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Abstract
A number of arguments purport to show that quantum field theory cannot be given 
an interpretation in terms of localizable particles. We show, in light of such argu-
ments, that the classical ℏ → 0 limit can aid our understanding of the particle con-
tent of quantum field theories. In particular, we demonstrate that for the massive 
Klein–Gordon field, the classical limits of number operators can be understood to 
encode local information about particles in the corresponding classical field theory.

Keywords Quantum field theory · Particle interpretation · Classical limit · 
Deformation quantization

1 Introduction

Relativistic quantum field theory underlies the modern discipline of particle physics. 
Practitioners use the theory to conceptualize interactions between particles and make 
quantitative predictions about scattering experiments. Yet a number of arguments 
purport to show that various features of our particle concept are incompatible with 
the constraints of relativistic quantum physics.1 Building on results of Malament [3], 
Halvorson and Clifton [4] argue that in relativistic quantum theory, particles cannot 
be localized in spatial regions. The conclusions of such arguments leave interpreters 
of relativistic quantum field theory with a puzzle. How can an underlying theory that 
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does not allow for localized particles support descriptive and explanatory practices 
that appear to involve localized particles?

Previous investigations have focused on the issue of recovering the phenomenol-
ogy of particle physics from relativistic quantum field theory. For example, Buch-
holz [5] provides a way of recovering scattering theory at asymptotic times.2 In con-
trast, the goal of this paper is to make a small contribution toward our understanding 
of the theoretical role of particles in quantum field theory. We aim to make precise 
a sense in which a theoretical description of particles emerges from quantum field 
theory through the behavior of number operators.

In this vein, we follow Wallace [11], who argues for the emergence of particles 
in terms of the approximate localization, in a certain sense, of structures in quantum 
field theory.3 Similarly, recent work by Papageorgiou and Pye [18] employs the non-
relativistic limit as an approximation to analyze the localizability of particles. Our 
investigation complements this work by instead analyzing the classical ℏ→0 limit of 
quantum field theory. We take this approach because there are existing tools for for-
mulating the ℏ→0 limit in the C*-algebraic framework for quantum theory with full 
mathematical rigor [see  19]. Moreover, Landsman [20] has already initiated the use 
of these tools to analyze emergent behavior in quantum theories. We believe many 
approaches are helpful for understanding particles in quantum field theory, and so 
we will pursue an analysis through the classical limit without trying to rule out other 
avenues. We hope the positive outcome of our analysis of the classical limit speaks 
in favor of the approach taken here, but we do not believe it speaks against other 
approaches to understanding particle-like behavior.

We wish to distinguish the results in this paper from a number of other recent 
approaches to understanding particles in quantum field theories. First, some recent 
work on pilot wave (i.e., Bohmian-type) quantum field theories allows one to 
understand the content of those theories in terms of particles. Early work in this 
direction can be traced to Bell [21, pp. 174–177]; for an overview of recent pro-
gress, see Struyve [22, 23]. Second, some recent work has led to the development 
of a “dissipative” approach to quantum field theory, using tools from non-equi-
librium thermodynamics [24], which those authors argue can support a particle 
interpretation. Both of these approaches involve substantial modification of the 
traditional framework for quantum field theory, as is clear in their use of different 

2 Note that in the limit of asymptotic times taken for scattering theory, one only has the ability to 
describe momentum states and one loses the notion of an exactly localizable particle. In the mathemati-
cal physics literature, analyses of particles proceed via the technical notion of “almost local” particle 
observables, which are used to analyze the localization structure of the one-particle subspace. For math-
ematical development, see, e.g., Buchholz and Fredenhagen [6], Haag [7], Buchholz et al. [8], Buchholz 
[5]. For philosophical discussion of “almost local” particle observables, see Halvorson and Clifton [4], 
Arageorgis and Stergiou [9], Valente [10]. In this paper, we also deal with approximate localization, but 
in a somewhat different sense. Moreover, we analyze localization properties of number operators in the 
full field theory without restricting attention to single particle states.
3 For earlier mathematical work on localization, see Knight [12] and Licht [13]. For earlier philosophical 
work on localization, see Saunders [14, 15] and Redhead [16, 17].
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dynamical laws. In contrast, our task in this paper is to search for possible routes 
to understanding particle-like behavior within the standard formulation of quan-
tum field theory without modifying the theory itself. We make no judgments con-
cerning these distinct approaches to particles; we only claim that they are not rel-
evant to the question we treat. Lastly, we mention the recent work of Bigaj [25], 
who argues that the standard textbook description of modes in quantum field the-
ory representing an ontology of particles is unwarranted. While our starting point 
of standard quantum field theory agrees with that used by Bigaj [25], we employ 
very different methods to yield a particle interpretation. Instead of interpreting the 
formalism of quantum field theory directly in terms of particles, we consider only 
indirectly how particle-like behavior may emerge from quantum field theory in the 
ℏ → 0 limit.

Our goal in this paper is to argue that the classical limit helps us understand 
particle content in quantum field theory in terms of classical field theoretic quanti-
ties. Our strategy of interpreting quantum field theories in terms of relationships 
between theories at different scales and emergent structures in some sense follows 
the approach advocated by Wallace [26] and Williams [27].4 Both of those authors 
emphasize the importance of an often overlooked interpretive task. Philosophers 
often aim to answer the question: “if this theory provided a true description of the 
world in all respects, what would the world be like?” But Wallace and Williams 
claim it is important to also consider the distinct question “given that this theory 
provides an approximately true description of our world, what is our world approxi-
mately like?” [27, p. 210]. In this paper, we only aim to contribute to the latter task, 
and only for certain approximative regimes. It is only with regard to this question 
that we are interpreting quantum field theory at all as opposed to the classical field 
theories that we deal with more directly. As such we make no claims about what 
one might call the “fundamental ontology” of quantum field theory, but we still 
take our conclusions to be important to the interpretation and understanding of that 
theory.

The paper is structured as follows. In Sect. 2, we review the arguments against 
localized particle interpretations that we engage with in this paper. In Sect. 3, we 
summarize recent technical work concerning classical limits of number operators 
in quantum field theory within a C*-algebraic formulation of the classical limit. In 
Sect.  4, we use these results to clarify the theoretical status of localized particles 
in quantum field theory by providing two possible interpretations of approximately 
localizable particles. We conclude with some discussion in Sect. 5.

4 These authors at times suggest their interpretive approach is somehow incompatible with or not con-
ducive to the mathematical analysis provided by algebraic quantum field theory. By employing what we 
take to be a similar interpretive approach by using the tools of algebraic quantum field theory, we believe 
we demonstrate the compatibility of these approaches in this paper.
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2  The Case Against Localizable Particles

Theorems due to Malament [3] and Halvorson and Clifton [4] aim to show that 
relativistic quantum theories cannot allow for localizable particles.5 We begin with 
Malament’s no-go result concerning particle positions, and then present Halvorson 
and Clifton’s refinement for local number operators.

Malament targets the existence of a position operator in relativistic quantum the-
ory. If there were a position operator, then for any foliation of Minkowski space-
time M into spacelike hyperplanes, there would be a projection-valued measure on 
bounded open subsets of those hyperplanes serving as the position operator’s spec-
tral decomposition. Suppose we are given such a foliation; call a bounded open sub-
set of one of the hyperplanes a spatial set. A localization system is defined as a triple 
(H,� ↦ P

�
, a ↦ U(a)) , where H is a Hilbert space, each spatial set � is assigned a 

projection P
�
 on H , and a ↦ U(a) is a strongly continuous unitary representation 

of the translation group of M. We interpret each projection P
�
 as representing the 

proposition that the particle is located within �.
Malament considers the following constraints on a localization system: 

1. Translation covariance for all spatial sets � and all vectors a in M, 

2. Energy condition for each future-directed unit timelike vector a in M, the unique 
self-adjoint generator6 of the one-parameter unitary family t ∈ ℝ ↦ U(ta) has a 
spectrum bounded from below.

3. Microausality if �1,�2 are spacelike separated spatial sets, then 

4. Localizability if �1,�2 are disjoint spatial sets in the same hyperplane, then 

Translation Covariance allows us to understand the unitary representation of the 
translation group as providing a link between the propositions associated with trans-
lated spatial sets. The Energy Condition guarantees that one cannot extract an infi-
nite amount of energy from the system. The Microcausality condition enforces the 
relativistic constraint of no “act-outcome” correlations between spacelike separated 
events. And the Localizability condition ensures that a particle cannot be found in 
two disjoint spatial sets at the same time.

With these constraints, Malament proves the following result:

Theorem 1 (Malament) Suppose a localization system (H,� ↦ P
�
, a ↦ U(a)) satis-

fies conditions (1)–(4). Then P
�
= 0 for all spatial sets �.

U(a)P
�
U(a)∗ = P

�+a.

P
�1
P
�2

= P
�2
P
�1
.

P
�1
P
�2

= P
�2
P
�1

= 0.

6 The existence of such a generator is guaranteed by Stone’s theorem (see [30, p. 264]).

5 See also the related results of Hegerfeldt [28, 29].
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If P
�
= 0 for all spatial sets, then the probability of finding the particle in any 

spatial region is zero. In this case, such a structure cannot be used to represent a 
localizable particle position. Hence, the theorem may be interpreted as a “no-go” 
result, showing that no particle position operator can exist in a relativistic quantum 
theory.

Those who are trained in modern particle physics may be skeptical of the upshot 
of Malament’s theorem for relativistic quantum field theory, where we do not typi-
cally employ particle position operators. In fact, Malament’s own interpretation is 
that his result pushes one towards field theories rather than particle theories in the 
relativistic setting. In standard formulations of quantum field theory, however, one 
employs particle number operators rather than position operators. One might think 
that this is enough to avoid the consequences of Malament’s theorem if we could 
understand such number operators as being associated with the number of particles 
in a spatial set. But Halvorson and Clifton [4] prove a result analogous to Mala-
ment’s theorem demonstrating that localizable number operators are not compatible 
with certain constraints of relativistic quantum theory.

Halvorson and Clifton [4] consider the same setting as above, except that they 
allow spatial sets to be arbitrary (not necessarily open) bounded subsets.7 They 
define a system of local number operators as a triple (H,� ↦ N

�
, a ↦ U(a)) , where 

H is a Hilbert space, each spatial set � is assigned an operator N
�
 on H with eigen-

values {0, 1, 2,…} , and a ↦ U(a) is a strongly continuous unitary representation of 
the translation group of M. We now interpret each operator N

�
 as representing the 

number of particles in the spatial set �.
Halvorson and Clifton consider the constraints of Translation Covariance, the 

Energy Condition, and Microcausality, which carry over in the straightforward way 
for the operators N

�
 . They append to this list the conditions: 

5. Additivity if �1,�2 are disjoint spatial sets in the same hyperplane, then 

6. Number conservation if {�n}n∈ℕ is a countable disjoint covering of a hyperplane 
consisting of spatial sets, then 

 converges to a self-adjoint operator on H satisfying 

 for any timelike vector a in M.
The Additivity condition tells us that for any state, the expectation value of the num-
ber of particles in the union of two disjoint spatial regions in the same hyperplane 

N
�1
+ N

�2
= N

�1∪�2
.

N ∶=
∑

n

N
�n
,

U(a)NU(a)∗ = N,

7 This is necessary so that the Number Conservation condition below is non-trivial as there are no count-
able disjoint coverings of a hyperplane by open sets.
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is the sum of the expectation value for the number of particles in each of the two 
regions. The Number Conservation condition guarantees the existence of a total 
number operator N representing the number of particles contained in all spatial 
regions, whose expectation value is constant in time. Halvorson and Clifton assert 
Number Conservation is a reasonable condition for free field theories, even if it may 
not hold in interacting field theories.

With these constraints, Halvorson and Clifton prove the following result.

Theorem  2 (Halvorson and Clifton) Suppose a system of local number operators 
(H,� ↦ N

�
, a ↦ U(a)) satisfies conditions (1)–(3), and (5) and (6). Then N

�
= 0 

for all spatial sets �.

The conclusion that N
�
= 0 for all spatial sets implies that we will not find parti-

cles in any spatial region. Again, such a structure is incapable of representing parti-
cles. So this serves as a “no-go” result for localizable particles in free field theories.

3  The Classical Limit

While the result of Halvorson and Clifton described in Sect. 2 shows that number 
operators in quantum field theories cannot be associated with local regions while 
satisfying their constraints, it is well known that free quantum field theories allow 
for the definition of number operators associated with the entire system. In other 
words, all parties agree that number operators exist; what is at issue in the “no-go” 
results just reviewed is whether they can be associated with local regions. In this 
section, we will review recent work on the classical limits of number operators in 
free quantum field theories, using the free massive Klein-Gordon field as a concrete 
illustration. Then we will go on to use the classical limit to aid in understanding the 
localization of number operators next. In Sect.  3.1 we review the construction of 
number operators in quantum field theory, and in Sect. 3.2 we review an analysis of 
their classical limits.

3.1  Quantum Field Theory

We aim to construct number operators in quantum field theories by first specify-
ing an abstract C*-algebra of bounded quantities, and then considering Hilbert 
space representations of this algebra on a standard Fock space. One can obtain field 
operators as certain limits of bounded quantities, and then construct number opera-
tors from the fields. We will emphasize that the tool of a complex structure used 
to construct the representing Hilbert space also determines the form of the number 
operator.

One can construct free bosonic quantum field theories with the so called Weyl (or 
CCR) algebra. In a free field theory on Minkowski spacetime, one starts with a sym-
plectic vector space (E, �) of test functions whose dual space is the space of (pos-
sibly distributional) solutions to the field equations, or equivalently, initial data on 
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a Cauchy surface � ≅ ℝ
3 . The kinematical algebra of bounded physical quantities 

can then be specified by the Weyl algebra W(E,ℏ�) , the smallest C*-algebra gen-
erated by the linearly independent elements W

ℏ
(F),W

ℏ
(G) for each F,G ∈ E with 

operations

and the minimal regular norm [see  31, 32].
For example, for a real scalar field � ∶ M → ℝ satisfying the Klein–Gordon 

equation8

we set9 E = C∞
c
(𝛴)⊕ C∞

c
(𝛴) and define � for all (f1, g1), (f2, g2) ∈ E by

We understand a (possibly distributional) solution to the Klein–Gordon equation 
(�,�) with � =

��

�t
 to be an element of E′ with action (�,�)[f , g] ∶= ∫

�
�f + �g for 

(f , g) ∈ E.
One can construct particle number operators in the quantum theory by focus-

ing on Fock space representations of the Weyl algebra. A Fock space representa-
tion arises from a choice of timelike spacetime symmetry group acting on E, which 
determines a complex structure on E, i.e. a linear map J ∶ E → E satisfying [see  35, 
36] 

 (i) �(JF, JG) = �(F,G);
 (ii) �(F, JF) ≥ 0;
 (iii) and J2 = −I

for all F,G ∈ E.

(1)
W

ℏ
(F)W

ℏ
(G) ∶= e

−
iℏ

2
�(f ,g)

W
ℏ
(F + G),

W
ℏ
(F)∗ ∶= W

ℏ
(−F),

(2)�
2
�

�t2
− ∇2

� = −m2
�,

(3)�((f1, g1), (f2, g2)) ∶= ∫
ℝ3

f1g2 − f2g1.

8 The Klein–Gordon equation is often presented with m2 replaced by m2∕ℏ2 . Since we are considering 
a quantum field theory whose classical ℏ → 0 limit is the classical Klein–Gordon field with finite mass, 
our setup builds commutation relations for the quantum theory from Eq. (2) with no factors of ℏ . The 
version of the Klein-Gordon equation we use is truly classical in the sense that it does not depend on ℏ . 
However, one can also interpret this setup as applying to the Klein–Gordon equation with the factors of ℏ 
included (with m2 replaced by m2∕ℏ2 ) by understanding the limit to encode simultaneous rescalings of m 
and ℏ in such a way that m2∕ℏ2 remains constant. This can happen, for example, if one considers simul-
taneous unit changes for mass, distance, and time that hold fixed the value of the speed of light c. As an 
aside, we mention that one can also investigate the alternative limit m2∕ℏ2

→ 0 by employing renormali-
zation techniques [33, 34].
9 C∞

c
(�) denotes the real vector space of smooth, compactly supported real-valued functions on �.
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For example, the inertial timelike symmetries of Minkowski spacetime determine 
the Minkowski complex structure JM for the Klein–Gordon field, defined as follows. 
First, define the differential operator �M ∶ C∞

c
(�) → C∞

c
(�) by

Then define JM ∶ E → E by

for all (f , g) ∈ E . This choice of JM is the unique complex structure that commutes 
with inertial time evolution of solutions. But this is only one possible choice of com-
plex structure.

In addition, the Lorentz boost symmetries of the Rindler wedge in Minkowski 
spacetime determine the Rindler complex structure JR for the Klein–Gordon field, 
defined as follows. Consider initial data for the right Rindler wedge on the surface 
R = {(x, y, z) ∈ 𝛴 | x > 0} . Consider the space E(R) = C∞

c
(R)⊕ C∞

c
(R) of test func-

tions with support on R. Define the differential operator �R ∶ C∞
c
(R) → C∞

c
(R) by

Then define JR ∶ E(R) → E(R) by

for all (f , g) ∈ E(R) . This choice of JR is the unique complex structure that com-
mutes with time evolution of solutions in Rindler coordinates (Lorentz boosts). 
Thus, distinct complex structures arise from distinct choices of timelike symmetry 
groups, and as we now discuss, each of these complex structures defines a different 
number operator associated with a representation of the Weyl algebra.10

A complex structure allows us to construct a Hilbert space known as a Fock 
space, which carries the structures of interest. We can define a Fock space by first 
noticing that a complex structure J determines a complex inner product on E defined 
by

for all F,G ∈ E . The completion of E with respect to this inner product is a complex 
Hilbert space HJ . The Fock space over HJ is then defined as

(4)�M ∶= (m2 − ∇2)1∕2.

(5)JM(f , g) ∶= (−�−1
M
g,�Mf ),

(6)�R ∶=

(
e2x

(
m2 −

�
2

�y2
−

�
2

�z2

)
−

�

�x2

)1∕2

.

(7)JR(f , g) ∶= (−�−1
R
g,�Rf ),

(8)�J(F,G) ∶= �(F, JG) + i�(F,G),

(9)F(HJ) ∶=

∞⨁

n=0

S

( n⨂
HJ

)
,

10 For more detail on each of these complex structures and domain issues, see Kay [37].
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where S(
⨂n

HJ) denotes the symmetric subspace of the n-fold tensor product of HJ 
with itself, and which for n = 0 is defined as ℂ . This Hilbert space carries a repre-
sentation of the Weyl algebra unitarily equivalent to the GNS representation �

�
 for 

the state � defined by

for all F ∈ E . The state � is the unique vacuum state invariant under the timelike 
symmetries we began with. Since the state � is regular, the Fock space carries 
unbounded field operators �

ℏ
(F) , which are the self-adjoint generators of the one-

parameter unitary families t ∈ ℝ ↦ �
�
(W

ℏ
(tF)) . These field operators can be used 

to define the standard creation and annihilation operators and number operators

for each F ∈ E [for more detail, see  35].
There are multiple distinct Fock space representations of the Weyl algebra for 

the Klein–Gordon field. For example, if one chooses the complex structure JM cor-
responding to the inertial timelike translation symmetries on Minkowski space-
time, then one arrives at the standard Minkowski vacuum, which we denote �M , 
with its associated Fock space representation (�M ,F(HM)) . But if one chooses the 
complex structure JR corresponding to the timelike Lorentz boost symmetries of the 
right Rindler wedge, then one arrives at the Rindler vacuum, which we denote �R , 
with its associated Fock space representation (�R,F(HR)) [see  37]. With respect to 
the Lorentz boost symmetries of the Rindler wedge, the Minkowski vacuum state 
appears as a thermal (KMS) state with finite temperature.11 This is the celebrated 
Unruh effect [see  37, 41, 42], which is taken to imply that an observer accelerating 
through the Rindler wedge will observe a finite temperature, and hence particles, 
even in the Minkowski vacuum. Thus, we have two families of number operators for 
further analysis.

3.2  Strict Quantization and Number Operators

Given the issues with particle localization in relativistic quantum field theory, we 
now seek a positive account of the particle-like content of such theories. We will 
aim at an analysis of number operators that allows us to understand them as approxi-
mately representing localizable particles. The particular approximation we choose 
involves the classical ℏ → 0 limit [see  also 43], although we make no claim that 
this is the only relevant approximation. This section provides the relevant technical 

(10)�(W
ℏ
(f )) ∶= e

−
ℏ

4
�J (F,F),

(11)

aJ
ℏ
(F) ∶=

1√
2

�
�

ℏ
(F) + i�

ℏ
(JF)

�
, (aJ

ℏ
(F))∗ ∶=

1√
2

�
�

ℏ
(F) − i�

ℏ
(JF),

�

NJ
ℏ
(F) ∶= (aJ

ℏ
(F))∗aJ

ℏ
(F),

11 For more on the definition and interpretation of KMS states, see Bratteli and Robinson [38, 39], 
Ruetsche [40].
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background and summarizes recent results of Browning et al. [44] concerning the 
classical limits of number operators. Those authors construct a quantization map that 
allows for the analysis of classical limits of unbounded operators without a choice of 
Hilbert space representation. Applying this analysis to number operators yields inte-
gral expressions for the particle number content of the corresponding classical field 
theory, which we will analyze in the following sections.

One can formulate the classical limit using the mathematical framework of strict 
quantization [see   19, 45– 47]. A strict quantization is a family of C*-algebras 
{�

ℏ
}
ℏ∈[0,1] and a family of quantization maps {Q

ℏ
∶ P → �

ℏ
}
ℏ∈[0,1] defined on 

some Poisson subalgebra P of �0 , which is required to be commutative. The idea is 
that �

ℏ
 represents the collection of quantities in the quantum theory where Planck’s 

constant takes on the value ℏ ∈ (0, 1] , while �0 represents the collection of quan-
tities of the corresponding classical theory. To appropriately capture the limiting 
behavior of the algebraic structure, a strict quantization is required to satisfy: 

 (i) lim
ℏ→0 ‖

i

ℏ
[Q

ℏ
(A),Q

ℏ
(B)] −Q

ℏ
({A,B})‖

ℏ
= 0;

 (ii) lim
ℏ→0 ‖Qℏ

(A)Q
ℏ
(B) −Q

ℏ
(AB)‖

ℏ
= 0 ; and

 (iii) the map ℏ ↦ ‖Q
ℏ
(A)‖

ℏ
 is continuous

for each A,B ∈ P , where ‖ ⋅ ‖
ℏ
 is the C*-norm on �

ℏ
.12 Given such a structure, we 

understand the classical limit of the family of quantities Q
ℏ
(A) to be the classical 

quantity A ∈ P.
In our example of the free Klein-Gordon field, we let �

ℏ
= W(E,ℏ�) and define 

the quantization maps as the linear extension of

for all F ∈ E , where � is any complex inner product on E. It follows from results 
of Binz et al. [48] and Honegger and Rieckers [49] that this structure forms a strict 
quantization. And importantly for what follows, the choice of a complex inner prod-
uct � does not matter at this stage because for any other complex inner product �′ , 
the corresponding quantization maps are equivalent in the sense that

for each A ∈ P . For this reason, we will omit any mention of the inner product � and 
simply denote the quantization map by Q

ℏ
 , noting that it need not be identified with 

any of the inner products �J associated with the complex structures J used to define 
the number operators of interest. In this way, the structure of a strict quantization 
will allow us to take the classical limit independently of the choice of a Fock space 
representation (which, recall, is determined by a choice of complex structure J).

(12)Q
�

ℏ
(W0(F)) ∶= e

−
ℏ

4
�(F,F)

W
ℏ
(F),

lim
ℏ→0

‖Q�

ℏ
(A) −Q

�
�

ℏ
(A)‖

ℏ
= 0,

12 Furthermore, it is typically required that Q
ℏ
(P) is norm dense in �

ℏ
 , but this can always be achieved 

by restricting attention to an appropriate C*-subalgebra of the codomain.
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Notice, however, that since the domain of the quantization maps is a C*-algebra 
of bounded quantities, such structures cannot immediately be used to analyze the 
classical limits of number operators, which are unbounded. To analyze the classi-
cal limits of number operators, one must extend the quantization map to a larger 
(partial) algebra including unbounded quantities. This is possible because the quan-
tization maps Q

ℏ
 are positive, and hence continuous, so they can be extended to 

the completion of �
ℏ
 in the weak topology, which will contain many unbounded 

operators.
We require one further technical alteration to the setup because the completion of 

�
ℏ
 will not contain the unbounded field operators defined by

for F ∈ E (where the limit is taken in the weak topology). Instead, one must employ 
a different algebra. Define V

ℏ
 as the subspace of (�

ℏ
)∗ generated by the regular 

states, and let V
ℏ
 denote the weak* closure of V

ℏ
 in (�

ℏ
)∗∗∗ . We will consider the 

algebras �∗∗
ℏ
∕N(V

ℏ
) , where N(V

ℏ
) denotes the closed two-sided ideal given by the 

annihilator of V
ℏ
 in �∗∗

ℏ
 . The quantization maps, which we continue to denote Q

ℏ
 , 

can be continuously extended to maps on the completions of these algebras in the 
weak* topology, which contain unbounded field operators defined by Eq. (13) (with 
the limit in the weak* topology) [44].

With this framework, one can define creation, annihilation and number operators 
by a choice of complex structure J on E according to Eq. (11). Browning et al. [44] 
show that the number operators so defined satisfy analogues of the limiting condi-
tions (i) and (ii) stated above for algebraic operations with even many unbounded 
operators of interest. Hence, one can understand the classical quantity

for F ∈ E as the classical limit of the corresponding number operator (for the com-
plex structure J) in a quantum field theory. For our purposes, the classical limit of 
the number operator for the two particular choices of J described above are relevant: 
the Minkowski and Rindler number operators.

The Minkowski number operators are defined using the Minkowski complex 
structure JM via Eq. (11) as NJM

ℏ
(F) for F ∈ E , which we simply denote NM

ℏ
(F) . 

These are the standard number operators appearing in the Fock space representation 
�M for the Minkowski vacuum. In the framework of the strict quantization defined 
by Eq. (12), the classical limits of the Minkowski number operators take the form 
NM
0
(F) , which belongs to the weak* completion of �∗∗

0
∕N(V0).

One can put the classical limit of the Minkowski number operator in a more 
explicit form. First, we define the total Minkowski number operator as13

(13)�
ℏ
(F) ∶= −i lim

t→0

W
ℏ
(tF) − I

t
,

NJ
0
(F) = (aJ

0
(F))∗(aJ

0
(F)) = �0(F)

2 +�0(JF)
2,

13 Pointwise convergence on E ⊆ E′ (or E(R) ⊆ E(R)� ) of the infinite sums employed in this section is 
guaranteed by the cited results of Browning et al. [44].
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where {Fk} is an �JM-orthonormal basis for E. The classical Weyl algebra W(E, 0) 
has a canonical representation as continuous almost periodic functions on the dual 
E′ with

for (f , g), (𝜋,𝜑) ∈ C∞(𝛴)⊕ C∞(𝛴) ⊆ E� . Browning et al. [44] establish the form of 
the classical limit N

M

0
 of the total Minkowski number operator in this representation.

Theorem 3 (Browning et al.) For all �,� ∈ C∞
c
(�),

This shows that the classical limit of the total Minkowski number opera-
tor is the integral of a density function depending on the field and its conjugate 
momentum.

For comparison in the next section, we note that one can use the same methods to 
analyze the classical limit of the total Hamiltonian. The total Hamiltonian is defined 
as

where {gk} is an L2(�,ℝ)-orthonormal basis for the real vector space C∞
c
(�) . In the 

representation of the classical Weyl algebra as almost periodic functions, we have 
the following explicit form for the classical limit HM

0
 of the total Hamiltonian.

Theorem 4 (Browning et al.) For all �,� ∈ C∞
c
(�),

Since the expression on the right hand side is the familiar (0, 0) component of the 
stress-energy tensor for the Klein–Gordon field, this shows that the classical limit of 
the total Hamiltonian is the classical total energy, which similarly is the integral of 
an energy density.

We can give a similar analysis of the classical limit of the Rindler number oper-
ator. First, we use the Rindler complex structure JR to define the Rindler number 
operators via Eq. (11) as NJR

ℏ
(F) for F ∈ E(R) , which we simply denote NR

ℏ
(F) . This 

is the standard number operator appearing in the Fock space representation �R for 
the Rindler vacuum [see  37]. In the framework of the strict quantization defined by 

(14)N
M

0
∶=

∑

k

NM
0
(Fk),

(15)
W0(f , g)(�,�) = exp

(
i∫

�

�f + �g
)
,

�0(f , g)(�,�) = ∫
�

�f + �g,

N
M

0
(�,�) =

1

2 ∫
�

(�
−1∕2

M
�)2 + (�

1∕2

M
�)2.

(16)HM
0
∶=

∑

k

NM
0
(gk, 0),

HM
0
(�,�) =

1

2 ∫
�

�
2 + m2

�
2 + (∇�)2.
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Eq. (12), the classical limits of the Rindler number operators take the form NR
0
(F) , 

which belongs to the weak* completion of �∗∗
0
∕N(V0).

As above, one can put the classical limit of the Rindler number operator in a more 
explicit form. Define the total Rindler number operator by

where {Fk} is an �JR-orthonormal basis for E(R). Browning et al. [44] establish the 
form of the total Rindler number operator in the representation of the classical Weyl 
algebra as almost periodic functions on E(R)�.

Theorem 5 (Browning et al.) For all �,� ∈ C∞
c
(R),

This expression is, of course, distinct from that for the Minkowski number opera-
tor. Nevertheless, the classical limit of the Rindler number operator is still the inte-
gral of a density function depending on the field and its conjugate momentum.

Further, the same methods can be used to analyze the classical limit of the total 
Rindler Hamiltonian. The total Rindler Hamiltonian is defined as

where {gk} is an L2(R,ℝ)-orthonormal basis for C∞
c
(R) . In the representation of the 

classical Weyl algebra as almost periodic functions, we have the following explicit 
form for the classical limit HR

0
 of the total Rindler Hamiltonian.

Theorem 6 (Browning et al.) For all �,� ∈ C∞
c
(R),

Since the expression on the right is the integral of the Rindler energy density 
associated with the Lorentz boost symmetries of the Rindler wedge [see   37], this 
shows that the classical limit of the total Rindler Hamiltonian is the classical total 
Rindler energy.

In summary, we can understand the classical limits of both Minkowski and Rin-
dler number operators and their associated Hamiltonians in a mathematically rig-
orous framework. The classical limits of the Hamiltonians correspond to classical 
energy quantities that can be expressed as the integral of a familiar energy density. 
And the classical limits of both number operators correspond to functions of the 

(17)N
R

0
∶=

∑

k

NR
0
(Fk),

N
R

0
(�,�) =

1

2 ∫R

(�
−1∕2

R
ex�)2 + (�

1∕2

R
�)2.

(18)HR
0
∶=

∑

k

NR
0
(gk, 0),

HR
0
(�,�) =

1

2 ∫R

e2x
(
�
2 + m2

�
2 +

(
��

�y

)2

+
(
��

�z

)2

+ e−2x
(
��

�x

)2
)
.
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field and conjugate momentum that can likewise be expressed as the integral of a 
density function.14 The next section uses these results to aid our understanding of 
particles in light of the issues outlined in Sect. 2.

4  Emergent Localizable Particles

We now attempt to provide a positive account of the particle content of Klein–Gor-
don theory by interpreting the classical number operators and understanding them 
as approximations to quantum number operators. To understand the localization 
properties of these classical number operators, we begin with an analogy to classical 
localizable energy quantities, which will motivate our approach to analyzing classi-
cal number operators.

Notice that there is a standard way to interpret the classical Hamiltonian as giv-
ing rise to localized energy quantities. The classical limit of the Hamiltonian for the 
Klein–Gordon field is the integral of the standard energy density. One can use this 
density to define local energy quantities HM

0
(�) for spatial sets 𝛥 ⊆ 𝛴 in the classical 

theory by restricting the integral of the energy density to the domain � as follows:

for �,� ∈ C∞
c
(�) . Equation (19) provides the standard and familiar way in a clas-

sical field theory of describing the amount of localized energy within � associated 
with a field configuration.

With the definition of classical local energy in mind, we will proceed to provide 
two interpretations of the classical number of particles in which the total number of 
particles is the integral of a density function, and hence is localizable in precisely 
the same sense as energy. Schematically, we will write this as

for a density function n(�,�) , where 𝛥 ⊆ 𝛴 is a spatial set. We will provide two 
candidates for the density function, which give rise to different particle interpreta-
tions of the classical Klein-Gordon theory. On the first interpretation, which we call 
the “Local Density” interpretation and describe in Sect. 4.1, we set the total integral 
of n to be the classical total number operator N

M

0
 and take the density function to be 

that provided in Theorem 3. However, this yields an interpretation that is non-stand-
ard from the perspective of the quantum field theory by ignoring the role of parti-
cle modes, and so we provide a second interpretation based on particle modes. We 
describe this interpretation, which we call the “Uniform Density” interpretation, in 

(19)HM
0
(�)(�,�) ∶=

1

2 ∫
�

�
2 + m2

�
2 + (∇�)2,

(20)N0(�)(�,�) ∼ ∫
�

n(�,�),

14 Browning et al. [44] extend the same analysis to the electromagnetic field, in which case the classical 
limit of the number operator can also be written as the integral of a number density, which agrees with 
the proposal for classical photon number appearing in Sebens [50, 51].



1 3

Foundations of Physics (2021) 51:49 Page 15 of 31 49

Sect. 4.2, according to which the density function n is itself the classical total num-
ber operator N

M

0
 , understood as a uniform spatial density. In this section, we treat 

only Minkowski particles, but we signal later some directions for analyzing Rindler 
particles.

4.1  Local Density

In this section, we will define the Local Density interpretation of the classical total 
number operator, compare it to the Newton–Wigner representation of the number 
operator in quantum field theory, and then establish that it obeys conditions analo-
gous to those laid out by Halvorson and Clifton [4] for systems of local number 
operators.

With the definition of classical local energy in mind, now consider the classi-
cal total number operator, which Theorem 3 shows can also be written as the inte-
gral of a density function. This implies that we can in an analogous way define 
classical local number quantities NLD

0
(�) (LD denotes “local density”) by restrict-

ing the integral of the number density to the domain � as follows. First, let15 
n ∶ C∞(𝛴)⊕ C∞(𝛴) → L1(𝛴) be such that for all (𝜋,𝜑) ∈ C∞(𝛴)⊕ C∞(𝛴),

Note that n is underdetermined here. We could, for example, take

as it is written in Theorem 3. But we could also take

since �M is self-adjoint and positive. Which density is appropriate for physics is a 
substantive matter, but it makes no difference for most of the discussion that follows. 
As such, we only assume that we have chosen one such n for our Local Density 
interpretation; really we have a family of different interpretations for different densi-
ties with the same total integral.

With a choice of number density n, we fill in the schema of Eq. (20) by defining

for �,� ∈ C∞
c
(�) . This association of local number quantities in the classical field 

theory with local regions completes what we call the Local Density interpretation.

N
M

0
(�,�) = ∫

�

n(�,�).

(21)n(�,�) ∶=
1

2

(
(�

−1∕2

M
�)2 + (�

1∕2

M
�)2

)
,

(22)n�(�,�) ∶=
1

2

(
�(�−1

M
�) + �(�M�)

)
,

(23)NLD
0

(�)(�,�) ∶= ∫
�

n(�,�),

15 Here, L1(�) is the collection of integrable functions on � . Except where explicitly noted as in 
Sect. 3.2, we understand all Lp spaces to consist in complex-valued functions.
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To better understand this interpretation, let us compare with what Halvorson [52, 
pp. 121–122] proposes as the natural way in the corresponding quantum theory to 
construct a local number operator associated with a spatial region � from the number 
operators NM

ℏ
(f ) for test functions f ∈ E . Halvorson interprets the test functions f in 

the standard way as one-particle wavefunctions and interprets NM
ℏ
(f ) as the number 

of particles in a state with the wavefunction f. On this interpretation, he suggests that 
the standard local number operator associated with � , which we call NS

ℏ
(�) should 

be the sum16 of number operators for one-particle wavefunctions with support in � , 
i.e., he defines NS

ℏ
(�) for a spatial set � as

where {fk} is a basis for the real vector space C∞(𝛥)⊕ C∞(𝛥).
However, Halvorson shows, contra Redhead [17], that the aforementioned defini-

tion does not yield appropriate local number operators. Rather, for each spatial set � , 
the defined sum yields the total number operator, i.e.,

for any � . This follows immediately from a result of Segal and Goodman [53] that 
the operator �M has the property they call anti-locality.

Notice that our natural definition of the local number of particles in the classi-
cal field theory does not agree with Halvorson’s attempted definition of the local 
number operator in the quantum theory as a sum over the number operators associ-
ated with test functions with support in � . Even in the classical case, Halvorson’s 
prescription yields the total number operator. More precisely, suppose we define the 
standard local number operator in the classical theory as

where {fk} is a basis for the real vector space C∞(𝛥)⊕ C∞(𝛥) . Then the anti-locality 
of �M established by Segal and Goodman [53] implies the standard local number 
operator is the total number operator for arbitrary local regions, i.e. for any spatial 
set �,

However, the local number quantities we have defined in Eq. (23) for the Local Den-
sity interpretation are clearly not the total classical number operator, i.e.,

(24)NS
ℏ
(�) ∶=

∑

k

NM
ℏ
(fk),

NS
ℏ
(�) = N

M

ℏ
,

(25)NS
0
(�) ∶=

∑

k

NM
0
(fk),

NS
0
(�) = N

M

0
.

NLD
0

(�) ≠ N
M

0
,

16 In order for this sum to converge in the quantum theory ( � > 0 ), one should actually understand it as 
an upper bound of quadratic forms in the Minkowski Fock space representation.
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and so the local number quantities NLD
0

(�) we have defined cannot be obtained by 
summing over a basis of test functions with support in � . Nevertheless, the local 
number quantities defined in Eq. (23) seem well-motivated in the classical theory.

In fact, the association of local number operators defined by Eq. (23) instead align 
with what Halvorson calls the Newton–Wigner localization scheme17 in the quantum 
field theory [52, p. 123], which is obtained by transforming the test function space 
before summing over test functions with support in a region. To start, we define a 
dense isometric embedding K ∶ E → L2(�) (where E is understood with the inner 
product �JM ) by18

for all f , g ∈ C∞
c
(�) . The Newton–Wigner localization scheme in the quantum the-

ory for � > 0 , by definition, understands NM
ℏ
(F) for F ∈ E to be local to a region 

𝛥 ⊆ 𝛴 just in case K(F) ∈ L2(𝛥) ⊆ L2(𝛴) , i.e., the points outside � for which K(F) is 
non-zero form a region of measure zero. Similarly, the Newton–Wigner total num-
ber operator in the quantum theory for the region � is then defined as19

where {K(Fk)} is an L2-orthonormal basis for L2(�) [52, p. 124].
We now define a corresponding Newton–Wigner localization scheme in the 

classical theory and show that it agrees with our Local Density interpretation. 
For this, we must fix that our density is given by Eq. (21) rather than Eq. (22) or 
some other alternative. Using the straightforward analogy provided in the ℏ → 0 
limit, we say the Newton–Wigner localization scheme in the classical theory, by 
definition, understands NM

0
(F) for F ∈ E to be local to a region 𝛥 ⊆ 𝛴 just in case 

K(F) ∈ L2(𝛥) ⊆ L2(𝛴) . And we define the Newton–Wigner total number operator in 
the classical theory for the region � as20

where {K(Fk)} is an L2-orthonormal basis for L2(�) . Then it follows that our local 
density interpretation reproduces the Newton–Wigner total number operators in the 
classical theory.

Proposition 1 For any 𝛥 ⊆ 𝛴 and any �,� ∈ C∞
c
(�) , if NLD

0
(�) is defined using the 

density in Eq. (21), then

(26)K(f , g) ∶= �
1∕2

M
f + i�

−1∕2

M
g,

(27)NNW
ℏ

(�) ∶=
∑

k

NM
ℏ
(Fk),

(28)NNW
0

(�) ∶=
∑

k

NM
0
(Fk),

20 The pointwise convergence on E ⊆ E′ of this sum is guaranteed by the following Proposition 1.

17 For background on the Newton–Wigner localization scheme, see Newton and Wigner [54], Fleming 
and Butterfield [55], and Fleming [56].
18 See Kay [37, p. 65] or Halvorson [52, p. 115, Eq. 10].
19 Again, in order for this sum to converge in the quantum theory ( � > 0 ), one should understand it as an 
upper bound of quadratic forms in the Minkowski Fock space representation.
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Proof The Pythagorean theorem on L2(�) implies that,21 taking {Fk} = {fk, gk} to be 
an L2 - orthonormal basis for L2(�),

which is what we set out to show.   ◻

This establishes that comparison with the construction of local energy quanti-
ties suggests an interpretation of number operators in the classical theory—which 
we have called the Local Density interpretation—which aligns with the New-
ton–Wigner localization scheme.22 So despite the negative pronouncements by Hal-
vorson [52, e.g., pp. 131–132], the classical limit may provide some reason to favor 
the Newton–Wigner localization scheme, although we take no stance on whether 
such reasons apply in the corresponding quantum theory. (We remind the reader at 
this point that our interpretation of the classical number operators is meant to aid in 
the understanding of quantum field theory only by showing what a world approxi-
mately described by quantum field theory would approximately be like—not by 
showing what a world described exactly by quantum field theory would be like. As 
such, we have not provided any reason to advocate for the Newton-Wigner localiza-
tion scheme in quantum field theory.)

NLD
0

(�)(�,�) = NNW
0

(�)(�,�).

NNW
0

(�)(�,�) =
1

2

�

k

��
∫
�

�fk + �gk
�2

+
�
∫
�

(�
1∕2

M
�)(�

1∕2

M
fk) − (�

−1∕2

M
�)(�

−1∕2

M
gk)

�2
�

=
1

2

�

k

�⟨K(�,−�),K(Fk)⟩L2(�)�2

=
1

2

�

k

�⟨K(�,−�),K(Fk)⟩L2(�)�2

=
1

2
⟨K(�,−�),K(�,−�)⟩L2(�)

=
1

2 ∫
�

(�
1∕2

M
�)2 + (�

−1∕2

M
�)2

= NLD
0

(�)(�,�),

21 Here, we use ⟨⋅, ⋅⟩L2(X) to denote the inner product in L2(X).
22 An anonymous referee has asked if one can use the methods in Browning et al. [44] to analyze the 
classical limit of the Newton–Wigner position operator directly. If successful, this might provide a way 
around Malament’s “no-go” theorem in the classical limit. But the methods for taking the classical limit 
described here are applicable only to the Weyl algebra, so these methods willow allow one to take the 
classical limit of the Newton–Wigner position operator only if the Newton–Wigner position operator can 
itself be related to limits of algebraic combinations of Weyl unitaries. This is an interesting question, but 
an answer is beyond the scope of the current paper and so we leave it for future work.
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Moreover, we can also see that the quantities NLD
0

(�) are at least appropri-
ate candidates for local number operators by demonstrating that the assignment 
� ↦ NLD

0
(�) satisfies analogs of the necessary conditions (1)–(3), (5) and (6) of 

Halvorson and Clifton’s no-go theorem. We first need some preliminaries. Since we 
work with initial data on a spacelike hypersurface � ≅ ℝ

3 embedded in M, we will 
use the orthogonal decomposition of each vector a in M into

where � is the unit future-directed timelike vector orthogonal to � , t ∈ ℝ is a sca-
lar, and � is the spacelike component of a tangent to the hyperplane � . Recall that 
the one-parameter unitary family K−1e−i�MtK for t ∈ ℝ implements the dynamical 
evolution for the Klein-Gordon field for inertial time translations [37, p.  65]. We 
extend the assignment 𝛥 ⊆ 𝛴 ↦ NLD

0
(𝛥) to arbitrary spatial sets 𝛥 ⊈ 𝛴 (we assume 

� belongs to the collection of spacelike hyperplanes foliating M) by defining

where t� is the unique vector beginning on � and ending on � that is orthogonal to 
�.

Now we consider Halvorson and Clifton’s conditions, beginning with Translation 
Covariance. For each vector a = t� + � define the map �a ∶ E�

→ E� acting by

for all (𝜋,𝜑) ∈ C∞
c
(𝛴)⊕ C∞

c
(𝛴) , where �∗ is the pushforward for the translation by 

the vector �.23 This allows us to define automorphisms �a ∶ W(E, 0) → W(E, 0) by 
linearly extending

which likewise extends to the number operators as

for all f ∈ E and

It follows from the linearity of �a , the translation invariance of �M , and the transla-
tion invariance of the measure on � defining the integral that

which is an analogue of Translation Covariance in the classical theory.

a = t� + �,

(29)NLD
0

(�)(�,�) ∶= NLD
0

(� − t�)
(
K−1e−i�MtK(�,�)

)
,

(30)�
a(�,�) ∶= K−1e−i�MtK(�∗�, �∗�),

(31)�a(W0(f ))(�,�) ∶= W0(f )(�
a(�,�)),

(32)�a(N
M
0
(f ))(�,�) ∶= NM

0
(f )(�a(�,�)),

(33)�a(n)(�,�) ∶= n(�a(�,�)).

(34)�a(N
LD
0

(�)) = NLD
0

(� + a),

23 One can extend �a to distributional field configurations in E′ in an obvious way, but we will only be 
concerned with the values of number operators on smooth field configurations.
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The classical theory furthermore satisfies the Energy Condition because �M is 
the self-adjoint generator of the group of inertial time translations and its spectrum 
is [m,∞) , which is bounded from below. One might worry that the positivity of the 
operator �M does not provide an appropriate notion of energy positivity in the classi-
cal theory. But the classical energy density of the Klein–Gordon theory, which is the 
generator of time translations in the distinct sense of being the associated conserved 
quantity via Noether’s theorem, is also positive in the analogous sense of satisfying 
the weak energy condition.

Microcausality is trivially satisfied because the algebra of observables for the 
classical theory is commutative. One might wish to investigate further the corre-
lations between the expectation values of local number operators associated with 
spacelike separated regions. It follows from the properties of �M that NLD

0
(�) can, 

in some sense, depend on the values of � and � outside of the region � . This may 
provide difficulties for understanding the local number operators as quantities meas-
urable by probing the field within the region � . An analogous feature rears its head 
in the discussion Halvorson [52, p. 128] gives of the Newton–Wigner local num-
ber operators in the quantum theory, which he shows do not satisfy Microcausality 
and thereby admit “act-outcome” correlations at spacelike separation. We leave such 
considerations for future work, but it is unclear whether there is reason for thinking 
that this non-local dependence of the classical number operators on the fields vio-
lates the constraints of relativity theory.

Linearity of the integral implies that Additivity is satisfied. Similarly, the count-
able additivity of the integral implies that for any countable disjoint covering {�n} 
of �,

which means that the sum24 of local number operators converges to the total num-
ber operator. To establish Number Conservation, note that when �,� ∈ C∞

c
(�) are 

smooth field configurations, we can treat (�,�) as an element of E for which

Further, for any vector a, the operator �a on E is a unitary operator (with respect to 
�JM

 ). It follows from these two facts that �a(N
LD

0
) = N

LD

0
 for any timelike vector a. 

This shows that the total number operator is conserved under time translations, so an 
analogue of the Number Conservation is satisfied. Thus, the classical local number 
quantities satisfy all of Halvorson and Clifton’s conditions, which they claim are at 
least necessary conditions for an assignment of local number quantities.

The Local Density interpretation allows one to associate a quantity NLD
0

(�) with 
each region � , which one can interpret physically as the number of particles in the 
region � according to the classical theory. Saying that particles are localizable in this 

(35)N
LD

0
=
∑

n

NLD
0

(�n),

N
LD

0
(�,�) = N

M

0
(�,�) =

1

2
�JM

((�,−�), (�,−�)).

24 Again, this sum should be understood in the sense of pointwise convergence on E ⊆ E′.
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sense is only to say that these quantities satisfy the weak necessary conditions for asso-
ciating physical quantities with regions of a relativistic spacetime. This does not, of 
course, answer any questions about the ontological status of particles in any fundamen-
tal quantum field theory. Instead, it answers the question outlined in the introduction 
about what the world is approximately like if quantum field theory is approximately 
accurate: the world would be approximately described by a classical field theory, 
admitting an interpretation of certain quantities associated with the fields as the number 
of particles in a region.

Thus, we believe the Local Density interpretation of the number operators in the 
classical limit provides a sense in which number operators in the quantum field theory 
are approximately localizable. The sense in which the number operators in the quantum 
field theory are approximately localizable is captured by the fact that they approximate 
classical number operators by satisfying the limiting conditions of strict quantization. 
Further, the classical number operators on the Local Density interpretation are localiz-
able because (i) they satisfy Halvorson and Clifton’s conditions, and (ii) their localiza-
tion scheme matches standard ways of understanding the localizability of global quan-
tities like energy that can be expressed as the integral of a density function. Thus, the 
Local Density interpretation provides one sense in which localizable number operators 
emerge in the classical limit of quantum field theory.

4.2  Uniform Density

In this section, we will define an alternative interpretation of particles in the classical 
Klein–Gordon theory—which we call the Uniform Density interpretation of the classi-
cal total number operator. We will motivate this interpretation by showing the classical 
total number operator can be obtained as the sum over modes of the particle contents 
naturally associated with the Fourier modes of a Klein–Gordon field.

One might be dissatisfied with the Local Density interpretation of the previous sec-
tion precisely because it fails to match the natural prescription Halvorson describes 
as the standard way of defining local number operators in the quantum theory, which 
we reviewed in the previous section. The standard prescription Halvorson describes 
for associating number operators with local regions is, after all, based on the standard 
interpretation of particle modes in the quantum theory. In this section, we show that 
one can stay much closer to the prescriptions suggested in the quantum theory when 
defining classical number quantities by analyzing classical particle modes. Doing so 
yields a distinct interpretation, which we call the Uniform Density interpretation. We 
give the interpretation this name because we will show that it implies that the total 
classical number operator N

M

0
 should be understood as a uniform spatial density. Using 

NUD
0

(�) to denote the number of particles in a spatial region � , the Uniform Density 
interpretation fills in Eq. (20) by prescribing the association

This association satisfies Halvorson and Clifton’s conditions on systems of local 
number operators in just the same way as the Local Density interpretation, so we 

(36)NUD
0

(�)(�,�) ∶= ∫
�

N
M

0
(�,�).
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will not show this explicitly. Instead, we focus on motivating the Uniform Density 
interpretation.

Our motivation comes from the standard way of thinking in quantum field the-
ory according to which different number operators NM

ℏ
(f ) correspond to the number 

of particles in different “modes” of the field, where modes are understood as com-
ponents of the Fourier decomposition (in turn corresponding to the inertial time-
like symmetries we used to define �M to begin with). Of course, we can apply this 
approach to the classical field theory using standard methods of Fourier analysis. 
We will proceed by noticing that each Fourier mode of a classical field can be rein-
terpreted as a relativistic fluid associated with a constant particle number density. 
Then we will show that summing the corresponding constant number densities over 
all modes reproduces the classical total number quantity N

M

0
 , thus motivating our 

understanding it as a constant density.
First, some preliminaries. To define the Fourier transform, we fix an arbitrary ori-

gin to Minkowski spacetime o ∈ M and understand the position vector of any other 
point p ∈ M to be the unique vector x such that p = o + x . (We will show later that 
the choice of origin does not make a difference to what follows.) For any scalar field 
� ∈ S(M),25 define the Fourier transform, denoted �̃� ∈ S(M) by

for all vectors k in M, where g denotes the Minkowski metric.26 The Fourier inver-
sion theorem implies that any solution � to the Klein–Gordon equation (for fixed 
mass m) can be written in the form

where the domain of the integral is the mass shell S ∶= {k | g(k, k) = m2}.
Moreover, since � is real, we have �̃�(−k) = �̃�(k) , which implies that � takes the 

form

where I+ is the collection of future-directed timelike vectors. We call the integrand 
the k-mode of � , explicitly given by

We define the k-modes of � so that

(37)�̃�(k) ∶=
1

(2𝜋)2 ∫M

𝜑(x)e−ig(k,x) dx,

(38)𝜑(x) =
1

(2𝜋)2 ∫S

�̃�(k)eig(k,x) dk,

𝜑(x) =
1

(2𝜋)2 ∫S∩I+
2Re(�̃�(k)) cos(g(k, x)) + 2Im(�̃�(k)) sin(g(k, x)) dk,

(39)k
𝜑(x) ∶= 2Re(�̃�(k)) cos(g(k, x)) + 2Im(�̃�(k)) sin(g(k, x)).

25 Here, S(M) denotes the Schwartz space of rapidly decreasing functions on M.
26 We work with signature (+,−,−,−) for the Minkowski metric g.
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This provides the familiar sense in which � can be thought of as a sum over modes, 
where each mode is itself a real-valued solution to the Klein–Gordon equation asso-
ciated with some k ∈ S ∩ I+.

We now analyze each k-mode 
k
� as a solution to the Klein–Gordon equation 

in its own right. It is well known that Klein–Gordon fields can be canonically 
associated with relativistic perfect fluids [see, e.g., [57]]. We understand the fluid 
corresponding to a Klein–Gordon field � to be described by three quantities: the 
energy density � , pressure density p, and velocity field u, given by

where here, and in the remainder of this section, ∇ denotes the unique (Levi–Civita) 
covariant derivative operator on M compatible with g (see [58, p. 77, Proposition 
1.9.2]). With these definitions, the stress-energy tensor for the Klein–Gordon field 
takes the same form as the stress-energy tensor for a perfect fluid. We denote the 
corresponding energy density, pressure density, and velocity field for the k-mode 

k
� 

by 
k
� , 

k
p , and 

k
u.

Straightforward formal calculation yields

There is a technical issue with this result for 
k
� that we return to below. But for the 

moment notice that this establishes (at least formally) that the fluid corresponding to 
the k-mode has energy density and velocity that are constant across spacetime.

We can use the quantities associated with the interpretation of a scalar field 
as a fluid to define a particle density. First, we understand each k-mode as a fluid 
composed of particles of mass m. A co-moving observer (moving with velocity 

k
u ) 

will thus naturally assign the k-mode a particle density 
k
nu given by

(Notice that we work in natural units where the speed of light is c = 1 , which sim-
plifies the correspondence between mass and energy.) But it is well known that the 

�(x) =
1

(2�)2 ∫S∩I+

k
�(x) dk.

(40)� ∶=
1

2
(g(∇�,∇�) + m2

�
2),

(41)p ∶=
1

2
(g(∇�,∇�) − m2

�
2),

(42)u ∶=
∇�

g(∇�,∇�)1∕2
,

k
𝜌 = 2m2

�̃�(k)�̃�(k),

k
u =

k

m
.

(43)k
nu ∶=

k
�

m
.
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co-moving particle density 
k
nu is not relativistically invariant, in the sense that dif-

ferent observers may assign different particle densities. Following Weinberg [59, p. 
49], we define, for each k-mode, the invariant particle current density as the vector 
field

Indeed, 
k

N is a conserved quantity in the sense that

where the second to last equality follows from the fact that the stress-energy tensor 
of the Klein–Gordon field is conserved [58, p. 150, Eq. 2.5.5], and the last equality 
follows from the fact that the velocity field 

k
u is constant.

At this point, it is important to note that the particle content of each k-mode, 
encoded in the current density 

k

N , is independent of the choice of origin o ∈ M . For, 
if we had fixed a different origin o ↦ o� = o + v ∈ M , we would only change the 
Fourier transform by a phase factor

leaving the absolute modulus �̃�(k)�̃�(k) invariant. Thus, a change of origin does not 
affect the energy density 

k
� or velocity 

k
u assigned to each k-mode, and in turn does 

not affect the co-moving particle density 
k
nu or current density 

k

N . Hence, although 
we fixed a choice of origin to define the Fourier transform, the conclusions we draw 
about particle content are independent of that choice.27

Now the particle current for the k-mode allows us to define the particle density 
for the k-mode associated with an observer moving with an arbitrary velocity � ∈ I+ 
as

Since the full field � is itself an integral of the k-modes, where k ranges over the 
future-directed mass shell S ∩ I+ , we want to associate with an observer moving 
with velocity � ∈ I+ a total particle density given by the integral of n

�
 over all pos-

sible values of k. This will, however, require one technical change.
Our basic strategy is to use � to decompose each vector k into a frequency and 

wave-vector component to put 
k
n
�
 is a form more amenable to calculations. To that 

end, define the frequency k� and wave-number � relative to the observer with veloc-
ity � ∈ I+ by

(44)
k

N ∶=
k
nu

k
u.

div
k

N = g
( k
u

m
,∇

k
�
)
+

k
�

m
div

k
u = −

k
p

m
div

k
u = 0,

�̃�(k) ↦ e−ig(k,v)�̃�(k),

(45)k
n
�
∶= g(

k

N, �).

27 On the other hand, notice that the analysis of this section depends entirely on the use of plane waves 
as Fourier modes, which are associated with the inertial timelike symmetries of Minkowski spacetime. 
This convention cannot be changed arbitrarily like the choice of origin.
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We also define

so that

Similarly, we understand � to be the spatial slice associated with the observer mov-
ing in the direction � , i.e., we let � be the collection of spacelike vectors orthogonal 
to �.28 Given any � ∈ C∞

c
(M) , we associate with the observer moving in the direc-

tion � the standard field momentum � = g(�,∇�) , using the time derivative with 
respect to the proper time of the observer.

Then calculating from our definitions with the Fourier transform yields

It follows that we can write the particle density for the k-mode as

Now the technical issue mentioned earlier is that the products �̃�(k)�̃�(k) and �̃�(k)�̃�(k) 
are not generally well-defined—even as distributions—because they may involve 
products of delta functions. To see this, first define the spatial Fourier transform for 
initial conditions � ∈ S(�) on the spacelike hyperplane � as

In other words, F  is the ordinary Fourier transform in ℝ3 . It follows that the spatial 
Fourier transform is related to the full Fourier transform by

where we use the same convention in Eq. (46) for associating each k with a wave-
number � . So if we have initial conditions � ∈ S(�) (which are required for our def-
inition of the number operator), then since �̃�(k)�̃�(k) and �̃�(k)�̃�(k) contain products 
of delta functions, they are not well-defined.

This provides some motivation for working instead with a formally analogous, 
but well-defined expression for the number density that is obtained by using only 

(46)k
� ∶= g(�, k) � = k − g(�, k)�.

(47)(� ⋅ �) ∶= −g(�, �),

(48)k
� = (m2 + (� ⋅ �))1∕2.

k
n
𝜉
= 2(m2 + (� ⋅ �))1∕2 ⋅ �̃�(k)�̃�(k)

�̃�(k) = i(m2 + (� ⋅ �))1∕2�̃�(k).

(49)
k
n
𝜉
= (m2 + (� ⋅ �))1∕2 ⋅ �̃�(k)�̃�(k) + (m2 + (� ⋅ �))−1∕2 ⋅ �̃�(k)�̃�(k).

(50)F(�)(�) ∶=
1

(2�)2 ∫�

�(�)ei�⋅� d�.

�̃�(k) = F(𝜑)(�) ⋅ 𝛿(m2 + �2),

28 Or equivalently, we can let � consist in points p ∈ M with p = o + � for some spacelike vector � 
orthogonal to � . The relevant quantities are all invariant under time translations, so it does not matter 
which surface we choose from a spacelike foliation.
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the spatial Fourier transform. We define, in analogy with Eq. (49), a “spatial” 
number density

This definition in turn allows us to integrate over all k-modes by integrating over all 
possible values of � , understood as associated with the frequency (m2 + (� ⋅ �))1∕2.

As such, we define

Since the particle density 
�
n
�
 in the direction � for each k-mode is a constant scalar 

field, so is the total particle density in the direction � . In this sense, our interpreta-
tion of the k-modes of � as perfect fluids yields a local, but uniform particle density 
in spacetime.

Finally, we now establish that, on this definition, the total particle density for 
an observer with velocity � ∈ I+ agrees with the total classical number operator 
N

M

0
 at every point. We have the following result.

Proposition 2 For any � ∈ C∞
c
(M) , with the above definitions of � and �,

for all � ∈ �.

Proof Recall that (see, e.g., [60, p. 50])

The Plancherel theorem [60, p. 10, Theorem IX.6] then immediately implies our 
result:

which is what we set out to show.   ◻

Now we have shown that the classical total number operator N
M

0
 can be thought 

of as a uniform particle density, according to what we call the Uniform Density 
interpretation, which assigns to the region � the local particle number NUD

0
(�) . 

�
n
�
∶= (m2 + (� ⋅ �))1∕2 ⋅ F(�)(�)F(�)(�) + (m2 + � ⋅ �))−1∕2F(�)(�)F(�)(�).

(51)n
�
∶= ∫S∩I+

�
n
�
d�.

n
�
(�) = N

M

0
(�|� ,�|�),

(F(�M�))(�) = (m2 + (� ⋅ �))1∕2 ⋅ (F�)(�).

N0(𝜋|𝛴 ,𝜑|𝛴) =
1

2 ∫
𝛴

𝜑(�)(𝜇M𝜑)(�) + 𝜋(�)(𝜇−1
M
𝜋)(�) d�

=
1

2 ∫S

�̃�(k)(m2 + (� ⋅ �))1∕2�̃�(k)

+ �̃�(k)(m2 + (� ⋅ �))−1∕2�̃�(k) dk

=
1

2 ∫S

�
n
𝜉
dk = ∫S∩I+

�
n
𝜉
dk,
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On this interpretation, every Klein–Gordon field is understood as a linear com-
bination of perfect fluids, each associated with a constant velocity and energy 
density, implying a constant particle number and current density. The classical 
total number operator N

M

0
 is what we would naturally think of as the total particle 

number density of the entire fluid as measured by an observer, which we obtain 
by integrating the particle number density, as seen by that observer, for each of 
the component fluids (modes). Since the particle number densities for each of the 
component fluids are local in the standard sense, we understand the total particle 
number density N

M

0
 for the entire fluid to be local in the same sense. Moreover, 

since N
M

0
 is an approximation to the total number operator in the quantum field 

theory, this provides a sense in which the quantum field theory allows for approx-
imately localizable particles.

5  Conclusion

In this paper, we have argued that, while results of Malament [3] and Halvorson 
and Clifton [4] provide obstacles to interpreting relativistic quantum field theories in 
terms of localizable particles, one can gain some understanding of particles in quan-
tum field theories through the approximation of the classical limit. We reviewed 
recent results of Browning et al. [44] establishing the form of the classical limit of 
number operators in the quantum theory of the free Klein–Gordon field. Our cen-
tral contribution was to show that the classical number operators so obtained can be 
understood as localizable in at least two distinct senses. First, on our Local Density 
interpretation, we showed from the fact that the classical total number operator can 
be written as a spatial integral of a density function that it yields a natural assign-
ment of particle contents to local regions, which satisfies analogs of the conditions 
that Halvorson and Clifton propose for localization schemes, and agrees with the 
Newton–Wigner localization scheme when extended to the classical theory. We 
noted, however, that there is still a sense in which on this interpretation the value 
of the number density in any given region depends on the field values outside of the 
region. Second, on our Uniform Density interpretation, we showed by decomposing 
a Klein–Gordon field into its Fourier modes and understanding each mode as a per-
fect fluid with constant velocity and particle density, that the classical total number 
operator can also be understood as itself a uniform density obtained by summing the 
local particle densities associated with all modes. These two interpretations provide 
distinct routes to understanding the particle content of the quantum Klein–Gordon 
theory as approximately local.

We take no stance on which of the two interpretations—Local Density or Uni-
form Density—is preferable. We note here though that the density n associated with 
the Local Density interpretation is not, in general, locally conserved under timelike 
translations while the density N

M

0
 associated with the Uniform Density interpretation 

is. This perhaps speaks in favor of the Uniform Density interpretation for describing 
particles that persist over time. On the other hand, this may speak against the Uni-
form Density interpretation because it disagrees with the description from the full 
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quantum field theory of particles that can be created or annihilated. We encourage 
further consideration of these particle interpretations of classical field theory to aid 
in the understanding of quantum field theory.

We mentioned in Sect. 4.1 that on the Local Density interpretation, the value of 
the classical number operator in a region in some sense depends on the values of the 
fields outside that region. As an aside, we now note that one can use the technical 
tools previously outlined to display this non-local dependence explicitly—calculat-
ing with the Fourier transform yields for the total number operator:

where we follow Peskin and Schroeder [61] in using D(� − �) to denote the quan-
tum field theoretic correlation function (i.e., the expectation value in the vacuum 
state of �(�)�(�) , where � is the operator valued distribution corresponding to the 
quantum field � . The first line follows from the Plancherel theorem, the second by 
subsituting the definition of the Fourier transform, and the third by substituting the 
definition of the correlation function. Although this expression displays a depend-
ence of the number operator on field values at spacelike separation, this dependence 
is somewhat attenuated. A length scale for the dependence is set by the mass m as 
follows: Peskin and Schroeder [61, p. 27] show the asymptotic behavior of D(� − �) 
as |� − �| → ∞ is

which entails that the total number operator is 1/m-local in the sense of Wallace 
[11]. This provides perhaps another sense in which the classical number operator is 
approximately local, but also perhaps a sense in which it is still not as local as one 
might have hoped.

In interpreting classical number operators, we focused solely on the classical 
Minkowski number operator and ignored the classical Rindler number operator, 
which the analysis of Browning et al. [44] also covers. The Local Density interpreta-
tion can be immediately extended to the Rindler number operators because Brown-
ing et al. establish that the classical total Rindler number operator is the spatial inte-
gral of a density function. So the Local Density interpretation is general enough to 
apply to inequivalent number operators.

However, extending the Uniform Density interpretation to Rindler number opera-
tors requires further work. It is well known that the Rindler number operators are 

(52)N
M

0
(�,�) =

1

2 ∫
�

|F(�)(�)|2 + (m2 + (� ⋅ �)) ⋅ |F(�)(�)|2
(m2 + (� ⋅ �))1∕2

d�,

(53)
=

1

2(2�)4 ∫�
∫
�
∫
�

(
�(�)�(�) + (�M�)(�)(�M�)(�)

)

1

(m2 + (� ⋅ �))1∕2
e−i�⋅(�−�)d� d� d�,

(54)=
1

2� ∫
�
∫
�

(
�(�)�(�) + (�M�)(�)(�M�)(�)

)
D(� − �) d� d�,

D(� − �) ∼ e−im|�−�|,
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associated with the Lorentz boost symmetries of the Rindler wedge, in the sense that 
the Rindler complex structure is the unique one commuting with the Lorentz boost 
symmetries, which are time translations in Rindler coordinates. This implies in turn 
that the Fock space associated with the Rindler representation is built out of a dif-
ferent set of modes, again associated with these distinct timelike symmetries [62]. 
In turn, these Rindler modes give rise to an alternative decomposition of a clas-
sical Klein-Gordon field—that is, an alternative to the decomposition into Fourier 
modes provided by the Fourier transform. The Rindler modes can be constructed 
from Macdonald functions (i.e., modified Bessel functions of the second kind; see 
[63, p. 911]), and the decomposition into Rindler modes is provided by the associ-
ated Kontorovich–Lebedev transform [64, Ch. 2]. If one uses the Kontorovich–Leb-
edev transform to decompose a classical Klein–Gordon field into Rindler modes, 
can one also recover a Uniform Density interpretation of classical Rindler particle 
content? We save this question for future work, although we note that further investi-
gations of these classical particle interpretations may help expose their relative mer-
its, and may aid in the understanding of inequivalent particle concepts in quantum 
field theory.

Our results, and the further work suggested by them, demonstrate the usefulness 
of the classical limit as a tool for interpreting quantum field theory. We hope this 
provides just a start to a better understanding of the particle content of quantum field 
theories.

Acknowledgements We are especially indebted to Feiyang Liu, who worked closely with us on the math-
ematical results of this paper. Thanks also to two anonymous reviewers, Adam Caulton, Kade Cicchella, 
Jeremy Steeger, James Weatherall, and the audience of the conference “Foundations of Quantum Field 
Theory” (Rotman Institute of Philosophy, 2019) for helpful comments and discussion. BHF acknowl-
edges support during the completion of this work from the Royalty Research Fund at the University of 
Washington as well as the National Science Foundation under Grant No. 1846560.

References

 1. Fraser, D.: Particles in Quantum Field Theory. Unpublished (2020)
 2. Baker, D.: The Philosophy of Quantum Field Theory. Oxford University Press, Oxford (2016)
 3. Malament, D.: In defense of dogma—why there cannot be a relativistic quantum mechanical the-

ory of (localizable) particles. In: Clifton, R. (ed.) Perspectives on Quantum Reality. Kluwer, Berlin 
(1996)

 4. Halvorson, H., Clifton, R.: No place for particles in relativistic quantum theories? Philos. Sci. 69, 
1–28 (2002)

 5. Buchholz, D.: On the Manifestations of Particles. Unpublished., http:// arXiv. org/ hep- th/ 95110 23v1 
(1995)

 6. Buchholz, D., Fredenhagen, K.: Locality and the structure of particle states. Commun. Math. Phys. 
84, 1–54 (1982)

 7. Haag, R.: Local Quantum Physics. Springer, Berlin (1992)
 8. Buchholz, D., Porrman, M., Stein, U.: Dirac versus Wigner: towards a universal particle concept in 

local quantum field theory. Phys. Lett. B 267(3), 377–381 (1991)
 9. Arageorgis, A., Stergiou, C.: On particle phenomenology without particle ontology: how much local 

is almost local? Found. Phys. 43, 969–977 (2013)
 10. Valente, G.: Restoring particle phenomenology. Stud. Hist. Philos. Mod. Phys. 51, 97–103 (2015)

http://arxiv.org/abs/hep-th/9511023v1


 Foundations of Physics (2021) 51:49

1 3

49 Page 30 of 31

 11. Wallace, D.: Emergence of particles from bosonic quantum field theory. Unpublished. arXiv: quant- 
ph/ 01121 49v1 (2001)

 12. Knight, J.M.: Strict localization in quantum field theory. J. Math. Phys. 2, 459–471 (1961)
 13. Licht, A.: Strict localization. J. Math. Phys. 4, 1443–1447 (1963)
 14. Saunders, S.: Locality, complex numbers, and relativistic quantum theory. Philos. Sci. 1, 365–380 

(1992)
 15. Saunders, S.: A dissolution of the problem of locality. Philos. Sci. 2, 88–98 (1995)
 16. Redhead, M.: More ado about nothing. Found. Phys. 25, 123–137 (1995a)
 17. Redhead, M.: vacuum in relativistic quantum field theory. Philos. Sci. 2, 77–87 (1995)
 18. Papageorgiou, M., Pye, J.: Impact of relativity on particle localizability and ground state entangle-

ment. Unpublished, arXiv: 1902. 10684 v1 (2019)
 19. Landsman, N.P.: Foundations of Quantum Theory: From Classical Concepts to Operator Algebras. 

Springer, New York (2017)
 20. Landsman, N.P.: Spontaneous symmetry breaking in quantum systems: emergence or reduction? 

Stud. Hist. Philos. Mod. Phys. 44, 379–394 (2013)
 21. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Phi-

losophy, 2nd edn. Cambridge University Press, Cambridge (1987)
 22. Struyve, W.: Pilot-wave theory and quantum fields. Rep. Prog. Phys. 73(10), 106001 (2010)
 23. Struyve, W.: Pilot-wave approaches to quantum field theory. J. Phys Conf. Ser. 306, 012047 (2011)
 24. Oldofredi, A., Öttinger, H.: The dissipative approach to quantum field theory: conceptual founda-

tions and ontological implications. Eur. J. Philos. Sci. 11, 36 (2021)
 25. Bigaj, T.: Are field quanta real objects? Some remarks on the ontology of quantum field theory. 

Stud. Hist. Philos. Mod. Phys. 62, 145–157 (2018)
 26. Wallace, D.: In defence of naiveté: the conceptual status of lagrangian quantum field theory. Syn-

these 151(1), 33–80 (2006)
 27. Williams, P.: Scientific realism made effective. Br. J. Philos. Sci. 70(1), 209–237 (2018)
 28. Hegerfeldt, G.: Causality, particle localization and positivity of the energy. In: Böhm, A. (ed.) Irre-

versibility and Causality, pp. 238–245. Springer, New York (1998)
 29. Hegerfeldt, G.: Instantaneous spreading and Einstein causality in quantum theory. Ann. Phys. 7, 

716–725 (1998b)
 30. Reed, M., Simon, B.: Functional Analysis. Academic Press, New York (1980)
 31. Manuceau, J., Sirugue, M., Testard, D., Verbeure, A.: The Smallest C*-algebra for the Canonical 

commutation relations. Commun. Math. Phys. 32, 231–243 (1974)
 32. Petz, D.: An Invitation to the Algebra of Canonical Commutation Relations. Leuven University 

Press, Leuven (1990)
 33. Buchholz, D., Verch, R.: Scaling algebras and renormalization group in algebraic quantum field 

theory. Rev. Math. Phys. 7(8), 1195 (1995)
 34. Buchholz, D., Verch, R.: Scaling algebras and renormalization group in algebraic quantum field 

theory. II. Instructive examples. Rev. Math. Phys. 10(6), 775–800 (1998)
 35. Clifton, R., Halvorson, H.: Are Rindler quanta real?: Inequivalent particle concepts in quantum field 

theory. Br. J. Philos. Sci. 52, 417–470 (2001)
 36. Kay, B.: A uniqueness result in the Segal–Weinless approach to linear Bose fields. J. Math. Phys. 

20, 1712–3 (1979)
 37. Kay, B.: The double-Wedge algebra for quantum fields on Schwarzschild and Minkowski space-

times. Commun. Math. Phys. 100, 57–81 (1985)
 38. Bratteli, O., Robinson, D.: Operator Algebras and Quantum Statistical Mechanics, vol. 1. Springer, 

New York (1987)
 39. Bratteli, O., Robinson, D.: Operator Algebras and Quantum Statistical Mechanics, vol. 2. Springer, 

New York (1996)
 40. Ruetsche, L.: Interpreting Quantum Theories. Oxford University Press, New York (2011)
 41. Arageorgis, A., Earman, J., Ruetsche, L.: Fulling non-uniqueness and the unruh effect: a primer on 

some aspects of quantum field theory. Philos. Sci. 70(1), 164–202 (2003)
 42. Earman, J.: The unruh effect for philosophers. Stud. Hist. Philos. Mod. Phys. 42, 81–97 (2011)
 43. Feintzeig, B.: The classical limit as an approximation. Philos. Sci., forthcoming. http:// phils ci- archi 

ve. pitt. edu/ 16359/ (2019)
 44. Browning, T., Feintzeig, B., Gates, R., Librande, J., Soiffer, R.: Classical Limits of Unbounded 

Quantities by Strict Quantization. Unpublished (2020)

http://arxiv.org/abs/quant-ph/0112149v1
http://arxiv.org/abs/quant-ph/0112149v1
http://arxiv.org/abs/1902.10684v1
http://philsci-archive.pitt.edu/16359/
http://philsci-archive.pitt.edu/16359/


1 3

Foundations of Physics (2021) 51:49 Page 31 of 31 49

 45. Rieffel, M.: Deformation quantization of Heisenberg manifolds. Commun. Math. Phys. 122, 531–
562 (1989)

 46. Rieffel, M.: Deformation Quantization for Actions of ℝd . Memoirs of the American Mathematical 
Society, American Mathematical Society, Providence (1993)

 47. Landsman, N.P.: Mathematical Topics Between Classical and Quantum Mechanics. Springer, New 
York (1998)

 48. Binz, E., Honegger, R., Rieckers, A.: Field-theoretic Weyl quantization as a strict and continuous 
deformation quantization. Ann. de l’Inst. Henri Poincaré 5, 327–346 (2004)

 49. Honegger, R., Rieckers, A.: Some continuous field quantizations, equivalent to the C*-Weyl quanti-
zation. Res. Inst. Math. Sci. 41, 113–138 (2005)

 50. Sebens, C.: Forces on fields. Stud. Hist. Philos. Mod. Phys. 63, 1–11 (2018)
 51. Sebens, C.: Electromagnetism as quantum physics. Found. Phys. 49(4), 365–389 (2019)
 52. Halvorson, H.: Reeh–Schlieder defeates Newton–Wigner: on alternative localization schemes in 

relativistic quantum field theory. Philos. Sci. 68, 111–133 (2001)
 53. Segal, I., Goodman, R.: Anti-locality of certain Lorentz-invariant operators. J. Math. Mech. 14(4), 

629–638 (1965)
 54. Newton, T., Wigner, E.: Localized states for elementary systems. Rev. Mod. Phys. 21, 400–406 

(1949)
 55. Fleming, G., Butterfield, G.: Strange positions. In: Butterfield, J., Pagonis, C. (eds.) From Physics to 

Philosophy, pp. 108–165. Cambridge University Press, Cambridge (1999)
 56. Fleming, G.: Reeh–Schlieder meets Newton–Wigner. Philos. Sci. 67(3), S495–S515 (2000)
 57. Madsen, M.: Scalar fields in curved spacetimes. Class. Quantum Gravity 5, 627–639 (1988)
 58. Malament, D.: Topics in the Foundations of General Relativity and Newtonian Gravitation Theory. 

University of Chicago Press, Chicago (2012)
 59. Weinberg, S.: Gravitation and Cosmology. Wiley, New York (1972)
 60. Reed, M., Simon, B.: Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjoint-

ness. Academic Press, New York (1975)
 61. Peskin, M.E., Schroeder, D.V.: An Introduction to Quantum Field Theory. Perseus Books, New 

York (1995)
 62. Letaw, J., Pfautsch, J.: Quantized scalar field in the stationary coordinate systems of flat spacetime. 

Phys. Rev. D 24(6), 1491–1498 (1981)
 63. Gradshteyn, I., Ryzhik, I.: Table of Integrals, Series, and Products, 7th edn. Elsevier, New York 

(2007)
 64. Yakubovich, S.B.: Index Transforms. World Scientific, London (1996)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.


	Localizable Particles in the Classical Limit of Quantum Field Theory
	Abstract
	1 Introduction
	2 The Case Against Localizable Particles
	3 The Classical Limit
	3.1 Quantum Field Theory
	3.2 Strict Quantization and Number Operators

	4 Emergent Localizable Particles
	4.1 Local Density
	4.2 Uniform Density

	5 Conclusion
	Acknowledgements 
	References




