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Abstract
In this paper, we attempt to explicate Salmon’s idea of a causal process, as defined 
in terms of the mark method, in the context of C*-dynamical systems. We prove 
two propositions, one establishing mark manifestation infinitely many times along a 
given interval of the process, and, a second one, which establishes continuous mani-
festation of mark with the exception of a countable number of isolated points. Fur-
thermore, we discuss how these results can be implemented in the context of the 
Haag–Araki theories of relativistic quantum fields on Minkowski spacetime.

Keywords Causation · Process theories · C*-dynamical systems · Local quantum 
physics

1 Introduction

Process theories of causation emerged in the first half of the twentieth century after 
the advent of the theory of relativity. Reichenbach’s concept of a real sequence, as 
distinguished from an unreal one in terms of the method of mark [1], is considered 
the first attempt to define causal processes as distinguished from pseudoprocesses, 
while Russell’s theory of causal lines [2] is a way to talk about processes in terms of 
regularities. The real boost, however, to this approach has been given by the work of 
Salmon [3, 4] and Dowe [5, 6] towards the end of the century.

Process theories try to explain the cause and effect relation in terms of mech-
anisms of generation of causal influence, causal interactions, and of mechanisms 
of propagation of this influence, causal processes. Both mechanisms are consid-
ered spacetime entities, admitting a geometric representation: causal interactions 
are localized, they occur at a place at a time, and they are represented, ideally, by 
points of spacetime, while causal processes are locally extended entities represented 
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geometrically by spacetime curves. Along these curves the causal influence gener-
ated at a spacetime point is propagated.

Various attempts have been made to describe these causal mechanisms in terms 
of physical theories and to consider their existence contingent upon the truth of these 
theories. Salmon’s early theory, which dates back to 1984, is based on the idea of a 
mark introduced into a process by a single local interaction, at a spacetime point. 
The generation of a mark is considered the prototype of a causal interaction. The 
ability of a causal process to transmit a mark at each point of its spacetime curve, 
without further assistance, indicates its ability to propagate causal influence and dis-
tinguishes it from a pseudoprocess. Pseudoprocesses, on the other hand, although 
they exhibit some kind of uniformity along their geometric representation, they lack 
the ability of mark transmission. The motion of a ball in space illustrates the notion 
of a causal process while the hit of a bat imparting in the ball momentum illus-
trates a causal interaction. On the other hand, the motion of a shadow or of a light 
spot qualifies as a pseudoprocess since any change produced locally at these objects 
is not propagated, without further assistance, throughout their history. The connec-
tion between the theory of relativity and this account rests on the impossibility of 
a mark to be transmitted at spacelike distance and the consideration of spacelike 
curves as possible geometric representations of pseudoprocesses. Hence, any uni-
formity manifesting itself in a sequence of events (process) that can be represented 
geometrically by a spacelike curve does not qualify as a causal process. In 1997, 
Salmon, reconsidering the early version of his theory, has admitted that it provides a 
geometric account of causation rather than a physical one, since no specification of 
the nature of causal influence in terms of physical magnitudes has been given. The 
recognition of this limitation led Salmon to the abandonment of the mark method 
and the specification of the nature of causal influence, first, in terms of relativistic 
invariant quantities, such as the rest mass and the electric charge, and, later, in terms 
of conserved quantities (energy, 3-momentum, etc.), under the influence of Dowe’s 
Conserved Quantity Theory. According to the later versions of Salmon’s theory, a 
causal interaction is a local exchange of an invariant or conserved quantity, while 
a causal process has the ability to transmit continuously these quantities from one 
spacetime point to another in the absence of any further assistance.

What remained unaltered in the development of Salmon’s thought was his com-
mitment to the idea of spacetime continuity in the propagation of causal influence 
by a causal process: once produced, causal influence is made manifest, either in the 
form of a mark or in that of a constant amount of an invariant and/or conserved 
quantity, at each spacetime point of the continuous curve. This idea, Salmon claims, 
provides a solution to Hume’s celebrated problem of causation. It yields the connec-
tion between cause and effect that Hume was unable to trace at the empirical level. 
Hume attempted to explain the connection by interpolating further intermediate 
causes and effects between the distant events, yielding, thus, the image of a causal 
chain connecting the distant cause with its effect. Nevertheless, as Salmon has 
pointed out, this view just multiplies the instances of the problem instead of solv-
ing it, since, now, the connection between each pair of successive links in the causal 
chain needs to be accounted for. On the other hand, were to abandon the discrete 
picture of distant links in a chain in favor of a continuous connection, the problem 
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would be solved, since in a continuum, points are densely distributed and it is mean-
ingless to talk about the successor of a point. In this way, Salmon developed the 
idea of a continuous causal connection between cause and effect. On the basis of his 
causal notions, the causal relata are distant causal interactions connected by a causal 
process which manifests continuously, i.e. at each spacetime point of the curve that 
represents it geometrically, either the same mark, when the process is marked at the 
original interaction, or a constant amount of an invariant and/or conserved quantity 
produced at the original interaction, in the absence of any further interaction.

One of the desiderata of a causal theory, according to Salmon, is to be time inde-
pendent so that it is consistent with a causal theory of time, i.e. a definition of the 
time arrow in terms of causal asymmetry. Thus, in defining a causal process no dis-
tinction between past and future is taken for granted and causal influence can be 
equally propagated in both directions along a spacetime curve. Similarly, causal 
interactions that generate causal influence are taken, in principle, to be time sym-
metric and reversible. Causal asymmetry is not determined in terms of each singular 
cause–effect relationship. Causal relations as explicated in terms of causal processes 
and interactions inherit their asymmetry from structural properties of the web of 
causal relations. In particular, Salmon suggested that conjunctive forks—common 
cause structures consisting of two independent causal processes that emanate from 
a spacetime point that does not represent geometrically a causal interaction—cannot 
be open to the past. This condition determines the direction of propagation of causal 
influence in the entire web and derivatively the direction of each singular causal 
relation [3, p. 176].

Dowe’s Conserved Quantity Theory, of 1992, is somewhat different from Salm-
on’s process theory of causation. Firstly, while a causal process for Salmon, trans-
mits a fixed, non-zero amount of a conserved quantity, in the absence of interac-
tions, Dowe allows variations of the amount of conserved quantity manifested along 
a causal process which needs not to be non-zero. These variations are either due 
to causal interactions or they might be explained in terms of distant action. Thus, 
although Salmon’s account is firmly committed to action by contact, Dowe’s view 
leaves room for action at a distance as well. Secondly, Dowe defines a causal process 
in terms of objects having identity through time, while Salmon does not presuppose 
any account of identity of an object since it defines causal processes in terms of con-
tinuous manifestations of properties in the absence of external assistance. Thirdly, 
the continuity requirement is dropped by Dowe, since he claimed that an object 
defining a causal process in terms of its possession of a conserved quantity may 
not have continuous existence; admitting, thus, “gappy or discontinuous” causal pro-
cesses [6, pp.118–119]. This is a very important difference between the two views, 
given the great philosophical importance that Salmon attributes to spacetime conti-
nuity. Fourthly, the explication of the concepts of cause and effect in terms of causal 
processes and interactions is different for Salmon and Dowe. But we need not to fur-
ther any more about the differences between these two accounts since in this paper 
we focus on the early account of Salmon’s theory.

In the following, we attempt to define causal processes in terms of the mark 
method, in C*-algebraic framework. Firstly, we define a process to be a C*-dynam-
ical system and we identify an instance of a process in terms of a normal state and 
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an observable (self-adjoint operator) of the algebra. Secondly, we consider a state 
transformation, defined by a non-selective operation on the algebra, as an explica-
tion of a marking interaction of a process. Although all definitions in this paper do 
not distinguish between classical and quantum processes, the results we obtained are 
restricted by the use of a particular non-selective operation, suitable only for quan-
tum processes, the non-selective Lüders measurement. Thus, we use a well-known 
lemma, Lem. 8, to provide a necessary and sufficient condition for the manifestation 
of the mark in terms of commutation relations between the projection employed for 
the marking and the observable (projection) associated with the instance of the pro-
cess into which the mark has been introduced (see Cor. 9). Thirdly, a causal process 
is defined in terms of the ability of a process to transmit a mark continuously over 
an interval of values of the parameter of the one-parameter group of the dynamical 
system. A second definition explicates a weaker notion of continuity of mark trans-
mission, which demands continuous manifestation of the mark with the exception of 
a countable number of isolated points. In this way, we intend to capture the idea of 
a ‘gappy’ process with respect to mark transmission. Then, we prove two proposi-
tions: the first states that for a marking operation defined in terms of a non-selective 
Lüders measurement of a given projection, a mark introduced into a process at one 
stage, and being manifested at another stage, will appear also in infinite number of 
intermediate stages of the process, Prop. 11. The second states that if we, further, 
impose a condition of analyticity for the dynamics of the system on the projection 
measured, then ‘gappy’ processes, in the sense explained, exist, Prop. 13. In both 
definitions of mark transmission and in the propositions we prove, the transmission 
of a mark does not presuppose any time direction, i.e. assuming that the marking 
interaction takes place at t = 0 , the mark may be transmitted at stages of the pro-
cess corresponding to t > 0 or to t < 0 . Although this fact may seem bizarre, since 
one expects that the mark appears after and not before the marking interaction, it 
complies with Salmon’s desideratum that causal processes and interactions are inde-
pendent of time direction.

At this point we need to clarify our position regarding these ‘gappy’, with respect 
to mark transmission, processes, i.e., those processes which, if marked, exhibit dis-
continuities in the mark manifestation, at particular isolated points along the pro-
cess. The picture we form for this sort of a process is that, if marked, it consists of 
denumerable parts of continuous transmission of the mark which are delimited by 
points of mark disappearance (exempting the upper end of the interval within which 
mark transmission occurs). What, then, one would think of this sort of processes? 
Would one still be willing to consider such processes, causal? And, what about the 
miraculous disappearance and reappearance of causal influence along a process? 
Certainly, Salmon would resist heavily to disregard such brute facts of non-manifes-
tation of mark and, still, consider the process, causal. It would be as if he accepted a 
restoration of the image of a causal chain connecting the distant cause with its effect, 
with the links of the chain being extended over an interval of the process, manifest-
ing continuous transmission of mark. Thus, were to accept such processes as causal, 
he would retreat from a very important contribution of his causal theory, namely, to 
deal with the problem of the Humean ‘connexion’ between the cause and the effect 
in terms of the continuity in the transmission of causal influence. On the other hand, 
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as we have already explained before, it seems that Dowe does not have a great prob-
lem to accept the causal nature of such processes, despite his denial of the mark 
method account of causal processes.

Far from adhering to Dowe’s view, our opinion is that causal processes should 
propagate continuously causal influence. And the desideratum of this paper was to 
explore the possibility of a process that has the ability to transmit a mark, to propa-
gate causal influence, continuously. However, given the restrictions induced by the 
definitions we have put forward, the formal results we have obtained, in the C*-alge-
braic framework, were the best we could do: we preserved some intuition of conti-
nuity, without being able to exclude completely gaps in mark transmission along the 
process. So, we suggest the reader to consider our account a preliminary, possibly 
insufficient, step in establishing the possibility of causal processes in the quantum 
domain. To be sure to leave open the challenge for the more intuitively plausible 
continuous causal processes, we dub these ‘gappy’ processes, causal-up-to-a-count-
able-set-of-isolated-points  (CSIP-causal).

However, if discussion about causal processes ended here, one would be entitled 
to criticize this approach as an attempt to strip process theories of causation off their 
mettle, their local character, the conception of causal processes and interactions as 
entities that have a life in space and time. Thus, in the third section of this paper 
we attempt to embed the abstract mathematical approach of the second section, in 
the context of local quantum physics—in particular, in that of a Haag–Araki theory 
of relativistic quantum fields on Minkowski spacetime—where one can meaning-
fully be talking about spacetime entities. In this context, we will be able to con-
sider marking operations locally defined in terms of local projections and commuta-
tion relations implied by causality–locality axiom of the theory. Prop. 11 is valid 
for local projections and it establishes the manifestation of the mark in infinitely 
many regions that result from the timelike translation of a given bounded spacetime 
region. However, as it is shown in “Appendix”, analytic projections do not belong to 
local algebras in a Haag–Araki theory and they cannot be taken to determine local 
marking operations. Thus, in order to obtain, a similar result about CSIP-causal pro-
cesses, in terms of Prop. 13, we should abandon local marking operations, and talk 
about almost local marking operations and approximate manifestations of the mark.

2  Causal Processes and C*‑Dynamical Systems

Consider a C*-dynamical system ⟨A,ℝ, �⟩ , defined in terms of a von Neumann 
algebra A ⊆ B(H) , where H is a complex separable Hilbert space, the group ⟨ℝ,+⟩ 
of real numbers with the operation of addition, and a strongly continuous homo-
morphism of ℝ into the group of automorphisms of A , � ∶ ℝ → Aut(A) ∶ t ↦ �t , 
induced by a strongly continuous unitary representation U of ⟨ℝ,+⟩ on H,

Definition 1 A process is a C*-dynamical system ⟨A,ℝ, �⟩.

(2.1)∀X ∈ A, �t(X) = UtXU
−1
t
, �0(X) = X.
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The classical or quantum nature of the process depends on whether the algebra A 
is or is not commutative.

For Salmon, processes are particular local entities identified both in terms of their 
geometric specifications in spacetime and the empirical manifestation of their uni-
formity. Yet, in Def. 1 there is nothing suggestive of a process’ particular nature. We 
suggest a non-geometric account of a process which makes no reference to space-
time and locality, so the particular nature cannot be couched in terms of geometric 
specifications. In addition, although the uniformity of a process is reflected on the 
action of the group of isometries t ↦ �t on the algebra that determines the dynamical 
evolution of the physical observables, a process, according to Def. 1, is not associ-
ated with any set of measurements of any observable along the process, as the speci-
fication of a process in terms of the empirical manifestation of its uniformity would 
seem to require. To consider the empirical manifestation of the uniformity along a 
process, we need to specify a particular normal state � of the algebra A and a par-
ticular observable Q ∈ A . Then, the mapping t ↦ �(�t(Q)) describes the exhibited 
uniformity of the process. Parameter t indexes the stages of the process—be they 
spacetime points along a curve, in Salmon’s geometric view—and �(�t(Q)) is the 
corresponding expectation values of the observable �t(Q) , resulting from measure-
ments performed at each stage of the process. In what follows, we will consider the 
observable Q to be a projection and �(�t(Q)) to denote the evolution of the probabil-
ity of measuring Q along that process. The restriction to normal states of the algebra 
allows for such a probabilistic interpretation of �(�t(Q)) and it is also supported by 
physical reasons.1 In accordance with the above considerations we may define the 
concept of an instance of a process:

Definition 2 An instance of a process ⟨A,ℝ, �⟩ is the quintuple ⟨A,ℝ, �;�,Q⟩ , 
where, ⟨A,ℝ, �⟩ is a process, � a normal state of the algebra A and Q = Q∗ ∈ A , an 
observable of the algebra.

As noted, the causal character of a process is connected with its capacity to trans-
mit a mark. The marking of a process is defined in terms of a non-selective opera-
tion, a state transformation

induced by a linear, positive, completely positive and unital map T ∶ A → A.
Namely, T satisfies the following properties:

� ↦ �T ∶ �T (X) = �(T(X)), X ∈ A

1 Gleason’s theorem and its consequences for a probabilistic interpretation of a quantum theory and the 
preparability of a state by means of physically realizable local operations in an open bounded region of 
Minkowski spacetime are some reasons for restricting physically admissible states to normal states. See 
[7].
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and the map

is positive for every n ∈ ℕ.

Definition 3 A mark introduced into an instance ⟨A,ℝ, �;�,Q⟩ of a process ⟨A,ℝ, �⟩ 
is a change of the normal state � of A , � ↦ �T , defined by a non-selective opera-
tion, in terms of a linear, positive, completely positive and unital map T ∶ A → A , 
that is manifested as a change in the expectation value of the observable �t1 (Q) , 
�(�t1 (Q)) ≠ �T (�t1 (Q)) , for at least one 0 ≠ t1 ∈ ℝ.

At this point, let us try to get a clearer understanding of the aforementioned defi-
nitions. Notice, firstly, that we consider two instances of the process, the unmarked 
instance, ⟨A,ℝ, �;�,Q⟩ , and the marked one, ⟨A,ℝ, �;�T ,Q⟩ , which provide dif-
ferent manifestations of the uniformity along the process. The relationship between 
these two instances can be understood in two complementary ways: (a) temporally, 
and (b) counterfactually. In the first interpretation, the two instances ⟨A,ℝ, �;�,Q⟩ 
and ⟨A,ℝ, �;�T ,Q⟩ describe different time parts of a single entity occupying subse-
quent time intervals, before and after the marking interaction. However, the result 
of putting together the two instances is not a new instance of the process. Each part 
of the composite entity is described independently in terms of a parameter t that 
indexes the stages of the process which extends over all real numbers, t ∈ ℝ and is 
not restricted to any semi-closed interval of ℝ . This provision is essential in order 
to provide a time reversible account of the marking of a process. There is nothing 
paradoxical in this picture, since a plane wave that passing through a narrow slit 
on a barrier produces a spherical wave cannot be described by a single solution of 
the wave equation although both the spherical and the plane waves are solutions of 
the equation for every t ∈ ℝ . And the time-reversed picture of this physical situa-
tion represents a spherical wave with shrinking wavefronts converging to the slit for 
t < 0 , being turned into a plane wave after having passed through the slit for t > 0 . 
In the second interpretation, we say that ⟨A,ℝ, �;�,Q⟩ would have been the instance 
of the process and no composite entity would have existed, had the marking not 
occurred while if the time arrow is reversed then ⟨A,ℝ, �;�T ,Q⟩ would have been, 
respectively, the instance of the process had the marking not occurred. The similar-
ity to the wave propagation still holds good for the second interpretation, since we 
may claim that had the plane wave not met the pierced barrier it would have contin-
ued to be a plane wave for every t ∈ ℝ . Salmon has been aware that the definition of 
a causal process in terms of the marking method involves the truth of counterfactual 
statements of this sort, and he deemed this a major problem to overcome only within 
the formulation of the invariant/conserved quantity theory [3, p. 148, 8].

∀X, Y ∈ A and �,� ∈ ℂ, T(�X + �Y) = �T(X) + �T(Y),

T(X∗X) ≥ 0,

T(I) = I,

id⊗ T ∶ ℂ
n×n ⊗A → ℂ

n×n ⊗A
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Secondly, the marking is a physical interaction between at least two processes one 
of which is the process we aim to mark while the other may be, for example, a physi-
cal apparatus. In the case of the wave propagation through a single slit, the pierced 
barrier plays the role of the second process; more generally, however, we may con-
sider any scattering system as producing a mark. In the latter case, the unmarked 
instance of the process, ⟨A,ℝ, �;�,Q⟩ , is the incoming process, before the scatter-
ing, and it is usually taken to occur asymptotically, in the infinite past. Respectively, 
the marked process ⟨A,ℝ, �;�T ,Q⟩ is the outgoing process which occurs asymptoti-
cally in the infinite future. Disregarding the initial and the final states of the other 
processes (the scatterer or the physical apparatus) engaged in the physical interac-
tion, as well as what happens in all finite time instants where the interaction occurs, 
we may describe the marking in terms of a mapping � ↦ �T in the state space that 
is induced by a mapping T in the C*-algebra A . The mathematical details for the 
derivation of the operation induced by T from the assumption that a unitary “scatter-
ing” operator describes the interaction of a quantum system with an apparatus can 
be found in [9].

Thirdly, although the notion of operation has been developed in the context of 
quantum theory, Def. 3 does not exclude classical processes. In information theory, 
such classical operations are known as classical channels and they describe manipu-
lation of classical information. They are defined in terms of linear, positive and uni-
tal maps from a commutative C*-algebra to another—since complete positivity is 
equivalent to positivity for commutative algebras (see [10, Prop. 3.9, p. 199])—and 
they induce state transformations that are determined in terms of classical transition 
probability distributions in the state space.2

Although the definitions we provide cover both classical and quantum processes, 
in what follows, we are going to focus on the exploration of quantum processes. In 
particular, the normal state of A we referred to in defining the instance of a pro-
cess is described in terms of a density operator W ∈ A i.e. a positive operator in 
A ⊆ B(H) with tr(W) = 1 . Namely,

This assumption implies restrictions about the type of the von Neumann algebra 
employed: A can be a type I or II1 but not a type II∞ or III von Neumann alge-
bra. This mathematical fact excludes the possibility of defining a process in terms 
of local algebras in many Haag–Araki theories on Minkowski spacetime since it 
has been proved that they are type III von Neumann algebras. Yet, we may define a 

�(X) = tr(WX) for every X ∈ A.

2 For a finite state space X =
{
x1,… , xn

}
 , the algebra of observables is C(X) = {f ∶ f ∶ X → ℂ} and 

let T ∶ C(X) → C(X) be a classical operation, such that g = T(f ) ∶

⎡
⎢
⎢⎣

g(x1)

⋮

g(xn)

⎤
⎥
⎥⎦
 = 

⎡
⎢
⎢⎣

Tx1x1 … Tx1xn
⋮ ⋱ ⋮

Txnx1 ⋯ Txnx1

⎤
⎥
⎥⎦
 

⎡
⎢
⎢⎣

f (x1)

⋮

f (xn)

⎤
⎥
⎥⎦
 for every f ∈ C(X).



1 3

Foundations of Physics (2021) 51:5 Page 9 of 23 5

process using the global algebra of the system (see below) which in many interesting 
cases is type I.3

Next, we define the marking interaction in terms of a non-selective operation 
described by the Lüders rule for a projection P ∈ A.4 Hence, a mark is introduced 
by the state transformation

where �P(X) = tr(WPX) for every X ∈ A and WP ∈ A,

and it changes the expectation value of the observable �t1 (Q) , for some t1 ∈ ℝ.

As it will become clear later (see Lem. 8), this way of restricting the definition of the 
marking interaction delimits us to consider only quantum processes, since in clas-
sical processes represented by commutative von Neumann algebras the mark will 
never become manifest at any observable.

Fourthly, the choice of a non-selective operation for the description of the mark-
ing interaction can be justified by reference to Clifton and Halvorson’s distinction 
between physical and conceptual operations on an ensemble of physical systems 
[15]. They claimed, roughly, that given an ensemble of physical systems and a 
device that operates on the systems of the ensemble, if the ensemble in the final state 
includes all systems from the original ensemble without ignoring anyone, then the 
transformation of the ensemble is non-selective. If, on the other hand, in the final 
ensemble we keep only those systems that responded in a certain way to the opera-
tion of the device, selecting, thus, a desired outcome, then we do not consider only 
the physical interaction that takes place, but we perform, additionally, a conceptual 
operation to result in the final ensemble. Hence, our favoring non-selective opera-
tions for marking interactions reflects the choice of considering marking in terms of 
a physical interaction.

A typical example5 of a non-selective operation is provided by the Stern–Gerlach 
experiment in which a beam of electrons travels through an inhomogeneous mag-
netic field, it divides in two and it is deflected in two opposite directions, depending 

� ↦ �P,

(2.2)WP = PWP + (1 − P)W(1 − P),

�(�t1 (Q)) = tr(W�t1 (Q)) ≠ tr(WP�t1 (Q)) = �P(�t1 (Q)).

3 That for several Haag–Araki theories of physical significance the local algebras R(O) of finite regions 
of Minkowski spacetime are type III1 factors, see [11, Thm. 1.3.12, pp. 35 and 254]), and that the global 
algebra R of a system may be a type I∞ von Neumann factor if the system does not have superselection 
sectors, see [11, p. 24]).
4 For a brief and informative presentation of the Lüders rule, see [12]. The original article in German is 
[13] and an English translation is [14].
5 More examples are provided by quantum channels in quantum information theory. For instance, the 
amplitude-damping channel provides a simple model for the spontaneous emission of a photon in the 
transition of a two-level atom from its excited to its ground state. It is defined in terms of the map 

T ∶ B(ℂ2) → B(ℂ2) ∶ X ↦ M∗
o
XMo +M∗

1
XM1 where M0 =

�
1 0

0
√
1 − p

�
 , M1 =

�
0
√
p

0 0

�
 and p is the 

probability of decay.



 Foundations of Physics (2021) 51:5

1 3

5 Page 10 of 23

on the orientation of the spin of the electrons. Electrons with “spin-up” are deflected 
toward the north pole while those with “spin-down” are deflected toward the south 
pole. This physical operation is non-selective since its outcome contains both 
branches resulting from splitting the original beam and it is described, mathemati-
cally, in terms of a map T that satisfies the property T(I) = I . If, on the other hand, 
we decided to focus on one branch of the divided beam—say the one consisting of 
electrons with “spin-up”—the physical operation would be followed by a conceptual 
operation and it would be selective; in this case, the map T would satisfy the prop-
erty T(I) < I . Moreover, assume that the electrons in the original beam have already 
been prepared with their spin aligned in the positive direction of the z-axis of some 
Cartesian coordinate system (“spin-up” in ẑ ) and we operate on the beam using a 
Stern–Gerlach apparatus that measures the spin along the x-axis of the same coordi-
nate system. If we didn’t operate with the Stern–Gerlach apparatus the expectation 
value of the observable “spin in direction n̂ at an angle � from the z axis on the xz-
plane” would be proportional to cos2 �

2
− sin2

�

2
 , 0 ≤ � ≤ �

2
 . The same observable, 

after the operation with the Stern–Gerlach apparatus, has an expectation value equal 
to 0. This difference in the expectation values of an observable is required by Def. 3 
to say that the instance of a process, defined in terms of that observable, is marked.

Finally, to return to Salmon’s views, to mark a process requires a local interaction 
that takes place at a spacetime region. This stipulation is not made here unless A is 
considered the global algebra of a local quantum system defined in terms of a net of 
von Neumann algebras indexed by spacetime regions of a background spacetime. In 
this case, the state transformation described by the Lüders rule, (2.2), in terms of a 
local projection, corresponds to a non-selective measurement which takes place in 
a specified spacetime region; hence, marking a process becomes the outcome of a 
local interaction. Nevertheless, as mentioned earlier, these definitions do not intend 
to include geometric considerations and to regard causal processes as spacetime 
entities; locality issues will be postponed for the next section.

Next, we attempt to explicate the concept of mark transmission by providing two 
alternative formulations which make different demands regarding the continuity of 
the manifestation of the mark along a process. Without loss of generality we assume 
that the mark introduced into an instance of a process is manifested for a real num-
ber t1 > 0 and we examine the continuity of its transmission over the interval (0, t1].6

Definition 4 Let ⟨A,ℝ, �;�,Q⟩ be an instance of a process ⟨A,ℝ, �⟩ and assume 
that a mark defined in terms of the Lüders rule for a projection P ∈ A is introduced 
into ⟨A,ℝ, �;�,Q⟩ and is manifested for a t1 > 0, i.e. �(�t1 (Q)) ≠ �P(�t1 (Q)) . We say 
that the mark is continuously transmitted over an interval (0, t1] by that process, if 

6 If we do not make this assumption and we consider any real number t1 ≠ 0 , the interval over which 
the mark is transmitted is (a, b) ∪

{
t1
}
 , where a = min

{
0, t1

}
 and b = max

{
0, t1

}
. Thus, in Defs. 4 and 

5 there is no hidden preference about the direction of transmission of the mark along a process, in con-
formity with Salmon’s desideratum of providing definitions of the fundamental causal notions that are 
not committed to a preferred time direction.
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and only if it is manifested as a change in the expectation value of every observable 
Qt = �t(Q) , for t ∈ (0, t1].

Hence,

for every t ∈ (0, t1].

Definition 5 Let ⟨A,ℝ, �;�,Q⟩ be an instance of a process ⟨A,ℝ, �⟩ and assume that 
a mark defined in terms of the Lüders rule for a projection P ∈ A is introduced into 
⟨A,ℝ, �;�,Q⟩ and is manifested for a t1 > 0, i.e. �(�t1 (Q)) ≠ �P(�t1 (Q)) . We say that 
the mark is continuously transmitted up to a countable set of isolated points over an 
interval (0, t1] if and only if it is manifested as a change in the expectation value of 
every observable Qt = �t(Q) , for t ∈ (0, t1] , with the exception of a countable set of 
values of the parameter t which have to form a discrete metric space with the usual 
metric of the real numbers.

Hence,

for every t ∈ (0, t1] with the exception of a countable set of values of the parameter 
which form a discrete metric space with the usual metric of the real numbers.

According to Def. 5, continuous mark transmission up to a countable set of 
isolated points allows denumerable gaps, either finite or countably infinite, in the 
manifestation of a mark over an interval of a process. It is demanded, however, 
the real values of the parameter in which the mark disappears to form a discrete 
space in the usual topology of the real numbers, i.e. to be isolated. Thus, for an 
instance ⟨A,ℝ, �;�,Q⟩ of a process and a mark defined by a projection P, if

is the subset of (0, t1] in which the mark disappears, Def. 5 requires that for 
every t0 ∈ S , there is a neighborhood N(t0, r) =

{
t ∶ ||t − t0

|| < r
}
 such that 

N(t0, r) ∩ S =
{
t0
}
 . Put more simply, if a mark is continuously transmitted up to a 

countable set of isolated points over an interval (0, t1] , the time instants in which the 
mark disappears are not densely distributed over (0, t1] , i.e. they cannot be repre-
sented by the rational numbers in (0, t1].

Nevertheless, for Salmon, mark transmission over a continuous segment of a 
spacetime curve representing geometrically a causal process is continuous, i.e. 
the mark appears at each spacetime point of that segment. This conception is 
expressed in the following definition, given that t is taken to be a curve parameter 
that indexes spacetime points along that segment:

Definition 6 A process ⟨A,ℝ, �⟩ is causal if and only if there exists an instance 
⟨A,ℝ, �;�,Q⟩ of the process and a mark, defined in terms of the Lüders rule for a 

�(Qt) = tr(WQt) ≠ tr(WPQt) = �P(Qt),

�(Qt) = tr(WQt) ≠ tr(WPQt) = �P(Qt),

S =
{
t ∶ t ∈ (0, t1] and �(Qt) = tr(WQt) = tr(WPQt) = �P(Qt),

}
,
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projection P, which can be transmitted continuously over a semi-closed interval of 
the real numbers.

A weaker definition of a causal process would allow ‘gappy’ causal processes 
without eliminating completely the continuity.

Definition 7 A process ⟨A,ℝ, �⟩ is CSIP-causal or causal-up-to-a-countable-set-of-
isolated-points if and only if there exists an instance ⟨A,ℝ, �;�,Q⟩ of the process 
and a mark, defined in terms of the Lüders rule for a projection P, which can be 
continuously transmitted up to a countable set of isolated points over a semi-closed 
interval of the real numbers.

We say, once more, that although CSIP-causal processes save some part of the 
original intuition of continuity of mark transmission, they fail to provide an ade-
quate account of Salmon’s original intuition of continuous propagation of causal 
influence. In the remaining section, we shall present facts about the manifestation of 
a mark in a process based on the above definitions.

Lemma 8 (Clifton et al. [16]) For a von Neumann algebra A and a state transfor-
mation � ↦ �P, defined by a non-selective Lüders operation for a projection P ∈ A, 
the expectation value of an observable Q ∈ A is invariant under this state transfor-
mation if and only if [P,Q] = 0.

Corollary 9 For an instance ⟨A,ℝ, �;�,Q⟩ of a process ⟨A,ℝ, �⟩ and a mark defined 
in terms of the Lüders rule for a projection P,   a necessary and sufficient condi-
tion for the mark that is introduced into ⟨A,ℝ, �;�,Q⟩ to be manifested at any stage 
t1 ∈ ℝ of the process, at �t1 (Q), is the non-commutation of P and �t1 (Q),

Lemma 10 (Borchers [17]) Assume we have a strongly continuous one-parameter 
group Ut of unitary operators on a Hilbert space whose generator H has a spectrum 
bounded from below. Let E, F be two projections such that

for |t| < 𝜀, for some 𝜀 > 0 . If we have EF = 0 then UtEU
−1
t
F = 0 for all t.

In Lem. 10 a spectrum condition is imposed on the dynamics which is commonly 
taken as expressing the requirement that the energy is positive. In addition, spectrum 
condition in the Haag–Araki theories of relativistic quantum fields is interpreted as 
further requiring that effects propagate at velocities less or equal to the velocity of 
light in the vacuum. Thus, one may suggest that a causal process is defined in terms 
of “a dynamical system + an adequate spectrum condition”; a suggestion expressing 
the idea that causality restricts the dynamics. First of all, the interpretation of spec-
trum condition as a causality condition is not straightforward and unobjectionable. 

�(�t1 (Q)) = tr(W�t1 (Q)) = tr(WP�t1 (Q)) = �P(�t1 (Q)) ⟺ [P, �t1 (Q)] = 0.

UtEU
−1
t
F = FUtEU

−1
t
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In a recent article, Earman and Valente conclude that “... while it is wrong to regard 
the spectrum condition as a straightforward causality condition, it does lie at a node 
of a complex web of interconnected causality concepts of AQFT” [18]. Secondly, 
apart from issues of interpretation of the spectrum condition, this suggestion regard-
ing causal processes is not directly related to Salmon’s early process theory of cau-
sation, which is our source of inspiration in this paper, and unless one has provided 
a connection, we will not consider it here. The following proposition is proven by 
means of Lem. 10, hence, it requires the spectrum condition; however, as we will 
see, it is not sufficient to establish a causal process in Salmon’s sense. In this prop-
osition, we assume that the projection defining the marking operation is identical 
with the observable which exhibits the uniformity of the process in the specified 
instantiation.

Proposition 11 For an instance ⟨A,ℝ, �;�,P⟩ of a process ⟨A,ℝ, �⟩, consider a 
mark defined in terms of the Lüders rule for a projection P ∈ A . If the mark is intro-
duced into ⟨A,ℝ, �;�,P⟩ and is manifested at Pt1

= �t1 (P), for some t1 > 0, then it 
will be manifested at Pt = �t(P), for infinitely many t ∈

(
0, t1

]
.

Proof Assume for reductio that for every t ∈
(
0, t1

)
 the mark disappears. Then, 

by Cor. 9, we infer that 
[
P,Pt

]
= 0 for all t ∈

(
0, t1

)
 which can be extended to 

t ∈
(
−t1, t1

)
.

Next, by applying Lem. 10 for the pair of orthogonal projections P,P⟂ = I − P , 
where I is the unit of A , we conclude that 

[
P,Pt

]
= 0 for all t ∈ ℝ ; which is not true, 

by hypothesis.
Hence, there is a t2 ∈

(
0, t1

)
 in which the mark appears, i.e. t2 ∉ S . By applying 

the same argument for the transmission of the mark over 
(
0, t2

]
 , we may conclude 

the existence of a t3 ∉ S , and so on ad infinitum.   ◻

From the proof of Prop. 11 it can be easily understood that the causal nature of 
the process has not been established, since to conclude the manifestation of a mark 
at the intermediate stages of the process, we applied the same argument countably 
many times; hence we established the manifestation of a mark along an interval of 
a process countable infinitely many times but not continuously. Moreover, the mark 
is not even transmitted continuously up to a countable set of isolated points, since 
one cannot exclude on a priori grounds that the mark appears only at time instants 
tn =

1

r
+

1

nr
 for some 0 ≠ r ∈ ℝ and for every n ∈ ℕ. Thus, we need stronger assump-

tions, as those stated in Prop. 13, to meet the conditions of Def. 5, and prove at least 
the existence of CSIP-causal processes. But first, let us show another useful lemma.

Lemma 12 For an instance ⟨A,ℝ, �;�,Q⟩ of a process ⟨A,ℝ, �⟩, and a mark defined 
in terms of the Lüders rule for a projection P,   a necessary and sufficient condi-
tion for the mark that is introduced into ⟨A,ℝ, �;�,Q⟩ not to be manifested at stage 
t1 ∈ ℝ of the process, at �t1 (Q), is the following:

�(�t1 (Q)) = tr(W�t1 (Q)) = tr(WP�t1 (Q)) = �P(�t1 (Q)) ⟺ �([P, [P, �t1 (Q)]]) = 0.
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Proof (By simple calculations). Firstly, for WP defined as in 2.2,

Next, given the property of the trace, tr(AB) = tr(BA) , by properly grouping the fac-
tors in 2.3, one may show directly,

Hence, �(�t1 (Q)) = �P(�t1 (Q)) ⟺ �([P, [P, �t1 (Q)]]) = 0.   ◻

As in Prop. 11, we assume that the projection defining the marking operation is 
identical with the observable which exhibits the uniformity of the process in the 
specified instantiation.

Proposition 13 For an instance ⟨A,ℝ, �;�,P⟩ of a process ⟨A,ℝ, �⟩, consider a 
mark defined in terms of the Lüders rule for the projection P ∈ A which is analytic 
for �.7. The mark is continuously transmitted up to a countable set of isolated points 
over an interval (0, t1] , if it is manifested at Pt1

= �t1 (P) . Hence, according to Def. 7, 
⟨A,ℝ, �⟩ is a CSIP-causal process.

Proof Observe, firstly, that the set of �-analytic elements elements is �-invariant, i.e. 
if P ∈ A is analytic for � then Pt = �t(P) is also analytic for � for every t ∈ ℝ and 
P0 = P . In addition, the sum and the product of any two �-analytic elements ele-
ments is analytic for � (for a proof see lemma in “Appendix”). As a consequence the 
element

where Pt = �t(P) for any t ∈ ℝ and P0 = P , is also �-analytic.
In view of this fact, there is an A-valued analytic function f ∶ I� → A , where I� 

is a strip in the complex plane, I𝜆 = {z ∈ ℂ ∶ |Imz| < 𝜆, 𝜆 > 0} , such that for

or

Hence, for every state � of A , the complex-valued function

is also analytic (see “Appendix”).

(2.3)
WP�t1 (Q) = W�t1 (Q) + PWP�t1 (Q) − PW�t1 (Q) −WP�t1(Q) + PWP�t1 (Q).

tr(WP�t1 (Q)) = tr(W�t1 (Q)) − tr(W[P, [P, �t1 (Q)]]).

P−t

(
P−tP − PP−t

)
−
(
P−tP − PP−t

)
P−t,

z = t ∈ ℝ, f (t) = �t
(
P−t

(
P−tP − PP−t

)
−
(
P−tP − PP−t

)
P−t

)
,

z = t ∈ ℝ, f (t) =
[
P,

[
P,Pt

]]
.

F ∶ I� → ℂ, F(z) = �(f (z))

7 See “Appendix”
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By hypothesis, a mark defined in terms of the Lüders rule for the projection P and 
introduced into the instance ⟨A,ℝ, �;�,P⟩ of the process ⟨A,ℝ, �⟩ is manifested at 
Pt1

= �t1 (P) . This fact entails (by Lem. 12) that F is not a constant function, i.e.,

Now, since I� is an open connected set, by a well-known theorem of complex analy-
sis [19, Thm. 1.2, p. 90], the set of zeros of F is at most countable and discrete, i.e. 
for every z0 ∈ I� , F(z0) = 0 , there is a disc D(z0, r) of some radius r > 0 such that for 
no z ∈ D(z0, r) , z ≠ z0 , F(z) = 0 .   ◻

3  Causal Processes and Local Quantum Physics

To discuss the locality aspect of a causal process as defined in the previous section, 
one needs to be able to refer meaningfully to local observables and to local states 
as well as to formulate locality conditions. A friendly environment for this type of 
investigation, which combines the C*-algebraic setting with essential reference to 
spacetime concepts is local quantum physics [20]. In particular, we will consider a 
relativistic quantum field theory on Minkowski spacetime whose models are struc-
tures of the following type:

where H is a complex Hilbert space, O ↦ R(O) is a net associating a von Neumann 
algebra R(O) with every open bounded region O of Minkowski spacetime, and 
(a,�) ↦ U(a,�) is a strongly continuous unitary representation of the (proper 
orthochronous) Poincaré group in H . The vacuum state is supposed to be the unique 
Poincaré invariant state and is represented by a normalized vector � ∈ H The mod-
els are supposed to satisfy the usual Haag–Araki axioms, [11, pp.8–23],8 so that, in 

particular, the global von Neumann algebra R =

�
⋃

O⊂ℝ4

R(O)

���

 , associated with 

the whole Minkowski spacetime is well-defined and the vacuum vector � is cyclic 
for every local algebra and separating for every local algebra over a region with non-
empty causal complement—courtesy of the celebrated Reeh–Schlieder theorem (see 
[24] and [11, Thm. 1.3.1, p. 25]). Moreover, we assume explicitly that the global 
algebra R is a type I von Neumann algebra.

Without loss of generality, we restrict our attention to the time evolution of 
a system moving along a timelike direction a. The observables measured in any 

F(0) = �(f (0)) = 0 ≠ �
(
f (�t1 (P))

)
= F(t1).

⟨H, O ↦ R(O), (a,�) ↦ U(a,�)⟩,

8 In 1964, Haag and Kastler in a well-known paper provided an axiomatic formulation of quantum the-
ory of fields in terms of nets of abstract C*-algebras of local observables instead of quantum fields that, 
henceforth, is known as the Haag–Kastler formulation [21]. The same year, Araki published two papers 
[22]  and [23], in which he used nets of von Neumann algebras of bounded operators on a Hilbert space 
to axiomatize quantum field theory using analogous axioms to the Haag–Kastler ones. This formulation 
is known as the Haag–Araki approach to quantum field theory.
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open bounded region O of Minkowski spacetime are represented by self-adjoint 
elements of R(O) . They are evolving with time according to the law:

where O + ta =
{
x ∈ ℝ

4 ∶ x = y + a, y ∈ O
}
 , t ∈ ℝ . Respectively, any element 

A of the global von Neumann algebra R is evolving with time to the element 
UtAU

−1
t

∈ R . Hence, the process we are interested in is the C*-dynamical system 
⟨R,ℝ, �⟩ , where the group of automorphisms �t , defined by 2.1, describes transla-
tions along a given timelike direction a. Furthermore, to define an instance of that 
process, ⟨R,ℝ, �;�,Q⟩ we need to single out a normal state � and a projection Q of 
the global algebra R.

In a a relativistic quantum field theory we can say more about the local fea-
tures of such a process. Firstly, the geometric representation of such a process is 
a timelike line {ta ∶ t ∈ ℝ} . Further, if we associate an open bounded spacetime 
region O with the process, we may consider the process to be represented geo-
metrically by a tube defined as the translation of O along the vector a. Secondly, 
for every t ∈ ℝ , region O + ta represents geometrically a stage of the process of 
which the spacelike complement is well-defined:

According to the axiom of causality–locality [11, Ax. III, p. 14],

where, two algebras commute if and only if every element of the first commutes 
with every element of the second algebra and vice versa.

The causality–locality axiom stipulates the independence of statistical predic-
tions associated with the expectation values of any two observables belonging to 
local algebras of spacelike separated regions—a fact expressed by the commuta-
tivity of the algebras.

In terms of the local algebras R(O) , one may understand the marking of a pro-
cess as the result of a local interaction which takes place in O by demanding the 
projection P in 2.2 to be a local projection, P ∈ R(O) . Moreover, from the axiom 
of causality–locality and Lem.8 it can be inferred that a mark introduced into an 
instance ⟨R,ℝ, �;�,Q⟩ of a process ⟨R,ℝ, �⟩ by a local interaction in O is not 
manifested at any local observable Q� ∈ R(K) associated with an open bounded 
region K ⊂ O′ . Conversely, any change produced in the spacelike complement of 
the tube that represents geometrically the stages of a process associated with a 
real interval I is not manifested as a change in the expectation value of the char-
acteristic observable �t(Q) for every t ∈ I . The non-manifestation of a mark at 
spacelike distance from the region in which it is introduced as well as the shield-
ing of any part of a process from influences produced in spacelike distance from 
it, builts in this account the demand of the theory of relativity that no causal influ-
ence is propagated at velocities greater than the velocity of light in the vacuum.

UtR(O)U−1
t

= R(O + ta),

(O + ta)� = int
{
x ∈ ℝ

4 ∶ (x − y)2 < 0, y ∈ O + ta
}

∀t ∈ ℝ,∀K ⊆ R4, open and bounded,K ⊂ (O + ta)� ⟹ [R(K),R(O + ta)] = 0,
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To obtain a causal process one needs to establish the continuity in the mani-
festation of the mark along the process. By application of Prop. 11 we can infer 
that a mark introduced by a local non-selective Lüders operation for a projection 
P ∈ R(O) , in a spacetime region O, into an instance ⟨R,ℝ, �;�,P⟩ of a process 
⟨R,ℝ, �⟩ , is manifested at infinite time instants in the interval (0, t1) , in spacetime 
regions O + ta , at observables Pt = �t(P) ∈ R(O + ta) , given that it is manifested 
at Pt1

= �t1 (P) ∈ R(O + t1a) for some t1 ∈ ℝ . Nevertheless, as we have already 
explained above, this result is insufficient to justify any intuition of continuity, thus, 
to establish the causal character of a process.

To make, however, stronger demands, as those required by Prop. 13, we need to 
abandon some essential locality conditions, since there are no analytic elements for 
time translations which belong to a local algebra associated with any open bounded 
spacetime region in a Haag–Araki theory of relativistic quantum fields that satis-
fies the usual axioms (see, “Appendix”). Hence, we are not allowed to assume that 
a mark introduced into a process is the result of a local interaction associated with a 
state transformation of the form of 2.2, defined in terms of an analytic local projec-
tion P. Moreover, given that we cannot consider the marking operation localized in 
a bounded spacetime region, we cannot talk meaningfully of the manifestation or 
not of the mark in spacelike distance from its locus of introduction. In addition, the 
causality–locality axiom does not apply since it is valid only for local observables.

On the other hand, since analytic elements for time translations form a norm-
dense subset of R , one may take the introduction of a mark into an instance 
⟨R,ℝ, �;�,P⟩ of a process ⟨R,ℝ, �⟩ to be described in terms of an analytic projec-
tion P which differs, in the norm of R , from a local projection P� ∈ R(O) less than 
a quantity 𝛿 > 0,

for every state � on R ; where � denotes the experimental error. Hence, although 
the actual or the real physical operation of marking a process takes place in a spa-
cetime region and calls for a representation in terms of a local projection, one may 
decide to represent it approximately in terms of an analytic for time translations ele-
ment which is practically indistinguishable from the local projection for every physi-
cally admissible (normal) state of the system. In this way, one may talk of an almost 
local mark introduced into an instance of a process ⟨R,ℝ, �⟩ in some open bounded 
region O.

Next, consider the manifestation of the mark in an instance ⟨R,ℝ, �;�,P⟩ of a 
process ⟨R,ℝ, �⟩ . Since �t, t ∈ ℝ is a group of isometries, and P, as before, is a 
�-analytic projection which differs, in the norm of R , from a local projection 
P� ∈ R(O) less than a quantity 𝛿 > 0,

and the mark manifestation is required to be detected in �t(P) , the time translation 
of the analytic element P, instead of the time translation of the local projection P′ 
that would represent the mark, had it been local. Hence, we talk about an almost 

‖‖P − P�‖‖ < 𝛿 ⟹ ||𝜔(P) − 𝜔(P�)|| < 𝛿,

‖‖P − P�‖‖ < 𝛿 ⇒ ‖‖𝜏t(P) − 𝜏t(P
�)‖‖ < 𝛿,
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local mark associated with a region O which may be approximately manifested in 
the translation of O, O + ta , along the timelike vector a.

At this point one may object that, on the one hand, we employed analytic ele-
ments in the representation of an almost local marking operation claiming that they 
are practically indistinguishable from local projections belonging to open bounded 
spacetime regions—i.e. the difference in their expectation values, in any state, is 
undetectable given the limits experimental error—while on the other, we seem to be 
satisfied with Defs. 3 and 4 which defines mark manifestation in terms of a differ-
ence in the expectation value of an observable, without taking into account whether 
this difference is detectable or not. To be consistent with the introduction of experi-
mental error as a limit to the detectability of the difference in the expectation values 
of observables in a given state, we should demand

where W ∈ R is a density operator and WP ∈ R is defined as in 2.2, to claim that the 
mark is manifested at �t(P) for some t ∈ ℝ . The objection is correct and it requires 
further investigation to obtain results that would comply with condition 3.1. In this 
paper, however, we follow Defs. 3 and 4 for characterizing a causal process.

Now, by applying Prop. 13 one concludes that a process ⟨R,ℝ, �⟩ represented 
geometrically by a tube defined as the translation of O along a timelike vector a 
qualifies as a CSIP-causal process according to Def. 7 since it is capable to transmit 
continuously up to a countable set of isolated points a mark defined for an analytic 
for time translations projection P, introduced into an instance of a process almost 
locally, in the sense explained, in a bounded spacetime O, over an interval (0, t1] , 
according to Def. 5.

Valente [25] has raised serious objections against the use of analytic elements for 
time translations to describe operations in local quantum systems.9 One objection 
says that since analytic elements cannot be local in any standard Haag–Araki theory, 
they represent uninstantiated events in spacetime and they cannot be taken, in any 
meaningful way, to be in relation to any event or to have any local effect in space-
time. The second objection relates to the way analytic elements can be constructed 
by smearing local observables of a bounded region O (see, “Appendix”), providing, 
thus, some type of approximate localization in O (by disregarding the ‘tails’ of the 
smearing function). However, essentially, analytic elements are global observables 
and to talk about almost local operations is rather a euphemism. The third objection 
says that since analytic observables are not local they are not real observables and no 
actual measurement can be performed of these fictional observables. Hence, no real 
effect can be produced by such fictional operations.

Both the first and the third objection fit nicely for the critical discussion of Ara-
georgis and Stergiou’s argument [26], as intended. There, the operation is defined in 
terms of analytic elements and the manifestation of the mark introduced is a change 

(3.1)||�(�t(P)) − �P(�t(P))
|| = ||tr(W�t(P)) − tr(WP�t(P))

|| ≥ �,

9 The discussion in this Valente’s paper refers to almost local operators which are constructed as analytic 
elements for the generators of the group of translations of Minkowski spacetime.



1 3

Foundations of Physics (2021) 51:5 Page 19 of 23 5

of the expectation value of a local observable; hence, one may reasonably object that 
uninstantiated events in spacetime cannot be in relation with proper events and that 
fictional operations cannot produce real effects. In the present discussion, however, 
for better or worse, the relation is established between homologous events, both 
uninstantiated, which lie at a fictional level. Here, we tentatively explore what would 
happen if local operations and local observables were represented by non-local ones 
which, nevertheless, bear a special relation to their local counterparts that allows us 
to talk about almost local marking operations and approximate manifestations.

To defend somewhat further the tentative hypothesis of using analytic elements 
for the description of operations, let me refer to an old paper of Steinmann [27] in 
which (selective) operations representing particle detection experiments are defined 
in terms of analytic elements. There, Steinmann proved a result that captures a basic 
intuition of particle causal processes. Namely, he has proven that in an one-particle 
state of a field theory, “...the probability that two counters are triggered by the parti-
cle is appreciable only if their separation is approximately parallel to the momentum 
of the particle.” In addition, if a third counter is placed, then “...all three counters 
can be triggered only if they lie roughly in a straight line.” Still, one may object to 
the description of a particle’s motion in terms of locality considerations. Yet, we, 
surely, would like to save the intuitive plausibility of such particle motion as a good 
candidate for an ‘approximate’ process.

As a final comment, I would like to point out the problematic implementation 
of relativistic causality when discussing causal processes in terms of analytic for 
time translations elements in local quantum physics. As explained before, the axiom 
of causality–locality guarantees that when considering causal processes in terms of 
elements of local algebras, the mark introduced into a process is not manifested at 
spacelike distance from the locus of its introduction. One cannot make the same 
stipulation when dealing with analytic for time translation projections that are asso-
ciated with some spacetime region O in the aforementioned sense, since the relevant 
axiom is not applicable any more. Still we may claim that the mark defined in terms 
of analytic projection P does not become manifest at observables which commute 
with P; however, we cannot any more claim that every observable associated with 
an open bounded region in the spacelike complement of O, be that a local one or a 
practically indistinguishable (within � ) from a local observable, commutes with P, 
making, thus, the relevant mark disappear.

4  Summary

Process theories of causation employ three types of locality conditions in the expla-
nation of the cause and effect relation: (a) the production of causal influence and 
its manifestation along a process occurs at spacetime points; (b) the propagation of 
causal influence is continuous in spacetime; (c) for any given spacetime point there 
is a set of spacetime points which are not connectable by means of causal processes, 
hence, these spacetime points are shielded from causal influence produced at the 
given point.
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In this paper, we attempted to define causal processes in the absence of any refer-
ence to spacetime. We referred to C*-dynamical systems their states and state trans-
formations described in terms of projections in a von Neumann algebra realizing 
marking processes (Defs. 1, 2, 3, 4, 6 and 7). Well-known conditions for the shield-
ing of certain observables characterizing quantum processes from the influence of 
marking operations, couched in terms of the invariance of the expectation value of 
these observables under the marking state transformations, were formulated (Lem. 
8). The originality of our contribution rests, mainly, on the attempt to establish some 
satisfactory conception of continuity in the propagation of the mark along such a 
process. Proper continuity in mark transmission, required for a causal process could 
not be established. Nonetheless, we have shown that a mark is manifested infinitely 
many times in an interval of a process (Prop. 11), and that, on certain conditions, 
the mark is manifested continuously up to a countable set of isolated point (Prop. 
13), establishing, thus, the existence of CSIP-causal processes. Thus, in this abstract 
algebraic setting we expressed conditions for process theories which if successfully 
associated with spacetime properties and relations they would yield a local account 
of causal processes.

To obtain a local account of causal processes, we examined a Haag–Araki theory 
of relativistic quantum fields on Minkowski spacetime. In this context, local observ-
ables belong to von Neumann algebras associated with open bounded spacetime 
regions and a local marking operation can be defined in terms of a local projection. 
In addition, we explained how one can perceive an almost local marking operation, 
as a representative of a local marking operation, and an approximate manifestation 
of this mark associated with an analytic projection for time translations. Analytic 
elements do not belong to the algebra of any open bounded region but they can be 
practically indistinguishable from local elements. In this way, the first of the three 
aforementioned locality conditions for causal processes was treated. The axiom of 
causality–locality satisfied by the Haag–Araki theories provides a necessary and 
sufficient condition for the non-manifestation of a local mark at spacetime distance 
from the region in which it is generated. A similar condition for marking operations 
in terms of analytic elements could not been established and I am not sure whether 
it can be assumed independently. On the other hand, continuity has been established, 
in the rather weak form of CSIP mark transmission by Prop. 11 in terms of almost 
local marking operations, while if our attention were to be restricted to local mark-
ing operations, the same goal would not be attained. Although we could not estab-
lish the existence of causal processes in Salmon’s sense, yet, we did try to explore, 
formally, different approaches which emphasize on aspects of the philosopher’s con-
ception within some limitations.

Appendix: On Analytic Elements for the One‑Parameter Group 
of Time Translations in Local Quantum Physics

Given a �(X;F)-continuous group of isometries of a complex Banach space X, an 
element A ∈ X is said to be analytic for � ( �-analytic) if there exist a strip
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in ℂ , and a function fA ∶ I� → X such that
(i) fA(t) = �t(A) for t ∈ ℝ,

(ii) z ↦ �(fA(z)) is analytic for all � ∈ F and z ∈ I�.
On these conditions, fA(z) = �z(A), z ∈ I� is an X-valued analytic function; if 

� = ∞ then fA is entirely analytic [28, Def. 2.5.20, p. 99]. Moreover, condition (ii) 
is equivalent to the existence of the limit

in norm in X for z ∈ I� as h tends to zero in ℂ , [28, Prop. 2.5.21, p. 99].
The groups of isometries we consider in this paper are �(A,A∗)-continuous i.e. 

for all A ∈ A, t ↦ �(�t(A)) is continuous for every � ∈ A
∗,which amounts to the 

requirement that t ↦ �t(A) be continuous in norm for every A ∈ A where A is a 
von Neumann algebra.

Lemma The sum and the product of two analytic elements for a group of automor-
phisms � in a von Neumann algebra A is a �-analytic element.

Proof Consider two �-analytic elements A,B ∈ A and let fA(z) = �z(A), z ∈ I�1 , 
fB(z) = �z(B), z ∈ I�2 for I𝜆i =

{
z ∈ ℂ ∶∣ Imz ∣< 𝜆i

}
, i = 1, 2 be the two cor-

responding A-valued functions that satisfy conditions (i) and (ii). To 
show that the product AB is �-analytic we should prove that the A-val-
ued function fAB ∶ I� → A, fAB(z) = fA(z)fB(z) which extends the function 
fAB(t) = fA(t)fB(t) = �t(A)�t(B) = �t(AB) for t ∈ ℝ, satisfies the condition of 
analyticity:

in I𝜆 = {z ∈ ℂ ∶∣ Imz ∣< 𝜆}, 𝜆 = min
{
𝜆1, 𝜆2

}
 . But

Since fAand fB satisfy the analyticity condition, which implies also the continuity of 
fAand fB , each factor in the last expression in the above equality has a well-defined 
limit for h → 0 and the analyticity condition for fAB is satisfied, for every z ∈ I� . 
Hence, AB is a �-analytic element of A.

The case of the sum of two �-analytic elements can be proven along the same line 
of reasoning by a simple direct calculation.   ◻

I𝜆 = {z ∈ ℂ ∶∣ Imz ∣< 𝜆}

lim
h→0

fA(z + h) − fA(z)

h

lim
h→0

fAB(z + h) − fAB(z)

h

fAB(z + h) − fAB(z)

h
=

fA(z + h)fB(z + h) − fA(z)fB(z)

h

=
fA(z + h) − fA(z)

h
fB(z + h) + fA(z)

fB(z + h) − fB(z)

h
.
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To obtain a family of analytic elements for the group of time translations one may 
begin with any element localized in some open bounded region O of Minkowski 
spacetime, A ∈ R(O) , and smear its time translation over ℝ with a Gaussian func-
tion depending on a parameter n ∈ ℕ. Namely,

Each An is an entire analytic element for � and the family 
{
An

}
n∈ℕ

 converges to A in 
the �(X;F) topology. Moreover, in [28, Cor. 2.5.23, p. 101] it is shown that the set 
of entire analytic elements form �(R;R∗) - continuous group of isometries form a 
norm-dense subset of R.

Fact (Fredenhagen, 2019)10 In a Haag–Araki theory of relativistic quantum fields 
on Minkowski spacetime, no non-trivial analytic elements for time translations can 
be localized in open bounded regions of Minkowski spacetime.

Proof Let A be analytic for time translations element which is also localized in a 
bounded region O. Let B be localized in the spacelike complement of an �-neigh-
bourhood of O,  for some 𝜀 > 0 . Then the commutator,

vanishes in an open interval of t. For |t| < 𝜀 we have

where � ∈ H is the vacuum vector.
By the spectrum condition, which demands the generator of the time translations 

to be positive, the term on the left hand side defines a function that is analytic in the 
upper halfplane while the term on the right hand side, an analytic function in the 
lower halfplane. By assumption, they are also analytic in a strip around the real axis. 
Since these analytic functions coincide in an open interval of the real axis, we obtain 
an entire bounded analytic function which, therefore, is constant.

By the Reeh–Schlieder Theorem, these observables B generate from the vacuum 
� a dense set of vectors in the Hilbert space H . Thus, A� is invariant under time 
evolution and, due to the uniqueness of the vacuum,

Thereby, we get the result that an analytic local observable is a multiple of the iden-
tity of the algebra.   ◻

An =

√
n

� ∫
+∞

−∞

e−nt
2

�t(A)dt, n ∈ ℕ.

[
�t(A),B

]

⟨B∗�, �t(A)�⟩ = ⟨�t(A∗)�,B�⟩,

A� = ⟨�,A�⟩�.

10 Private communication.
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