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Abstract
There is a long tradition of thinking of thermodynamics, not as a theory of funda-
mental physics (or even a candidate theory of fundamental physics), but as a theory 
of how manipulations of a physical system may be used to obtain desired effects, 
such as mechanical work. On this view, the basic concepts of thermodynamics, heat 
and work, and with them, the concept of entropy, are relative to a class of envisaged 
manipulations. This article is a sketch and defense of a science of manipulations and 
their effects on physical systems. I call this science thermo-dynamics (with hyphen), 
or ΘΔcs , for short, to highlight that it may be different from the science of thermo-
dynamics, as the reader conceives it. An upshot of the discussion is a clarification of 
the roles of the Gibbs and von Neumann entropies. Light is also shed on the use of 
coarse-grained entropies.

Keywords Thermodynamics · Statistical mechanics · Entropy · Resource theories

1 Introduction

In what follows I will tell you about a science that I call thermo-dynamics. Following 
the word of the Lord, when he first bestowed that word upon us, I retain the hyphen, 
to emphasize the etymology of the word: it is formed from the Greek works for heat 
and power.1 Following the word of the Laird, I will often abbreviate it as ΘΔcs (to 
be pronounced “thermo-dynamics”), which also emphasizes its Greek roots.2 The 
reason I emphasize the etymology is that the science of thermo-dynamics has at its 
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core a distinction between two modes of energy transfer between physical systems: 
as heat, and as work.

The concepts of ΘΔcs are, I claim, the best way to make sense of most of what is 
called “thermodynamics” in the textbooks, though that content is often obscured in 
the presentation. Be warned, however: the scope of ΘΔcs is narrower than thermo-
dynamics as it is sometimes conceived. The scope of ΘΔcs includes the zeroth, first, 
second, and (in the quantum context) third laws of thermodynamics, all of which 
were designated laws of thermodynamics by 1914 at the latest. It does not include 
a relative late-comer to the family of laws of thermodynamics, which Brown and 
Uffink have dubbed the Minus First Law, which, though it had long been identified 
as an important principle, was not called by anyone a law of thermodynamics prior 
to the 1960s.3

A thermo-dynamic theory involves treating certain variables as manipulable, in 
a sense that I will explain in the next section, and has to do with the responses of 
physical systems to manipulations of those variables. A designation of certain varia-
bles as manipulable is not something that appears in, or supervenes on, fundamental 
physics; it must be added. For this reason, ΘΔcs is not and cannot be a comprehen-
sive or fundamental physical theory. It is nonetheless a perfectly respectable theory, 
a useful one, and, for beings such as us, who are not transcendent intellects behold-
ing the cosmos from outside but rather agents embedded in the world and interacting 
with it, perhaps even an indispensable theory. Confusion arises when it is mistaken 
for the sort of theory that could possibly be a fundamental theory. Indeed, I will 
argue that some of the various puzzles and paradoxes that have arisen from thermo-
dynamics stem from confusing ΘΔcs with fundamental physics.

The idea that thermodynamics should be thought of as a theory of this sort is not 
new; see Appendix for a sampling of quotations from the history of ΘΔcs . A concep-
tion of thermodynamics along these lines is rapidly becoming the mainstream view 
among workers in quantum thermodynamics, who view it as a species of resource 
theory, akin to quantum information theory [6–9]. This development has so far 
attracted little attention from philosophers; a notable exception is [10].

I start by outlining the basic concepts needed to formulate ΘΔcs.

2  Exogenous and Manipulable Variables

In this section I highlight some features of routine scientific practice that are so 
ubiquitous that for the most part we don’t really think about them, and are passed 
over without comment.

3 The minus first law, which Brown and Uffink also call the Equilibrium Principle, is given by them as,
 An isolated system in an arbitrary initial state within a finite fixed volume will spontaneously attain a 
unique state of equilibrium ([4], p. 528).
 They point out that a principle of this sort had been recognized as a law of thermodynamics earlier, by 
Uhlenbeck and Ford ([5], p, 5).
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Consider a sort of problem that is frequently found in textbooks and in the scien-
tific literature. One is asked to consider a system subjected to an external force, or to 
an external potential, and to calculate certain aspects of its behaviour (e.g. to solve 
the equations of motion, or to find the energy eigenvalues), subject to that external 
potential. The Hamiltonian for such a system consists of its internal Hamiltonian, 
which includes the kinetic energies of its parts and terms involving interactions, if 
any, between its parts, plus the external potential.

For the purposes of a problem like that, nothing needs to be said about the source 
of the external potential. It is treated as given. Presumably, the external potential is 
an interaction potential between the system in question and some other system, but 
we are not asked to include that system in our calculations, and, in particular, we do 
not consider the effect of the system under consideration on the system that is the 
source of the external potential. This is what it means to treat the external potential 
as given.

I will call variables treated in this way exogenous variables. Note that designation 
of a variable as exogenous has to do with how it is handled in a given investigation; 
the distinction between exogenous and other variables is not intrinsic to the physical 
nature of those variables. The phrase “exogenous variable” should be taken as short 
for “variable treated exogenously.” Were it not for the awkwardness of language that 
would ensue, I would eschew adjectival uses of “exogenous” in favour of adverbial.

The same variable may be treated exogenously in one investigation, and included 
as part of the system under consideration in another. An an example consider the 
usual pedagogical entry into celestial mechanics. First one treats of a body in a fixed 
external 1/r potential, and shows that its trajectories take the form of conic sections 
(ellipses, parabolas, or hyperbolas, depending on the energy), subject to the area 
law with respect to the origin of coordinates. This yields a respectable first approxi-
mation to planetary motion, as the gravitational effect of the sun dominates the net 
force on any planet, and, to a first approximation, the effect of the planet on the 
sun is negligible, and we may treat the sun as fixed. The next step on the journey 
to celestial mechanics is from the one-body to the two-body problem, in which the 
sun’s position is treated as a dynamical variable.

We find this distinction between exogenous and other variables also in computer 
modelling of physical systems. Consider climate models. Various aspects of the 
earth’s climate system are treated in such a model, and their behaviour subjected 
to the dynamics written into the model. Some variables, such as solar radiation and 
greenhouse gas emissions from volcanoes and from anthropogenic sources, are 
treated as inputs. No attempt is made to include solar dynamics or the geophysics of 
volcano eruptions in the dynamics of the model.

When dealing with exogenous variables, there is often a range of possible values 
to be considered, and we may be interested in the differences that changes to the 
exogenous variable make to the behaviour of the system at hand. Crucially, we treat 
the exogenous variables as ones that can vary independently of the states of the sys-
tems under consideration—that is, they are treated as free variables. This is a crucial 

(1)H = Hint + Vext.
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aspect of controlled experiments. The systems under consideration are subjected to 
a range of treatments, and a well-designed experiment is one in which the treatments 
may be regarded as varying independently of the initial states of the systems to be 
studied. Often some randomizing device is employed, which is thought of as render-
ing its outputs effectively free for the purpose at hand.4

I will say that a variable is being treated as a manipulable variable in a given the-
oretical investigation if (i) it is being treated as an exogenous variable, and (ii) there 
is a range of possible values, or, perhaps, of possible alternative temporal evolutions 
of that variable, under consideration.

One might be tempted to say that treatment of certain variables as exogenous is a 
concession to our limited calculational and computational abilities. It might be bet-
ter, one might think, to include in our climate models solar dynamics, the dynamics 
of volcanoes, and a sufficiently detailed model of human activities that anthropo-
genic emissions could be included among the modelled variables. This would be a 
mistake. For certain purposes, it is essential to treat certain variables as manipula-
ble. These purposes include attribution studies. To use climate models to estimate 
the contribution of various inputs to observed global warming, researchers vary 
those inputs while holding others fixed. It is investigations such as these that, in part, 
underwrite conclusions that most, or all, or perhaps more than all of the observed 
warming can be attributed to anthropogenic greenhouse gases. And, of course, this 
is relevant to policy decisions (or would be, if anyone were making informed policy 
decisions); one can make projections by modelling future climate under a variety of 
emissions scenarios.

All of this is, of course, meant to be consistent with the concept of manipulability 
as it appears in the causal modelling literature [12–14].

When speaking of manipulable variables, and a set of alternative manipulations, 
one almost inevitably begins to talk of choices of manipulations. This carries with 
it a suggestion that human agency is central to the concept, which in turn raises 
the suspicion that subjectivity is being brought in. This is not the case; a variable 
treated as manipulable need not be manipulable by us (see above, re volcanoes). 
Nevertheless, some who have developed a conception very close to what I am call-
ing ΘΔcs have lapsed into talk that suggests that its concepts are subjective. This is 
an error, in my view. It stems, I think, from overextension of the familiar subjective/
objective dichotomy. Objective features of a physical system are supposed to belong 
to that system, in and of itself; they are features that cannot change without change 
of its physical state. The concepts of ΘΔcs are relative to a specification of manipu-
lable variables and a set of alternative manipulations of those variables, and as such 
are not there in the physical states of things. It does not follow that they are subjec-
tive, although, if all one had at hand was the objective/subjective dichotomy, it is 
understandable that one might lapse into saying that they are.

4 Borrowing the apt phrase of J.S. Bell [11].
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3  Thermo‑dynamic Theories

An equilibrium thermo-dynamic state of a system A may be specified by its 
total internal energy E and the values of one or more manipulable variables 
� = {�1,… , �n} . As a running example, you can think of a gas confined to a con-
tainer with a moveable piston, whose walls are represented as an external potential 
that strongly repels molecules that get too close. We consider a family of such poten-
tials, corresponding to different positions of the piston.

It is often assumed that, besides changes to the variables � , there are other manip-
ulations that may be performed. For example, the system A may be coupled to other 
systems regarded as heat reservoirs at various temperatures. This coupling may be 
applied or removed; that is, the interaction Hamiltonian between A and the heat res-
ervoir is being treated as a manipulable variable. A heat reservoir is a system with 
which is associated a definite temperature, from which no work is extracted and on 
which no work is done; its only exchanges of energy with other systems are as heat. 
What it means to count a system as a heat reservoir at a given temperature will be 
discussed a bit more in the next section. Often, one imagines heat reservoirs availa-
ble for arbitrary temperatures. But one can also consider the thermo-dynamic theory 
of an adiabatically isolated system, or a theory on which there is access to only one 
heat reservoir, or some other limited set.

Corresponding to any manipulation is a transformation of the state of the system. 
A small change d�i in one of the manipulable variables, with the others held fixed, 
and no heat exchange, may result in a change dE in the internal energy of the sys-
tem. We define,

where it is understood that the other variables are held fixed, and there is no 
exchange of energy with any heat reservoir or anything else. In standard thermo-
dynamics, the quantities Ai are usually assumed to have steady, time-independent 
values. We can take this condition (which will be modified in Sect. 5) as a criterion 
of thermal equilibrium of the system. In any process involving a small change in the 
variables � , we define work done on the system as

The convention in play is that work done on the system, increasing its energy, counts 
as positive. If the only other changes to the internal energy of the system A are due 
to interactions with heat reservoirs, we have a neat partitioning of any change in the 
energy of A into a work component and a heat component. Changes in energy of A 
due to changes in the manipulable variables counts as work; exchanges of energy 
with heat reservoirs, as heat. As with work, we count heat transfer into the system A 
as positive.

A thermo-dynamic theory consists of a system A, a class of Hamiltonians H
�
 that 

depend on manipulable variables � , and a set M of possible manipulations of those 

(2)Ai(E,�) =
�E

��i
,

(3)dW =
∑

i

Ai d�i.
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variables. The class might include manipulations that go beyond what can feasibly 
be achieved by us; we can very well consider how a system would react to more 
fine-grained manipulations than we can achieve, or to manipulations that proceed 
so slowly that we would not have the patience to see them through. What one needs 
to know about the effects of these manipulations is given by the dependence of the 
generalized forces Ai on the values of the parameters (E,�) specifying the state. The 
structure of the set of manipulations may vary from theory to theory. One thing that 
I will assume in what follows is that manipulations can be composed: if there is a 
manipulation that takes a state a to a state b, and a manipulation that takes a state b 
to a state c, these manipulations can be performed in succession, forming a manipu-
lation that takes state a to b and then to c.

We will not be assuming that thermodynamically reversible processes, or even 
processes that approximate thermodynamic reversibility arbitrarily closely, are 
always available. Dropping the assumption of the availability of reversible processes 
requires revision of the familiar framework of thermodynamics, as it means dropping 
the assumption of the availability of an entropy function. In its place we will define 
quantities SM(a → b) , defined relative to a class of available manipulations M , to be 
thought of as analogues, in the current context, of entropy difference between states a 
and b. These will be representable as differences in the values of some state function 
only in the limiting case in which all states can be connected reversibly.

For any two thermo-dynamic states a, b, let M(a → b) be the set of manipula-
tions in M that lead from a to b. These may involve heat exchanges with one or more 
heat reservoirs {Bi} with temperatures Ti . For any manipulation M in M(a → b) , let 
Qi(a → b)M be the heat transferred over the course of M into A from the reservoir 
Bi (positive if there is energy flow from Bi to A, negative if there is energy flow the 
other way). We define,

We define, as analogues of entropies5 (which we will henceforth just call 
“entropies”),6

Via the obvious extension of this definition we also define quantities such as 
SM(a → b → c) for processes with any number of intermediate steps. It follows 

(4)�M(a → b) =
∑

i

Qi(a → b)M

Ti
.

(5)SM(a → b) = l.u.b. {�M(a → b) |M ∈ M(a → b)}.

5 The word, appropriately, is formed from the Greek , transformation, for what Clausius called 
the transformational content (Verwandlungsinhalt) of a body ([15], p. 390; [16], p. 34).
6 If b cannot be reached from a via any manipulation in M , or if the set considered has no upper 
bound, SM(a → b) is undefined. To avoid qualifying every formula involving entropies with a pro-
viso that all quantities mentioned therein are defined, we can, if we like, allow SM(a → b) to take val-
ues in the extended reals, which supplement the reals with ±∞ . Then, if b cannot be reached from a, 
SM(a → b) = −∞.
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from the assumption about composition of manipulations and the definition of the 
entropies that

and similarly for processes with longer chains of intermediate states.
One version of the second law of thermodynamics says that, if a system under-

goes a cyclic transformation, returning it to its original state, the sum of Q/T over all 
heat exchanges in the process cannot be positive. We can write this as:

The second law of thermo-dynamics. For any state a,

It follows from the second law that, for any states a, b,

and similarly for cycles consisting of larger numbers of states.
By the second law, SM(a → b → a) cannot exceed zero. If it is equal to zero, then 

there is no harm in adding to the list of possible manipulations a fictitious revers-
ible process that can be run in either direction, from a to b, or, with signs of heat 
exchanges reversed, from b to a. We don’t expect any actual process to satisfy this 
condition; as John Norton has emphasized, any process will involve some dissipa-
tion of energy, and fail to be completely reversible [17]. If one took talk of reversible 
processes too literally, one would end up ascribing absurd properties to them; they 
would be processes that take place infinitely slowly and yet somehow manage to get 
completed. Norton argues that talk of reversible processes should be regarded as 
short-hand for talk of limiting properties of sets of actual processes. Our definition 
of entropy makes this explicit.

In what follows, take the statement that a and b can be reversibly connected as 
no more than a convenient way of saying that SM(a → b → a) is equal to 0. On 
the macroscopic scale, it may be the case that, for all a, b, SM(a → b → a) is close 
enough to zero that we can neglect the fact that it is not exactly zero. In standard 
thermodynamics, which is usually meant to apply at the macroscopic scale, it is nor-
mally assumed that any two states of a system can be connected by a reversible pro-
cess. If this holds—that is, if, for all states a, b, SM(a → b → a) = 0—it follows 
from the second law that there is a function SM on the set of thermodynamic states, 
defined up to an additive constant, such that

If, however, we want to push ΘΔcs down to the nanoscale, on which departures from 
reversibility are non-negligible, we need not assume this.

Call a transformation from a thermo-dynamic state a to a state b adiabatic if no 
exchanges of energy occur that are not due to manipulation of the variables � ; no 
heat is exchanged with any heat reservoir. The following is a simple consequence of 
the definition of entropy.

(6)SM(a → b → c) = SM(a → b) + SM(b → c),

SM(a → a) ≤ 0.

(7)SM(a → b → a) ≤ 0,

(8)SM(a → b) = SM(b) − SM(a).
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Proposition 1 If there is a manipulation that takes state a to state b adiabatically, 
then, for any state c, SM(b → c) ≤ SM(a → c) and SM(c → b) ≥ SM(c → a).

In the special case in which all states are reversibly connectable, this says that an 
adiabatic transformation cannot lower the entropy of a state.

It’s a consequence of all this that, given a physical system A, there may be sev-
eral thermo-dynamical theories of that system A, depending on the specification of 
manipulable variables, and on the set M of possible manipulations. This means that 
a pair of physical states a, b of the system might be assigned different values of the 
entropy SM(a → b) by different thermo-dynamic theories. This will be illustrated 
in the next section. If one thought that the entropy difference of a pair of states of a 
system was supposed to be a property of those physical states alone, this might seem 
paradoxical. In the context of ΘΔcs , there’s nothing paradoxical about it at all.

Once the set M of possible manipulations is chosen, how the system reacts to 
those manipulations is a matter of physics. These reactions are encoded in the equi-
librium values of the generalized forces Ai , defined by (2). It is these that determine 
the dependence of entropies SM(a → b) on the values of the manipulable variables. 
One may say: we may choose the variables to manipulate, but nature chooses the 
response to those manipulations. It would be mistake to say that a view of this sort 
makes entropy subjective. Entropy remains a measurable quantity, but what quantity 
it is that is being measured is determined by the choice of manipulable variables.

What we have presented in this section is almost the same as what is found in 
typical thermodynamic textbooks. Almost. It is universally agreed that thermody-
namic states are defined relative to some selection of a set of variables that is small, 
compared to the full set of variables needed to specify the precise physical state of a 
system. The difference is that these variables are often described as the macroscopic 
variables, the ones whose values can be obtained via a macroscopic measurement.

What to say about this? First: though this is not always explicitly said, if one 
reads any textbook of thermodynamics closely enough, one will find that the exten-
sive variables that define an equilibrium state are invariably treated as manipulable 
variables, in the sense discussed in the previous section.7 Sometimes they are called 
external variables. Second: it should be stressed that the selected variables are not 
properties of the system to be studied, but of external constraints placed on the sys-
tem. For example, the quantity V that appears in the equation of state of a gas is 
the volume available to the gas. Third: even if there is a correspondence between 
manipulable variables and macroscopic extensive variables (as there is a corre-
spondence between the position of the walls of a container and the volume occu-
pied by a gas in its equilibrium state), these are conceptually distinct. Fourth: an 
equilibrium thermo-dynamic state need not be a state in which all macroscopically 
observable quantities have stable values. Consider, for example, a particle, visible 

7 Example, from one of the most widely used textbooks,
 A description of a thermodynamic system requires the specification of the “walls” that separate it from 
its surroundings and that provide its boundary conditions. It is by means of manipulations of the walls 
that the extensive parameters of the system are altered and processes are initiated ([18], p. 15).
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under a microscope of modest power, undergoing Brownian motion. If—as I think 
we should—we count its position as macroscopically observable, this does not set-
tle down to a stable value. What we have, instead, is a stable pattern of fluctuations. 
This can well count as a state of thermo-dynamic equilibrium.

4  Examples

Two examples will help illustrate how ΘΔcs  works, and how it differs from the 
standard way of presenting thermodynamics.

4.1  Entropy of Mixing of Gases

Consider the following example, discussed by Gibbs ([19], pp. 227–229; [20], pp. 
166–167), which has been the topic of considerable discussion since that time. We 
consider a container divided by a partition into two subvolumes, each containing 
samples of gas at the same temperature and pressure. The partition is removed, and 
the gases interdiffuse, until each is equally distributed within the whole volume. Has 
there been an increase of entropy, or not?

The answer found in all the textbooks, given already by Gibbs, is that if the gases 
initially in the two subvolumes are of the same type, there has been no change of 
thermodynamic state, and ipso facto no change in entropy. If the two subvolumes 
initially contain gases of different types, initial and final states of the contents of 
the container are distinct thermodynamic states, and the entropy of the final state is 
higher than that of the initial state. This entropy increase is known as the entropy of 
mixing.

But what is the criterion for sameness of thermodynamic state? On the stand-
ard textbook account, thermodynamic states are defined with respect to macroscopic 
variables. On this account, initial and final states are distinct if and only if they mac-
roscopically distinguishable. On the thermo-dynamic account the process is entropy-
increasing if the class M contains manipulations that act differentially on the two 
gases, in such a way that their interdiffusion represents a lost opportunity to extract 
work. A standard textbook device, originating with Boltzmann [21] and popularized 
by Planck [22], involves conceiving of pistons made from some material permeable 
to one gas but not the other. Armed with such pistons, one could slowly expand one 
gas and then the other, keeping their temperature constant as work is extracted by 
having them in contact with a heat reservoir. In such a way one obtains the standard 
entropy of mixing, which is just the sum of the entropies of expansion of the two 
gases.

One could imagine cases in which the initial and final states are macroscopically 
distinct but not thermo-dynamically distinct. They could, for example, differ in col-
our. If the class of manipulations considered does not include any way to exploit 
this difference to differentially manipulate them, then initial and final states will 
not differ in their thermo-dynamic properties. Initial and final states could also be 
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thermo-dynamically distinct but not macroscopically distinguishable via the sorts 
of operations we usually count as macroscopic observations. They might appear the 
same to our measuring apparatus, and still react differently to the aforementioned 
semi-permeable pistons.

As a historical note: conflation of these two notions of thermodynamic state 
goes back as far as Gibbs’ discussion, as Gibbs gives both answers to the question 
of criterion of distinctness of initial and final states. He first gives, as a criterion 
for restoring the initial state of the gases, the condition that we bring about a state 
“undistinguishable from the previous one in its sensible properties” ([19], p. 228; 
[20], p. 166). “It is to states of systems thus incompletely defined,” he says, “that 
the problems of thermodynamics relate.” But then, in the following paragraph, he 
writes,

We might also imagine the case of two gases which should be absolutely iden-
tical in all the properties (sensible and molecular) which come into play while 
they exist as gases either pure or mixed with each other, but which should dif-
fer in respect to the attractions between their atoms and the atoms of some 
other substances, and therefore in their tendency to combine with other sub-
stances. In the mixture of such gases by diffusion an increase of entropy would 
take place, although the process of mixture, dynamically considered, might 
be absolutely identical in its minutest details (even with respect to the precise 
path of each atom) with processes which might take place without any increase 
of entropy. In such respects, entropy stands strongly contrasted with energy. 
([19], pp. 228–229; [20], p. 167)

Here he seems to be acknowledging that the key issue is not whether the two gases 
are the same in their sensible properties, but whether or not they can be separated by 
external means.

This example has given rise to metaphysical discussions that are completely irrel-
evant. The relevant criterion of distinctness, it is said in some quarters, is whether the 
particles of the two gases are identical in a strong sense, according to which exchange 
of particles makes no difference whatsoever to the physical state. On such a view, if all 
the particles were distinct—that is, if every particle involved differed in some physical 
property from all the others—then there would always be an entropy of mixing when 
the barrier was removed. As Robert Swendsen [23, 24] has argued, this gives the wrong 
answer when applied to a colloidal suspension. A colloid, such as paint, or milk, con-
sists of blobs, called colloidal particles, of some type of material suspended in some 
fluid. The colloidal particles may be large enough that each contains a large number of 
molecules, and, though their sizes may be sufficiently uniform that we are justified in 
treating the colloid as a collection of identical particles, it might be that no two of them 
contain exactly the same number of atoms. Someone committed to the position that for 
a collection of distinct particles there is always an entropy of mixing when a partition is 
removed would be committed to the position that we can lower and raise the entropy of 
a can of paint merely by inserting or removing a partition. This is the wrong answer. In 
the absence of any means of manipulation that is so sensitive to the minute differences 
between colloidal particles that each particle can be differentially manipulated, there is 
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no entropy of mixing when one removes a partition separating two samples of the same 
type of paint.

The entropy of mixing of two distinct gases depends only on the quantities of gas in 
each subvolume, and on their initial and final volumes. It is independent of the degree 
of dissimilarity. This struck Duhem as paradoxical, and, following him, Wiedeberg, 
who spoke of “Gibbs’ paradox” [25, 26]. The alleged paradox stems from a tension 
between the independence of the entropy of mixing from the nature of the gases (as 
long as they are distinct), and the idea that a result valid for identical gases should be 
obtainable as a limit-case of distinct gases of diminishing degree of dissimilarity.

If entropy is thought of as an intrinsic property of a system, like its mass or its 
total energy, then this does seem puzzling. However, as argued by Denbigh and Red-
head [27], if we recall how entropy is defined—relative to some set of processes, 
as a limit of some quantity taken over all processes in that set—this does not seem 
surprising at all. The result of any particular process, taking placing within a fixed 
duration of time, may well depend continuously on the relevant parameters of the 
system. But entropy involves a limit over a set of processes. As two gases become 
more and more similar, the time required to achieve a given degree of separation 
may increase, but, if our set of manipulations contains arbitrarily slow processes, 
this will not affect entropy as a limit property.

An analogy may help. Consider a collection of immortal ants that crawl at dif-
ferent rates towards a hill that is one metre tall. All of them, as long as they have 
a nonzero velocity in the proper direction, eventually reach the top of the hill. The 
distance crawled, and height reached, at any given time t, is a continuous function of 
the speed at which the ant crawls. But the maximum height reached by an ant is one 
metre for any nonzero speed, and zero for a stationary ant, and so is a discontinuous 
function of the ant’s speed.

4.2  Helmholtz Free Energy

Suppose that the class of manipulations to be considered involves access to only one 
heat reservoir, at temperature T. We ask: if the system starts out in a state a and ends 
up in state b, what is the most work that you can extract from it along the way?

Let Ea and Eb be the internal energy of the system in states a and b, respectively. 
If work is extracted from the system, this means that W is negative. We obtain from 
the system a positive amount of work Wgain = −W . Conservation of energy requires,

From the definition of entropy SM(a → b),

and so

(9)Eb − Ea = Q −Wgain.

(10)SM(a → b) ≥
Q

T
,

(11)Wgain ≤ −(Eb − Ea − TSM(a → b)).
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If the quantity on the right-hand side of (11) is negative, then no work can be 
obtained in a transition from a to b using a heat reservoir at temperature T as a 
resource; on the contrary, the transition requires expenditure of a quantity of work 
(that is, a positive quantity of energy going into the system),

Call the quantity

the Helmholtz free energy of b relative to a. If the only available heat sources and 
sinks are at temperature T, a transition from a to b is achievable without expenditure 
of a positive quantity of work if and only if FM(a → b) < 0.

Let us now make the assumption that all states are reversibly con-
nectible, and hence that there is a state-function SM available, such that 
SM(a → b) = SM(b) − SM(a) . This allows us to define a function

such that

The quantity FM was called the available energy in the 4th edition (1875), and sub-
sequent editions, of Maxwell’s Theory of Heat ([28],  pp. 187–192). It was called 
freie Energie by Helmholtz [29], whence its current name, Helmholtz free energy. 
If all heat exchanges are with reservoirs at temperature T, then a transition from a 
to b requires work to be done if FM(b) > FM(a) , and can be a source of work if 
FM(b) < FM(a).

There is an interesting difference between the uses of this concept by Maxwell 
and Helmholtz, respectively. Helmholtz imagines a system in contact with a heat 
bath at temperature T. All changes under such conditions are isothermal changes, 
and the free energy difference between two states is the work needed to effect a 
state transition via an isothermal process. The use of the concept is to determine 
the equilibrium state of the system, which is the state in which F takes its mini-
mum value (that is, work has to be done to move the system away from this state). 
This is the use to which it is put in most modern textbooks. This presentation may 
suggest that the Helmholtz free energy is a property of the system itself.

Maxwell, on the other hand, imagines transitions between arbitrary initial and 
final states; these need not be states of temperature T. The change in available 
energy is the work needed to effect a state transition, using a heat reservoir at 
temperature T as a resource. On this way of thinking about it, F is a function both 
of the state of the system, via state functions E and S, and of the heat reservoir, 
via T.

(12)Wcost ≥ Eb − Ea − TSM(a → b).

(13)FM(a → b) = Eb − Ea − TSM(a → b)

(14)FM = E − TSM

(15)FM(a → b) = FM(b) − FM(a).
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5  Statistical Thermo‑dynamics

In the previous section it was assumed that the equilibrium values of the quanti-
ties {Ai} , defined by Eq. (2), are well-defined as functions of the energy E and the 
manipulable variables �.

That this is a substantive assumption can be seen by considering the example 
of a gas confined to a container with a moveable piston whose position is taken 
to be manipulable. The generalized force corresponding to displacements of the 
piston is the negative of the pressure. For a macroscopic gas in equilibrium, we 
expect an even and steady pressure on the walls of the container. If we think 
about what is happening on the molecular level, we realize that this is a statistical 
regularity of the same sort as the observed near-constancy of deaths per capita in 
a given population from year to year, a regularity arising from aggregation of a 
large number of individually unpredictable events. A regularity of this sort is not 
to be thought of as something that occurs with certainty, but, rather, with high 
probability. If we ask whether we could push on the piston and find ourselves able 
to diminish the volume with virtually no resistance, we have to admit that it is not 
impossible, but (for a macroscopic gas) so highly improbable that the possibility 
may be neglected.

This means that probabilistic considerations are in play, even in the cases 
where there is a determinate (enough) near-certain amount of work required for 
a given manipulation. The role of probability may be left implicit in cases where 
deviation from certainty is negligible. However, since probability is playing a role 
whether explicitly acknowledged or not, it is best to introduce probabilistic con-
siderations explicitly. This opens up the possibility of a more general theory that 
embraces cases in which statistical fluctuations in generalized forces are non-neg-
ligible, with the quasi-deterministic macroscopic theory as a limiting case.

It is a commonplace of the literature on philosophy of probability that the word 
“probability” is used in more than one sense. That raises the question of what 
probability is to mean in this context. I will defer that question (but see [30] for 
some options), leaving a gap in the account to be filled in. As long as the usual 
machinery of probability theory is applicable, the conclusions we will draw will 
be independent of how that gap is filled.

One thing should be stressed, however. In the latter half of the nineteenth cen-
tury, it became increasingly common (spurred, in part by Venn’s The Logic of 
Chance) to think of probability statements as involving veiled reference to fre-
quencies in some actual or hypothetical series of similar events. It was in this 
milieu that Boltzmann, and, following him, Maxwell and Gibbs, began to think 
in terms of an imaginary ensemble consisting of a large number of systems with 
the same external parameters and varying microstates [31–34]. Frequentism is 
widely (and rightly, in my opinion) rejected in the literature on the philosophy 
of probability. Fortunately, nothing in the approach of Boltzmann and his suc-
cessors is wedded to it. Any readers who have qualms about talk of probabili-
ties stemming from a worry that probabilities cannot be ascribed to individual 
systems should rest assured that this is not the case. There is no commitment to 



1232 Foundations of Physics (2020) 50:1219–1251

1 3

frequentism about probabilities. Feel free to take the talk of ensembles by Boltz-
mann, Maxwell, Gibbs, and the textbook tradition that followed as a picturesque 
way of talking about a probability distribution applied to propositions about an 
individual system.

Given a thermo-dynamic state of a system, we want to have probability distri-
butions over the work done and heat exchanged as a result of a manipulation. The 
reason that these don’t have determinate values is that the thermo-dynamic state of a 
system drastically underspecifies the physical state of the system. This suggests that 
we supplement our specification of a thermo-dynamic state, which so far involves 
specification of the internal energy and of values of the manipulable variables, with 
a specification of a probability distribution over possible physical states of the sys-
tem. This can be done in the context of classical or quantum mechanics. In a classi-
cal context, we will have assignments of probabilities to appropriate subsets of the 
system’s phase space; in the quantum context, probability distributions over the pure 
states of the system.

What now happens to the second law of thermodynamics? In a regime in which 
statistical fluctuations of the force on a piston are non-negligible, we might in a 
given cycle of an engine end up expending less work than expected in the compres-
sion stage, and hence might obtain in that cycle more work than the Carnot limit 
permits. But, by the same token, we might expend more work than expected. We 
expect that we won’t be able to consistently and reliably violate the Carnot limit 
on efficiency. This suggests a probabilistic version on the second law, expressed in 
terms of expectation values of heat and work transfers. The second law will then be, 
to employ Szilard’s vivid analogy, like a theorem about the impossibility of a gam-
bling system intended to beat the odds set by a casino.

Consider somebody playing a thermodynamical gamble with the help of cyclic 
processes and with the intention of decreasing the entropy of the heat reser-
voirs. Nature will deal with him like a well established casino, in which it is 
possible to make an occasional win but for which no system exists ensuring 
the gambler a profit ([35], p. 73, from [36], p. 757).

We will be considering exchanges of energy with heat reservoirs. A heat reservoir 
is a system from which no work is extracted and on which no work is done; its only 
exchanges of energy with other systems are as heat. When two heat reservoirs of 
the same temperature are placed in thermal contact, there is no tendency for heat to 
be transferred in either direction, and the expectation value of the heat exchange is 
zero. When two reservoirs are placed in thermal contact, the expectation value of 
heat flow is from warmer to cooler. Any collection of heat reservoirs at the same 
temperature may be regarded as a larger heat reservoir at the same temperature.

From considerations of this sort one can argue (see [37] for exposition) that an 
appropriate probability distribution to associate with a heat reservoir is the one that 
Gibbs called the canonical distribution. In the classical context, it is defined as the 
distribution with density function, with respect to Liouville measure,

(16)��(x) = Z−1e−�H(x),
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where � is the inverse temperature 1/kT, and Z is the normalization constant required 
to make the integral of this density over all phase space unity. This depends both 
on the Hamiltonian H and on � , and is called the partition function. In the quantum 
context, the canonical distribution is represented by a density operator,

where, again, Z is the constant required to normalize the state. We will henceforth 
take it that to treat a system as a heat reservoir is to represent its thermo-dynamic 
state by a canonical distribution, uncorrelated with the rest of the world.

6  Statistical–Mechanical Entropies, and the Second Law

In the spirit of Szilard’s analogy, if we seek a statistical-mechanical analog of 
the thermo-dynamic entropy, we may take the definition (5) and replace the heat 
exchanges mentioned therein with their expectation values.

A thermo-dynamical state of a system will be specified by its Hamiltonian H, 
which depends on manipulable variables �, together with a probability distribu-
tion over its state space. In the classical context the probability distribution may be 
represented by a density function � ; in the quantum context, the salient aspects of 
such a distribution may be represented by a density operator �̂� . Given a thermo-
dynamical state a = (�a,Ha) , we consider the effects of some manipulation, which 
may consist of manipulation of the variables � and of couplings to various heat res-
ervoirs {Bi} . The probability distribution for A, together with canonical distributions 
for the heat reservoirs, determines an initial probability distribution over the com-
posite system consisting of A and the reservoirs {Bi} . This will evolve, in accord-
ance with the Liouville equation (classical) or Schrödinger equation (quantum), 
according to the Hamiltonian of the total system, which may be changing due to 
the changes in the manipulable variables. This process will result in a new thermo-
dynamic state b = (�b,Hb) . Over the course of the process quantities {Qi(a → b)} of 
heat may be exchanged with the reservoirs; the probability distribution over initial 
conditions, together with the evolution of the joint system, yields a probability dis-
tribution over the heats {Qi(a → b)} . Let ⟨Qi(a → b)⟩M be the expectation value of 
the heat obtained from reservoir Bi over the course of the process M. As before, let 
M(a → b) be the set of manipulations in M that lead from a to b. For any manipula-
tion M in M(a → b) , define

Define the statistical–mechanical entropy SM(a → b) by

We are entitled to use the same notation for this and the entropies as defined 
in Sect.  3, as the latter are really only a special case of the entropy defined here, 

(17)𝜏𝛽 = Z−1e−𝛽Ĥ ,

(18)�M(a → b) =
�

i

⟨Qi(a → b)⟩M
Ti

.

(19)SM(a → b) = l.u.b. {�M(a → b) |M ∈ M(a → b)}.
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when the probabilities are such that variances in the heat exchanges are negligible. 
We are only making explicit the previously implicit dependence on probabilistic 
considerations.

With these definitions in hand, the statistical-mechanical entropies SM(a → b) are 
defined once we have specified a class of manipulations. Of particular interest will be 
classes of manipulations of the following sort.

– At time t0 , the heat reservoirs Bi have canonical distributions at temperatures Ti , 
uncorrelated with A, and are not interacting with A.

– During the time interval [t0, t1] , the composite system consisting of A and the reser-
voirs {Bi} undergoes Hamiltonian evolution, governed by a time-dependent Hamil-
tonian H(t), which may include successive couplings between A and the heat reser-
voirs {Bi}.

– The internal Hamiltonians of the reservoirs {Bi} do not change.
– At time t1 , as a result of Hamiltonian evolution of the composite system, the mar-

ginal probability distribution of A is �b.

The initial state of A is arbitrary. No assumption is made about the form of the Hamilto-
nian HA , the nature of the manipulable variables � , or about the manipulations applied 
to them. These could very well include fine-grained manipulations at the molecular 
level that we would regard as well beyond the range of feasibility. In what follows, we 
will use M� to designate some class of this sort. That is, the variable M ranges over 
arbitrary classes of manipulations, and the variable M� ranges over classes of manipu-
lations satisfying these conditions.

A class of manipulations of this sort has the advantage that it affords a clear dis-
tinction between energy changes of the system A that are to be counted as work, and 
those that are to be counted as heat. Changes in energy of A due to manipulation of the 
exogenous variables are work; exchanges of energy with the heat reservoirs are counted 
as heat. A more general class of manipulations might include exchanges of energy 
between the system A and other systems that are not treated as heat reservoirs—that is, 
systems with distributions other than canonical distributions. With respect to this class 
of manipulations, we might not have a neat partition of energy changes to A into heat 
and work; changes due to interactions with other systems might be classed as neither.

Given some such class of manipulations, the second law comes out as a theorem. 
That is, it can be proven that

As we saw in Sect. 3, it follows from this that if all states are reversibly connect-
able—that is, if, for all a, b,

then there is a state function SM�
 , defined up to an arbitrary constant, such that

(20)SM�
(a → a) ≤ 0.

(21)SM�
(a → b → a) = 0,

(22)SM�
(a → b) = SM�

(b) − SM�
(a).
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If we ask what form that state-function takes, it turns out that, in the classical con-
text, it is the quantity called the Gibbs entropy, and, in the quantum context, the von 
Neumann entropy.

To show this, we must first define these quantities. Consider a probability dis-
tribution P on a classical state-space Γ , that has density � with respect to Liouville 
measure. � itself may be treated as a random variable: if a point x in Γ is randomly 
selected according to the distribution P, there will be a corresponding value of �(x) . 
Similarly, any measurable function of � may be treated as a random variable. We 
define the Gibbs entropy of the distribution P as proportional to the expectation 
value, calculated with respect to P, of the logarithm of �.

For a quantum state, represented by a density operator �̂� , we define the von Neu-
mann entropy,

Most of what we will have to say applies equally in the classical and quantum con-
texts. In what follows, we will use the intentionally ambiguous notation S[�] to state 
results that hold both for Gibbs entropy of a probability distribution on a classical 
phase space and for von Neumann entropy of a quantum state.

The link between these quantities and the statistical thermo-dynamic entropy is 
provided by the following theorem.8

Proposition 2 For any manipulation in the class M�,

Recalling the definition (19) of statistical–mechanical entropies, this gives us,

Proposition 3 Statistical entropies defined with respect to M� satisfy

Though not a difficult theorem, Proposition 2 is of sufficient importance that it 
may be called the Fundamental Theorem of Statistical Thermo-dynamics. To get a 
feel for what it means, consider a heat engine operating in a cycle between a hot 
heat reservoir at temperature Th and a cooler heat sink at temperature Tc . It extracts 
a positive amount of heat Qh from the hot reservoir, performs work W, and discards 
a positive amount Qh −W into the sink. To say that it operates in a cycle means that 
its initial thermo-dynamic state is restored at the end of this process (it may have 
built up some correlations with the reservoirs along the way, but these don’t matter; 

(23)SG[�] = −k⟨log �⟩P

(24)SvN[�̂�] = −k⟨log �̂�⟩�̂� = −k Tr [�̂� log �̂�].

�

i

⟨Qi⟩M
Ti

≤ S[�A(t1)] − S[�A(t0)].

SM�
(a → b) ≤ S[�b] − S[�a].

8 The classical version of this is found in [34], pp. 160–164, and the quantum version, in [38], pp. 128–
130.
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the final state is specified by the restriction of the joint probability distribution to the 
system A). Proposition 2 tells us that the expectation values of work obtained, heat 
extracted and heat discarded satisfy (recalling that a quantity of heat counts as posi-
tive if it is going into the engine and negative if it is going out),

This gives us, for the expectation value of the work obtained:

Thus, the Carnot bound on the efficiency of a cyclical engine operating between 
these two reservoirs becomes a bound on expectation value of work obtained. 
It should be stressed that we have not presumed that the actual values of heat 
exchanges will be or even will probably be close to their expectation values. No 
assumption has been made that the probability distributions for these quantities are 
tightly focussed near the expectation values. These expectation values satisfy the 
given relations even if the variances of their distributions is large.

From Proposition  3 the second law of thermo-dynamics is an immediate 
corollary.

Corollary 1 For manipulations M�,

for any thermo-dynamic state a.

Another immediate corollary of Proposition 3 is,

Corollary 2 If SM�
(a → b → a) = 0, then

Thus, the state function whose existence is guaranteed by the second law plus 
reversibility is, up to an additive constant, the Gibbs or von Neumann entropy.9

A probability distribution may encode a lot of details about the microstate of 
the system that are irrelevant to the results of available manipulations. Consider, 
for example, a gas consisting of a macroscopic number of molecules initially con-
fined to the left side of a container. A partition is removed, and the gas is allowed 
to expand freely into the whole volume of the container. Imagine (as is common 
in the literature on the philosophy of statistical mechanics) that it can do so while 
isolated from its environment. Any probability distribution with support in the set 

(25)
⟨Qh⟩
Th

−
⟨Qh⟩ − ⟨W⟩

Tc
≤ 0.

(26)⟨W⟩ ≤
�
1 −

Tc

Th

�
⟨Qh⟩.

SM�
(a → a) ≤ 0

SM�
(a → b) = S[�b] − S[�a].

9 It should be stressed that we are not defining the statistical mechanical entropy SM(a → b) in terms of 
S[�

b
] and S[�

a
] ; it is defined by (19).
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of states in which all molecules are one side will evolve into a distribution with 
support on a set that is a minuscule fraction of the available phase space. How-
ever, this set will so finely distributed that only very fine-grained manipulations 
could distinguish this probability distribution from an equilibrium distribution 
uniform in the accessible region of phase space. If the only available manipula-
tions involve pistons and couplings to heat reservoirs, there will be no difference, 
in terms of expected reactions to these manipulations, between a probability dis-
tribution corresponding to a recent isolated expansion from one side of the box 
and one on which the gas had been in equilibrium with a heat reservoir for a 
long time. The considerable knowledge about the state of the gas that comes from 
knowing it was in the left half of the box an hour ago is irrelevant to results of 
ham-handed interventions.

With these considerations in minds, we define an equivalence-relation between 
thermo-dynamic states.

Any two thermo-dynamic states (�,H
�
) , (��,H

�
) having the same values of the 

manipulable variables � , are thermo-dynamically equivalent with respect to M 
if and only if, for every manipulation M ∈ M , � and �′ yield the same expecta-
tion values for work, ⟨W⟩ , and for heat exchanges, ⟨Qi⟩ , over the course of the 
manipulation M. We will write a∼Ma� for thermo-dynamic equivalence.

We could, of course, define a stronger notion on which equivalence requires, not just 
equality of expectation values, but equality of the probability distributions for work 
and heat, but at the moment I see no need for this. One could also relax the condi-
tion a bit, and require, not exact equality, but equality within a certain tolerance (in 
which case the relation will not be strictly speaking an equivalence relation).

Define coarse-grained entropies,

Obviously, for any state a,

If, for some thermo-dynamic state a, there is another state a′ that is thermo-dynami-
cally equivalent to it and which maximizes the entropy among states equivalent to a, 
we will say that a′ is a coarse-graining of a. We will say that a is a coarse-grained 
state if and only if S̄M[a] = S[a] . Note, however, that the coarse-grained entropy is 
well-defined whether or not for every state there is a corresponding coarse-grained 
state.

With the concept of coarse-grained entropy in hand, we have a strengthening 
of Proposition 3.

Proposition 4 For any class of manipulations M�, and any pair of thermo-dynamic 
states a, b,

(27)S̄M[a] = l.u.b {S[a�] | a∼Ma�}.

(28)S̄M[a] ≥ S[a].

SM𝜃
(a → b) ≤ S[𝜌b] − S̄M𝜃

[𝜌a].
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The upper bound on SM�
(a → b) in Proposition 4 is a difference between two differ-

ent state-functions, S and S̄M𝜃
 , depending on whether the state is the initial or final state 

of the manipulation. We may call S̄M𝜃
 the departure entropy, and S, the arrival entropy.

This sheds light on a move that has routinely been made, since the time of Gibbs: 
the use of a coarse-grained entropy (usually obtained via a coarse-graining of the 
state) to track approach to equilibrium of an isolated system. If a system is isolated, 
the Gibbs/von Neumann entropy is a constant of the motion. The state can, how-
ever, evolve into a state in which the result of any manipulation would be the same 
as would obtain if the state were one with a higher entropy S̄M𝜃

 . The quantity S̄M𝜃
 , 

rather than S, is the one relevant to bounds on the value of the state for obtaining 
work, and so is the relevant quantity to track, if one is interested in tracking loss 
of such value as the system approaches equilibrium. This is not, as some have sug-
gested, an ad hoc move that is made for the sole purpose of finding a quantity that 
increases on the way to equilibrium.

From the second law, Corollary 1, for any a, b, SM�
(a → b → a) cannot be posi-

tive. It follows from Proposition (4) that the difference between the Gibbs/von Neu-
mann entropies of the states a and b, and the corresponding coarse-grained versions, 
puts a bound on how close to zero SM�

(a → b → a) can be.

Corollary 3

 

An immediate consequence of this is that only coarse-grained states can be 
reversibly connected.

Corollary 4 If SM�
(a → b → a) = 0 , then S̄M𝜃

[a] = S[a] and S̄M𝜃
[b] = S[b].

We can summarize the relations between the thermo-dynamic entropies 
SM�

(a → b) and the Gibbs/von Neumann entropies as follows. 

1. If the states a and b can be connected reversibly, then the thermo-dynamic entropy 
SM�

(a → b) is equal to the difference of the Gibbs/von Neumann entropies of the 
two states. That is, 

 This is not an arbitrary or whimsical choice, but a theorem.
2. This relation between thermo-dynamic entropy and the Gibbs/von Neumann 

entropy can hold for both SM�
(a → b) and SM�

(b → a) only if a and b can be 
connected reversibly. If they cannot, then either SM�

(a → b) is strictly less than 
S[�b] − S[�a] , or SM�

(b → a) is strictly less than S[�a] − S[�b] (or both).
3. If a is not a coarse-grained state, then SM�

(a → b) is never equal to S[b] − S[a] 
for any state b that can be reached from a, but is always strictly less.

|||SM𝜃
(a → b → a)

||| ≥
(
S̄M𝜃

[𝜌a] − S[𝜌a]
)
+
(
S̄M𝜃

[𝜌b] − S[𝜌b]
)
.

SM�
(a → b) = S[�b] − S[�a].
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To get a feel for this, suppose that a and b can be connected adiabatically, that is, 
purely Hamiltonian evolution can take �a to �b . One can think of free expansion of 
an adiabatically isolated gas; �b is then a distribution that has support on a small but 
highly fibrillated set that is stretched out throughout the available phase space. Then, 
because Hamiltonian evolution preserves S, S[�b] is equal to S[�a] . It would simply 
be a gross error to conclude from this that a and b are entropically on a par, and that, 
for some state c that can be reached from both, SM(a → c) is equal to SM(b → c).10 
Unless the expansion can be undone adiabatically (which would require fantastically 
fine-grained control over the evolution of the system), SM(b → c) is strictly less than 
SM(a → c).

7  Dissipation

In any process M that takes a state a to a state b, some of the work done, or heat dis-
carded into a reservoir, may be recovered by some process that takes b back to a. If 
the process can be reversed with the signs of all ⟨Qi⟩ reversed, then full recovery is 
possible. If full recovery is not possible, and cannot even be approached arbitrarily 
closely, we will say that the process is dissipatory. A manipulation M′ that takes b to 
a and recovers work done and heat discarded would be one such that

There might be a limit to how closely this can be approached. Define the dissipation 
associated with the process of M taking a to b as the distance between this limit and 
perfect recovery.

It follows from the second law that this is non-negative.
If there is no limit to how much the dissipation associated with processes that 

connect a to b can be diminished, SM(a → b → a) is equal to zero. This is the con-
dition that we earlier called reversibility. It is easy to see that the negative of this 
places a bound on the minimal dissipation associated with any manipulation that 
takes a to b. For any M in M(A → b),

It follows from this and Corollary 3 that the difference between the coarse-grained 
and non-coarse grained versions of the Gibbs/von Neumann entropies of the states a 
and b place bounds on the minimal dissipation associated with a process that takes 
a to b.

(29)�M(a → b) + �M� (b → a) = 0.

(30)
�M(a → b) = g.l.b. {−(�M(a → b) + �M� (b → a)) |M� ∈ M(b → a)}

= −SM(b → a) − �M(a → b).

(31)�M(a → b) ≥ −SM(a → b → a).

10 To be clear: I don’t know of anyone who has actually committed this error. Certainly not Gibbs or von 
Neumann.
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Corollary 5 For any states a, b, and any manipulation M in M�,

8  Demonology

As noted above, in Proposition  1, no adiabatic transformation can decrease 
the entropy of a state. This is a consequence of the definition of the entropies 
SM(a → b) . One could also consider transformations of a system A that involve 
manipulation of A and an auxiliary system C that can couple to it. No adiabatic 
transformation can decrease the entropy of the joint system AC.

These entropies are, of course, defined relative to a class of manipulations. 
This dependence of the question of whether a given process involves an increase 
of entropy on the class of manipulations considered was illustrated by Maxwell via 
a thought experiment, in which we imagine a “very observant and neat-fingered 
being”11 capable of performing manipulations that are “at present impossible to us” 
([39], p. 308).

Suppose we have a class M of manipulations, and supplement it with some 
manipulation not in the class, to form a new class M+ . It could happen that 
some state-transformation effected adiabatically via manipulations in M

+ 
could lower the entropy of a state, relative to M . That is, there might be an adi-
abatic transformation a → b , achievable via manipulations in M+ , such that, for 
some state c, SM(b → c) > SM(a → c) . Someone confused about the depend-
ence of entropy on a set of manipulations might take this to be a violation of 
the principles of thermo-dynamics, which dictate that, if an adiabatic process 
can take a to b, SM(b → c) ≤ SM(a → c) . There is no such violation, because 
SM+(b → c) ≤ SM+(a → c).

This can be vividly illustrated by imagining a stock M of physically possible 
manipulations to be supplemented by a magical instantaneous velocity-reversing 
operation, yielding an enhanced set M+ . Consider our stock example of a container 
of gas, and let M be the usual sorts of manipulations, consisting of manipulations of 
the position of the piston and heat exchanges with various heat reservoirs. Let M+ 
be this stock of operations, supplemented by a magical velocity-reversal. Consider a 
container of gas initially confined to a subvolume, which expands to fill the whole 
container. With respect to M , this expansion counts as an entropy increase. An irre-
versible expansion is a lost opportunity to obtain work. But, since, with respect to 
M

+ , the expansion is adiabatically reversible, there is no entropy increase, no lost 
opportunity to obtain work, as one can apply the reversal operation and wait for the 
gas to return to its original subvolume. An application of the velocity reversal opera-
tion to the expanded gas results in an entropy decrease with respect to M but not 
M

+ . Since the operation preserves phase-space volume (or, in the quantum context, 

𝛿M(a → b) ≥
(
S̄M𝜃

[𝜌a] − S[𝜌a]
)
+
(
S̄M𝜃

[𝜌b] − S[𝜌b]
)
.

11 Letter to P. G. Tait, 11 Dec. 1867, in [3], p. 332.
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the absolute value of the inner product of any two state-vectors), the proof of Propo-
sition 2 still goes through, and the statistical version of the second law holds even 
for the set M+ of manipulations. A demon capable of performing a velocity reversal 
could undo the process of equilibration of an isolated system but could not operate 
an engine in a cycle to violate the Carnot bound on efficiency of a heat engine.

This may seem paradoxical to some. Surely, it will be said, a gas that is initially 
spread out throughout a container and subsequently retreats to a corner must be 
decreasing its entropy. This cannot be sustained, however, if one attends to the defi-
nition of thermodynamic entropy. If the expansion of a gas can be can be reversed 
adiabatically, then, by the definition of thermodynamic entropy—not just the defini-
tion we have given but by the definitions found in all textbooks of thermodynam-
ics—it is not an entropy-increasing process. The process of returning to the initial 
subvolume may be a diminution of Boltzmann entropy, but this only illustrates that 
the connection between Boltzmann entropy and thermodynamic entropy is some-
what tenuous.

Earman and Norton distinguish between straight and embellished violations of 
the second law of thermodynamics [40]. A straight violation decreases the entropy 
of an adiabatically isolated system, without compensatory increase of entropy else-
where. An embellished violation exploits such decreases in entropy reliably to pro-
vide work. In a similar vein, David Wallace distinguishes between two types of 
demon [41]. Adapting the distinction to our terminology, a demon of the first kind 
decreases entropy defined with respect to some class M of manipulations, by uti-
lizing a manipulation outside the class. A demon of the second kind violates the 
Carnot bound on efficiency of a heat engine over a cycle that restores the state of 
the demon plus any auxiliary system utilized to its original thermo-dynamic state. 
By Proposition 2, a demon of the second kind cannot exist without a departure from 
Hamiltonian dynamics.12 A demon of the first kind only illustrates the dependency 
of entropy on the class of manipulations considered.

Maxwell’s purpose in introducing the demon was to illustrate the dependence of 
thermodynamic concepts on the class of manipulations considered. He was quite 
explicit about what the point of the thought-experiment was: to emphasize the built-
in limitation of conclusions drawn from standard thermodynamics to situations 
in which bodies consisting of a large number of molecules are dealt with in bulk. 
These conclusions, he says, may be found to be inapplicable to situations involving 
manipulation of individual molecules ([39], pp. 308–309). Despite this, the point, 
a fairly simple one, has been widely misunderstood, resulting in a vast and largely 
confused literature on the physical possibility or impossibility of a Maxwell demon.

12 It is essential to the theorem that the dynamics preserve phase-space volume. That this condition is 
required to underwrite the second law is illustrated by Earman and Norton, who, building on earlier work 
by others, exhibit a fictitious system with non-Hamiltonian, energy-conserving, time-reversal invariant 
dynamics that completely converts heat drawn from a heat reservoir into work [42–44].
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9  Temporal Asymmetry, and Thermalization

The Fundamental Theorem of Statistical Thermo-dynamics, Proposition 2, follows 
from elementary properties of the Gibbs and von Neumann entropies and of Hamil-
tonian evolution. It is not temporally symmetric. We consider a transformation that 
takes state a into state b, and the order matters, because the right hand side of the 
inequality displayed is not invariant under interchange of a and b. No such asym-
metry is present in the underlying dynamics. Where, then, does the temporal asym-
metry come in?

The mathematical result on which the Fundamental Theorem depends is the fol-
lowing (stated here, and proven in the Appendix). Consider a joint system composed 
of subsystems A and B, which undergoes Hamiltonian evolution between times t0 
and t1 . The total Hamiltonian HAB may change during the process; changes may 
be made to HA , corresponding to work done on the system, and to the Hamilto-
nian of interaction between the two systems. We assume that at times t0 and t1 the 
total Hamiltonian is just the sum of the internal Hamiltonians HA and HB , and that 
HB(t1) = HB(t0) . The expectation value of the energy received by A from B is

Suppose that the state �AB at time t0 is one on which (i) B has canonical distribution 
�� , and (ii) A and B are uncorrelated. The distribution of A at t0 is arbitrary.

Proposition 5 Under the stated conditions,

Proposition 5 holds for any Hamiltonian dynamics satisfying the specified condi-
tions, and so does not depend on any time-asymmetry in the underlying dynamics. 
In fact, it holds regardless of whether t1 is to the future or past of t0 . The two times 
do not enter symmetrically into the statement of the theorem, however. It is assumed 
that the systems A and B are uncorrelated at t0 , and this is not required to hold at t1 . 
That is the relevant difference between starting point and ending point of the process 
considered.

It is sometimes said that the rationale for taking the initial state of system + heat 
reservoir to be one without correlations between them is that this has the status of a 
default assumption: statistical or probabilistic independence is to be assumed in the 
absence of any interaction that could create correlations. This is too quick. Among 
the things that can create correlations between systems are events in the common 
past of two systems. When we couple a system to a heat reservoir, we are not assum-
ing that there are no events in their common past that could potentially lead to 
correlations.

What we are assuming is that the reservoir has thermalized, has undergone a 
process of equilibration in the course of which details of its past history, includ-
ing previous interactions with the rest of the world, have been effectively effaced. A 
detailed microdescription might reveal some of these details, but it is expected that 

⟨Q⟩ = −(⟨HB⟩t1 − ⟨HB⟩t0).

⟨Q⟩
T

≤ S[�A(t1)] − S[�A(t0)].
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these will be irrelevant at the macroscopic scale. To treat a system as a heat reservoir 
is to treat the fine details of past interactions it might have had with its environment 
as irrelevant to its subsequent behaviour. The task of explaining how and why this 
happens is an interesting and important one. The process produces thermal systems 
that the science of ΘΔcs can take to be available as resources for manipulations. The 
study of equilibration is not, however, the province of ΘΔcs.13

The is a tendency to conflate the second law of thermodynamics with the ten-
dency of systems to relax to a state of thermal equilibrium, and this has encouraged 
the idea that the study of equilibration does fall within the scope of thermodynam-
ics. These are not the same thing, however. The distinction can be made vivid by 
considering the impact on the laws of thermo-dynamics of a “Loschmidt demon” 
that could magically perform a velocity-reversal. Such a demon could reverse equili-
bration of an isolated system, but its operations nevertheless fall within the scope of 
Proposition 2, and the second law of ΘΔcs holds even if the stock of manipulations is 
expanded to included velocity-reversal.

10  Conclusion

The chief differences between the theory whose outlines have been sketched here, 
which I am calling thermo-dynamics, or ΘΔcs , and the usual textbook presentations 
of thermodynamics, are twofold. One is that we have not assumed that all states are 
reversibly connectible. Without this assumption, we do not have available a state-
function SM such that SM(a → b) = SM(b) − SM(a) . This is a relatively minor 
point; with a little care, it is fairly easy to see that much of thermodynamics goes 
through without this, and the advantage is that the theory applies in regimes in which 
the inevitable dissipation involved in every process is not taken to be negligible.

The more important difference is that, whereas the usual treatments say that ther-
modynamic states are defined relative to a set of variables deemed macroscopic, we 
have defined them in terms of a set of variables deemed manipulable. I maintain that 
this is the best way to make sense of the usual treatments, and that one will find, if 
one reads closely, that the relevant variables are indeed being treated as manipula-
ble. For the most part, for the purposes of textbook exposition, as long as attention is 
confined to the macroscopic domain, and we are not bent on pushing application of 
the theory into the mesoscopic, it is perfectly acceptable to leave the class of manip-
ulations under consideration implicit. The danger of this, however, is that it might 
tend to give the impression that entropy is a property of a system, something that 
it has in and of itself, rather than being defined relative to a class of manipulations.

Whether or not the reader agrees that ΘΔcs is the best way to make sense of text-
book presentations of thermodynamics and of application of its concepts to the physi-
cal world, it should be noncontroversial that it is a legitimate subject. The usual objec-
tions to invoking concepts such as manipulability tend to be of two (related) sorts. One 
is that it brings in excessive subjectivity. The other is that concepts of that sort are out 

13 See [45] for further discussion of these points.
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of place in the study of equilibration. I hope that I have satisfactorily addressed the 
former, in the preliminary discussion of manipulability. The latter is met by a delimita-
tion of scope. Though ΘΔcs presumes the availability of systems that can be treated as 
heat reservoirs, study of the process of thermalization does not fall within its scope.
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Appendix

Proof of the Fundamental Theorem of Statistical Thermo‑dynamics

In this appendix we prove Proposition 2.
As before, � is used ambiguously for either a density function with respect to 

Liouville measure on classical phase space, or a quantum density operator. Hamil-
tonian evolution is, in the classical context, evolution according to Hamilton’s equa-
tions of motion, and, in the quantum context implemented by a family of unitary 
operators U(t). The letter S, without subscript, denotes either the Gibbs entropy or 
the von Neumann entropy.

In the classical context, the salient fact about Hamiltonian evolution—and, 
indeed, the only fact that we will use—is that Liouville measure is invariant under 
evolution of that type. As a consequence, the expectation value, with respect to 
Liouville measure Λ , of any measurable function on phase space is invariant under 
Hamiltonian evolution; this includes in particular the Gibbs entropy

In the quantum context, the salient fact about Hamiltonian evolution is that it con-
serves the inner product of two vectors in Hilbert space. As a consequence, the trace 
of any operator is invariant; this includes in particular the von Neumann entropy

As conservation of phase space volume (classical) and absolute magnitude of 
inner product (quantum) are the only features of Hamiltonian evolution used, we 
could expand our repertoire of operations to include fictitious operations, such as 
an instantaneous velocity reversal, that retain these features, and the theorem would 
still go through.

The relevant facts about the Gibbs and von Neumann entropies are: 

1. Subadditivity For a composite system AB, 

 with equality if and only if the subsystems are probabilistically independent.

(32)SG[�] = −k⟨� log �⟩Λ.

(33)SvN[�̂�] = −k Tr [�̂� log �̂�].

S[�AB] ≤ S[�A] + S[�B],
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2. For any T > 0 , let � = 1∕kT  . The canonical distribution �� minimizes 

With these facts in hand, the proof of the theorem is easy. For brevity, we will write 
SAB(t0) for S[�AB(t0)] , etc.. We will consider only interactions with a single heat reser-
voir, as the extension to successive interactions with multiple heat reservoirs is merely 
a matter of repeated application of the theorem.

The evolution from t0 to t1 does not change the joint entropy SAB . At t0 , since the sys-
tems are uncorrelated, SA + SB is at a minimum for the value of SAB that obtains at both 
t0 and t1 . Therefore,

or,

Since B has canonical distribution �� at time t0,

or,

This gives us,

From (35),

which, combined with (38), yields,

or,

which is the desired result.

Some Quotations from the History of 21
cs

The science that I am calling ΘΔcs  is not a new idea. This understanding of the 
basic concepts of thermodynamics has been present from the very beginning of the 
subject. In this appendix I provide some relevant quotations, with no pretense to 
exhaustiveness.

⟨H⟩� − TS[�].

(34)SA(t0) + SB(t0) ≤ SA(t1) + SB(t1),

(35)�SA + �SB ≥ 0.

(36)⟨HB⟩t0 − TSB(t0) ≤ ⟨HB⟩t1 − TSB(t1),

(37)�⟨HB⟩ − T�SB ≥ 0.

(38)⟨Q⟩ = −�⟨HB⟩ ≤ −T�SB.

(39)−�SB ≤ �SA,

(40)⟨Q⟩ ≤ T�SA,

(41)
⟨Q⟩
T

≤ �SA,
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Josiah Willard Gibbs (1875). Part of this has already been quoted above; here is a 
fuller quotation.

When we say that when two different gases mix by diffusion as we have sup-
posed, the energy of the whole remains constant, and the entropy receives a certain 
increase, we mean that the gases could be separated and brought to the same volume 
and temperature which they had at first by means of a certain change in external 
bodies, for example, by the passages of a certain amount of heat from a warmer to a 
colder body. But when we say that when two gas-masses of the same kind are mixed 
under similar circumstances there is no change of energy or entropy, we do not mean 
that the gases which have been mixed can be separated without change to external 
bodies. On the contrary, the separation of the gases is entirely impossible. We call 
the energy and entropy of the gas-masses when mixed the same as when they were 
unmixed, because we do not recognize any difference in the substance of the two 
masses. So when gases of different kinds are mixed, if we ask what changes in exter-
nal bodies are necessary to bring the system to its original state, we do not mean a 
state in which each particle shall occupy more or less exactly the same position as 
at some previous epoch, but only a state which shall be undistinguishable from the 
previous one in its sensible properties. It is to states of systems thus incompletely 
defined that the problems of thermodynamics relate.

But if such considerations explain why the mixture of gas-masses of the same kind 
stands on a different footing from the mixture of gas-masses of different kinds, the fact 
is not less significant that the increase of entropy due to the mixture of gases of differ-
ent kinds, in such a case as we have supposed, is independent of the nature of the gases.

Now we may without violence to the general laws of gases which are embodied 
in our equations suppose other gases to exist than such as actually do exist, and there 
does not appear to be any limit to the resemblance which there might be between 
two such kinds of gas. But the increase of entropy due to the mixing of given vol-
umes of the gases at a given temperature and pressure would be independent of the 
degree of similarity or dissimilarity between them. We might also imagine the case 
of two gases which should be absolutely identical in all the properties (sensible and 
molecular) which come into play while they exist as gases either pure or mixed with 
each other, but which should differ in respect to the attractions between their atoms 
and the atoms of some other substances, and therefore in their tendency to com-
bine with other substances. In the mixture of such gases by diffusion an increase of 
entropy would take place, although the process of mixture, dynamically considered, 
might be absolutely identical in its minutest details (even with respect to the precise 
path of each atom) with processes which might take place without any increase of 
entropy. In such respects, entropy stands strongly contrasted with energy ([19], pp. 
228–229; in [20], pp. 166–167).

Rudolf Clausius (1877). Responding to Tait’s (unfair) charge that the possibility 
of a demon that could, without expenditure of work, cool a body below the tem-
perature of its surroundings “is absolutely fatal to Clausius’ reasoning,” ([46], pp. 
118–120; see also [47], p. 37), Clausius wrote,

Dieses kann ich in keiner Weise zugeben. Wenn die Wärme als eine Molecular-
bewegung betrachtet wird, so ist dabei zu bedenken, dass die Molecüle so kleine 
Körpertheilchen sind, dass es für uns unmöglich ist, sie einzeln wahrzunehmen. Wir 
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können daher nicht auf einzelne Molecüle für sich allein wirken, oder die Wirkun-
gen einzelner Molecüle für sich allein erhalten, sondern haben es bei jeder Wirkung, 
welche wir auf einen Körper ausüben oder von ihm erhalten, gleichzeitig mit einer 
ungeheuer grossen Menge von Molecülen zu thun, welche sich nach allen möglichen 
Richtungen und mit allein überhaupt bei den Molecülen vorkommenden Geschwin-
digkeiten bewegen, und sich an der Wirkung in der Weise gleichmässig betheiligen, 
dass nur zufällige Verschiedenheiten vorkommen, die den allgemeinen Gesetzen der 
Wahrscheinlichkeit unterworfen sind. Dieser Umstand bildet gerade die charakteris-
tische Eigenthümlichkeit derjenigen Bewegung, welche wir Wärme nennen, und auf 
ihm beruhen die Gesetze, welche das Verhalten der Wärme von dem anderer Bewe-
gungen unterscheiden.

Wenn nun Dämonen eingreifen, und diese charakteristische Eigenthümlichkeit 
zerstören, indem sie unter den Molecülen einen Unterschied machen, und Molecülen 
von gewissen Geschwindigkeiten den Durchgang durch eine Scheidewand gestatten, 
Molecülen von anderen Geschwindigkeiten dagegen den Durchgang verwehren, so 
darf man das, was unter diesen Umständen geschieht, nicht mehr als eine Wirkung 
der Wärme ansehen und erwarten, dass es mit den für die Wirkungen der Wärme 
geltenden Gesetzen übereinstimmt ([48], p. 32).

This I can in no way concede. If heat is regarded as a molecular motion, it should 
be remembered that the molecules are parts of bodies that are so small that it is 
impossible for us to perceive them individually. We can therefore not act on sin-
gle molecules by themselves, or obtain effect from individual molecules by them-
selves, but rather, in every action that we exert on a body or receive from it, we have 
simultaneously to do with an immensely large collection of molecules, which move 
in all possible directions and with all the speeds occurring among the molecules, 
and participate in the action uniformly, in such a way that there occur only random 
differences, which are subject to the general laws of probability. This circumstance 
forms precisely the characteristic property of that motion which we call heat, and on 
it depends the laws that distinguish the behavior of heat from that of other motions.

If now demons intervene, and disturb this characteristic property by distinguish-
ing between the molecules, and molecules of certain speeds are permitted passage 
through a partition, molecules of other speeds refused passage, then one may no 
longer regard what happens under these conditions as an action of heat and expect it 
to agree with the laws valid for the action of heat.

James Clerk Maxwell (1877, 1878).
Available energy is energy which we can direct into any desired channel. Dis-

sipated energy is energy we cannot lay hold of and direct at pleasure, such as the 
energy of the confused agitation of molecules which we call heat. Now, confusion, 
like the correlative term order, is not a property of material things in themselves, but 
only in relation to the mind which perceives them. A memorandum-book does not, 
provided it is neatly written, appear confused to an illiterate person, or to the owner 
who understands thoroughly, but to any other person able to read it appears to be 
inextricably confused. Similarly the notion of dissipated energy could not occur to a 
being who could not turn any of the energies of nature to his own account, or to one 
who could trace the motion of every molecule and seize it at the right moment. It is 
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only to a being in the intermediate stage, who can lay hold of some forms of energy 
while others elude his grasp, that energy appears to be passing inevitably from the 
available to the dissipated state ([49], p. 221, in [50], p. 646).

The second law relates to that kind of communication of energy which we call 
the transfer of heat as distinguished from another kind of communication of energy 
which we call work. According to the molecular theory the only difference between 
these two kinds of communication of energy is that the motions and displacements 
which are concerned in the communication of heat are those of molecules, and are 
so numerous, so small individually, and so irregular in their distribution, that they 
quite escape all our methods of observation; whereas when the motions and dis-
placements are those of visible bodies consisting of great numbers of molecules 
moving altogether, the communication of energy is called work.

Hence we have only to suppose our senses sharpened to such a degree that we 
could trace the motions of molecules as easily as we now trace those of large bodies, 
and the distinction between work and heat would vanish, for the communication of 
heat would be seen to be a communication of energy of the same kind as that which 
we call work. ([51], p. 279, in [50], p. 669).

John von Neumann (1929).
If we take into account that the observer can measure only macroscopically then 

we find different entropy values (in fact, greater ones, as the observer is now less 
skilful and possibly can therefore extract less mechanical work from the system) .... 
([52], p. 214, from [53], p. 47).

Harold Grad (1961).
Whether or not a diffusion occurs when a barrier is removed depends not on a 

difference in physical properties of the two substances but on a decision that we are 
or are not interested in such a difference (which is what governs the choice of an 
entropy function) ...A very illuminating example is given by the “spin-echo” effect. 
In this experiment, it is found that it is possible to produce a highly ordered micro-
scopic state and, at a later time, effectively reverse all velocities. To a person who 
has access to such equipment, a very high level “reversible” entropy will be appro-
priate; to one who has not, a lower order entropy will properly describe all phenom-
ena ([54], pp. 326–327)

Nicolaas Godfried van Kampen (1984). In regards to the difference in expression 
of entropies for a uniform sample of gas and a system composed of two different 
gases, van Kampen wrote,

The origin of the difference is that two different processes had to be chosen for 
extending the definition of entropy. They are mutually exclusive; the first one cannot 
be used for two different gases and the second one does not apply to a single gas. 
But suppose that A and B are so similar that the experimenter has no physical way 
of distinguishing between them. Then he does not have the semi-permeable walls 
needed for the second process, but on the other hand the first will look reversible to 
him. ...The point is, that this is perfectly justified and that he will not be led to any 
wrong results. If you tell him that ‘actually’ the entropy increased when he opened 
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the channel he will answer that this is a useless statement since he cannot utilize the 
entropy increase for running a machine. The entropy increase is no more physical 
to him than the one that could be manufactured by taking a single gas and mentally 
tagging the molecules by A or B.

In fact, this still holds when the experimenter would be able to distinguish 
between A and B, by means of a mass spectrograph for instance, but is not interested 
in the difference because it is not relevant for his purpose. This is precisely what 
engineers do when they make tables of the entropy of steam, ignoring the fact that 
it is actually a mixture of normal and heavy water. Thus, whether such a process is 
reversible or not depends on how discriminating the observer is. The expression for 
the entropy (which one constructs by one or the other processes mentioned above) 
depends on whether he is able and willing to distinguish between the molecules 
A and B. This is a paradox only for those who attach more physical reality to the 
entropy than is implied by its definition ([55], pp. 306–307).

Edward T. Jaynes (1992).
In the first place, it is necessary to decide at the outset of a problem which macro-

scopic variables or degrees of freedom we shall measure and/or control; and within 
the context of the thermodynamic system thus defined, entropy will be some func-
tion S(X1,… ,Xn) of whatever variables we have chosen. We expect this to obey the 
second law TdS ≥ dQ only as long as all experimental manipulations are confined to 
that chosen set. If someone, unknown to us, were to vary a macrovariable Xn+1 out-
side that set, he could produce what would appear to us as a violation of the second 
law, since our entropy function S(X1,… ,Xn) might decrease spontaneously, while 
his S(X1,… ,Xn,Xn+1) increases ([56], p. 5).

John Goold, Marcus Huber, Arnau Riera, Lídia del Rio, and Paul Skrzypczyk 
(2016).

If physical theories were people, thermodynamics would be the village witch. 
Over the course of three centuries, she smiled quietly as other theories rose and 
withered, surviving major revolutions in physics, like the advent of general relativ-
ity and quantum mechanics. The other theories find her somewhat odd, somehow 
different in nature from the rest, yet everyone comes to her for advice, and no-one 
dares to contradict her. Einstein, for instance, called her ‘the only physical theory of 
universal content, which I am convinced, that within the framework of applicability 
of its basic concepts will never be overthrown.’

Her power and resilience lay mostly on her frank intentions: thermodynamics has 
never claimed to be a means to understand the mysteries of the natural world, but 
rather a path towards efficient exploitation of said world. She tells us how to make 
the most of some resources, like a hot gas or a magnetized metal, to achieve specific 
goals, be them moving a train or formatting a hard drive. Her universality comes 
from the fact that she does not try to understand the microscopic details of particular 
systems. Instead, she only cares to identify which operations are easy and hard to 
implement in those systems, and which resources are freely available to an experi-
menter, in order to quantify the cost of state transformations ([7], pp. 1–2).
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