s theorem is only a proof of the impossibility of 
an uninteresting and irrelevant class of hidden variables theories. Furthermore, in a 
1988 interview, he went as far as describing the whole proof in the following terms:

Yet the Von Neumann proof, if you actually come to grips with it, falls apart 
in your hands! There is nothing to it. It’s not just flawed, it’s silly. If you look 
at the assumptions made, it does not hold up for a moment. It’s the work of 
a mathematician, and he makes assumptions that have a mathematical sym-
metry to them. When you translate them into terms of physical disposition, 
they’re nonsense. You may quote me on that: The proof of Von Neumann is 
not merely false but foolish! [11, p. 88]

2.4 � Bub, 2010

In Von Neumann’s ‘No Hidden Variables’ Proof: a re-appraisal, Bub [4] argues 
that Bell [2] misconstrues von Neumann’s proof, and that the theorem does show 
something significant. Bub’s reassessment is based on the fact that the con-
junction of A′, B′, I and II leads to the trace rule, which tells us that quantum 
mechanical states are always given by density operators (see Appendix 1). From 
this, it follows that there cannot be dispersion-free states (see Appendix 2), and 
that there are dispersive homogeneous states (see Appendix 3). Now, Bub states 
that the significance of premises I and II for hidden variables theories is that 
they amount to the principle that the beables in such theories are represented 
by Hermitian operators: “I, II, relate physical quantities to Hilbert space opera-
tors. It is assumed that each physical quantity of a quantum mechanical system is 
represented by a […] Hermitian operator in a Hilbert space” [4 p. 1336]. Then, 
since—as von Neumann claims—the introduction of hidden variables amounts to 
the rejection of I and II, Bub concludes that although the theorem is not an abso-
lute proof of the impossibility of hidden variables, it is still important:
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what von Neumann’s proof excludes, then, is the class of hidden variable 
theories in which (i) dispersion free (deterministic) states are the extre-
mal states, and (ii) the beables of the hidden variable theory correspond to 
the physical quantities represented by the Hermitian operators of quantum 
mechanics. [4, p. 1340]

Bub also defends von Neumann’s rationale for B′. In a nutshell (more about 
this below), von Neumann noted that if we consider experimentally incompat-
ible quantities R and S , the incompatibility forbids that the value for the quan-
tity R + S can be given by simultaneous or successive measurements of R and 
S . Thus, he stated, we must assume B′, so that Exp(R + S) = Exp(R) + Exp(S) 
implicitly defines the quantity R + S.

Besides, Bub states that Bell’s understanding of the theorem was rather short-
sighted. He describes Bell’s stance as a quick argument that follows from the core 
of the proof. That is, the quick argument tells us that for hypothetical dispersion-
free states expectation values are eigenvalues of the corresponding operators, but 
given B′, such states are impossible because the eigenvalues of non-commuting 
operators are not linear-additive. However, Bub claims, this does not capture the 
deeper meaning of von Neumann’s theorem. First, the quick argument fails to 
realize that the proof determines what are the states allowed by the quantum for-
malism in Hilbert space:

What the quick argument shows is that we cannot identify the physical quan-
tities of a hidden variable theory with Hermitian operators, according to I, 
II, if we require the existence of dispersion free states. What the argument 
does not show is what sorts of states are allowed for ‘physical quantities’ in 
a generalized sense characterized by the conditions A′, B′, I, II, and this is 
clearly the more interesting question. Von Neumann’s proof is designed to 
answer this question, i.e., to derive the full convex set of quantum probabil-
ity distributions, and once this question is answered, the quick argument is 
redundant. [4, p. 1337]

 Second, Bub argues that Bell’s claim that von Neumann presented his theorem 
as an absolute proof of the impossibility of hidden variables is wrong. According 
to Bub, von Neumann was clear and correct in that the meaning of his theorem is 
that it rules out hidden variables theories in which I and II hold, that is, hidden 
variables theories in which the beables are represented by Hermitian operators. 
To defend this view, he states that in the passage where von Neumann asserts that 
“the present system of quantum mechanics would have to be objectively false for 
a description other than the statistical description of elementary processes to be 
possible” [1, p. 212], by “objectively false” he refers to the invalidity of I and II, 
not to the empirical inadequacy of quantum mechanics:

So the sense in which ‘the present system of quantum mechanics would have 
to be objectively false’ if the quantum statistics could be derived from a dis-
tribution of dispersion free or deterministic states is that, in a hidden variable 
theory, the association of known physical quantities—like energy, position, 
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momentum—with Hermitian operators in Hilbert space would have to fail. [4, 
p. 1338]

2.5 � Dieks, 2017

In a recent article, Von Neumann’s Impossibility Proof: mathematics in the service 
of rhetorics, Dieks [5] endorses Bub’s reading of the relevance of the theorem: “the 
proof tells us that the hidden physical properties added to the quantum description in 
a hidden variables completion of the theory cannot correspond to Hermitian opera-
tors in Hilbert space in the way the standard quantum quantities do” [5, p. 140]. He 
also defends the view, in the same line as Bub, that von Neumann understood the 
significance of his theorem quite correctly. Dieks argues that Bell failed to under-
stand the motivation for B′ that von Neumann offered—that it allows the definition 
of quantities like R + S when R and S are experimentally incompatible—and this 
failure misled him to think that von Neumann intended to impose B′ for hypothetical 
dispersion-free states on any hidden variables theory:

Bell thus misconstrues the premises of von Neumann’s proof. He incorrectly 
interprets them as a requirement imposed on the expectation values of physi-
cal quantities that are defined via their representation by operators in standard 
quantum mechanics. His triviality objection boils down to the observation that 
it is easy to see that this requirement cannot be imposed anyway. By contrast, 
there is nothing obviously wrong or impossible when we follow von Neu-
mann’s own reasoning. If von Neumann’s premises are formulated as von Neu-
mann himself stated them, there is no triviality in his proof. [5, p. 142]

 Dieks also argues that the core of Hermann’s criticism is unfounded. Recall that 
she claims that the theorem is circular insofar as the proof of B′ that von Neumann 
allegedly offers is that additivity of expectation values holds for all quantum states 
allowed by the trace rule, but this amounts to assume from the outset that dispersion 
free states specified by hidden variables are not possible. Dieks states that von Neu-
mann never intended to offer a proof of B′, and that he never needed one. Again, he 
introduced this assumption as a principle that allows to define quantities which are 
the sum of incompatible quantities, and once this principle is assumed, it is obvious 
that additivity of expectation values will hold in the result obtained:

There seems to be a serious misunderstanding here on Hermann’s part: indeed, 
there is no need at all for von Neumann to worry about a proof for the additiv-
ity of the expectation values of physical quantities, since in his argumentative 
set-up this is not an assumption at all but a conclusion that follows analyti-
cally from the definition of R + S . That von Neumann felt that he needed a 
proof for the “additivity assumption” and subsequently attempted to provide 
such a proof in several steps is therefore—strangely enough—a fabrication. [5, 
p. 143]

 Anyhow, Dieks also affirms that despite this unfounded criticism, and despite the 
allegedly wrong accusation that von Neumann introduced his theorem as an absolute 



1 3

Foundations of Physics (2021) 51:73	 Page 9 of 29  73

impossibility proof, Hermann correctly understood the restricted scope of the no-go 
result. There are passages in which she was clear in that what von Neumann proved 
is that the quantum formalism in Hilbert space cannot be completed with the intro-
duction of hidden variables, and that this leaves open the possibility of viable hidden 
variables formulated beyond the boundaries of that formalism:

Remarkably, in their final assessments of the situation Hermann and von Neu-
mann substantially agree—even though Hermann apparently is unaware of 
this. Both think that hidden variables have only been excluded to the extent 
that they could fit in the Hilbert space formalism, and that it is an empirical 
question whether this means that they will never be needed. [5, p. 145]

2.6 � Mermin and Schack, 2018

In the most recent work in this discussion, Homer Nodded: von Neumann’s surpris-
ing oversight, Mermin and Schack [6] challenge the analysis of the theorem pro-
posed by Bub and Dieks, and they also defend Hermann and Bell from the accusa-
tion of having misunderstood von Neumann’s proof.

Mermin and Schack claim that Bub and Dieks defend the view, also endorsed by 
von Neumann, that the theorem forces hidden variables theories to drop I and II. 
They also assert that Bub and Dieks argue that since B′ amounts to an implicit defi-
nition of quantities that are the sum of experimentally incompatible quantities, its 
analytic-definitional character makes the assumption untouchable. After considering 
the explanation that von Neumann offers for B′, Mermin and Schack state that:

Bub and Dieks both take this to mean that von Neumann uses assumption B′ 
to define linear combinations of physical quantities that are not simultaneously 
measurable. This is the entire basis for their criticisms of Bell and Hermann. If 
B′ is just a definition, it cannot also be an invalid assumption, as Hermann and 
Bell maintain. [6, p. 1009]

Mermin and Schack further claim that I and II are enough to fulfill the purpose 
of mathematically defining physical quantities, so that B′ is not necessary after 
all. Assumption I guarantees, they claim, that the correspondence between physi-
cal quantities and Hermitian operators is one-to-one, so I secures that operators 
can always define physical quantities. Accordingly, assumption II is then simply an 
instance of this definitional procedure in the case of quantities that are the linear 
sum of experimentally incompatible quantities. On the basis of this analysis, Mer-
min and Schack conclude that the allegedly superfluous character of assumption B′ 
undermines the reassessment of the theorem proposed by Bub and Dieks:

This observation invalidates what Bub and Dieks have to say about Hermann’s 
and Bell’s alleged misunderstanding of von Neumann. Whether von Neu-
mann intended to define such sums through Assumption II is beside the point, 
though we believe he did […]. To invalidate Bub’s and Dieks’ criticism of 
Hermann and Bell it is enough that an alternative definition exists in addition 
to the definition Bub and Dieks attribute to von Neumann. [6, p. 1010]
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 Mermin and Schack also claim that if it were true that the introduction of hidden 
variables to describe dispersion-free states forces us to drop I and II, then von Neu-
mann’s conclusion that the present system of quantum mechanics would have to be 
objectively false would be justified: “so strong a conclusion might indeed be appro-
priate if Assumption I and II were the only suspects” [6, p. 1012]. However, they 
assert that it is B′ that must be jettisoned, and that its rejection does not lead to the 
objective falsity of the system of quantum mechanics: “it is not only meaningful 
to reject B′ for the hypothetical dispersion-free subensembles, but quite compatible 
with the general structure of ordinary quantum mechanics” [6, p. 1013].

Furthermore, they argue that Hermann’s critical account of the theorem was cor-
rect, for she allegedly noticed that B′ is unnecessary to fulfill the task of defining 
physical quantities like R + S . Hermann indeed notices that the incompatibility 
between R and S involves a difficulty in defining the quantity that is their sum, and 
then she makes the following comment: “only by the detour over certain mathemati-
cal operators assigned to these quantities does the formalism introduce the concept 
of a sum also for such quantities” [3, p. 252]. Mermin and Schack quote this passage 
as evidence that Hermann realized that B′ is superfluous, for they claim that by a 
“detour over certainly mathematical operators” she refers to I and II:

Hermann is saying here that because it is not clear how to define the sum in 
[ Exp(R + S) = Exp(R) + Exp(S) ] or in Assumption B′ of two quantities that 
are not jointly measurable, “to introduce the concept of a sum… for such 
quantities” requires a detour involving mathematical operators assigned to 
them—i.e. von Neumann’s Assumptions I and II. By emphasizing the need 
for a detour into I and II she underlines that it is not necessary to take B′ to 
define the sum of quantities that are not simultaneously measurable. Hermann 
is reading von Neumann just as we do. [6, p. 1015]

3 � Von Neumann Revisited

Now that we have reviewed the different stances and arguments in the discussion, I 
will critically consider the points of controversy introduced by Mermin and Schack 
[6], with the goal of getting a deeper and clearer understanding of the meaning and 
relevance of von Neumann’s theorem. I will first call attention to a crucial fact that 
has not been considered in the discussion, namely, that von Neumann’s theorem was 
not originally presented in connection with issues about hidden variables. In its first 
formulation, von Neumann [12] aimed at a derivation of the predictive formula of 
quantum theory in Hilbert space from basic principles. Considering this fact, I pro-
vide a careful analysis of his justification of the controversial premise B′. On the 
basis of a right comprehension of the goal of the proof, and a correct understanding 
of the meaning of assumption B′ in the context of that goal, I will show that this 
premise is not superfluous at all. Furthermore, I will reconsider the discussion about 
what was von Neumann’s own understanding of his theorem, proposing a middle 
way alternative between the popular narrative and Bub’s and Dieks’ interpretation. 
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Finally, I will reconsider the discussion about Grete Hermann’s understanding of the 
theorem, complementing Dieks’ stance, and I will briefly comment on Max Jam-
mer’s illuminating comments on von Neumann’s proof.

3.1 � von Neumann, 1927

Von Neumann’s theorem is usually analyzed as presented in the Mathematical Foun-
dations of Quantum Mechanics, published in 1932. However, he had already intro-
duced the conceptual basis for his seminal book in a series of papers that appeared in 
1927.3 In the first article, von Neumann [13] presented the mathematical formalism 
of Hilbert space, and showed that it allows a novel formulation of quantum theory. 
One of von Neumann’s main achievements in that paper was that in Hilbert space 
the Born rule takes the form of the trace rule ⟨R⟩U = Tr(UR).

In his subsequent Wahrscheinlichkeitstheoretischer Aufbau der Quanten-
mechanik, von Neumann [12] complained that in the previous paper he had simply 
assumed the Born rule (in the form of the trace rule) on the basis of its empirical 
adequacy as a central part of the new quantum formalism:

The method hitherto used in statistical quantum mechanics was essentially 
deductive: the square of the norm of certain expansion coefficients of the wave 
function or of the wave function itself was fairly dogmatically set equal to a 
probability, and agreement with experience was verified afterwards. A sys-
tematic derivation of quantum mechanics from empirical facts or fundamen-
tal probability-theoretic assumptions, i.e., an inductive justification, was not 
given. [12, p. 246, quoted in 14, p. 246]

 Considering this shortcoming, now he wanted to proceed in such a way that the 
trace rule could be derived from basic probabilistic-theoretical assumptions, with 
the goal of building the Hilbert space formalism of quantum mechanics on stronger 
foundations. The theorem that we have been discussing is von Neumann’s fulfill-
ment of this task. A′, B′, I and II (which in von Neumann’s second 1927 paper are 
labeled B, A, D and C, respectively) are the probabilistic-theoretical assumptions 
from which he derived the trace rule (see Appendix 1).

As a corollary to this theorem, von Neumann [12, p. 255] proved that a quantum 
state represented by the density operator in the trace rule is homogeneous (i.e., for 
that state and any quantity R , it holds that Exp(R) = Exp

�

(R) = Exp��(R) for any 
sub-ensembles) iff the density operator U that represents it is a projector onto a nor-
malized vector. A notable feature in this corollary (that will be important below) is 
that in its derivation the assumptions A′, B′, I and II are not invoked, only the trace 
rule and some basic properties of projectors are needed (see Appendix 3).

A crucial point for our discussion is that neither the theorem nor the described 
corollary were presented or discussed by von Neumann in connection with the 
(im)possibility of hidden variables. As we mentioned, von Neumann’s goal was 

3  See [14] for an assessment of von Neumann’s early works on quantum theory in Hilbert space.
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to provide stronger mathematical and theoretical foundations for his formalism of 
quantum mechanics in Hilbert space, particularly in the case of the trace rule. Hid-
den variables were not considered at all in the original formulation of the theorem. 
Von Neumann’s own words to characterize the goal and importance of the Aufbau 
paper are the following:

the goal of the present paper was to show that quantum mechanics is not only 
compatible with the usual probability calculus, but that, if it [probability cal-
culus]—along with a few plausible factual assumptions—is taken as given, it 
[quantum mechanics] is actually the only possible solution. [12, p. 271, quoted 
in 14, p. 247]

3.2 � The rationale for B′

In his 1932 book, von Neumann is careful to justify his premises. A′ is practically 
analytic, and required to prove that the density operators in the trace rule are positive 
semi-definite (see Appendix 1). I and II are justified in terms of the representational 
correspondence between Hermitian operators and quantities. In von Neumann’s 
words, “in quantum mechanics […], the quantities R correspond one-to-one to the 
hypermaximal Hermitian operators R ” [1, p. 159]. Commenting on II he adds that 
“this operation depends upon the fact that for two Hermitian operators, R , S , the 
sum R + S is also a Hermitian even if R and S do not commute” [1, pp. 201–202]. In 
short, I tells us that if a quantity R is represented by operator R , the quantity f (R) is 
represented by f (R) ; whereas II tells us that if R and S are represented by R and S , 
the quantity that is the sum of R and S is represented by the sum of R and S . That is, 
I and II establish that the functional relations between the represented quantities are 
mirrored by the representing operators.

Let us now focus on the rationale for premise B′ that von Neumann offers. In the 
Aufbau paper, he briefly refers to its definitional role: if two quantities are experi-
mentally incompatible, to define the quantity that is their sum we need to assume the 
linear additivity of expectation values, which accords with the basic principles of 
probability calculus [12, p. 249]. As we mentioned above, in the Aufbau paper hid-
den variables are not discussed, so the assumption of the linear additivity of expec-
tation values is defended in this way in the context of the task of obtaining a deriva-
tion of the trace rule from basic theoretical-probabilistic principles.

Von Neumann offers a much more detailed discussion of assumption B′ in the 
1932 book, but again, not in connection to hidden variables. The basic idea is of 
course the same: B′ is invoked to define quantities like R + S in the face of experi-
mental incompatibility, but now he adds important background considerations. He 
first asks us to “forget the whole of quantum mechanics” [1, p. 194], which means 
that the line of reasoning to be introduced is about physical reasoning in general, 
not only about quantum theory. Then he tells us to retain the following principle. 
Assume we have a physical system, and a set of well-defined quantities, together 
with their experimental methods of measurement. Given one of those quantities, say, 
R , we can always take a function f (x) and define the quantity f (R) , which will also 
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have an experimental method of measurement: measure R , and then apply the func-
tion f  on the outcome obtained to get the value of f (R) . This means that all the 
quantities � (R) ( R fixed, � arbitrary) are simultaneously measureable.

By the same token, if we have two quantities R and S , we assume—according to 
standard physical reasoning—that we can legitimately define the quantity f (R,S) . 
We could, again by the same token, say that the experimental method of measure-
ment is simply to perform measurements of R and S and apply the function f  on the 
outcomes to get the value of f (R,S) . However, von Neumann states, it could be the 
case that our quantities R and S are experimentally incompatible, in the sense that 
they cannot be simultaneously measured on a system, nor successively measured 
on a system in the same state. In this case, we can construct an ensemble S , which 
we can divide in sub-systems S1, S2,… , Sn , with n large. For such an ensemble we 
do not measure the value of a quantity, but we get the distribution of values for the 
sub-systems, and then we can define the corresponding expectation values—Exp(R) 
and Exp(S) , for example. Consider then two sub-ensembles in S , S1,… , Sm and 
Sm+1,… , S2m , with m large, but with 2m ≪ n . We can determine the distribution and 
expectation value Exp(R) for R in the sub-ensemble S1,… , Sm , and the distribu-
tion and expectation value Exp(S) for S in the sub-ensemble Sm+1,… , S2m , apply the 
function f  on the results obtained, and get Exp(f (R,S)) for S . This line of reasoning 
allows us to implicitly define the quantity f (R,S) and to determine an experimen-
tal method to measure it, despite the experimental incompatibility between R and 
S . In the case of the quantity R + S , what we have said amounts to assume that 
Exp(R + S) = Exp(R) + Exp(S) , which is of course B′.

In sum, if we have a theory in which R and S are experimentally incompatible, 
in order to be able to define a quantity Q = R + S in such a way that its mathemati-
cal representative reflects Q’s functional dependence on R and S , we need to invoke 
B′. In other words, if we have incompatible quantities R and S represented by the 
mathematical objects R and S , we can only represent Q = R + S with the opera-
tor Q = R + S by assuming B′. Thus, von Neumann’s justification for this assump-
tion is that it is required to functionally define quantities that are a linear combi-
nation of experimentally incompatible observables. Therefore—and now returning 
to quantum theory—in order to extract the full representational power of Hilbert 
space according to I and II, i.e., respecting the principle that the functional rela-
tions between quantities are mirrored by the representing operators, B′ is required. 
Although B′ and II are logically independent, in the context of experimental incom-
patibility they work in tandem.

Notice that the preceding discussion that von Neumann offers to defend B′ does 
not involve hidden variables at all. The motivation for B′ only responds to the incom-
patibility between physical quantities, a scenario that occurs in quantum physics. 
Furthermore, although von Neumann is not explicit about it, the defense of B′ does 
not assume that the expectation values involved are probabilistically spread. It is of 
course true that B′ accords with the rules of probability calculus [12, p. 249], but the 
point is that the argument holds also if we assume that either S or the subsystems Si 
are dispersion-free—once again, the relevant issue is experimental incompatibility, 
not probabilities.
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3.3 � B′ is not superfluous

Considering what we have said in Sects. 3.1 and 3.2, let us now take a look at the 
main points of controversy. As we saw, Mermin and Schack [6] claim that the reas-
sessment of von Neumann’s theorem that Bub and Dieks propose crucially relies 
on their alleged defense of B′ as a definitional principle. This definitional-analytic 
character, Mermin and Schack affirm, is what Bub and Dieks invoke to shield B′ 
from revision, turning thus to I and II as the crucial premises for the no-go result. 
Given this reading of Bub’s and Dieks’ stance, Mermin and Schack argue that B′ is 
superfluous, for I and II are allegedly enough to define quantities like R + S despite 
experimental incompatibility—we just need to invoke II, they claim, to define the 
quantity R + S in terms of the operator R + S.

I think there is a misunderstanding here, for Bub and Dieks do not present B′ as 
an untouchable assumption. They are both clear and explicit in that in a viable hid-
den variables theory, for dispersion-free states and incompatible quantities expecta-
tion values cannot be linear-additive. Their main point, however, is that the viability 
of the theory previously requires that its beables are not represented by Hermitian 
operators, thus violating I and II. Dieks comments the relevance of von Neumann’s 
theorem for hidden variables theories in the following terms. After stating that the 
theorem establishes that hidden variables theories cannot be Hilbert space theories 
he adds that “hidden values of at least some physical quantities will not obey the 
same relations as the corresponding quantum observables: as already pointed out 
above, if two such quantum observables add up to a third one, their hidden values 
will generally not add up in the same way” [5, p. 141].

On the other hand, Bub [4, pp. 1338–1339] comments the example of Bohmian 
mechanics. The beables in this theory are represented by functions of position and 
momentum, not by Hermitian operators. This is of course an illustration of Bub’s 
reading of the relevance of von Neumann’s theorem for hidden variables theories: in 
Bohmiam mechanics I and II do not hold (for a treatment of the role that Hermitian 
operators play in the Bomh theory, see [15], and [16]). Besides, Bub also states, 
quite correctly, that in Bohm’s theory expectation values for dispersion-free states 
are not additive, and the fact that they are additive for dispersive states is explained 
by the dynamics of measurements.

In other words, Bub and Dieks do not claim that the hidden variables theories that 
von Neumann’s theorem rules out violate I and II, but respect B′. Rather, they are 
clear in that B′ does not hold for expectation values of hypothetical dispersion-free 
states in viable hidden variables theories, but the very viability of such theories also 
requires that I and II are violated anyway. In short, they read von Neumann’s theo-
rem as establishing that viable hidden variables theories must indeed break B′ for 
dispersion-free states, but it is the concomitant violation of I and II that determines 
the interesting result that in such theories beables cannot be represented by Hermi-
tian operators. Despite this misreading, though, I think that Mermin and Schack’s 
charge must be carefully scrutinized. First, Bub and Dieks do not discuss this point. 
Second, and more importantly, the argument that the alleged superfluousness of B′ 
as a definitional principle ruins the whole proof is a novel standpoint, and deserves 
to be critically assessed.
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To do so, let us consider a putative theory in which B′ does not hold for hypo-
thetical dispersion-free states, and in which Hermitian operators are the formal tools 
to mathematically represent the theory’s beables.4 R and S are two experimentally 
incompatible quantities, represented, respectively, by the non-commuting operators 
R and S . Let us now consider the quantity Q , represented by the operator Q = R + S . 
For dispersion-free states, the expectation values Exp(R) , Exp(S) , and Exp(Q) must 
be eigenvalues of R , S , and Q , respectively. But since the eigenvalues of Q are not 
sums of the eigenvalues of R and S , then Exp(Q) ≠ Exp(R) + Exp(S) . But then, how 
could we affirm that the operator Q represents the quantity that is the sum of quan-
tities R and S ? Given experimental incompatibility, we cannot measure R and S 
simultaneously nor successively and then add the results obtained, and B′ cannot be 
invoked, of course. Furthermore, the experimental methods to measure the quantity 
represented by Q are entirely different from the methods to measure the quantities R 
and S.5 In what sense could we state that Q = R + S?

We could declare by fiat that the operator Q represents the quantity that we label 
“ R + S”—this is actually what Mermin and Schack’s proposal amounts to. How-
ever, it is clear that this maneuver is not enough to establish that the quantity Q 
denoted by Q is the sum of the quantities R and S . That is, we have no grounds 
to assert that Q functionally depends on R and S as their linear sum. It could be 
replied that in our putative quantum theory we can stipulate that expectation values 
for dispersive states (that we can obtain by averaging over the hypothetical hidden 
variables) are indeed linear-additive. However, it is clear that this stipulation cannot 
be invoked to state that Q is the linear sum of R and S , for the additivity of expecta-
tion values at the dispersive level would be a fact crying for an explanation precisely 
because it does not hold at the dispersion-free level—we would be putting the cart 
before the horse.

In sum, in our scenario of dispersion-free states and experimental incompatibility 
it holds that Q ≠ R + S despite that Q = R + S , which means that the rejection of B′ 
leads to the violation of II—R and S are represented by R and S , but R + S is not 
represented by R + S . Actually, without B′, the possibility of dispersion-free states 
would lead us to the fact that the legitimate quantity f (R,S) = R + S cannot be 
captured by the Hilbert space formalism. We can conclude then, contra Mermin and 
Schack, that B′ is not superfluous at all.

These remarks are reinforced when we recall that, as we saw in Sect. 3.1, von Neu-
mann’s theorem is primarily a derivation of the formula for predictions in a quantum 
theory in Hilbert space from basic theoretical-probabilistic principles. The rationale 
for B′ as a premise in the theorem has nothing to do with hidden variables, and it is 

4  That is, we assume that a) quantities are represented by Hermitian operators, b) there are dispersion-
free states determined by hidden variables, and c) B’ does not hold for such hypothetical states. However, 
we assume we do not have the trace rule (yet), for we already know it does not admit dispersion-free 
states.
5  As we saw in Sect. 3.2, using B’ we can define a measurement method of quantity R + S that reflects 
its functional dependence on R and S : measuring Exp(R) on sub-ensemble S1,… ,Sm , and measuring 
Exp(S) on sub-ensemble Sm+1,… ,S2m , and adding the results to get Exp(R + S) . Without B’, though, we 
cannot take this procedure as a measurement of R + S for dispersion-free states.
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introduced on the grounds of basic principles in physical reasoning in general, not only 
in quantum mechanics. Von Neumann’s point is that since (i) given two physical quanti-
ties, we can always define the quantity that is their linear sum, and (ii) there are experi-
mentally incompatible quantities; we need B′ to guarantee that the functional relations 
between the mathematical objects that represent physical quantities mirror the func-
tional connections between the represented quantities—so that in the case of quantum 
mechanics in Hilbert space I and II hold. As we saw, without B′ (or restricting its valid-
ity to dispersive states), we cannot guarantee that the mathematical object Q = R + S 
represents the quantity R + S , nor that this quantity can be represented at all.

Furthermore, since when von Neumann provides a rationale for B′ he is setting 
the theoretical-probabilistic principles from which the formula for experimental 
predictions using Hermitian operators as representatives of physical quantities is to 
be derived, the possibility of dispersion-free states in the Hilbert space formalism 
should not be excluded from the outset. Now, it is exactly this preliminary possibil-
ity of dispersion-free states in a Hilbert space quantum theory that strongly moti-
vates B′ as a premise in the derivation that von Neumann is attempting. As we just 
saw, it is precisely the possibility of deterministic states that can lead us to a sce-
nario in which Q ≠ R + S despite that Q = R + S . Without B′, we cannot guarantee 
with the rest of our basic theoretical-probabilistic principles that the Hilbert space 
formalism will be able to grasp all the quantities we can define according to general 
principles in physical reasoning. We conclude, then, that B′ is not superfluous, let 
alone silly. In the context of a derivation of the predictive formula in a quantum 
theory in Hilbert space, it is strongly justified.

Summarizing, von Neumann sets himself to the task of deriving the formal recipe 
for experimental predictions in a quantum theory formulated in Hilbert space, in 
which physical quantities are represented by Hermitian operators—he considered 
this representation as a lesson to be learned from wave and matrix mechanics (cfr. 
[1], Section III.1). Now, considering that the quantum realm features experimental 
incompatibility between quantities (reflected in the non-commutativity of their rep-
resenting operators), in order to guarantee that the Hilbert space formalism is capa-
ble of representing all the physical quantities we can define, mirroring the functional 
relations among those quantities, we need to assume B′ as a premise in the deriva-
tion of the recipe. That is, without B′, hypothetical dispersion-free states would lead 
us to a scenario in which legitimate physical quantities cannot be represented in the 
formalism. Anyhow, when the formula is finally derived in the form of the trace 
rule (see Appendix 1), it turns out that the no dispersion-free states corollary (see 
Appendix 2) and the pure states-projectors corollary (see Appendix 3) show that the 
quantum formalism in Hilbert space does not admit a completion in terms of hidden 
variables. These remarks show that B′ is neither silly nor superfluous, and that the 
reevaluation of the theorem proposed by Bub and Dieks is correct: the proof shows 
that beables in viable hidden variables theories cannot be represented by Hermitian 
operators, such theories cannot be Hilbert space theories.
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3.4 � What did Von Neumann Really Believe?

A second point of controversy consists in what was von Neumann’s own understand-
ing of the relevance and scope of his theorem. Hermann [3] and Bell [2] claim that 
he read it as an absolute proof of the impossibility of hidden variables. Bub [4] and 
Dieks [5] claim that he clearly understood that he proved that only Hilbert space 
hidden variables theories are not possible. I think that there is not enough textual 
evidence to settle this controversy for good, but I will propose a third “middle-way” 
alternative that at least allows us to make sense of all of von Neumann’s statements 
concerning the significance of his proof.

The main support for the first reading comes from the passage in which von Neu-
mann states that “the present system of quantum mechanics would have to be objec-
tively false for a description other than the statistical description of elementary pro-
cesses to be possible” [1, p. 212].

The textual evidence for the second reading is given mainly by two passages. The 
first one states that:

In the analysis of fundamental questions, it will be shown how the statistical 
formulas of quantum mechanics can be derived from a few qualitative, basic 
assumptions. Furthermore, there will be a detailed discussion of the prob-
lem as to whether it is possible to trace the statistical character of quantum 
mechanics to an ambiguity (i.e., incompleteness) in our description of nature 
[…]. This explanation “by hidden parameters” […] has been proposed more 
than once. However, it will appear that this can scarcely succeed in a satis-
factory way, or more precisely, such an explanation is incompatible with cer-
tain qualitative fundamental postulates of quantum mechanics. [1, pp. 2–3, my 
emphasis]

 This passage is very telling in that in the 1932 book von Neumann still understood 
his theorem primarily as a derivation of the trace rule from basic principles in Hil-
bert space, including the representation of quantities by Hermitian operators (I and 
II)—just like in the 1927 Aufbau paper. As we have seen, in 1932 von Neumann fur-
ther showed by means of the two corollaries that the derived statistical formula does 
not admit a completion in terms of hidden variables. The “qualitative fundamental 
postulates of quantum mechanics” which are incompatible with the introduction of 
hidden variables are of course postulates that concern a Hilbert space formulation 
of quantum mechanics. Thus, I think it is more than reasonable to assert that von 
Neumann was quite clear in that his theorem was a proof of the impossibility of 
introducing hidden variables in a Hilbert space quantum theory.

A second passage that suggests this reading is the following:

Whether or not an explanation of this type, by means of hidden parameters, is 
possible for quantum mechanics is a much discussed question. The view that 
it will sometime be answered in the affirmative has at present some promi-
nent representatives. If it were correct, it would brand the present form of the 
theory provisional, since then the description of states would be essentially 
incomplete. We shall show later (IV.2) that an introduction of hidden param-
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eters is certainly not possible without a basic change in the present theory. [1, 
p. 136, my emphasis]

Here von Neumann is explicit in that the introduction of hidden variables would 
force us to a significant change in the present theory, i.e., a significant change in 
quantum theory as formulated in Hilbert space—he certainly does not claim that 
their impossibility is absolute. Again, it is clear that von Neumann never lost sight of 
the fact that the theorem is first and foremost a derivation of the statistical formula 
of quantum mechanics in Hilbert space. Thus, it is highly reasonable to believe that 
he was clear in that the scope of the no-go result for hidden variables that follows in 
the form of the two corollaries is restricted to the Hilbert space formalism of quan-
tum theory—both quoted passages strongly support this view.

This interpretation of von Neumann’s stance also allows us to makes sense of the 
passage in section IV.2 of the book in which he comments on the relevance of the 
theorem there presented. As we saw in Sect. 2 above, there he says that “we have 
even established that it is impossible for the same physical quantities to exist with 
the same functional connections (i.e., for I and II to hold) if other variables (i.e., 
“hidden parameters”) exist in addition to the wave functions” [1, p. 211]. Again, in 
this passage the impossibility of hidden variables is characterized as conditional, not 
as absolute. That is, von Neumann seems to be quite clear in that hidden variables 
are possible, but that their introduction would lead to a significant alteration in the 
formal structure of the theory—it could not be a theory in Hilbert space.

But how do we make sense of the statement that “the present system of quan-
tum mechanics would have to be objectively false for a description other than the 
statistical description of elementary processes to be possible” [1, p. 212]? The 
reading proposed by Bub [4] and Dieks [5] is that by “objectively false” von Neu-
mann refers only to the validity of I and II, not to empirical adequacy. I think this 
interpretation is too generous. The text is clear in that von Neumann is referring 
to quantum mechanics as to that which should be objectively false if hidden vari-
ables are introduced.6

But we can make sense of this statement in the light of what we said in 
Sect. 3.1. A derivation of the formula for the predictions of quantum mechanics 
from basic probabilistic-theoretical principles in the formalism of Hilbert space 
leads us to the trace rule, which does not admit dispersion-free states but admits 
homogeneous ones. Based on this result, von Neumann may have concluded that 
if hidden variables are taken on board in a quantum theory, the corresponding 
formal recipe for empirical predictions could not be the trace rule, because it does 
not admit hidden variables. Thus, the predictions we obtain with the introduc-
tion of hidden parameters would diverge from the predictions of quantum the-
ory in Hilbert space. If we add that von Neumann was explicit in that a strongly 
grounded lesson that we should learn from matrix and wave mechanics is that 

6  The original German text reads: “Es handelt sich also gar nicht, wie vielfach angenommen wird, um 
eine Interpretationsfrage der Quantenmechanik, vielmehr müßte dieselbe objektiv falsch sein, damit ein 
anderes Verhalten der Elementarprozesse als das statistische maglich wird” (von Neumann [8], 171).
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physical quantities should be represented by Hermitian operators, he may have 
concluded that the empirical confirmation of the predictions of Hilbert space 
quantum mechanics strongly suggests that hidden variables theories, despite 
being possible, can be discarded from the outset. Von Neumann might have con-
cluded that theories with hidden variables are condemned to predictive failure—
this reading naturally explains his “objectively false” claim.

This reading, I think, allows us to make sense also of von Neumann’s state-
ment that “nor would it help if there existed other, as yet undiscovered, physical 
quantities in addition to those represented by the operators in quantum mechanics 
because the relations assumed by quantum mechanics (i.e., I and II) would have 
to fail already for the by-now-known quantities” [1, p. 211]. That is, even if the 
introduction of hidden variables would lead to the introduction of further quanti-
ties not considered in the Hilbert space formalism, in the hidden variables theory 
I and II would not hold, so the trace rule would not be the recipe for predictions, 
and this would result in predictive divergence between the theories. But since 
we already know that the predictions we obtain from the trace rule for physical 
quantities represented by Hermitian operators are correct, we could conclude in 
advance that a hidden variables theory would be an empirical failure.

In other words, I agree with Bub [4] and Dieks [5] in that von Neumann was 
clear in that the scope of his no-go result was restricted to hidden variables in 
Hilbert space, so that he did not understand his theorem as an absolute impossi-
bility proof—he was aware that consistent hidden variables theories are possible. 
However, I think that the way in which he understood the importance of his result 
went (wrongly) much further than the reading that Bub and Dieks propose. Since 
he was committed to the view that in quantum theory physical quantities should 
be represented by Hermitian operators, he concluded that a theory in which this 
principle is not respected would lead to empirical divergences with respect to Hil-
bert space quantum theory, so that the predictive success of the latter discards 
hidden variables theories from the outset—not for being impossible, but for being 
objectively false.

This conclusion is of course wrong, but it is not silly. Von Neumann did not fore-
see the possibility of a hidden variables theory in which Hermitian operators do not 
represent physical quantities (beables), but in which these operators still play an 
operational role of representing experimental outcomes that is consistent with the 
trace rule. Bohm’s theory is of course such a theory, and Bohm himself was quite 
clear about the role that Hermitian operators play in it:

the measurement of an “observable” is not really a measurement of any physi-
cal property belonging to the observed system alone. Instead, the value of 
an “observable” measures only an incompletely predictable and controlla-
ble potentiality belonging just as much to the measuring apparatus as to the 
observed system itself. (17, p. 183)7

7  Although by 1932 de Broglie had already presented his pilot-wave theory, which is an anticipation of 
Bohm’s, the account of measurements and the role that Hermitian operators play in that theory was not 
clear at the time. De Broglie introduced the theory in 1927, almost simultaneously with von Neumann’s 
formulation of quantum mechanics in Hilbert space, and it was quickly dismissed by the community, and 
abandoned by de Broglie himself–see [18, Ch. 2].
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 A hidden variables theory like this does not fall under the scope of von Neumann’s 
theorem, precisely because its beables are not represented by Hermitian opera-
tors. However, since in this theory Hermitian operators play the operational role of 
mapping the interaction between system and apparatus to numerical (eigen)values 
according to the trace rule (see [15] and [16]), there is no predictive divergence with 
respect to Hilbert space quantum mechanics. Von Neumann was thus wrong in that 
his theorem yields the lesson that hidden variables theories are doomed to empirical 
failure. But I would not call such a conclusion silly—that he was unable to envision 
a theory in which Hermitian operators do not represent physical quantities whereas 
they still yield predictions according to the trace rule is not a mortal sin.

3.5 � Hermann, 1933 (and Jammer, 1974)

A third point of controversy consists in Hermann’s understanding of the theorem. As 
we saw, Dieks [5] states that the circularity claim that she leveled relies on a confu-
sion. She claimed that von Neumann offered as a proof of B′ that expectation values 
given by the trace rule are always additive. However, since the trace rule does not 
admit dispersion-free states, Hermann claims, that proof begs the question. After 
our examination of the rationale that von Neumann provided for B′, it is quite clear 
that he never intended (or needed) to offer a proof of B′. Dieks [5] is certainly right 
in that this charge of circularity rests on a misunderstanding.

Mermin and Schack [6] make the further point that Hermann allegedly stated that 
B′ is superfluous as a principle that allows to define quantities which are the lin-
ear sum of experimentally incompatible quantities. As we saw, they quote a pas-
sage where she writes that “only by the detour over certain mathematical opera-
tors assigned to these quantities does the formalism introduce the concept of a sum 
also for such quantities” [10, 3, p. 252] as the sole evidence supporting that Her-
mann allegedly shared their view that II is enough to define the mentioned type of 
quantities.

Although it is likely that in this passage Hermann is referring to I and II—for 
she talks about operators—I find Mermin and Schack’s interpretation unconvinc-
ing. First, this passage appears in the context of an explanation of B′, and it is quite 
clear that Hermann understands that the justification for this assumption that von 
Neumann provides has to do with the representation of quantities like R + S when 
R and S are experimentally incompatible. Thus, we can understand the passage as a 
statement that the detour over mathematical operators that allows to represent such 
quantities relies on B′. In other words, taken in isolation, the sentence that Mermin 
and Schack quote could be read in the way they propose. However, when considered 
in context, I think it is clear that Hermann is simply explaining why B′ is required as 
a definitional principle, and not (yet) criticizing it:

For classical physics this assumption [B′] is trivial. So, too, it is for those 
quantum mechanical features that do not mutually limit each other’s measur-
ability, thus between which there are no uncertainty relations. Because for two 
such quantities, the value of their sum is nothing other than the sum of the 
values that each of them separately takes, from which follows immediately 
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the same relation for the mean values of these magnitudes. The relation is, 
however, not self-evident for quantum mechanical quantities between which 
uncertainty relations hold, and in fact for the reason that the sum of two such 
quantities is not immediately defined at all: since a sharp measurement of one 
of them excludes that of the other, so that the two quantities cannot simulta-
neously assume sharp values, the usual definition of the sum of two quanti-
ties is not applicable. Only by the detour over certain mathematical operators 
assigned to these quantities does the formalism introduce the concept of a sum 
also for such quantities. [3, p. 252]

Second, and more importantly, the sentence Mermin and Schack quote is the only 
passage where Hermann refers to the challenge of representing the type of quantities 
under discussion, and she says nothing explicitly about a criticism in terms of the 
superfluousness of B′. If that was the point on which she based her alleged rebuttal 
of von Neumann’s theorem, one would expect that she would have been rather clear 
and categorical about it. However, what we find after the paragraph just quoted is 
her criticism on the basis of the circularity claim, which is clearly the criticism of 
the theorem she presents.

Thus, in this controversy I think we must take sides with Dieks. To comple-
ment and strengthen Dieks’ reading of Hermann’s understanding of von Neu-
mann’s theorem, I can add that in a recently discovered essay written in 1933, 
entitled Determinism and Quantum Mechanics [10],8 she presented an assessment 
of the proof in which it is also clear that despite the circularity confusion, her 
understanding of the restricted scope of the no-go result for hidden variables is 
correct. The structure of the earlier essay is pretty much the same as in her 1935 
work. Hermann first mentions the issue of the challenge for representing a quan-
tity like R + S when R and S are experimentally incompatible: “the sum R + S 
in this case can be defined only indirectly as the quantity corresponding to the 
sum r + s of the operators belonging to R and S ” [10, p. 233].9 The indirect mode 
of definition that Hermann refers to is of course B′, and now the passage about 
the detour over mathematical operators is absent, although the criticism of the 
theorem she presents in the 1933 is the same as in the 1935 paper: the circular-
ity claim. This reinforces the view that she was not reading von Neumann in the 
same way as Mermin and Schack do.

After these preliminary remarks, Hermann introduces the begging the question 
complaint. Since a direct definition of R + S is not possible given the incompatibil-
ity between R and S , so that we must refer to assumption B′ to define it indirectly, 
she states that with respect to this assumption “Neumann thus needs another proof 
for quantum mechanics” [10, p. 233], and she claims that the proof he allegedly 
offers is that expectation values calculated in terms of the ensembles allowed by the 
trace rule are always additive. Despite this confused criticism, she then writes that:

8  See [19].
9  In the 1933 essay, Hermann uses capital letters to refer to physical quantities, and lower case for opera-
tors.
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for these ensembles—but only for these—has Neumann proved the inevitability 
of dispersion. The question, however, was whether at some time in the pro-
gress of research a new hitherto unknown physical trait might not be found 
through which the dispersion (for at least some physical quantities) could be 
reduced beneath the scale fixed by the uncertainty relations. Such a discovery, 
which would provide a cue for predicting the result of eigenvalue measure-
ments of these quantities, is not excluded by Neumann’s proof. [10, p. 234, my 
emphasis]

 It is clear in this passage that Hermann is correct in that von Neumann’s theorem is 
a proof that the states allowed by the Hilbert space formulation of quantum mechan-
ics cannot be dispersion-free, so Hilbert space hidden variables theories are not pos-
sible. She is also explicit and correct in that hidden variables theories with deter-
ministic states are nevertheless possible, and, most notably, she does not fall into 
von Neumann’s mistake that this type of theories are empirically doomed. That is, 
despite her confusion in the circularity critique, her understanding of the scope and 
relevance of the theorem is right on spot.

Interestingly, Jammer [7] offers an evaluation of von Neumann’s theorem that is 
quite coherent with Hermann’s, Bub’s, and Dieks’ understanding. After rebutting 
Hermann’s accusation of begging the question, he states that:

we agree with Grete Hermann’s criticism that the proof did not achieve its 
declared objective of demonstrating that quantum mechanical ensembles can-
not be decomposed into any kind of dispersion-free sub-ensembles […]. But 
we do not dismiss the proof as nugatory. True, in view of von Neumann’s 
excessively restricted assumptions it is not an impossibility proof of any 
conceivable class of hidden variables, but it is a completeness proof, in this 
respect, of von Neumann’s axiomatics (with the inclusion of postulate [B′]), 
since it shows that this formalism does not admit non-quantum mechanical 
[dispersion-free] ensembles. [7, p. 274, fn. 45]

Jammer presents this reading of the theorem as if it had escaped Hermann’s eye 
(he also wrongly believes, just like Hermann, that von Neumann regarded his result 
as an absolute impossibility proof). However, he did not have access to Hermann’s 
1933 essay, which as we saw contains a passage in which she presents an assessment 
of von Neumann’s proof that fully coincides with Jammer’s.10

It is a pity that von Neumann’s theorem has been understood mostly as a proof of 
the impossibility of hidden variables in quantum theory, rather than as a derivation 
of the trace rule from probabilistic-theoretical principles expressed in the formal-
ism of Hilbert space—which is of course the way in which von Neumann himself 
regarded it. Had this been clear in the subsequent discussion in the community, the 
restricted-to-Hilbert-space scope of the no-go result for hidden variables (the two 
corollaries) would have been, perhaps, conspicuous to everybody. For the same 

10  However, as Dieks [5] reports, there is a passage in Hermann’s 1935 work [3, pp. 252–253] in which 
she is clear and correct in her assessment of the proof.
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reason, it is also a shame that Hermann’s and Jammer’s correct assessments of the 
scope and relevance of the theorem did not have a big impact on the philosophy and 
foundations of quantum mechanics community.

4 � Dropping B′: Gleason’s Theorem

In this final section, I will offer an analysis of the connection between von Neu-
mann’s and Gleason’ theorems. It has been spotted in the discussion that Gleason 
derived the trace rule on the basis of uncontroversial premises weaker than von Neu-
mann’s. However, there remain very important points to be made about this con-
nection. First, I will precisely characterize what is the worry about assumption B′ 
that is left when we properly consider Bell’s criticism and the true goal and rel-
evance of von Neumann’s theorem. Then I will show that the logical structure of von 
Neumann’s proof is such that the very same restricted-to-Hilbert-space no-go result 
for hidden variables can be derived from Gleason’s celebrated proof without using 
B′. Furthermore, I will argue that Gleason’s result vindicates assumption B′, in the 
sense that the remaining worry I mentioned does not materialize. That is, from Glea-
son’s proof we see that von Neumann’s stronger assumption was, after all, safe and 
sound—so the same holds for the no-go result for hidden variables in Hilbert space.

4.1 � With or Without B′: a Trade‑Off?

As we saw, Bell’s main point against von Neumann’s theorem was that we should 
naturally expect that in hidden variables theories expectation values for hypotheti-
cal dispersion-free states and experimentally incompatible quantities are not linear-
additive. Thus, he argued, it would be silly to impose assumption B′ on each and 
every hypothetical hidden variables theory. We also saw, however, that this is not 
what von Neumann did. Rather, he introduced this assumption in order to guaran-
tee that all physical quantities can be represented by Hermitian operators in Hil-
bert space, mirroring the functional connections between such quantities. Since von 
Neumann was attempting a derivation of the formula that yields the predictions of 
quantum theory in Hilbert space from basic principles, he was certainly justified in 
assuming B′. After he succeeded in the derivation, it turned out that the formula 
obtained does not admit hidden variables.

In short, Bell was certainly right in his remark about hidden variables theories 
and additivity of expectation values in general, but von Neumann’s proof teaches 
us that viable hidden variables theories in which B′, most naturally, does not hold 
for dispersion-free states, cannot be Hilbert space theories. But let us forget this les-
son for a second. That is, let us pretend that we do not have a derivation of the pre-
dictive formula of quantum mechanics in Hilbert space, but retaining Bell’s advice 
about hypothetical hidden variables theories. If we would set ourselves to the task 
of deriving that formula listening to Bell’s advice, the possibility of hidden vari-
ables and dispersion-free states—a possibility that we should not deny in advance, 
of course—would lead us to avoid B′ as a premise in our derivation.
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However, after what we said in Sect. 3.3, we know that if we leave B′ aside in 
our attempt to derive the predictive formula of quantum theory in Hilbert space, 
we run the risk that hypothetical hidden variables and dispersion-free states might 
leave us in a scenario in which legitimate quantities such as f (R,S) cannot be math-
ematically represented in the formalism if R and S are experimentally incompatible. 
Thus, there seems to be a trade-off between assuming and not assuming B′ in our 
task. If we take it on board, we avoid the mentioned risk, but we would exclude the 
most interesting class of hypothetical hidden variables theories: those that deny B′ 
for incompatible quantities. But if we reject B′ for this reason, we would be running 
the ‘hidden-quantities’ risk.

With this in mind, we can formulate now two interesting and important questions. 
Can we derive the predictive formula of quantum mechanics in Hilbert space with-
out B′? If the answer is yes, we can then ask: what comes of the possibility of hidden 
variables and dispersion-free states in Hilbert space in the light of that derivation?

4.2 � Gleason, 1957

The celebrated theorem introduced by Andrew Gleason [20] provides an affirma-
tive answer to the first question. He proved that in an n-dimensional Hilbert space 
H , with n ≥ 3 , every probabilistic measure of a subspace A of H is given by 
�A = Tr

(
UPA

)
 , where PA is a projector onto A , and U is a density operator. The 

crucial premises in Gleason’s proof are that I = 1 , where I is the identity opera-
tor, and that for mutually orthogonal projectors Pi such that 

∑
Pi = I , it holds that ∑

Pi =
∑

Pi . As it is clear, the second premise amounts to the linear-additivity of 
expectation values for quantities represented by the mutually commuting Hermitian 
operators Pi , which is weaker than von Neumann’s B′. Notice that Gleason’s second 
premise is therefore not enough to guarantee that quantities like R + S , when R 
and S are experimentally incompatible, can be mathematically represented in the 
formalism. Thus, Gleason’s premises seem to run the risk of ‘hidden-quantities’ for 
hypothetical hidden variables and dispersion-free states we described in the previous 
section.

Bub [4, p. 1336] and Mermin and Schack [6, p. 1011] notice that Gleason’s theo-
rem, just like von Neumann’s, is a derivation of the trace rule in Hilbert space, but 
this time on the basis of weaker premises that do not include B′. However, they just 
mention this fact as a side remark, and they do not discuss its relevance for the pos-
sibility of hidden variables. But there are very important things to say about this. Let 
us recall the logical structure of von Neumann’s proof. First he derived the trace rule 
from assumptions A′, B′, I and II (see Appendix 1). Then he obtained the corollary 
that the trace rule does not admit dispersion-free states (see Appendix 2), and a sec-
ond corollary that a state is homogeneous iff its density operator is a projector onto a 
unit vector (see Appendix 3). Now, the proofs of the corollaries do not make use of 
the premises from which the trace rule is derived, only basic properties of (projec-
tors in) Hilbert space and the continuity of the trace rule are invoked. This means 
that both these results can be obtained as corollaries of Gleason’s theorem too, but 
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this time conditional on weaker premises (and Hilbert space dimensionality n ≥ 3 ), 
not conditional on B′.

Furthermore, if we inspect Gleason’s weaker premises, it is clear that, just like 
von Neumann’s I and II, they amount to the assumption that physical quantities are 
represented by Hermitian operators. Thus, we can also conclude from Gleason’s 
proof that hidden variables theories with dispersion-free states in which Hermitian 
operators are the representatives of the theory’s beables are not possible. In other 
words, the lesson for hidden variables theories that we learn from Gleason’s theorem 
is the same lesson we learn from von Neumann’s: such theories cannot be Hilbert 
space theories. If we put aside his daring view that hidden variables theories are 
condemned to empirical failure, it turns out that von Neumann was right after all 
(the Hermann-Bell objection cannot be leveled against Gleason’s proof).11

On the other hand, the fact that we can prove this no-go result from Gleason’s 
theorem implies that the ‘hidden-quantities’ risk of not assuming B′ does not materi-
alize. The trace rule does not admit dispersion-free states, so its linearity entails that 
expectation values for all allowed states and quantities in Hilbert space are additive. 
That is, B′ holds as a result in Gleason’s theorem, and it guarantees that Hilbert 
space is able to grasp and mathematically represent all the quantities of the quantum 
theory formulated within its boundaries. More concretely, the no-go result for Hil-
bert space hidden variables theories in Gleason’s proof means that we can always 
define a quantity of the type R + S when R and S are incompatible, and represent 
it with the Hermitian operator R + S , where R and S are non-commuting. In short, 
from Gleason’s result we learn that B′ (and also II) holds in quantum theory in Hil-
bert space precisely because hidden variables are not possible in this formalism. 
Thus, despite the seeming trade-off and risk we explained in the previous section, 
after Gleason’s theorem we see that von Neumann gets fully vindicated in assum-
ing B′ as a premise in his proof. Thus, although it is true that Gleason’s theorem is a 
more powerful theorem in the sense that its premises are weaker, the vindication of 
B′ just explained conveys von Neumann’s proof a significant appeal. The mathemati-
cal complexity of Gleason’s celebrated theorem is well-known, so von Neumann’s 
elegant and much simpler proof of the same remarkable result (see Appendix 1) has 
a pragmatic and pedagogical value that has been, most unfortunately, wasted.

11  From Gleason’s result, Bell [2] proved that, with Hilbert space dimensionality 3 and higher, non-con-
textual dispersion-free states are impossible, and Kochen and Specker [21] independently derived the 
same result. For hypothetical dispersion-free states, expectation values for all sets of mutually orthogonal 
projectors that span H must be such that for one of the projectors the expectation value is 1 , and 0 for the 
rest. Such states are non-contextual if every projector is assigned the same expectation value in all the 
H-spaning sets it belongs to. For a treatment of how this contextuality constraint must be reassessed in 
the light of the no-Hilbert-space-hidden-variables result that follows from von Neumann’s and Gleason’s 
theorem, see [22].
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Appendix 1: von Neumann’s Derivation of the Trace Rule

Let ��1⟩, ��2⟩,… be a complete orthonormal set of vectors, and R an arbitrary Her-
mitian operator with matrix elements in that basis given by r�� = ⟨���R���⟩ . Von 
Neumann defined three Hermitian operators in terms of their matrix elements. For 
the operator A(n) , its elements a(n)�� are 1 for � = � = n , and 0 otherwise. For the 
operator B(mn) its elements b(mn)��  (with m < n ) are 1 for � = m , � = n , and for � = n , 
� = m , and 0 otherwise. For the operator C(mn) its elements c(mn)��  (with m < n ) are i 
for � = m , � = n , −i for � = n , � = m , and 0 otherwise. The elements r�� = r∗

��
 of R 

are, therefore,

 where Re
(
rmn

)
 and Im

(
rmn

)
 are the real and imaginary parts of the rmn . The first 

term in the sum determines the diagonal elements of R , whereas the second and 
third term yield the real and imaginary parts of R ’s off-diagonal elements, respec-
tively. Thus, R can be written as a linear combination of the operators A(n) , B(mn) and 
C(mn):

Then, by II,

and by B′,

Von Neumann’s next step was to define the matrix elements 
unn = Exp

(
A(n)

)
 , umn =

1

2
Exp

(
B(mn)

)
+ i

1

2
Exp

(
C(mn)

)
 (with m < n ), and 

unm =
1

2
Exp

(
B(mn)

)
− i

1

2
Exp

(
C(mn)

)
 (with m < n ). By plugging this in the right hand 

side of our equation for Exp(R) , he obtained (for the details of this step, see [14, pp. 
249–250]):

Now, since umn = u∗
nm

 , we can define the Hermitian operator U with matrix ele-
ments ⟨�n�U��m⟩ = umn . That is, the unn determine the diagonal elements of U , 

r𝜇𝜈 =
∑

n

rnna
(n)
𝜇𝜈

+
∑

m, n

m < n

Re
(
rmn

)
b(mn)
𝜇𝜈

+
∑

m, n

m < n

Im
(
rmn

)
c(mn)
𝜇𝜈

,

R =
∑

n

rnnA
(n) +

∑

m, n

m < n

Re
(
rmn

)
B(mn) +

∑

m, n

m < n

Im
(
rmn

)
C(mn)

R =
∑

n

rnnA
(n) +

∑

m, n

m < n

Re
(
rmn

)
B(mn) +

∑

m, n

m < n

Im
(
rmn

)
C(mn),

Exp(R) =
∑

n

rnnExp
(
A(n)

)
+

∑

m, n

m < n

Re
(
rmn

)
Exp

(
B(mn)

)
+

∑

m, n

m < n

Im
(
rmn

)
Exp

(
C(mn)

)

Exp(R) =
∑

m,n

unmrmn
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whereas its off-diagonal elements are given by the umn and the unm . Thus, we can 
now express Exp(R) =

∑
m,n

unmr�� as

Von Neumann then shows that A′ implies that U must be positive semi-definite. 
For the quantity Q = P2 , A′ entails that Exp(Q) ≥ 0 . If the operator of quantity P is 
a projector P� onto a normalized but otherwise arbitrary vector �� ⟩ , I implies that 
the operator of Q is P2

�
 , and since P2

�
= P� , A′ also enforces that 

Exp(Q) = Exp(P) ≥ 0 . Thus, since Exp(P) = Tr
�
UP�

�
= ⟨��U��⟩ , it must hold 

that ⟨��U��⟩ ≥ 0 . For an arbitrary vector �� ⟩ , if �� ⟩ ≠ 0 , then ��⟩ = �� ⟩∕∥�� ⟩∥ , so 
⟨��U��⟩ = ⟨��U��⟩∕∥�� ⟩∥2 , and therefore ⟨��U��⟩ ≥ 0 . If �� ⟩ = 0 , the same 
result follows trivially. Von Neumann also shows that the operators U in the trace 
rule yield consistent absolute probabilities only if Exp(I) = 1 , where I  is the quan-
tity represented by the identity operator I , and this constraint leads to TrU = 1.

Appendix 2: No Dispersion‑Free States

Let us assume a dispersion-free state represented by U , and a quantity R . 
By the definition of dispersion free-states, Exp

(
R2

)
U
=
[
Exp(R)U

]2 , so 
Tr
(
UR2

)
= [Tr(UR)]2 . Let us assume that R = P� , therefore, Tr(UR) = [Tr(UR)]2 

and ⟨��U��⟩ = ⟨��U��⟩2 . Consequently, either ⟨��U��⟩ = 1 , or ⟨��U��⟩ = 0 . Let 
��′ ⟩ and ��′′ ⟩ be two normalized vectors, and we vary �� ⟩ continuously from ��′ ⟩ 
to ��′′ ⟩ . von Neumann [1, p. 209, fn. 170] proved that �� ⟩ is normalized along the 
whole variation, so ⟨��U��⟩ also varies continuously from ⟨�′�U��′⟩ to ⟨�′′�U��′′⟩ . 
Now, since either ⟨��U��⟩ = 1 or ⟨��U��⟩ = 0 , ⟨��U��⟩ must be constant along 
the whole variation, and ⟨���U���⟩ = ⟨����U����⟩ . But precisely because either 
⟨��U��⟩ = 1 or ⟨��U��⟩ = 0 along the whole variation, then either U = I or U = 0 , 
respectively. However, TrU = 1 . Therefore, U cannot be dispersion-free. Notice that 
this proof does not make use of A′, B′, I or II.

Appendix 3: Homogeneous States and Projectors

An ensemble E is homogeneous if for any sub-ensembles E1 and E2 , 
Exp(R)E = aExp(R)E1

+ bExp(R)E2
 (where a > 0 , b > 0 , and a + b = 1 ) implies 

that Exp(R)E = Exp(R)E1
= Exp(R)E2

 . From this definition and the trace rule, it fol-
lows that a state U is homogeneous if U = V +W (where V  and W are also posi-
tive semi-definite) implies that V = c�U and that W = c��U . Here von Neumann is 
assuming the principle that with respect to relative probabilities and expectation val-
ues U and cU (with c a positive constant) are essentially identical.

Let us assume that U is homogeneous. Since U is positive semi-definite, there is a 
non-zero vector ���+ ⟩ such that ⟨𝜙+�U�𝜙+⟩ > 0 . Then von Neumann introduced the 
operators V  and W (where ��⟩ is any vector):

Exp(R) = Tr(UR)
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V  and W are positive semi-definite, for

Now, since by assumption U is homogeneous and U = V +W , then 
V = c�U , and because V���+ ⟩ = U���+ ⟩ ≠ 0 , c� = 1 and V = U . Then von 
Neumann defined the unit vector �� ⟩ = U���+

�
∕��U���+ ⟩�� , and the posi-

tive constant c = ��U���+ ⟩��2∕⟨�+�U��+⟩ . With these, he finally obtained 
U�� ⟩ = V�� ⟩ = c�� ⟩⟨���⟩ = cP� �� ⟩ , which implies that U = P� . That is, if U is homoge-
neous, it is a projector onto a unit vector.

Conversely, assume that U = cP� , where �� ⟩ is again normalized. If U = V +W , 
where V  and W are positive semi-definite, then 0 ≤ ⟨��V��⟩ ≤ ⟨��V��⟩ + ⟨��W��⟩ = ⟨��U��⟩ . 
Now, if ��⟩ is orthogonal to �� ⟩ , then U��⟩ = 0 , so that ⟨��U��⟩ = ⟨��V��⟩ = 0 , 
and V��⟩ = 0 . Now, for any vector �� ⟩ , it holds that ⟨��V��⟩ = ⟨��V��⟩ = 0 , 
which implies that any vector that is orthogonal to �� ⟩ is also orthogonal to 
V�� ⟩ , i.e., �� ⟩ and V�� ⟩ are collinear, so V�� ⟩ = c��� ⟩ , where c� depends on 
�� ⟩ . Thus, if �� ⟩ = �� ⟩ , then V�� ⟩ = c��� ⟩ . Finally, let ��′ ⟩ be an arbitrary vec-
tor. It holds that ��′ ⟩ can be written in the form ⟨����⟩�� ⟩ + �� ⟩ . Therefore, 
V��� ⟩ = ⟨����⟩ ⋅ V�� ⟩ + V�� ⟩ = c��� ⟩⟨����⟩ = c�P� ��� ⟩ = c�U��� ⟩ . Thus, V = c�U , 
and W = U − V =

(
1 − c�

)
U . That is, if U is a projector onto a unit vector, it is homo-

geneous. Notice that just like in the derivation of the corollary in Appendix 2, the 
proof of the result that U is homogeneous iff it is a projector onto a unit vector does 
not make use of any of the premises in the derivation of the trace rule.
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