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Abstract
In this paper I formulate Minimal Requirements for Candidate Predictions in quan-
tum field theories, inspired by viewing the standard model as an effective field the-
ory. I then survey standard effective field theory regularization procedures, to see 
if the vacuum expectation value of energy density ( ⟨�⟩ ) is a quantity that meets 
these requirements. The verdict is negative, leading to the conclusion that ⟨�⟩ is not 
a physically significant quantity in the standard model. Rigorous extensions of flat 
space quantum field theory eliminate ⟨�⟩ from their conceptual framework, indi-
cating that it lacks physical significance in the framework of quantum field theory 
more broadly. This result has consequences for problems in cosmology and quantum 
gravity, as it suggests that the correct solution to the cosmological constant problem 
involves a revision of the vacuum concept within quantum field theory.

Keywords Cosmological constant problem · Vacuum energy · Regularization · 
Effective field theory · Philosophy of physics

1 Introduction

The cosmological constant problem has been a major focus of physicists working 
on theories of quantum gravity since at least the mid-1980s. The problem originates 
with unpublished remarks by Pauli, while interest in the problem increased in the 
1980s due to inflation. Weinberg [1] famously laid out the the state of the field in the 
late 1980s, and used anthropic considerations to place bounds on the possible values 
of a cosmological constant in the Einstein field equations. The problem arises in a 
semiclassical merging of quantum field theory (QFT) and general relativity, where 
the stress-energy tensor for classical matter is replaced by an expectation value of 
the stress-energy tensor predicted by a particular model of QFT. When one does 
this, the vacuum expectation values of energy densities for each field have the same 
form as a cosmological constant term (i.e., a constant multiple of the metric), and so 
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should contribute to the observed cosmological constant. However, when one takes 
a standard “prediction” of the combined vacuum energy densities from a model of 
QFT, the result is dozens of orders of magnitude larger than what is observed. Can-
didate solutions to the problem attempt to introduce new physics to reconcile the 
semiclassical prediction with observation; the predominant view in the physics lit-
erature is that an acceptable candidate for a theory of quantum gravity must solve 
the cosmological constant problem. Though many toy models have been proposed, 
there is no agreed upon solution pointing the way to the correct theory of quantum 
gravity.

The stubborn persistence of the cosmological constant problem provides moti-
vation for a more detailed philosophical analysis of its assumptions. Assuming the 
“old-fashioned” view of renormalization, Koberinski [2] breaks down the steps 
required to formulate the problem, and criticizes the justification behind each step. 
One of these steps involves the assumption that models of QFT predict the vacuum 
expectation value of energy density, ⟨�⟩ . The prediction is taken to indicate that 
⟨�⟩ is a physically significant quantity in the standard model. However, the prob-
lem changes shape when one accounts for the fact that the standard model is widely 
believed to be an effective field theory (EFT), with a built-in energy scale at which 
it breaks down. The EFT approach to QFTs makes sense of the old requirement 
of renormalizability, and uses the renormalization group equations to understand 
renormalization non-perturbatively.1

As is well known, QFTs require renormalization in order to generate finite pre-
dictions. Renormalization consists of two steps: first, one introduces regulators 
to replace infinite quantities with quantities depending on an arbitrary parameter. 
The regulator � must be such that (i) the regularized terms are rendered finite for 
all finite values of � , and (ii) the original divergent term is recovered in the limit 
� → ∞ . Next, one redefines some set of couplings such that the physically relevant 
value is independent of the regulator. Then the regulator is smoothly removed and 
the renormalized quantity remains finite. We say a model in QFT is renormalizable 
if all of its S-matrix elements can be made finite with a finite number of renormal-
ized parameters. Even in a renormalizable model, vacuum energy density can only 
be regularized, but not fully renormalized. Since vacuum energy density is not a 
renormalizable quantity and plays no role in the empirical success of the standard 
model, Koberinski [2] argued that one should not treat any value regulator-depend-
ent value as a valid candidate prediction.

If, instead of predicting a value for ⟨�⟩ , we simply expect the standard model to 
accommodate it as empirical input, the failure of naturalness prevents this weakened 
desideratum. In quantum electrodynamics (QED), for example, the electron mass 
and charge are renormalized to make the theory predictive. The theory takes these 
quantities as empirical inputs and therefore does not predict their values. Neverthe-
less, mass and charge are physically significant quantities in QED, necessary to the 
empirical success of the theory as a whole. Unfortunately, ⟨�⟩ cannot be input as an 
empirical parameter in the same way, due to its radiative instability order by order 

1 For recent philosophical discussions of EFTs, see ([3–7]).
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in perturbation theory. Further, since it plays no role in the empirical success of the 
standard model, there is little reason for ⟨�⟩ to play a central role analogous to mass 
and charge. Thus, if QFTs don’t predict its value, it is best to understand vacuum 
energy density as outside their domain, and therefore not physically significant to 
QFT.2

In light of the EFT view of the standard model, full renormalizability loses 
importance. If the standard model is an EFT, then (under the standard interpretation) 
it comes equipped with a physically significant cutoff scale and an infinite set of 
coupling constants consistent with the symmetries of the fields.The new couplings 
with mass dimension greater than four (in four dimensional spacetime) will be non-
renormalizable, but will have coupling constants that are suppressed by the momen-
tum cutoff: �i = gi∕�

n . The explicit presence of the regulator in these terms is not 
a problem, since the regulator � is much larger than the energy scales for which 
the effective theory is used. The renormalization group flow indicates that, at ener-
gies E ≪ 𝜇 , only the renormalizable terms have any appreciable effect. However, at 
higher energies, one may indeed see small deviations from the purely renormaliz-
able terms, and these may be due to higher-order terms. Therefore, suitably regular-
ized nonrenormalizable terms can be physically significant when suppressed appro-
priately by a regulator.3 Renormalizability is no longer a requirement, so long as the 
effects of nonrenormalizable terms become negligible at low energies.

If a suitably regularized vacuum energy density meets the requirements of 
a prediction in the EFT framework, then perhaps one is justified in claiming that 
the standard model predicts its value. There exist several regularization schemes 
for QFTs, and in general these will not agree on the algebraic form for any quanti-
ties until the renormalization procedure has been completed. Inspired by the EFT 
approach, and under the view that regulators are arbitrary, a suitable weakening of 
the requirement of renormalizability must satisfy the following requirements:

Minimal Requirements for Candidate Predictions In order for a quantity within a 
model of QFT to count as a candidate prediction of some corresponding physical 
quantity, it must be the case that: (1) the quantity is largely insensitive to the regu-
larization procedure; and (2) it is largely insensitive to changes to the value of the 
regulator.

These requirements are motivated as follows. Violation of (1) would entail that 
different regularization schemes might be physically meaningful in that they encode 

2 Koberinski and Smeenk [4] provide a more sustained argument that the cosmological constant problem 
signals a failure of naturalness for vacuum energy, in QFT and in general relativity as an EFT. The solu-
tion proposed there is to embrace new heuristics in theory construction, and to accept the limitations of 
the EFT framework for understanding fundamental physics.
3 Using precision tests of the standard model, one may find deviations from the predictions made using 
only the renormalizable terms. Examples of possible experimental tests include the anomalous magnetic 
moment of the electron or muon [8–10] as well as the fine structure of positronium and muonium [11]. In 
all of these cases, small deviations from the predictions made using the renormalizable standard model 
may be accounted for with higher-order couplings, suppressed by the physical cutoff scale.
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different ways of parameterizing/forgetting high energy effects, and that for the 
quantity in question these differences matter. Supposing one views regularization 
schemes in this way, we learn that the quantity in question is sensitive to the phys-
ics at high-energies, and therefore does not fall within the proper scope of the EFT. 
Under the alternative view of regularization—as a formal tool used to render for-
mally divergent terms finite—the independence of the predicted quantity from regu-
larization scheme follows naturally. Under either interpretation, for an EFT to pre-
dict some quantity, it must satisfy (1).

Even though an EFT comes equipped with a physically significant cutoff energy 
scale, an important feature relevant to making predictions with EFTs is that the low-
energy physics is largely insensitive to the exact value of that cutoff scale. In the 
context of the standard model, we are ignorant of the exact scale at which it breaks 
down. Any “predictions” from within the standard model that violate (2) are not 
true predictions at all; instead, they signify either that the quantity is meaningless 
when restricted to the low-energy EFT, or that it is highly sensitive to the details 
of the high-energy theory. In either case, one cannot say that the EFT predicts its 
value. Under the standard interpretation of EFTs, violation of (2) would signal that 
the EFT is insufficient to understand the phenomena in question. I will argue that the 
standard model ⟨�⟩ violates both minimal requirements, and this is best understood 
in the context of EFTs.

Physically significant quantities in a theory must be consistently described by 
that theory; if the standard model cannot provide a univocal, reasonable candidate 
prediction for the expectation value of vacuum energy density, then that failure is 
evidence that ⟨�⟩ is not physically significant in the standard model.4 Borrowing a 
common example of a classical fluid mechanics from Wallace [6], we know that 
EFTs cannot predict all possible quantities relevant to the low-energy, macroscopic 
physics. In fluid mechanics, the formation of droplets and shock waves depend on 
the microphysical details of the fluid. We cannot use the effective theory of fluid 
mechanics to predict such behaviour, as the separability of scales breaks down. The 
underlying microphysical theory is then needed. Droplet formation and shock waves 
are physically real phenomena described by the microphysics, though fluid mechan-
ics fails to describe them. I claim that the vacuum energy density ⟨�⟩ is a similar 
quantity that falls outside the domain of QFT. Vacuum energy may be a physi-
cally real phenomena, and some future theory may describe it, but it is beyond the 
scope of our best QFTs. The EFT framework helps to make this point more salient, 
because EFTs are explicitly meant to be limited in scope of applicability. The failure 

4 By physical significance of vacuum energy density, I mean the inference from a vacuum expectation 
value of an energy density term within a model of QFT to a real physical quantity onto which that value 
maps. One can believe that there is some real physical quantity of a suitably averaged value of vacuum 
energy density, to which our best physical theories don’t accurately map (cf. [12]). The arguments in this 
paper undermine taking values from QFT to map onto the world; they say nothing about whether vacuum 
energy density exists. Undermining the physical significance of vacuum energy density for QFTs means 
that we should not trust that our best QFTs to accurately capture the relevant physics. Continuing the 
process discussed in Saunders [13], a further revision of the vacuum concept in QFT may be required, or 
perhaps even a full theory of quantum gravity.
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of ⟨�⟩ to satisfy either Minimal Requirement excludes it as a candidate for physical 
significance in QFT. Thus we should think of the cosmological constant problem 
as highlighting one limitation of our current best EFT. Since we are currently igno-
rant of the underlying microphysical theory to which the standard model is effective, 
there is little we can say about vacuum energy at present. In a separate paper [4] I 
provide more general arguments that would lead one to a similar conclusion, and 
extends to the semiclassical merging of QFT and general relativity. My goal here 
is to show that, from within QFT as an EFT, ⟨�⟩ fails to meet the Minimal Require-
ments for a candidate prediction, and vacuum energy is therefore ill-defined until the 
future microphysical theory is known.

Though this conclusion is easiest to see within the EFT framework, the argument 
extends to QFT more broadly. Koberinski [2] provides arguments for this conclu-
sion in the context of the standard model as a fully renormalizable standalone QFT, 
and in Sect. 3 I argue that more rigorous extensions of QFT eliminate ⟨�⟩ from their 
conceptual framework, thereby supporting the conclusion that vacuum energy falls 
outside the domain of QFT, in any of its guises.

The strategy for the remainder of the paper is as follows. I provide a concep-
tual outline two major regularization and renormalization procedures that one might 
apply to extract a finite prediction of ⟨�⟩ from models of QFT, and discuss ways in 
which vacuum energy is removed in more rigorous local formulations of QFT. In 
Sect.  2 I consider the mainstream approaches to regularizing the standard model: 
lattice regularization and dimensional regularization. In Sect.  3 I consider some 
more mathematically rigorous approaches to QFT, and the ways that regularization 
and renormalization are treated there. In each case, I arrive at a value of ⟨�⟩ derived 
using that regularization scheme. Finally, in Sect. 4, I compare the results to see if 
they satisfy the above requirements. As I will show below, purely regularized values 
of ⟨�⟩ satisfy neither Minimal Requirement, and we have no reason to accept a one-
loop renormalized quantity as a candidate prediction either. Further, rigorous exten-
sions of QFT that aim to provide a local description of fields remove the quantity 
⟨�⟩ entirely, suggesting that vacuum energy falls outside the scope of QFT and any 
merger of QFT and general relativity that emphasizes local covariance.

2  Orthodox Regularization of ⟨�⟩

Standard cutoff regularization schemes in QFT require the inclusion of two momen-
tum cutoffs: a lower bound to regulate the infrared divergences, and an upper bound 
to regulate the ultraviolet divergences. In position space, this is equivalent to defin-
ing the theory on a four-dimensional lattice in a box. Under the orthodox reading of 
EFT, the upper bound gains physical significance as the scale at which the effective 
theory breaks down.5 This view has recently been criticized [14], but is the dominant 

5 The lower bound may be interpreted as encoding the fact that QFTs are only used in local regions of 
spacetime. Imposing some set of boundary conditions for long distances just means that we don’t expect 
the model to apply in all of spacetime.
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view of particle physicists and is becoming more mainstream amongst philosophers 
[15–17]. Below (Sect. 2.1) I will outline the textbook approach to cutoff regulariza-
tion in more detail, and discuss the modifications made to this formalism by the EFT 
view.

Historically, dimensional regularization was the favoured scheme for renormal-
izing Yang–Mills gauge models of QFT, like the electroweak model and quantum 
chromodynamics. Though it has received less philosophical attention due to its more 
formal nature, dimensional regularization is a powerful tool, and one that maintains 
Lorentz invariance. If one hopes to have a regularized candidate prediction of the 
vacuum energy density from the standard model, it should obey the correct equation 
of state that is required by the cosmological constant. Dimensional regularization 
gives this equation of state and Lorentz invariance, and the one-loop renormalized 
value ⟨�̃�dim⟩ (Eq. (15)) calculated using dimensional regularization thus provides the 
best claim to a prediction of vacuum energy density from within the standard model. 
Thus, if any orthodox quantity serves as a candidate prediction for vacuum energy 
density, it is ⟨�̃�dim⟩ . However, the instability of a one-loop renormalized vacuum 
energy density under radiative corrections indicates that naturalness fails here, and 
that vacuum energy may be sensitive to the details of high-energy physics.

2.1  Momentum Cutoffs and Effective Field Theory

For simplicity, I will illustrate the regularization techniques using a free scalar field 
theory, whose action is

with �
��

 the Minkowski metric (here written with a (−,+,+,+) signature), and 
the expression inside the integral is the Lagrangian density L for the model, plus 
source term J(x)�(x) . One can define a particular model of QFT with a built-in set 
of cutoffs, or one can impose cutoffs on individual expressions as the need arises. 
The former accords more closely with the EFT view, while the latter was stand-
ard in the early history of quantum electrodynamics, and remains standard in most 
introductory texts. Under the latter view, cutoffs are imposed in order to regulate 
divergences, and are removed from the renormalized theory.6 We start with the latter 
approach to illustrate the algebraic form for expectation values of energy density and 
pressure.

In the case of calculating the energy density associated with the vacuum state, we 
are looking for the vacuum expectation value of the Hamiltonian density. In the case 
of the free scalar model, this is

(1)S[�, J] = −∫ d4x

(
�
��

2
�
�
�(x)�

�
�(x) +

m2

2
�
2(x) + J(x)�(x)

)

,

6 For a more detailed analysis of the differences between the two approaches to renormalization, see ([7, 
18]). The latter argues that EFTs are best understood strictly under cutoff regularization. However, as 
I show below for the vacuum energy density, many features of QFTs are most easily understood under 
dimensional regularization.
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Using the Fourier expansion of � one can calculate this to be (cf. IV.A [19, Eq. 
(68)])

which diverges as k4 for large k. Similarly, the pressure associated with the vacuum 
energy is

This is where one can regularize by introducing a momentum cutoff � , above which 
one no longer integrates. Doing so, one obtains the following expressions for the 
energy density and pressure:

There are two things to note here. First, to leading order, both regularized terms 
depend on the cutoff scale to the fourth power. This regularization is therefore 
highly sensitive to what one takes as the cutoff scale, violating Minimal Require-
ment (2). Under the old approach, one could renormalize ⟨�⟩ by introducing coun-
terterms to remove any �-dependence. Unfortunately, the renormalized term does 
not carry over in a straightforward way to a field theory with interactions. Though 
one could simply define ⟨�physical⟩ ≡ 0 by subtracting off the entirety of the “bare” 
prediction, such a procedure is not stable against higher order quantum corrections. 
This holds true whether one subtracts off the entire prediction, or just the leading 
order divergent terms. In interacting theories, such as the scalar ��4 theory, the cou-
pling between vacuum and gravity will contain contributions proportional to � , �2 , 
�
3 and so on. If one defines ⟨�physical⟩ to be independent of the cutoff scale at order � , 

then equally large ( ∼ �
4 ) contributions spoil this cancellation at order �2 , and so on 

for higher orders. So the value of ⟨�⟩ in Eq. (5) cannot be fully renormalized, and as 
it stands depends too sensitively on the (supposedly arbitrary) cutoff scale to count 
as a prediction.

Second, notice that the ratio ⟨p⟩∕⟨�⟩ ≠ −1 , as one would expect from a Lor-
entz-invariant vacuum. This is because the cutoff procedure is itself not Lorentz-
invariant. In order to obtain a vacuum energy density that respects the Lorentz 
symmetry and reproduces the equation of state required by a cosmological con-
stant term, one must subtract the leading order �4 terms in each, which is only 

(2)⟨�⟩ = ⟨0�H�0⟩ =
1

2
⟨0�

�
(�t�)

2 + �
ij
�i��j� + m2

�
2
�
�0⟩.

(3)⟨�⟩ =
1

2(2�)3 ∫ d3��
�
,

(4)⟨p⟩ =
1

6(2�)3 ∫ d3�
k2

�
�

.

(5)⟨�⟩ =
�
4

16�2

��

1 +
m2

�2

�

1 +
m2

2�2

�

−
m4

2�4
ln

�
�

m
+

�

m

�

1 +
m2

�2

��

,

(6)⟨p⟩ =
�
4

48�2

��

1 +
m2

�2

�

1 −
3m2

2�2

�

+
3m4

2�4
ln

�
�

m
+

�

m

�

1 +
m2

�2

��

.
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justified in the context of modified minimal subtraction schemes using dimen-
sional regularization.

The above discussion is framed in the old-fashioned context of ad-hoc regulariza-
tion. What changes when we think of QFTs as EFTs, where the cutoff plays a more 
direct role? In the EFT framework, a QFT is defined with a built-in UV cutoff. To 
make the overall theory finite, an IR regulator is often used, though this may be 
smoothly removed at the end of the calculation to return to a continuum theory. I 
start with both regulators, which effectively places the field theory on a Euclidean 
lattice, converting the integrals in the action and the over field operations into dis-
crete sums. For 4D lattice spacing a, placing the model in hypercube of length L, the 
generating functional becomes

where N = (L∕a)4 and � = 2�∕a . The quantities a and L are built-in ultraviolet and 
infrared regulators. Once a set of fields is specified, along with the expected sym-
metries of the model, the Lagrangian is defined to include all terms involving the 
chosen fields and respecting the symmetries; this means that the Lagrangian is likely 
to be a formally infinite sum of terms, each multiplied by its own coupling constant. 
As initially stated, this would be a major problem; though the path integral has been 
IR and UV regulated, we now have an infinite number of terms in the Lagrangian. 
There is no a priori reason to expect that the bare coupling parameters decrease for 
higher-order field contributions, and thus no indication of an appropriate truncation 
of terms in the Lagrangian.

However, one uses the renormalization group transformations to rewrite the gen-
erating functional in terms of a new, lower ultraviolet cutoff �� = � − �� . One sep-
arates the integral over field configurations ∫

�
D� → ∫

�′ D�
�′ ∫

��
D�

��
 , and inte-

grates out the field modes �
��

 . The amazing feature of the renormalization group 
is that, when one does this, the new expression for the Lagrangian retains the same 
form. All of the effects of the field modes above the new cutoff can be absorbed into 
a redefinition of the coupling constants in the Lagrangian. Since coupling constants 
will be dimensionful quantities (the Lagrangian has units of [energy4] , and scalar 
fields have dimensions of energy) redefinitions of coupling involve powers of the 
new cutoff scale. If the cutoff scale is large compared to energy levels of interest for 
the effective theory, then higher-order terms in the Lagrangian will be suppressed by 
the new coupling constants gi → gi∕(�

�)n . In the limit where energy scales of inter-
est are vanishingly small compared to the cutoff, all terms with high powers of fields 
and their derivatives will be suppressed by inverse powers of the cutoff.

Though there is much more to be said about the renormalization group and EFT, 
there are two major points relevant to the discussion of regularizing vacuum energy. 
First, one defines a model in EFT with built-in regulators. Renormalization is no 

(7)Z[J] = ∫
�

D� exp

(

i∫ d4x[L(�(x)) + J(x)�(x)]

)

,

(8)≡ �
N∏

l=1

d�l exp

(

ia4
N∑

l=1

[L(�j) + Jl�l]

)

,
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longer a primary focus, since the renormalization group techniques indicate the 
irrelevance of most nonrenormalizable terms. Since regulators are present in the 
definition of the theory, one needn’t worry about regulators appearing in predictions. 
As long as the predictions do not depend sensitively on the precise value of the cut-
off—since the value of the physically meaningful cutoff is unknown until a future 
successor theory is developed—its presence is not a problem in the EFT framework. 
Thus, the EFT framework motivates Minimal Requirement (2) discussed in the 
Introduction. However, the vacuum energy is still a problem, since it depends sensi-
tively on the cutoff—as mentioned above, ⟨�⟩ ∼ �

4 . The problem of renormalization 
changes dramatically under the EFT view, since the presence of � in Eq. (5) is not in 
itself a problem. The momentum cutoff is standardly taken to have physical signifi-
cance for the future successor theory; there is therefore no reason to renormalize by 
subtracting the �4 term, and so even an illusory insensitivity is to � is lost.

Second, by defining models of QFT with a built in lattice scale, issues of Lor-
entz invariance may lose importance. If the lattice is to be physically significant, 
then Lorentz invariance of EFTs only holds approximately. Accordingly, one would 
not expect the vacuum energy density to be exactly Lorentz invariant, and so the 
concern regarding the wrong equation of state from Eqs.  (5) and (6) is less press-
ing. However, the failure of exact Lorentz invariance would undermine the motiva-
tion to subtract off only the �4 term for a one-loop renormalization, and it would be 
much harder to input the vacuum energy density into the Einstein field equations. 
If straightforwardly input into the Einstein field equations as is, one would get an 
entirely different equation of state for the cosmological constant. Given that the EFT 
framework is predicated on the idea that physics at disparate energy scales separates, 
it would be curious if a consequence of that framework was that small scale vio-
lations of Lorentz invariance implied qualitative changes to physics on cosmologi-
cal scales. In any case, failure of Lorentz invariance would undermine the standard 
motivations for the cosmological constant problem, though the presence of an enor-
mous vacuum energy density for the standard model would remain.7

2.2  Dimensional Regularization

Dimensional regularization has historically played an important role in the develop-
ment of the standard model. ′t Hooft and Veltman [21] first proved that Yang–Mills 
gauge models are renormalizable by developing and employing dimensional regular-
ization. The method is often more powerful, since the symmetries of a model—both 
gauge symmetries and spacetime symmetries—remain intact. It allows for an easier 
identification of divergences than the momentum cutoff approach, and naturally sug-
gests a minimal subtraction (or, alternatively, modified minimal subtraction) method 

7 The fact that Lorentz invariance is lost if the lattice structure of effective field theories is taken literally 
should have observable consequences. Incredibly sensitive tests have failed to detect violation of Lorentz 
invariance at small scales [20]. Though outside the scope of this paper, one might argue that a literal 
interpretation of the lattice is therefore unmotivated from the point of view of both QFTs and general 
relativity.
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of renormalization. Finally, this method also removes infrared divergences associ-
ated with massless fields without introducing a further regulator. The disadvantage 
is that a physical interpretation for the regulator is rather opaque; the method is more 
clearly formal than the momentum cutoff approach.8

In the case of the vacuum energy density one aims to include its expectation value 
in the Einstein field equations. It is therefore important to ensure that the Lorentz 
symmetry of the expression is maintained—since it is this feature of ⟨�⟩ that justifies 
its interpretation as a contribution to the cosmological constant. Dimensional regu-
larization is best suited for this purpose. I will outline the regularization technique 
for vacuum energy for a scalar field. As Martin [19, Sect. VII] demonstrates, the 
calculations for fermions and gauge bosons proceeds in a similar fashion, though the 
leading multiplicative coefficients (of O(1) ) differ.

The integral for energy density in Eq. (3), in D-dimensional spacetime becomes

where dD−2Ω is the volume element of the (D − 2)-sphere, and the � is an arbitrary 
scale factor such that the equation has the right unit dimensions.9 Using the fact that 
the general solution of angular integrals can be expressed in terms of gamma func-
tions, the solution to this integral is

Performing the same operation for the pressure, one obtains

(9)⟨�⟩ =
�
4−D

2(2�)D−1 ∫ dD−1��
�

(10)=
�
4−D

2(2�)D−1 ∫
∞

0

dk dD−2Ω kD−2�
�
,

(11)⟨�⟩ =
�
4

2(2�)(D−1)∕2

Γ(−D∕2)

Γ(−1∕2)

�
m

�

�D

.

(12)⟨p⟩ =
�
(4−D)

2(D − 1)(2�)D−1 ∫ dD−1k
k2

�
�

(13)=
�
4

4(2�)(D−1)∕2

Γ(−D∕2)

Γ(1∕2)

(
m

�

)D

.

8 This is only a disadvantage if one expects a regulator to be physically significant. If regularization is 
treated simply as a procedure for taming divergences, then the regulators need not have a physical sig-
nificance. Further, if the analogy between lattice regularization in condensed matter physics and particle 
physics is misleading, then the physical interpretation that lattice regularization provides may actually 
lead to an unjustified physical interpretation (cf. ([22, 23])).
9 I use � as an arbitrary scale factor here because it appears in the formal expression for ⟨�̃�

dim
⟩ in the 

same way that the (arbitrary) momentum cutoff appears in the lattice regularized expression. The fact 
that these scales have different meanings supports my argument that these terms differ significantly. The 
same term for the regulator is used simply to aid algebraic comparison.
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Since Γ(−1∕2) = −2Γ(1∕2) , we obtain the correct equation of state, ⟨p⟩∕⟨�⟩ = −1 . 
If one expands the gamma functions in the above expressions, and sets D = 4 − � , 
then the regularized ⟨�⟩ and a one-loop renormalized expression ⟨�̃�dim⟩ are

where � ≈ − 0.57772 is the Euler–Mascheroni constant (cf. [19, IV.A], renormal-
ized using modified minimal subtraction).10 This expression actually agrees (up 
to constants of O(1) ) with the leading order logarithmic term predicted using the 
momentum cutoff approach in Eq. (5), after subtraction of the �4 term. Martin [19] 
notes that “it is well-known that the dimensional regularization scheme removes 
the power law terms,” (p. 13) so this is not a surprising result. Like in the case of 
Yang–Mills gauge models, dimensional regularization leaves the underlying sym-
metries of the model intact, and leads to a correct regularization that respects those 
symmetries. We see that, instead of a functional dependence on the fourth power of 
the cutoff, the vacuum energy density for a given field depends on the fourth power 
of the mass of that field. This means that massless fields (photons, gluons) do not 
contribute to the dimensionally regularized or renormalized vacuum energy, at least 
to leading order.

It turns out that fermion fields and boson fields share this functional dependence, 
though each contains a numerical factor ni to multiply ⟨�̃�dim⟩ . For the Higgs sca-
lar, nH = 1 ; for fermions, nF = − 4 ; for bosons, nB = 3 . Martin (IX [19, Eq. (516)]) 
determines the vacuum energy density coming from vacuum fluctuations (ignoring 
early universe phase transitions) to be

assuming a scale factor � ≈ 3 × 10−25GeV , though the prediction is relatively insen-
sitive to the exact value of � . This therefore seems like an impressive renormaliza-
tion and prediction of the vacuum energy from the standard model. Since modified 
minimal subtraction is a natural procedure for dimensional regularization, the renor-
malization method is also justified. However, this term is renormalized to one loop; 
radiative instability will spoil renormalization at higher orders, and thus naturalness 
fails here as it does for lattice regularization. In general, the contributions from next-
to-leading order for ⟨�̃�dim⟩ will be large enough to spoil the renormalization per-
formed at leading order. The functional form of of Eq. (15) hides the high sensitivity 
to the regulator that appears at higher orders.

(14)⟨�⟩ ≈ −
m4

64�2

�
2

�
+

3

2
− � − ln

�
m2

4��2

��

+⋯

(15)⟨�̃�dim⟩ =
m4

64𝜋2
ln

�
m2

𝜇2

�

,

(16)⟨𝜌SM⟩ =
�

⟨�̃�dim⟩ = −2 × 108GeV4,

10 This is a first-order renormalized calculation. As Martin [19, Sect. VI] highlights, this prediction is 
largely unchanged under a Gaussian approximation to an interaction term (i.e., to one loop). Since the 
expression remains the same, I refer to Eq. (15) as a one-loop renormalized term.
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If we treat the standard model as an EFT, we may be justified in trusting predic-
tions of some quantities only up to one-loop. As an example, the Fermi theory of 
weak interactions in now known to be an effective approximation to the electroweak 
model, valid for energies far less than the mass of W and Z bosons.11 The Fermi 
theory is well-behaved up to one-loop, but is nonrenormalizable and badly divergent 
beyond this scale. The difference with the vacuum energy density is that ⟨�⟩ displays 
the same types of nonrenormalizable divergence at every order, while more severe 
divergences occur in the Fermi theory only at higher order than the one-loop terms.

The proper focus of our attention should therefore be the regularized term (Eq. 
(14)). As should be obvious by inspection, this value displays a sensitive depend-
ence on the regulator � , and differs markedly from the lattice regularized quantity 
(Eq. (5)). Thus ⟨�⟩ fails to satisfy either Minimal Requirement under orthodox 
approaches. One might argue that this failure is worse in the EFT framework, since 
EFTs are explicitly constructed to exclude contributions from certain energy scales. 
In the next section, I use more rigorous extensions of standard QFT to show that, 
even outside of the EFT framework, one should not expect QFTs to describe vac-
uum energy.

3  Splitting Hairs: Splitting Points

Outside of the mainstream work in QFT and particle physics, there has been persis-
tent effort to place the QFT formalism on more secure mathematical footing. One 
major goal of this work is to be clear about the validity of assumptions and algebraic 
manipulations standardly employed in particle physics. Point-splitting procedures 
are used to track more carefully the ways in which quantum fields—as operator-val-
ued distributions—are multiplied together at coincident points. The project of doing 
QFT on curved spacetimes likewise demands a re-examination of the assumptions 
that go into constructing QFTs in Minkowski spacetime. In this section I discuss 
the Epstein–Glaser point-splitting procedure as a candidate regularization scheme, 
and consider the modifications needed to put QFT on curved spacetimes, a project 
largely pursued by Hollands and Wald. The modifications necessary indicate that 
Minkowski spacetime is particularly special, and that significant alterations to QFT 
may be needed even for a semiclassical merging with general relativity. If one hopes 
for an extension of QFT beyond the EFT framework, approaches like these are a 
likely first step. We see in both approaches that the vacuum energy concept does not 
arise, indicating that ⟨�⟩ is not a meaningful concept in QFT as a whole.

3.1  Minkowski Background

Point splitting and other local approaches to regularization stem from Wilson’s [24] 
early work on the operator product expansion, which is a formalism for defining 

11 This example is discussed in more detail in Sect. 4.
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products of operator-valued distributions at coincident points. Since we are con-
cerned here with short distance behaviour of fields, the work in this tradition uses 
the position space representation of quantum fields. In ordinary approaches to QFT, 
distributions are not carefully handled, and this leads to divergences in products of 
operators at the same point. Wilson originally proposed an ansatz that two operators 
A and B defined at coincident points should be described by

with Ci(x) , D(x,�) local operators without divergences, and ci(� , x) coefficients that 
diverge in the limit � → 0 . The original operator product is then replaced with the 
regularized product

which goes to zero as � goes to zero.
Further work on the general properties of products of distributions—as mathe-

matical physicists came to understand that quantum fields are operator-valued dis-
tributions—led to the Epstein–Glaser approach to regularizing and renormalizing 
QFTs. The conceptual move here involves switching focus from products of observ-
ables in neighbouring points to the products of fields at coincident points.

Epstein and Glaser [25] proved—through more careful analysis of the properties 
of the S-matrix—that a renormalized perturbation theory could still obey microcau-
sality and unitarity. Though a more mathematically technical and indirect regulariza-
tion method, this approach tames many UV divergences present in QFT, and there-
fore accomplishes renormalization in a similar way. Essentially the n-point functions 
must be appropriately smeared with test functions f (x1,… , xn) ≡ f (x) . Infrared 
divergences are dealt with by carefully removing the test functions in observable 
quantities; one takes the adiabatic limit f (x) → 1 after constructing appropriate 
integrals.

Instead of treating point-splitting as a more mathematically elegant form of renor-
malization, Scharf [26, pp. 3.1,3.2] takes the causality condition for distributions to 
point to the correct method for defining the n-point distributions Tn(x1,… , xn) when 
the set of {Tm| 1 ≤ m ≤ n − 1} are known.12 These n-point distributions are related 
to the perturbative construction of the S-matrix as follows:

(17)

A(x)B(x) = lim
�→0

A(x + �∕2)B(x − �∕2)

= lim
�→0

n∑

i=1

ci(� , x)Ci(x) + D(x,�),

(18)

[

A(x + �∕2)B(x + �∕2) −

n∑

i=1

ci(� , x)Ci(x)

]

∕cn(� , x),

(19)S(f ) = � +

∞∑

n=1

1

n! ∫ d4x1 ⋯ d4xnTn(x1,… , xn)f (x1)⋯ f (xn),

12 The treatment of point-splitting in this section follows the presentation in Scharf [26, Ch. 3].
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where f is a complex-valued test function, and where the limit f → 1 is taken at the 
end of the calculation. The causality condition is applied to the test functions as 
follows. Suppose there exists a reference frame in which f1 and f2 have disjoint sup-
ports in time,

Then the causality condition is the requirement that S(f1 + f2) = S(f2)S(f1).
The Tn(x1,… , xn)—operator-valued distributions—are constructed by induction. 

One simplifies the procedure by decomposing the Tn into (normal-ordered) free 
fields and complex number-valued distributions

where tk
n
 is a numerical distribution. Now the problem switches from defining an 

appropriate splitting procedure for the Tn , to the simpler problem of defining a split-
ting procedure for the tk

n
 . The usual procedure—in standard versions of interacting 

QFT—involves splitting with a series of Θ functions for each xi ∈ {xn} , but this is 
discontinuous as xi = 0 . If tk

n
 is singular for some xi = 0 , then the product is not well 

defined, and UV divergences appear. Instead, one introduces the concept of a scaling 
dimension � , signalling the degree of divergence for the distribution. This scaling 
dimension carries over to momentum space representations as well.

For QED in momentum space, distributions properly split have a series of free 
parameters, being defined only up to a polynomial of rank �.13 The “regularized” 
distributions therefore take the form

after splitting, where t�(p) is defined by the causality condition. The free parame-
ters {Ca} can be fixed by an appropriate choice of regulator on the distribution, and 
this is why, for all practical purposes, the causality condition is a more mathemati-
cally rigorous way to introduce regulators into the theory. Though no UV divergent 
terms appear within this formalism, one still has to introduce arbitrary parameters 
to regularize the otherwise ill-defined distributions. Regarding the Minkowski vac-
uum energy, one can see from Eq. (21) that the distributions are expanded in terms 
of normal-ordered free fields, which implies a vanishing vacuum energy density, 
regardless of the particular choice of renormalization of the distributions. The nor-
mal ordering here may be thought of as removing ⟨�⟩ by fiat. In light of its irrel-
evance to flat space calculations in QFT, and its apparent sensitivity to high-energy 
physics, we should not be surprised that a rigorous construction of QFT would con-
sciously exclude vacuum energy.

(20)supp f1 ⊂ {x ∈ � | x0 ∈ (−∞, r)} supp f2 ⊂ {x ∈ � | x0 ∈ (r,∞)}.

(21)Tn(x1,… , xn) =
∑

k

∶
∏

j

�̄�(xj)t
k
n
(x1,… , xn)

∏

l

𝜓(xl) ∶∶
∏

m

A(xm) ∶,

(22)t(p) = t�(p) +

�∑

|a|=0

Cap
a
,

13 It is possible that � will not be an integer for some distributions, though this does not occur in QED. 
When � is not an integer, the polynomial will be rank �′ , the largest integer that is less than �.
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3.2  QFT on Curved Spacetimes

Instead of altering the conceptual foundations of general relativity to fit particle 
physics, some physicists have instead attempted to formulate QFTs on a classical 
curved spacetime background. This provides a different “first step” to unifying the 
two disciplines. One advantage to this approach is that it is on much more sound 
mathematical footing than standard treatments of QFT. The clarity that comes 
with mathematical rigour helps for understanding the nature of assumptions that 
are needed for defining products of quantum fields. In particular, careful attention 
should be paid to the splitting procedures used for defining time-ordered products of 
operators. The downfall of such rigour, however, is that realistic interactions cannot 
yet be formulated fully as models of the axioms. A mix of methodology is therefore 
the clearest way forward.

As discussed in the previous section, point-splitting procedures have been suc-
cessfully employed in the construction of QED, and more local modifications are 
currently used for generalizing QFT to generically curved spacetimes. Many peo-
ple are working on defining QFTs in curved spacetimes, but the most demanding 
requirements of locality come from the work of Hollands and Wald [27–30]. A key 
procedure in their construction of local, covariant time-ordered products is a modi-
fied version of the Epstein–Glaser point splitting prescription.

The Epstein Glaser approach to defining operator-valued distributions is more 
local than the standard momentum space cutoff approaches, in that it can be done 
in small neighbourhoods of coordinates in position space. Hollands and Wald note, 
however, that

the Epstein–Glaser method is not local in a strong enough sense for our pur-
poses, since we need to ensure that the renormalized time ordered products 
will be local, covariant fields. A key step in the Epstein–Glaser regularization 
procedure is the introduction of certain “cutoff functions” of compact support 
in the “relative coordinates” that equal 1 in a neighborhood of [conincident 
points...These] will not depend only on the metric in an arbitrary small neigh-
borhood of p and, thus, will not depend locally and covariantly on the metric in 
the sense required by condition t1 [of locality and general covariance]. There 
does not appear to be any straightforward way of modifying the Epstein–Gla-
ser regularization procedure so that the resulting extension [...] will satisfy 
property t1. In particular, serious convergence difficulties arise if one attempts 
to shrink the support of the cutoff functions (Hollands and Wald 2002, p. 322).

Since they aim to define quantum fields on generic globally hyperbolic spacetimes, 
Hollands and Wald aim to respect the restrictions imposed by the general covariance of 
general relativity, and therefore to define time-ordered products only in terms of local 
neighbourhoods of points in the spacetime. Their strategy is to use the equivalence 
principle to note that the neighbourhood of a point in a generically curved spacetime 
looks “flat” to leading order:

Although it is true that the leading order divergences [...] will be essentially 
the same as in flat spacetime, in general there will be sub-leading-order diver-
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gences that are sensitive to the presence of curvature and are different from the 
divergences occurring for the corresponding [condition] in flat spacetime. Nev-
ertheless, we [show] that any local, covariant distribution that satisfies our scal-
ing, smoothness, and analyticity conditions admits a “scaling expansion” about 
[coincident points]. This expansion expresses [...] as a finite sum of terms plus a 
remainder term with the properties that (i) each term in the finite sum is a prod-
uct of a curvature term times a distribution in the relative coordinates that cor-
responds to a Lorentz invariant distribution in Minkowski spacetime [...] and (ii) 
the remainder term admits a unique, natural extension to the [coincident limit] (p. 
323).

This results in a specific form of the operator product expansion discussed above, 
where one first defines a short distant expansion of the c-number distribution, and uses 
that in the overall definition of the local covariant field operators. Due to the lack of 
symmetries in generically curved spacetimes, QFTs cannot generically rely on the con-
cepts of large scale Lorentz covariance, a well-defined frequency splitting procedure, or 
a privileged, Lorentz-invariant vacuum state. In the generic case of QFT on a classical 
spacetime background, then, one must depend only on the highly local properties of the 
fields, defined in with respect to the spacetime metric in a generally covariant manner. 
In this case, since there is no globally defined Lorentz-invariant vacuum state, there 
is no issue of regularizing vacuum energy in the standard way. In a later essay, Hol-
lands and Wald [29] argue that a definition of QFTs in terms of the operator product 
expansion coefficients—when placed in appropriately symmetric spacetimes required 
to define a unique vacuum state—will have nonzero vacuum expectation values. They 
speculate that nonperturbative effects for interacting, non-Abelian QFTs may lead to 
vanishingly small residue terms in the stress-energy vacuum expectation value, which 
could explain the observed value of the cosmological constant [29]. Given the current 
state of defining QFTs on curved spacetimes, however, vacuum expectation values play 
an unimportant role, and vacuum energy is only renormalized to first order, depending 
on a free parameter as in the case of dimensional regularization (cf. [29, Eq. (9)]. Cer-
tainly, the concept of a globally well-defined, position-invariant vacuum energy density 
does not fit with this framework.

4  Conclusions: Does QFT Predict the Value of the Vacuum Energy?

Since vacuum energy is not fully renormalizable, the “old-fashioned” view of 
QFTs—as only well-defined if renormalizable—would lead one to believe that the 
vacuum expectation value of energy is an ill-defined concept in this framework.14 
But with the interpretation of the standard model as an EFT, full renormalizability is 

14 Technically, old demands of renormalizability were imposed on the S-matrix of a model of QFT, 
believed to encode all physically meaningful content of scattering amplitudes and other dynamics [21, 
31]. The QFTs comprising the standard model of particle physics are all renormalizable, despite the fact 
that the vacuum energy for each is nonrenormalizable. If one demands renormalizability of a model in 
terms of its S-matrix, additional nonrenormalizable structure that can be extracted from the action should 
be thought of as ill-defined surplus structure, about which the theory remains silent.
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no longer a strict requirement. Using a Euclidean lattice formulation of a particular 
model of QFT with a momentum regulator (cf. Sect. 2.1), nonrenormalizable terms 
in the Lagrangian are suppressed by powers of the cutoff. If the cutoff is taken to be 
a physically meaningful quantity, then there is an accompanying physical interpre-
tation that, at energy scales far below the cutoff, nonrenormalizable terms will be 
heavily suppressed and therefore of little relevance. These arguments are based on 
the renormalization group analysis of irrelevant terms in the Lagrangian; marginal 
terms are the ones found to play a role at all energy scales, while relevant terms 
grow in relative importance at low energies.

Unfortunately for the standard EFT view, the vacuum energy is one of two seem-
ingly physically significant quantities in the standard model that are relevant terms 
under renormalization group flow.15 The EFT approach licences taking nonrenor-
malizable terms to be physically significant, but vacuum energy does not fit into 
the standard physical interpretation, since it is not suppressed by powers of the cut-
off. By insisting that the vacuum energy is physically significant, this problem of 
nonrenormalizability is one part of the cosmological constant problem. In response, 
one can reject the assumption that the vacuum energy as predicted by the standard 
model is physically meaningful, or one can weaken the demand of renormalizability 
to understand what QFTs tell us about the value of the vacuum energy.

I have adopted this latter approach in this paper. By dropping the requirement 
of renormalizability, we are left with either regularized, or one-loop renormalized 
quantities describing vacuum energy density. In the Introduction, I claimed that two 
minimal Reasonable Requirements for a quantity to count as a candidate prediction 
are the following.

Minimal Requirements for Candidate Predictions In order for a quantity within a 
model of QFT to count as a candidate prediction of some corresponding physical 
quantity, it must be the case that: (1) the quantity is largely insensitive to the regu-
larization procedure; and (2) it is largely insensitive to changes to the value of the 
regulator.

Since regularization procedures in QFT are somewhat arbitrary, and usually 
the regulator disappears from the final prediction of a physical quantity, one might 
expect that full independence of the regularization technique be required. This 
seems like too strict a condition, however, when one considers that regularization 
changes the form of a model of QFT. Different changes will lead to different regula-
tors, and full renormalization is required to make these different approaches agree. 

15 The other, of course, being the Higgs mass. In that case the physical significance is undeniable, since 
the Higgs boson has been discovered, and has mass about 125 GeV [32]. The physical significance of 
vacuum energy is a bit less direct, and is subject to criticism. Aside from the criticism raised in this 
paper, see Bianchi and Rovelli [33].
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Under the standard EFT view, one can think of the different regularization schemes 
as different ways of parameterizing our ignorance of high-energy physics. One can 
only trust the predictions of an EFT when these differences wash out, which hap-
pens when the Minimal Requirements are satisfied.

For the orthodox regularization schemes discussed in Sect. 2, a purely regular-
ized vacuum energy density fails to meet either of the Minimal Requirements. The 
lattice regularized expression depends on the large-momentum cutoff � as ⟨�⟩ ∼ �

4 , 
while the dimensionally regularized term depends on the small deviation from four 
dimensions � as 1∕� . Small changes to these regulators will lead to large changes in 
⟨�⟩ . Further, the expressions in Eqs. (5) and (14) are quite different, so the value of 
⟨�⟩ is sensitive to the regularization procedure. The two vacua described under these 
procedures even differ in their equation of state.

If one rejects requirement (1), and takes the one-loop renormalized value of ⟨�SM⟩ 
as a first order prediction, then one has a candidate prediction for vacuum energy 
density that can be used to motivate a cosmological constant problem. However, 
there are two issues here. First, renormalized quantities in QFTs aren’t taken as 
predictions of some physical quantity. After renormalization, the physical value is 
measured from experiment and input into the theory. In this sense, Eq. (16) would 
not count as a prediction of vacuum energy density, but would be tuned to give the 
measured value. The instability of ⟨�⟩ under radiative corrections makes this tuning 
impossible perturbatively; so the failure of naturalness prevents a consistent tuning. 
Second, this prediction is not straightforwardly compatible with EFT, which I have 
taken to justify the search for a nonrenormalizable candidate prediction of ⟨�⟩.

To see this, consider the case of the Fermi model of weak interactions. This is a 
model in which four fermions—a proton, neutron, electron, and muon—all interact 
at a point. This model is not fully renormalizable, but it is one-loop renormalizable. 
Physicists used this model to make predictions at the one-loop level, even though 
higher order terms were known to diverge. The success of the Fermi model can be 
explained by noting that it is an effective theory of the electroweak model. Non-
renormalizable terms that appear above the one-loop level are due to the absence 
in the Fermi model of the W boson to mediate the four-fermion interaction. These 
divergent terms end up being irrelevant under renormalization group flow, so the 
mass scale ( MW ≈ 80 GeV) of the W boson in an effective modification of the 
Fermi theory suppresses the divergent terms. Successful use of Fermi theory for 
low energy ( mF ≈ 10 MeV) predictions is justified by the EFT framework, since 
mF ≪ MW.

When looking at the standard model as an EFT, one might hope that a similar 
story can be told for the vacuum energy density. In some successor theory, the rel-
evant energy scale there will suppress the extremely large value ⟨�SM⟩ . This is one 
way of expressing the requirement that vacuum energy be natural. However, ⟨�⟩ is 
relevant under renormalization group flow, and should depend quartically on a cut-
off supplied by a theory to which the standard model is effective. Given that the 
quantity ⟨�⟩ is so sensitive to the value of the regulator beyond one-loop, I take this 
to disqualify it as a candidate prediction. From within the standard model, we have 
reason to believe that ⟨�⟩ depends sensitively on the details of high-energy phys-
ics, and therefore falls outside the scope of EFT. Even if one rejects the Minimal 
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Requirements and takes ⟨�SM⟩ as a candidate prediction, when factoring in all fun-
damental fields in the standard model, the value ⟨�SM⟩ is approximately 55 orders 
of magnitude too large. While much smaller than the often quotes 120 orders of 
magnitude, this is still a remarkably bad prediction. Given its independence from all 
predictions within orthodox QFT, one should therefore be skeptical of such a predic-
tion (cf. Koberinski and Smeenk [4] for further discussion).

If standard EFT methods do not provide a candidate prediction of ⟨�⟩ , should 
we expect more rigorous extensions of QFT to incorporate vacuum energy? Nor-
mal ordering procedures—including the Epstein-Glaser approach—define all vac-
uum expectation values to vanish, so in a sense these approaches “renormalize” the 
vacuum energy density to zero. Normal ordering is typically defined for free fields, 
and as we have seen for orthodox approaches, the presence of interactions can spoil 
renormalizability. The Epstein–Glaser point splitting approach treats regulariza-
tion and renormalization in a very different way, and relates UV divergences to ill-
defined products of distributions at singular points. By carefully splitting distribu-
tions, one avoids divergent integrals. However, there is still freedom in the definition 
of these distributions, and this amounts to renormalization in a similar manner: free 
parameters in the theory must be fixed by experiment. These numerical distributions 
are then used to define operator-valued distributions, which include normal-ordered 
free fields. So in this formalism, normal ordering is directly connected to meaning-
ful time-ordered products (equivalently, n-point functions), and so Epstein–Gla-
ser point splitting leads to a vanishing vacuum expectation value of all quantities, 
energy density included.

Finally, the Hollands and Wald approach to QFTs in curved spacetime signifi-
cantly alters and extends the core concepts of perturbative QFT on Minkowski spa-
cetime. Their approach to merging QFT and general relativity is to reformulate the 
principles of QFT to be compatible with the spacetime structure of generic globally 
hyperbolic solutions to the Einstein field equations. For QFTs on curved spacetimes, 
analogs to Lorentz covariance and global frequency splitting—general covariance 
and the microlocal spectrum condition—change the mathematical formalism sig-
nificantly. Even more significantly, vacuum states are generically ill-defined, and so 
vacuum expectation values cannot be the primary building blocks of n-point func-
tions. Hollands and Wald [29] have suggested that the operator product expansion 
coefficients could be used to define a model of QFT. In highly symmetric cases, one 
may recover a vacuum state as a derived concept; it would then make sense to dis-
cuss vacuum energy densities, but this would be highly dependent on the particular 
spacetime chosen. A Lorentz-invariant vacuum energy density is not a generic fea-
ture of local covariant QFT, and there is no guarantee that the Minkowski prediction 
in this radically different formalism would agree with one of the orthodox schemes. 
These extensions of the standard QFT framework support the conclusion that QFTs 
(considered as EFTs or otherwise) do not properly include vacuum energy density.
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4.1  Verdict: No ⟨�⟩ from the Standard Model

Does QFT in general—or the standard model in particular—predict a vacuum 
expectation value of energy density? According to the Minimal Requirements moti-
vated by viewing the standard model as an EFT, it does not. We have seen that under 
the orthodox approaches to regularization, vacuum energy density varies signifi-
cantly with the choice of regularization scheme—lattice regularization or dimen-
sional regularization—and the “predicted” value of ⟨�⟩ is sensitively dependent 
on the value of the regulator. If we reject Requirement (1), then one might be in a 
position to pick the dimensionally regularized quantity as a candidate prediction. In 
order to do so, one must first acknowledge that ⟨�⟩ falls outside the domain of typical 
quantities in EFTs. One of the remarkable features of thinking of the standard model 
as an EFT is that “the details of physics below the cutoff have almost no empiri-
cal consequences for large-scale physics” [6, p. 10, emphasis original]. By rejecting 
Requirement (1), we are admitting that, for some physically meaningful quantities 
in the EFT, the choice of regularization scheme—of how to parameterize ignorance 
of high-energy physics—makes a considerable difference to the predicted value of 
that quantity within QFT. Moreover, this would also amount to claiming that dimen-
sional regularization is the correct way to do so in this instance. Instead, one should 
acknowledge that the sensitivity to regularization scheme is a sign that the quantity 
falls outside the scope of the EFT.

If one still insists on prioritizing dimensional regularization, then one must 
renormalize the vacuum energy density at one-loop in order to satisfy Requirement 
(2). Though the value ⟨�SM⟩ = −2 × 108 GeV4 appears insensitive to the regulator 
(Requirement (2)), this is only because high sensitivities at higher orders are hidden 
by brute truncation. The quantity is not perturbatively renormalizable, and new sen-
sitivities to the regulator � will appear at each order. Further, there is no principled 
reason to pick any given order at which to renormalize. Since the divergences are of 
the same character at each order, and since the regulator makes the same order of 
contributions at each order, the only principled choice is to renormalize nonpertur-
batively. Since this cannot be done with the vacuum energy density, there is no rea-
son to renormalize perturbatively at any particular order. If renormalization at, e.g., 
one-loop level yielded a sensible prediction, then there might be a post-hoc justifica-
tion. But since ⟨�SM⟩ is still so far off the from the observed value, this seems like an 
unjustified relaxation of the Minimal Requirements, and indicates that the quantity 
⟨�SM⟩ lacks physical significance.

I argue that both Minimal Requirements are needed for a quantity to count as 
a candidate prediction of some corresponding physical quantity under the EFT 
framework. This is a hallmark of all other predictions of QFTs, and is not satis-
fied in the case of vacuum energy density. Since there is no direct evidence neces-
sitating a physically significant vacuum energy density in QFTs, I do not think we 
have grounds for a candidate prediction.16 Under the standard view, vacuum energy 

16 Cf. Koberinski [2] for an argument that the Casimir effect and Lamb shift do not license the inference 
to a constant vacuum expectation value of energy.
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density should be treated as analogous to droplet formation in fluid mechanics: out-
side the scope of the EFT, and requiring the details of the high-energy theory in 
order to make sense. Just as we don’t expect fluid mechanics to provide the details 
of droplet formation, we should not expect the standard model to predict the value 
of vacuum energy density. To be clear, I have not argued that the concept of vacuum 
energy density is meaningless; it is simply outside the scope of EFT. An alterna-
tive approach is to extend and modify QFT to better fit with the principles of gen-
eral relativity, as outlined in Sect. 3.2. In particular, the concept of the vacuum will 
likely require significant revision. The absence of ⟨�⟩ from local extensions of QFT 
mentioned in Sect. 3 suggests further that vacuum energy is not a proper part of the 
physical content of QFT. The cosmological constant problem should be understood 
as indicating some inconsistency in merging Minkowski QFTs with general relativ-
ity at the level of EFTs [4]. In particular, the presence of a large effective cosmo-
logical constant undermines the initial assumption that Minkowski spacetime is a 
good approximation to the more realistic curved spacetime. The work of Hollands 
and Wald highlights how much of the formalism may need to change if one wants 
to make QFTs conceptually compatible with the general covariance and locality of 
general relativity. Perhaps the resulting conceptual clarity will also serve to clear up 
the concept of vacuum energy density as well.

The cosmological constant problem does require some sort of (dis)solution. By 
investigating the foundations of QFT, it is increasingly clear that at least part of the 
problem lies in accepting that the standard model provides a candidate prediction of 
⟨�⟩.
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