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Abstract
Contextual emergence was originally proposed as an inter-level relation between dif-
ferent levels of description to describe an epistemic notion of emergence in physics. 
Here, we discuss the ontic extension of this relation to different domains or levels 
of physical reality using the properties of temperature and molecular shape (chiral-
ity) as detailed case studies. We emphasize the concepts of stability conditions and 
multiple realizability as key features of contextual emergence. Some broader impli-
cations contextual emergence has for the foundations of physics and cognitive and 
neural sciences are given in the concluding discussion. Relevant facts about alge-
bras of observables are found in the appendices along with an abstract definition of 
Kubo-Martin-Schwinger states.

Keywords  Contextual emergence · Reductionism · Stability conditions · 
Equivalence classes · Temperature · Chemical potential · Molecular structure

1  Introduction

Physical properties and processes are intricately interrelated in complex systems 
in a manner where contexts are important. A key feature characterizing contextual 
relations are stability conditions and contexts that can be defined precisely through 
contextual topologies (Sect. 2). The emphasis in contextual emergence is on making 
explicit the role contexts play in scientific phenomena and explanation, a role that is 
often left implicit. Contextual emergence was originally proposed as an inter-level 
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relation for physical descriptions [19] and has been further developed into an inter-
level/inter-domain relation among physical properties, processes and laws (e.g., [14, 
16]).1

The motivation for contextual emergence is in nonlinear dynamics and the 
states/observables distinction found in algebraic approaches in quantum mechan-
ics and statistical mechanics. The algebraic framework provides well-defined con-
cepts for the latter distinction which are useful for clarifying issues and relations. 
Moreover, the algebraic framework offers helpful tools for categorizing algebras of 
observables. Nevertheless, contextual emergence is not dependent on these algebraic 
approaches. The contextual emergence framework is more general while putting 
these distinctions to use. This is important because while scientists sometimes can 
give similar mathematical descriptions of biological and neural phenomena in terms 
of states and observables, more often than not the biologist and geologist must work 
with more systemic and qualitative descriptions.

The formal apparatus of contextual emergence is described in Sect. 2, emphasiz-
ing multiple realizability and stability conditions (Sects. 2.2 and 2.4) and contextual 
topologies (Sect. 2.3). Section 3 lays out the basics of the ontic/epistemic distinc-
tion and algebras of observables (Sect. 3.2), and develops it as regards the quantum/
classical distinction and emergence of classical mechanics from quantum mechan-
ics (Sects. 3.2.1, 3.2.2). The dynamics/observables relation is discussed in Sect. 3.3. 
This is followed by the examples of temperature (Sect.  4) and chiral structure of 
molecules (Sect.  5) as contextually emergent properties. Concluding discussion is 
given in Sect.  6. Some facts about algebras of observables are described in three 
Appendices.

2 � Contextual Emergence

Reduction and emergence are used in a variety of senses in the literature [12, 42, 48, 
50]. These schemes are typically organized in a hierarchical manner, where levels 
of description or levels of reality are related to each other. For instance, one might 
speak of “reducing” higher-level features to lower-level features, or the emergence 
of higher-level features, where some of their aspects are irreducible to lower-level 
features.

Such levels-talk needs to be treated with some care, however. There is a tendency 
for reduction or emergence schemes to treat levels as reified or pre-given in some 
universal, timeless sense. That is an oversimplification, to be sure. Nevertheless, 
there are the cases of artificial systems, such as computers, where there are pre-
given levels because they are constructed to be so both logically and physically [26, 
chap. 2]. In natural systems, by contrast, whatever levels exist arise over time. In 
some instances, levels are easily identifiable (e.g., elementary particles, molecules, 
simple crystals, or cells, organs, bodies), whereas in other cases levels can only be 

1  So-called quantum contextuality—where measurement outcomes are dependent on the measurement 
context—can be considered a special case of the contexts central to contextual emergence.
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identified, if at all, by the length and time scales of the dynamics and dynamical 
structures (e.g., convection), while in some cases in quantum mechanics there is an 
erasure of levels (e.g., composite nonseparable quantum systems, where the joint 
system possesses a state, while the components lack definite states given there are 
many possible entanglements for the system components). Moreover, there are cases 
where one may explore the relationship between two domains that are not strictly 
hierarchically ordered [43]. In general, non-hierarchical frameworks including other 
notions, such as those of domains of description or domains of reality, might be 
more appropriate in specific cases. Finally, when we speak of a “more fundamental 
domain” or “lower level” of reality, we do not mean that these are somehow “ more 
real” than “less fundamental” or “higher levels” of reality. As we will see below the 
idea of fundamentality is not as straightforward as often assumed in the hierarchical 
picture.

Contextual emergence was proposed as an inter-level/inter-domain relation that 
takes emergence seriously as a scientific phenomenon rather than beginning with a 
metaphysical assumption about what emergence must be like [14, 19]. This approach 
contrasts with the usual philosophical approaches to reduction or emergence which 
start with logical or metaphysical foundations [12].

Contexts are the heart of contextual emergence. The notion of context is multifac-
eted, including a family of features (many of which are inter-related or co-depend-
ent). Among other things, contextual factors encompass

•	 the system/environment distinction,
•	 stability conditions that ensure robustness of states and observables,
•	 different kinds of constraints delimiting system behaviors.

An example would be constraints at larger length and time scales leading to new 
structures and properties, such as Rayleigh-Bénard convection [17, 23]. Contextual 
features can be made very precise in terms of the stability conditions leading to new 
states and observables (see Sects. 4 and 5).

While some necessary conditions for emergent properties may exist at smaller 
length and time scales, the sufficient conditions represented by contexts are found 
at longer length and time scales. Ontological contextual emergence focuses on the 
“ontological furniture” of the physical states and observables, the necessary and suf-
ficient conditions for their existence and persistence, and the transitions that must 
take place from one level or domain of reality with one set of states/observables 
to another level or domain with new states/observables. Epistemological contextual 
emergence focuses on the necessary and sufficient conditions for relations among 
multiple levels of description.

2.1 � A Framework of Conditions

A framework of necessary and sufficient conditions can be used to classify ontologi-
cal relations among levels or domains of reality: 
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(1)	 Reduction Properties and behaviors in a lower level or domain (including its 
laws) offer by themselves both necessary and sufficient conditions for properties 
and behaviors at a higher level.

(2)	 Contextual emergence Properties and behaviors in a lower level or domain 
(including its laws) offer some necessary but no sufficient conditions for prop-
erties and behaviors at a higher level. Higher levels provide the needed extra 
conditions.

(3)	 Multiple realizability Properties and behaviors in a lower level or domain 
(including its laws) offer only sufficient conditions for the associated properties 
and behaviors at a higher level. Many lower-level constituents and conditions 
can give the same higher level results.

(4)	 Radical emergence Properties and behaviors in a lower level or domain (includ-
ing its laws) offer neither necessary nor sufficient conditions for properties and 
behaviors at a higher level.

Among these relations, reductions correspond to class (1), where the entities of the 
fundamental level or domain are either identical to or imply everything else at a 
reduced level or domain (e.g., the properties of a physical system in special relativ-
ity reduce to their Newtonian mechanics counterparts in the limit v2∕c2 → 0 , where 
v is the system velocity and c the speed of light in vacuum2). There are few genuine 
cases of class (1) reductions in the sciences outside of trivial cases.

Class (2) represents contextual emergence, where the constituents belonging to 
the “fundamental” level or underlying domain of reality contribute some neces-
sary but not sufficient conditions for entities and properties in the target domain, or 
higher level. For instance, the domain of elementary particles contributes some of 
the necessary conditions for the existence of the properties and behaviors of water 
flowing through a faucet: no elementary particles and forces, no flowing water. On 
the other hand, the existence of elementary particles and their forces do not guaran-
tee that flowing fluids will exist. The total set of necessary and sufficient conditions 
for flowing fluids is, itself, contingent rather than necessary, and involves more con-
ditions than are found in the domain of elementary particles and forces. The exist-
ence of necessary conditions at the lower or underlying level means that higher-level 
features imply those of the lower level; however, the converse (lower-level features 
also imply the higher-level features) does not hold in contextual emergence.

Cases of contextual emergence arise when contingent conditions from the target 
domain or higher level are added to the necessary conditions in the underlying level 
or domain to create a complete set of necessary and sufficient conditions for the 
phenomena in the higher level or domain. The examples of temperature and molecu-
lar chirality will be given below (Sects. 4 and 5).

Class (3) represents cases of multiple realizability. There are always numerous 
more entities at the lower levels than at the higher levels so any particular higher 
level state S1 can be realized by an equivalence class E(S1) of lower level states that 

2  This is not to imply that the spacetime of special relativity reduces smoothly to the spacetime of New-
tonian mechanics in this limit.
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all give the same higher level state S1 . The equivalence classes of structures and 
dynamics at the lower level corresponds to the emergent variables and dynamics at 
the higher levels.

Classes (2) and (3) complement each other as in the example of temperature 
which is contextually emergent (Sect. 4) while also multiply realizable (e.g., tem-
perature is an emergent property of all kinds of gasses and liquids). In fact multi-
ple realizability is necessary and sufficient for contextual emergence (though not all 
cases of multiple realizability are cases of contextual emergence). The contingent 
conditions from the target domain which enable contextual emergence also deter-
mine the associated equivalence classes at the lower level.

In the discussion below we focus on the contexts  that characterize contextual 
emergence and their associated stability conditions giving rise to the associated 
equivalence classes. We will have nothing to say about class (4) as it is irrelevant to 
the sciences.

2.2 � Stability Conditions

A concrete context is a set of conditions that, when added to the necessary condi-
tions contributed by an underlying domain or level of reality, form a set of jointly 
necessary and sufficient conditions leading to the existence and persistence of 
higher-level properties of the concrete context. Temperature and molecular shape 
are two such properties requiring the addition of concrete contextual conditions for 
their existence.

A particularly important set of contextually contingent conditions are stability 
conditions that are characteristic of concrete contexts (e.g., existence of crystals in 
solid state physics, or molecules in a solution). These conditions guarantee the exist-
ence and persistence of appropriate states, observables, and structures of the sys-
tem in question. Contextual emergence occurs when such stability conditions are not 
given by lower-level conditions alone. Stability conditions are integral for the iden-
tification of systems and their states as well as the persistence of their identity under 
various kinds of changes. As such these conditions are a central feature of contextual 
emergence and highlight the role that contexts play in emergence.

In typical philosophical treatments of reduction and emergence, states and 
observables are taken for granted meaning that the stability conditions implied by 
those states and observables are also taken for granted. The crucial roles played here 
by contexts are often neglected: There are some environmental conditions where 
they do not hold (for example if nuclear reactions are taking place, daily-life conser-
vation laws do not apply). The conservation laws that always hold at the lower levels 
apply in particular circumstances to equivalence classes of lower level entities that 
together form a higher level entity displaying the conserved existence that character-
izes physical objects.

Furthermore, stability conditions are related to changes in the degrees of free-
dom for systems: either by restricting the degrees of freedom accessible to a system 
(reducing the allowable states of motion, say, through constraints, symmetry break-
ings, or other means), or by opening the system’s access to degrees of freedom that 
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were formerly restricted (a particularly dramatic example of this is the change in 
allowable states of motion in Rayleigh-Bénard convection; see [17]).

For contextual emergence, changes to the system’s degrees of freedom producing 
new properties or structures are due to stability conditions that are never given by 
nor derivable from the underlying level alone. Moreover, these stability conditions 
are related to equivalence classes in the following way: Equivalence classes of states 
are indistinguishable with respect to a specific ensemble property (e.g., the class of 
all arrangements of gas molecules in a container with respect to the same tempera-
ture). Stability conditions lead to the distinguishing of particular equivalence classes 
with respect to the relevant stabilities meaning the emergent states and observables 
(and perhaps even the system itself) are robust under perturbations and over time. 
Another way to think about this is that stability conditions given by higher-levels 
partition the underlying state space into particular distinguished equivalence classes 
that are stable with respect to the dynamics of the underlying level under the higher-
level constraints represented by the stability conditions. Furthermore, the context 
characterized by stability conditions endows the underlying state space with a new 
contextual topology.

2.3 � Stability Conditions, Contextual Topologies and Abstraction

Any experimental observations depend on a system/environment distinction since 
there is always an observed object of study surrounded by elements which are not 
the direct object of observation. Scientists seek to control the environment as much 
as possible to screen off influences from the system that would interfere with the 
epistemic states and observables (Sect.  2.4) under investigation. As well, theories 
involve states and observables that are distinguished from any background condi-
tions. Any system/environment distinction involves making abstractions about the 
physical domain in question.

For law-like and other relations, specifying a topology picks out the relevant 
relations in the set of observables that go into appropriate descriptions by specify-
ing which elements are adjacent to each other. On the other hand, the algebras of 
observables characterizing different physical theories induce different topologies, 
and are usually related via singular limits. When the limiting procedure is singu-
lar this means that the equations at the limit are not smooth approximations of the 
equations when the characteristic parameter is approaching (but has not reached) the 
limit. Singular limits can be characterized as those in which the final set of equations 
has a qualitatively distinctive character to the starting set.

As an example, the very complex relationship between quantum mechanics and 
classical mechanics involves singular limits with respect to the Hilbert space topol-
ogy. To regularize such limits (i.e., to get convergent limits) requires introducing 
new states and observables leading to a new contextual topology: a topology of a 
mathematical space of elements that represents a relevant extension corresponding 
to a mathematical space containing an expanded algebra of observables for a system 
in a target level or domain. Such an expansion represents information from the target 
level or domain’s context (e.g., the target level’s symmetries, stability conditions and 
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observables) while abstracting away from those factors considered irrelevant. The 
contextual information of the target domain induces a suitably enriched topology 
but the contextual topology is never given by the finer topology of the lower-level 
description. Said another way, the underlying algebra of observables conceived as 
being as context-free as possible based on first principles never implies the alge-
bra of observables of the target level or domain [19, 47]. The contextual topology 
defines the equivalence classes at the lower level corresponding to the entities that 
are the genuine actors in the higher-level or target domain dynamics.

The concept of a contextual topology can be illustrated by the simple fact that 
there are many different possible topologies each compatible with the same starting 
set. For instance, suppose S = {A,B,C} with the trivial topology 𝜏 = {⊘, {A,B,C}} , 
where ⊘ is the empty set. This is a high level description. We can restructure S to 
give a lower-level description as long as we preserve every relation, inducing a 
new topology, for example 𝜏1 = {⊘, {A}, {A,B,C}} . This illustrates that higher-
level descriptions are not implied by lower-level descriptions because contextual 
topologies are underdetermined by the norm topology of the lower-level descrip-
tion ( � ⇏ �1 ). Hence, by imposing a hierarchy of topologies �N–an abstract group-
ing together of elements of the set–a hierarchical structure is created within the set, 
ordering that set. Yet, that ordering is not fixed by the lower-level description.

Stability conditions associated with the higher levels, or target domains, induce 
a contextual topology by picking out particular reference states and observables. 
These operators, in turn, form an algebra with an associated weak topology (Appen-
dix A.2). The higher-level, (e.g., classical mechanics) has a coarser topology char-
acterized by an algebra containing observables not found in the finer topology of the 
algebra associated with the lower-level theory (e.g., quantum mechanics). Although 
one can formally make differences between the mathematical spaces of different 
states of observables precise through comparing these differences in topologies, in 
practice physicists focus the algebras of observables themselves and their properties 
(see below).

These higher-level stability conditions and states represent an abstraction away 
from lower-level or underlying details to reveal patterns and constraints. Abstrac-
tions are not the same as idealizations (though scientists sometimes use the two 
terms interchangeably). The latter involve situations where we remove assumptions 
and apply approximations to create tractable models. In contrast, there are are many 
cases where we cannot remove modelling assumptions without losing necessary def-
initions of quantities serving to parameterize target systems. Abstractions involve 
hiding information about lower-level variables (e.g., variations within an equiva-
lence class) enabling the definition of new categories of variables as sometimes are 
required to capture specific modal facts about systems.

If we want to know modal facts about generalities that apply across radically dif-
ferent microphysical systems, then abstracting away from those details is not a con-
venience for pragmatic idealization purposes; it is essential to characterizing the tar-
get system. Abstractions allow scientists to identify modal information concerning 
the circumstances under which a variety of systems share particular features, and, 
therefore, answer counterfactuals about when they would not share those features. 
This is much more powerful for understanding physical systems than simply listing 
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their properties and noting that some have commonalities. Abstract models are nec-
essary for mapping the modal landscape of those commonalities in a principled way. 
Furthermore, they capture larger-scale or global constraints across systems sharing 
common features and behaviors.

The Ising model illustrates the importance of abstraction. Ferromagnetism is 
modeled by treating the up/down polarisations in the atomic dipoles of a metal 
abstractly as a regular array of points each assigned a value + 1 or − 1. Let Si(a) rep-
resent the value of the ith site in lattice arrangement a. Then ΣiSi(a) is the difference 
between + 1 and − 1 sites in a. The degree of order of the system, Ma , is the sum of 
Si(a) divided by the total number of sites. If Ma is + 1 or − 1, then the lattice is max-
imally ordered because all the sites are either + 1 or − 1. When Ma = 0 , the lattice 
is maximally disordered since just as many sites are + 1 as − 1. For each adjacent 
pair of sites < j, k > there is an associated interaction energy Ejk ∶= −JSjSk , and the 
total energy Ha is the sum of Ejk over all adjacent sites in a. In a maximally ordered 
arrangement, Ha is at a minimum. If Ha is positive, as the temperature decreases the 
probability, Pa , of disordered arrangements falls to zero; conversely, as temperature 
increases disordered states become more likely. The order parameter is the weighted 
sum over a of all arrangements PaMa . By counting the number of ways the lattice 
could be arranged, and using statistical methods, the resultant values of bulk proper-
ties such as the magnetisation can be calculated.

The Ising model is an abstraction of a ferromagnetic system rather than an ideali-
zation because it is not the case that by adding in more details the model would get 
more accurate. On the contrary, the Ising model would lose all of its power if it were 
more accurate. If more detail were added to the model, the key new variable, the 
order parameter, would be undefined.

2.4 � Stability Conditions and Contexts

The extension to a new set of states and observables is abstraction in the sense char-
acterized in the previous subsection. A higher-level algebra of observables does 
not approximate a more accurate lower-level algebra. These contextually-defined 
abstractions are never given by first principles of a lower-level or more fundamental 
theory or its domain.

Contexts, then, are those contingent conditions and features related to new states 
and observables, new structures and other aspects of target systems not given by 
lower levels or an underlying domain. In terms of descriptions, such conditions, 
states and observables represent the relevant features of the description of a tar-
get system at a particular level of description. To develop any description requires 
abstracting from or ignoring those details of a given system (and its environment) 
that are irrelevant. So one should not think of the stability conditions and states 
along with their associated algebra of observables of the higher-level descriptions 
as involving approximations and idealizations that deviate from the lowest-level 
description.

Some features irrelevant in one context may be relevant in another. For instance, 
temperature is relevant in thermodynamics but irrelevant in classical mechanics. 
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The shape of molecules is relevant in physical chemistry, but irrelevant in quantum 
mechanics descriptions using Schrödinger’s equation focused on energy levels. Nev-
ertheless, it is possible to implement contexts where temperature, relevant in ther-
modynamics, is relevant at the level of statistical mechanics (Sect. 4), or contexts 
where molecular shape, relevant in physical chemistry, is relevant at the level of 
quantum mechanics (Sect. 5).

Consider the case of higher-level descriptions. Here, there is a target system 
that provides the concrete context for the added necessary and sufficient condi-
tions. Implementing a concrete context as a new algebra of observables respecting 
the stability conditions often requires using an asymptotic expansion: Specify a rel-
evant reference state in the lower-level state space representing essential features 
of the particular target system, and expand it in terms of a perturbation parameter. 
Kubo–Martin–Schwinger (KMS) states in statistical mechanics or electronic ground 
states of a molecule in quantum chemistry would be examples of such reference 
states (see below). If the expansion is singular as the relevant parameter tends to 
some limit in the fine topology of the lower-level description simpliciter, then it is 
not uniformly convergent in the fine topology.

Such discontinuous limiting behavior indicates the need for a change of descrip-
tion because there is a change in the relevant states and observables due to stability 
conditions not given by the lower level. A new contextual topology that regular-
izes the asymptotic expansions that are singular with respect to the finer topology 
is needed. These expansions converge with respect to the new contextual topology 
(and thereby appear to be cases of reductions of class (1) to the undiscerning eye). 
In many cases, such regularization is possible by introducing a hierarchy of length 
and time scales into the description. One can then consider the motion of the system 
on the fast-time scales relative to almost fixed reference states corresponding to the 
slow time scales (e.g., [47]). The separation of time scales often leads to a partition 
into equivalence classes of states.3 Nevertheless, the new algebra of observables is 
contingent in that it is neither given nor implied by any other elements of the lower-
level description.

Contextual emergence describes cases where constraints, properties, structures, 
and so forth neither given nor implied by the lower level or underlying domain are at 
least as important as the first principles and properties of any lowest-level or “fun-
damental” domain. As such, it is a framework for emergence that not only relates 
different levels of description, but also relates properties in different levels and 
domains, the “ontological furniture” of states, observables, the conditions for their 
existence and persistence as well as the transitions necessary from lower levels or 
underlying domains to higher. Contexts are necessary for the transitions that mani-
fest new properties, such as states and observables, and also for partly sustaining 
those properties, or even the systems possessing those properties.

3  The coarser contextual topology is compatible with the original, finer topology if they and their 
dynamics are topologically equivalent with each other (Appendix A.3).
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2.5 � Possibility Spaces

Contexts, determined by stability conditions, large-scale constraints, symmetry 
breakings and regularities, are related to possibility space. The most basic laws of 
physics define what is physically possible in the world. Yet, not all of these pos-
sibilities are actualizable through the basic laws and particles of elementary parti-
cle physics by themselves. It is the specific, concrete contexts that make particular 
regions of possibility space accessible.

Think of contexts as specifying accessibility conditions for particular subspaces 
of the physical possibility space defined by the most elementary laws. Lasers illus-
trate this well. According to quantum mechanics, the amplification of stimulated 
emission of light from atoms, the key physical principle necessary for lasers to func-
tion, is physically possible. However, that portion of the possibility space is only 
accessible under specific contexts–appropriately engineered conditions of isolation 
and stability. Another example would be fluid convection [17]. The laws of fluid 
mechanics and dynamics define the possible states of motion of fluid molecules. 
Nonetheless, in the initial quiescent state of a Rayleigh-Bénard convection system, 
the fluid molecules cannot access any of the states of motion associated with convec-
tion cells. Yet, after the order parameter ΔT  , the temperature difference between the 
upper and lower plates constraining the fluid, passes the critical value, many differ-
ent convective states of motion are accessible, while the states of motion associated 
with the initial quiescent state are inaccessible. Stability conditions associated with 
the concrete contexts determine which of these possibility subspaces are accessible.

Thinking of contexts and possibility space also illustrates how acausal global con-
straints shape accessible physical possibilities. For instance, suppose spacetime has 
only one spatial dimension. Then, there could be no gravitational waves (and New-
tonian gravity has constant magnitude between two bodies no matter their distance), 
and moving electrically charged particles could not radiate energy. When spacetime 
has two spatial dimensions, Einstein’s equation in vacuum requires spacetime to be 
completely flat (i.e., both the Ricci and Riemann curvature tensors are zero) and 
gravitational waves still are not possible, while moving charged particles can radiate 
energy. In three spatial dimensions, gravitational waves become possible (for Ein-
stein’s equation in a vacuum, the Riemann curvature tensor can be nonzero even if 
the Ricci curvature tensor is zero). For a spacetime with four spatial dimensions, 
no stable gravitational orbits exist and the hydrogen atom under some conditions 
is unstable because its spectrum is unbounded from below. For five or more spatial 
dimensions no stable atoms can exist because the Coulomb potential dominates the 
1∕r2 centrifugal potential for small r close to the nucleus yielding an unbounded 
spectrum from below. Spatial dimensionality in all these cases constrains physical 
possibility in acausal ways. Dimensionality establishes a context into which funda-
mental laws must come to particular expression determining the range of possibili-
ties these laws can delineate.

Nothing can happen outside of the most general space of possibilities delineated 
by the fundamental laws and dimensionality of the universe. This clarifies what fun-
damentality means: Fundamental laws are those that, along with the dimensional-
ity of the universe, determine the total space of physical possibility. Anything lying 
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outside this possibility space is physically impossible. Nevertheless, these laws do 
not fully determine all the actual outcomes within this space of possibilities. That 
is the roll of concrete contexts. Returning to the laser example, although lasers 
are physically possible according to fundamental laws, actual lasers exist only in 
a particularly highly restricted subspace, where the actualization of possibilities in 
this subspace involves chemical, biological, psychological and embodied human 
possibility.

In summary, then, contextual emergence focuses on the conditions and transi-
tions that make particular subspaces of possibility accessible or inaccessible. Con-
crete stability conditions include large-scale forms of constraint, both causal and 
acausal, as well as dynamically emerging changes in possibility ensuring particular 
subspaces of possibility are actualized. The detailed examples below demonstrate 
the kinds of conditions that make the existence of temperature and molecular shape 
possible, for example.

3 � The Ontic/Epistemic Distinction and Algebras of Observables

Erhard Scheibe [49] first introduced the ontic/epistemic state distinction and it has 
been subsequently developed by others (e.g., [6, 24, 45, 46]). An ontic state refers 
to all properties of a system “the way it is” apart from any epistemic access or igno-
rance. Ontic states generally refer to individual descriptions with an important spe-
cial case being the descriptions of point-particle states and observables in classical 
mechanics. In contrast, an epistemic state refers to the physical system’s properties 
accessible through observation and pattern matching routines.4 Epistemic states 
generally refer to statistical descriptions with an important special case being those 
states and observables describable in terms of probability distributions or density 
operators.

3.1 � Algebras of Observables

The ontic or intrinsic properties of a physical system can be well-defined in a C∗

-algebra (Appendix  A.1) of ontic observables  [29, 44]. C∗-algebras are equipped 
with a strong norm topology defining convergence and closure properties (Appen-
dix A.2). Empirically accessible properties can be well-defined in a larger W∗-alge-
bra of epistemic observables (there are many ways of observing the same entity). In 
the context of quantum mechanics, a W∗-algebra is a C∗-algebra possessing a Hilbert 
space as a pre-dual, so it is isomorphic to a closed algebra of observables on a Hil-
bert space. More generally, a W∗-algebra is an abstract C∗-algebra, which is the dual 

4  On should not confuse human states of knowledge with epistemic states. Epistemic states describe 
those properties of systems that can be measured. Human knowledge describes what we know after a 
measurement has taken place.



492	 Foundations of Physics (2020) 50:481–510

1 3

of some Banach space.5 This affords the definition of quantum expectation values as 
scalar products ⟨��A��⟩ (with A being an element of the W∗-algebra and � belong-
ing to the Hilbert space), and defines a weak topology through a scalar product in 
Hilbert space (Appendix A.2).

A contextual topology can be defined in the following way. Given a C∗-algebra 
of ontic observables, many possible W∗-algebras of epistemic observables can be 
constructed that are unitarily inequivalent to each other. Such a construction can be 
carried out by applying the Gel‘fand-Naimark-Segal (GNS) theorem [29, 44] from 
a suitably chosen reference state taken from the dual of the C∗-algebra which is the 
state space of the system. This reference state defines a particular restrictive context 
and, through the GNS constructed-W∗-algebra, an associated contextual topology 
(Sect. 2.3). An example would be the Kubo-Martin-Schwinger states serving as ref-
erence states for a GNS construction of a W∗-algebra containing temperature as an 
observable (Sect. 4).

3.2 � Quantum and Classical Algebras

Algebras of observables can be distinguished as follows. A quantum algebra of 
observables will be noncommutative. In contrast, a classical algebra of observables 
is commutative, where every observable commutes with all other observables in the 
algebra. Finally, there is the mixed case, a quantum/classical algebra of observables, 
which has a nontrivial center. In this context, this means there is also a set of com-
muting or classical observables in the algebra. In algebraic approaches, conceptually 
the distinction between commuting and noncommuting observables is the core of 
the classical/quantum observable distinction rather than classical vs. quantum phys-
ics. For a quantum system the C∗-algebra does not contain observables that commute 
with every other observable (except the identity); it has a trivial center only. Simi-
larly for a quantum W∗-algebra. These algebras, therefore, describe quantum systems 
with a non-Boolean propositional calculus.

There are some subtleties to the commuting/noncommuting distinction. For 
instance, it can be shown under very general conditions that chaotic nonlinear 
dynamical systems have some noncommuting observables, and these observa-
bles can be found in classical statistical mechanics systems [39, 40]. On the other 
hand, the Hamiltonian operator in quantum mechanics often commutes with a 
number of quantum observables, but is not considered to be a proper observable 
of classical physics. Nor are quantum Hamiltonians found in the center of the 
respective algebra. So, a particular observable may have particular commuta-
tion properties, but not be classified as a quantum or classical observable based 
on its peculiarities. Nonetheless, it is always the case that quantum observables 
will not be found in a classical algebra of observables nor in the nontrivial center 

5  This is to say that a C∗-algebra, A , is a W∗-algebra if there exists a Banach space A∗ such that 
(A∗)

∗ = A , where (A∗)
∗ is the dual Banach space of A∗ . The Banach space A∗ is the predual of A . An 

important example of a commutative W∗-algebra is the Banach space L∞ where the predual space is the 
separable Banach space L

1
.
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of a quantum/classical algebra. In the special case where all the properties of a 
system are identical to the observables in the center of an algebra, that system 
can be classified as classical since all its properties are identified with classical 
observables.

Lastly, as is well known, for any nontrivial operator A defined on a Hilbert 
space H , there exists a state vector 𝜓 ⊆ H such that ⟨��A��⟩ is not dispersion 
free (i.e., ⟨��A2��⟩ ≠ ⟨��A��⟩2 ) [54]. Quantum mechanics allows all bounded 
operators on H , so contains no dispersion-free, or classical observables.

3.2.1 � Classical Algebras

A classical algebra is equal to its center; hence, all observables commute and 
are described by a Boolean propositional calculus. Classical mechanics is an 
example where the algebra of observables is commutative. For a C∗-algebra A , 
a dispersion-free state on A is a one-dimensional representation of A , so every 
dispersion-free state is a pure state. Moreover, if every pure state on a W∗-algebra 
is dispersion-free, then this algebra is commutative. The ontic states of of every 
classical system are dispersion-free, so every pure state on such a W∗-algebra of 
observables is a possible ontic state of the system.

This means that there can be an interleaving of levels of description: The dis-
persion-free states of a W∗-algebra at one level of description can serve as the 
ontic states that can be related to epistemic states at a higher level of description 
in a relation of relative onticity [9]. It is always possible to represent any classical 
system by a commutative W∗-algebra of observables.

3.2.2 � Quantum/Classical Algebras

A W∗-algebra may contain a center of commuting—and therefore classical—
observables, and, hence, be a mixed quantum/classical algebra. Observables in 
the center of a quantum/classical algebra will be dispersion-free and their time 
evolution defines a classical dynamical system.

The existence of classical observables in an algebra A has an important conse-
quence if it is a ∗-algebra defined on H . The space is split into sectors separated by 
a superselection rule. The sectors are indexed by the possible dispersion-free val-
ues of the classical observables. The superselection rule implies that all transition 
probabilities �⟨Ψj�A�Ψk⟩�2 for Ψj ⊆ Hj , Ψk ⊆ Hk , when Hj and Hk are different sec-
tors, vanish for all A ⊆ A . Hence, the normalized state vector Ψ = c1Ψj + c2Ψk , c1 , 
c2 ⊆ ℂ is a mixture rather than a pure state. Coherent superpositions across sectors 
are forbidden. For example, Ψ cannot be a superposition of chiral states of a single 
molecule (Sect. 5). This fact implies classical observables restrict the validity of the 
principle of superposition for quantum state vectors.

Finally, one also can use a Hilbert space formulation of classical physics [32, 33] 
to pursue a unified mathematical framework for quantum and classical mechanics.
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3.3 � Algebras and Dynamics

For a classical W∗-algebra, the dynamics is given by a semigroup of positive, iden-
tity-preserving normal maps of the algebra of observables into itself. In the case of 
general W∗-algebras, the dynamics is given by completely positive maps. The homo-
morphisms and the one-norm projections represent important classes of completely 
positive maps. Every positive linear map on a commutative C∗-algebra is completely 
positive.

The importance of complete positivity can be seen from the following. Consider 
two non-interacting systems, where the algebra of observables is given by the W∗

-tensor product A1⊗̄A2 . The tensor product of two linear maps is not guaranteed to 
be positive, whereas the tensor product of completely positive maps is a completely 
positive map. To summarize, a dynamical semigroup {�t|t ⩾ 0} on an arbitrary W∗

-algebra is a weakly continuous one-parameter completely positive, identity-preserv-
ing normal map of A into itself. Time evolution in the Heisenberg picture is given 
by dynamical semigroups �t ∶ A → A , while time evolution in the Schrödinger pic-
ture is given by the pre-adjoint semigroup �∗t ∶ A∗ → A∗.6 For the dynamics to be 
invertible, �t is required to be a *-automorphism.

This is the algebraic machinery for dynamics. In the context of quantum mechan-
ics, it corresponds to the usual textbook dynamics, where Û(t1, t2) is a completely 
positive unitary operator defined by the evolution equation

In contrast to classical systems, (1) is insufficient to describe the complete evolution 
of a quantum system due to the fact that �Ψt⟩ is a linear superposition of states. In a 
measurement, only a specific eigenvalue–a definite classical outcome–is observed 
rather than a superposition. This is the measurement problem in quantum mechan-
ics, which we briefly comment on in Sect. 6.2.

4 � Temperature as a Contextually Emergent Property

Temperature is an example of a thermodynamic property that often is discussed both 
in physics and philosophy literatures as a “textbook case” of reduction. Temperature 
is usually glossed as the mean motion of molecules in a gas or liquid. Work in alge-
braic statistical mechanics shows that the relationship of temperature to the motion 
of molecules is more complex than this.

(1)iℏ
d

dt
�Ψt⟩ = Ĥ�Ψt⟩.

6  Dynamics on the dual A * is also well-defined, but the time evolution of non-normal states are not 
guaranteed to have desirable continuity properties.
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4.1 � Two Transitions

Temperature actually arises as the result of two transitions, one from the domain 
of particle mechanics to that of statistical mechanics, and the other from the lat-
ter domain to that of thermodynamics. The first transition involves the formation of 
ensembles of particles, where system properties are defined in terms of ensembles. 
Typically this is represented as statistical moments of a many-particle distribution 
function. There is a transition from individual particle states to ensembles as the 
physically relevant states. An example would be the mean kinetic energy of a sys-
tem of N particles calculated from the distribution of the momenta of all particles. 
Assuming the applicability of limit theorems, such as the law of large numbers, the 
expectation value of kinetic energy is defined through the limit of infinitely many 
particles. Any expectation value of a thermodynamic property whose definition is 
based on a statistical ensemble presupposes (infinitely) many degrees of freedom 
in the form of thermodynamic or other continuum limits [22]. In turn equivalence 
classes of the particles having the same properties are defined in the chosen limit.

Textbooks typically gloss the thermodynamic limit as a limit where the volume V 
of a system is allowed to increase without bounds, V → ∞ , while keeping constant 
the ratio of V/N. In addition, the condition that E/N remains constant, where E is the 
total energy, must be added for the microcanonical ensemble, or that the tempera-
ture remains constant for the canonical ensemble, or that the chemical potential and 
temperature remain constant for the grand canonical ensemble. The thermodynamic 
limit is equivalent to a scale transformation, where all dimensions of the system 
increase by some indefinite factor, and all thermodynamic properties are recovered 
in this limit.

As an alternative, Ludwig Boltzmann proposed “a definite limit when the number 
of the particles is made ever larger and their size ever smaller. We can then assert 
of these properties that they belong to the continuum and this in my view is the only 
non-contradictory definition of a continuum endowed with certain properties” [38]. 
This is a continuum limit that reverses the scale transformation: The size of the par-
ticles decrease without limit (in contrast to letting V increase without limit) while 
N → ∞ . Properties of the system as a whole, such as V, total mass Nm, total energy, 
total entropy, temperature and system chemical potential N� , where � is the chemi-
cal potential of the particles, remain constant or attain an asymptotic value [22]. In 
this continuum limit, all microscopic and intensive quantities vanish, while all mac-
roscopic and extensive quantities are at least asymptotically constant as one would 
expect for actual-world systems. Continuum limits correspond to a change of scale, 
where a similarity transformation acts on the particles. In contrast, thermodynamic 
limits re-scale system size. The important point is that thermodynamic and contin-
uum limits share a common feature of mathematically indicating a physical transi-
tion from individual particle states and observables to ensemble states and observa-
bles with distinguished equivalence classes.

The second transition is from the statistical mechanics domain to thermodynam-
ics. Temperature presupposes thermodynamic equilibrium, a special stable state 
based on the zeroth law of thermodynamics: Two systems in thermodynamic equi-
librium with a third system at time t are in thermodynamic equilibrium with each 
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other at t. Thermodynamic properties, such as temperature and chemical potential, 
are uniform and unchanging throughout the system. Therefore, if two systems are in 
thermodynamic equilibrium, they are at the same temperature.

While thermodynamic equilibrium is central to the definition of temperature in 
thermodynamics, such equilibrium is neither formally nor conceptually available 
in the domain of statistical mechanics. In the latter there are always fluctuations, 
so there are no uniform, unchanging properties as in thermodynamic equilibrium. 
Moreover, the very concept of temperature is absent from the statistical mechan-
ics domain simpliciter (in textbooks it is usually introduced through some form of 
phenomenological argument). Not only is thermodynamic equilibrium not definable 
for statistical mechanics simpliciter, temperature cannot be a mechanical property, 
contrary to the usual picture communicated in textbooks (see Sect. 4.3).

4.2 � The Contextual Origin of Temperature

Temperature contextually emerges as a novel thermodynamic property. Thermo-
dynamic equilibrium is a context providing stability conditions for the existence of 
temperature. Thermodynamic equilibrium as a stability condition implies a distin-
guished set of equivalence classes, namely all ensemble classes consistent with such 
stability.

For temperature, the thermodynamic stability conditions are physically imple-
mented through the KMS condition leading to a set of equivalence classes of sta-
tistical states with very special properties, the so-called KMS states. These states 
are a generalization of Gibbs states that possess remarkable stability properties 
(Sect. A.4). Physically, the KMS condition is a stability condition guaranteeing the 
existence and persistence of KMS states stable against local perturbations. These 
states have temperature as a well-defined classical observable.

Some of the stability properties of the KMS condition are [28]7: 

(1)	 Local thermodynamic stability Fluctuations of KMS states confined to bounded 
regions of space cannot increase the system’s free energy.

(2)	 Global thermodynamic stability KMS states that are translation invariant do not 
raise the spatial density of the free energy.

(3)	 Local dynamical stability Arbitrarily small local perturbations of the system 
dynamics admit stationary states that are arbitrarily close to KMS states.

(4)	 Passivity If a system is initially in a KMS state, no local perturbations applied 
over any finite time interval to the dynamics can result in energy being extracted 
from the system.

(5)	 Reservoir stability Any system in a KMS state can serve as a thermal reservoir 
when weakly coupled to a finite system.

7  While what follows is based on results from quantum statistical mechanics, since the end result always 
leads to a quantum/classical algebra (Sect. 3.2.2) with temperature as a classical observable, it makes no 
difference to the case for contextual emergence whether one discusses classical or quantum statistical 
mechanics.
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The KMS states originally were derived for infinite systems [30, 35, 37]. Later, 
Haag et al. [31] gave a rigorous derivation for finite systems based on three physi-
cally reasonable stability conditions for equilibrium states, which avoid some con-
tinuum limits: 

(1)	 Stationarity Expectation values of observables do not change over time.
(2)	 Stability The dynamics such states participate in is stable against perturbations.
(3)	 Asymptotic abelianness Correlations between local quantities at different times 

vanish sufficiently fast as the time differences go to infinity.

Any equilibrium states will meet the first condition. The second condition reflects 
stability under arbitrarily small perturbations; namely, such states are always given 
by density matrices that are functions of the system Hamiltonian. The third condi-
tion ensures there are no fluctuations in intensive system variables and implies that 
temporally distinct observables eventually become compatible. These are the same 
conditions that will lead to thermodynamic equilibrium. Taken together, this rep-
resents a thermodynamic stability condition that picks out an equivalence class of 
relevant states. We regard this step from infinite to finite systems as conceptually 
important, as infinite systems do not exist in physical reality [27].

An important point to notice is that, as with conservation laws, the conditions 
underlying KMS states are neither quantum, nor classical. Rather, they are global or 
universal stability conditions implying that as soon as objects arise in the universe 
fulfilling these conditions, KMS states emerge along with temperature as an observ-
able. So, for instance, as soon as there are quarks fulfilling these conditions–if these 
are the first particles–KMS states emerge with temperature as an observable.

Physically, the thermodynamic stability condition implements the contextual con-
tingent stability conditions of thermodynamics in the statistical mechanics domain. 
For example, the second law of thermodynamics implements this stability condition 
in terms of maximization of entropy [28]. When a system is in a KMS state it is in 
the canonical Gibbs state, uniquely defining a parameter whose natural interpreta-
tion is (inverse) temperature. In the framework of algebraic statistical mechanics, 
KMS states serve as reference states for a GNS construction. Mathematically, these 
reference states are functionals defined on the algebra of observables of the statisti-
cal mechanics domain through a new contextual topology, which is coarser than the 
original topology. The stability condition gives rise to a new algebra of observables 
including temperature as a property of the system. Takesaki [52] demonstrated how 
temperature must be a classical observable, rather than an element in the underlying 
quantum statistical algebra of observables.

4.3 � A Contextually Emergent Property

Temperature is an element of an algebra � of contextual observables. Mechanical 
descriptions are given by type I W∗-algebras, while the contextual W∗-algebra � 
is of type III (Appendix A.1). This means temperature cannot be an element of a 
mechanical description, implying the underlying statistical mechanics domain does 
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not reduce temperature to molecular motion in any straightforward sense. In con-
trast to several textbook claims, thermodynamics is not simply a coarse-grained 
description of statistical mechanics. Moreover, KMS states have the remarkable 
property that different temperatures are disjoint  [52], a property also inconsistent 
with mechanical states underlying the ensembles of statistical mechanics. Finally, 
KMS states of different temperatures fall into different superselection sectors. This 
means that temperature is a dispersion-free, i.e., classical, observable. So supposing 
the quark-gluon plasma is the first object that achieves the KMS condition, it would 
have both quantum and classical observables at one of the earliest stages of the uni-
verse’s development.

Temperature, then, is an example of a contextually emergent property neither 
contained in nor derivable from the laws and properties of the underlying mechani-
cal and statistical mechanics domains simpliciter. Hence, the need for the two transi-
tions discussed above. Distribution states determined by the thermodynamic stabil-
ity condition are required for the existence of thermodynamic states and properties. 
The KMS states are not implied by the laws and properties of the statistical mechan-
ics domain; rather, they result from the noncausal global stability constraints. When 
crucial contextual details are made explicit, thermodynamic properties can be seen 
acting as constraints for the mechanical properties of particles.

5 � Chemical Potentials and Chirality as Contextually Emergent 
Properties

The case is similar for chemical potentials and molecular structure.

5.1 � Chemical Potentials

Chemical potential as a contextually emergent property follows from the KMS states 
for specific constituents. They require a transition from an ensemble of molecules 
(statistical mechanics domain) to a rich context for such ensembles (chemical ther-
modynamics domain). Araki et al. [4] and Müller-Herold [41] have shown that this 
transition is nontrivial. The stability condition of thermodynamic equilibrium must 
be implemented through KMS states parameterized by temperature. These KMS 
states are disjoint for different chemical potentials meaning that states with different 
chemical potentials fall into different superselection sectors. Hence, chemical poten-
tial also is a dispersion-free or classical observable.

5.2 � The Problem of Molecular Structure

The chemical structure of molecules is another example of contextual emergence. 
Although the role of contexts in quantum mechanics is familiar as the differences 
between single and double-slit experiments illustrate with wave-particle duality, the 
role of contexts in the emergence of molecular structure often goes unacknowledged.
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To begin, we should always keep in mind that there is no such thing as an isolated 
molecule–all molecules are always coupled to the radiation field of the environ-
ment. Furthermore, chemists always deal with molecules having environmentally-
determined aspects of structure, such as chirality in amino acids or drugs such as 
thalidomide.

Chiral molecules have structures that are not superposable as mirror images. For 
instance, (R)-bromochlorofluoromethane is not superposable on (S)-bromochloro-
fluoromethane. According to quantum mechanics, the superposition state for prop-
erly chiral molecules, Ψ0 =

1√
2
(ΨR + ΨS) , should exist as a totally symmetric pure 

ground state, but is never encountered in laboratories. The reason for this absence is 
that when the coupling to the radiation field is taken into account, the chiral state 
vectors ΨR and ΨS exist in two different selection sectors, implying their structure is 
a classical (i.e., dispersion-free) observable. The chirality of DNA is a biologically 
important example of structure as a classical observable.8

For improperly “chiral” molecules, things are more subtle. Consider an ammonia 
molecule interacting with nothing other than its environment. It has two distinct 
pyramidal forms, ΨL and ΨR . The superpositions Ψ+ =

1√
2
(ΨL + ΨR) and 

Ψ− =
1√
2
(ΨL − ΨR) are the proper ground state and first excited state, respectively. 

Both Ψ+ and Ψ− are eigenstates of the molecular Hamiltonian, and are stationary 
states of the time-dependent Schrödinger equation. But, neither eigenstate has a 
nuclear frame, therefore neither has a molecular structure. On the other hand, ΨL 
and ΨR can be written as the superpositions ΨL =

1√
2
(Ψ+ + Ψ−) and 

ΨR =
1√
2
(Ψ+ − Ψ−) . The latter two superpositions are nonstationary states of the 

time-dependent Schrödinger equation. The two sets of superposition states reflect a 
tunneling process which transforms ΨL into ΨR and vice-versa. This implies that 
such a non-interacting ammonia molecule has no nuclear frame.

Without a well-defined nuclear frame, there is no molecular structure since there 
is no fixed position for nuclei relative to electrons. A key reason for this lack of 
molecular shape is that according to quantum mechanics molecules are always 
entangled: nuclei with electrons as well as molecules being entangled with their 
environment (e.g., other molecules, electromagnetic and gravitational fields) unless 
these entanglements are suppressed or broken. There is no such thing as a single 
molecule as an individual system since the interaction with the electromagnetic field 
yields a molecule + field system (so-called dressed states). Interactions with elec-
tromagnetic and gravitational fields can never be decoupled from molecules though 
these interactions can be partially screened.

Even considering an isolated molecule, quantum entanglement among nuclei and 
electrons implies that there are no separate nuclei and electrons as individual sub-
systems that could take on the kinds of spatial relationships needed for molecular 

8  The knot-type of DNA is also dispersion-free, hence, is a classical observable that has actual-world 
consequences (e.g., [36]).
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shape. Therefore, considering quantum mechanics simpliciter there are no states or 
observables for molecular shape apart from concrete contexts.

5.3 � The Importance of Molecular Shape

On the other hand, many chemical properties depend crucially on molecular 
shape, and such structure plays important roles in chemistry and biology. Consider 
2-butene. It is a stereoisomer, meaning its two forms have the same chemical for-
mula, yet different spatial orientations. These orientations cannot be related by trans-
lation or rotational transformations between the isomers. The cis and trans forms 
have different properties (e.g., different boiling points and densities). Perhaps the 
most famous example is DNA which has left-handed chiral symmetry, and the most 
tragic example is thalidomide which originally was not known to have two comple-
mentary chiralities until it was discovered in the 1960s that one species of handed-
ness was harmful while the other was beneficial in thalidomide-based treatments.

These are examples of what are known as chemical isomers–molecules having 
identical chemical formulas, but different chemical properties due to their differing 
structural arrangements. An oft-discussed example is C3H4 , which is the formula 
for three distinct chemical compounds: allene, cyclopropene, and methyl acetylene. 
There is no first-principles quantum Hamiltonian for C3H4 capable of distinguishing 
these three isomers. In general, no chemical isomers can be distinguished quantum 
mechanically because the first-principles or context-free quantum Hamiltonian only 
accounts for the total number of nucleons and electrons and their Coulomb forces. 
There are no specific spatial arrangements in the Hamiltonian because the electrons 
and nuclei are in entangled states. This can be seen from the fact that there are no 
shape observables in the first-principles quantum algebra of observables (see below).

Even taking the inter-particle distances and using the symmetric sum over them 
to produce an observable that is represented by a self-adjoint operator on the Hilbert 
space of functions fails to define molecular structure. For instance, in the case of 
C 8H8 the expectation values of these spatial observables imply that all the carbon-
hydrogen inter-particle distances are the same on average, so no structural interpre-
tation can be given. The only self-adjoint quantum observable that can be formed in 
first-principles quantum mechanics corresponding to classical observables associ-
ated with molecular structure yields results consistent with there being no molecu-
lar structure. Attempts involving charge density functions fare no better at yielding 
molecular structure [51].

Along with these problems, context-free first-principles quantum Hamiltonians 
also would have too many of the nuclear permutation and rotational symmetries, 
along with spherical and inversion symmetries, missing from actual-world mol-
ecules. There are many reasons, then, for the fact that the context-free quantum 
domain lacks molecular structure and, thus, provides no basis for distinguishing 
isomers or explaining optical activity, or other phenomena dependent on molecular 
shape. The algebras of observables for quantum mechanics and quantum chemistry 
indicate that shape observables are always classical rather than quantum observables 
[44]. The observables characterizing molecular structure are commutative, and the 



501

1 3

Foundations of Physics (2020) 50:481–510	

algebra of observables of quantum chemistry turns out to be a quantum/classical 
algebra with a nontrivial center (Sect. 3.2.2). More than the context-free laws and 
properties of quantum mechanics are needed for the emergence of states and observ-
ables for molecular structure.

5.4 � Ontological Emergence of Molecular Structure

Although molecular shape was proposed in the mid-nineteenth century, it first was 
made precise by Born and Oppenheimer through the Born-Oppenheimer “approxi-
mation” [20]. The scare quotes indicate that this is a mischaracterization of what is 
going on in the Born-Oppenheimer procedure. Molecular models, such as the Born-
Oppenheimer procedure, often actually refer to new states and observables (recall 
the idealization vs. abstraction discussion in Sect. 2.3). The basic idea is to follow 
the physical implications of the nucleus being very much more massive than the 
electron mass, and treat the nucleus as if it is (almost) stationary with respect to 
electronic motions. This corresponds to an asymptotic series expansion in powers of 
the parameter � = (me∕mn)

1∕4 , where me and mn are the electron and nuclear masses, 
respectively. As mn becomes indefinitely large with respect to the electron mass, 
� → 0.

Slightly more accurate results can be achieved with other adiabatic procedures, 
where the electrons are considered to move much faster than the heavier nuclear 
frame of a molecule. All of these adiabatic procedures are ways of implementing the 
fixed or clamped-nucleus assumption, the only assumption under which the singular 
limits involved can be regularized. Interestingly, the clamped nucleus assumption 
is the only one that leads to self-adjoint Hamiltonians for quantum chemistry [51]. 
This represents a context where: 

(1)	 Nuclear and electronic motions are distinguished, so entanglements between the 
nucleus and electrons are broken.

(2)	 Nuclear permutation, rotational and translational symmetries of the underlying 
quantum domain are broken.

(3)	 Electrons in molecules are distinguishable.

These are properties actual-world molecules have that are not found in the underly-
ing first-principles quantum domain [2, 14, 19, 44]. They correspond to P.W. Ander-
son’s key comment that emergence of new properties is associated with broken 
symmetries [3].

The regularization of such limits tracks with ontological changes that occur, such 
as the broken entanglements among nuclei and electrons and broken symmetries, 
leading to distinguishable particles and, in particular, new states and observables. 
The clamped nuclei assumption represents the stability condition distinguishing 
nuclear and electronic frames that is implemented in the quantum chemistry con-
text via a new contextual topology containing the relevant states and observables 
missing from the underlying quantum domain. Furthermore, this stability condition 
induces nuclear and atomic orbital equivalence classes [34], which play important 
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roles in nuclear magnetic resonance and electron spin resonance spectroscopy (e.g., 
[10, 11]). There are new observables corresponding to molecular shape, while states 
corresponding to individual atoms vanish and are replaced by states corresponding 
to molecules.

It is worth repeating that the clamped nuclei assumption is not merely an ideali-
zation (Sect. 2.3). Physically, it relates to a stability condition, where the electrons 
and nuclear motions are distinguished (breaking of entanglements and symmetries), 
with electronic motions taking place against the background of a relatively slow 
moving nuclear frame that provides physical conditions for the existence of states 
and classical (commuting) observables absent from the underlying quantum domain.

5.5 � The Associated Algebras

This is indicated by the quantum/classical algebra of observables of quantum chem-
istry. In the underlying quantum domain, the position and momentum observa-
bles do not commute, and the nucleons and electrons have no definite positions or 
momenta. Actual-world molecules, in contrast, are coherent objects maintaining 
very sharp positions and momenta with semi-rigid structures. These properties are 
used in chemical experiments, drug research, and so forth on a daily basis. A transi-
tion has occurred in the character of the position and momentum observables in the 
algebra of observables that our adiabatic procedures try to capture. The algebra of 
observables changes from a noncommutative algebra with a trivial center to a non-
commutative algebra with a nontrivial center. Corresponding to this is a transition 
in the dynamics of the system where a Boolean logic emerges in the center of the 
algebra of observables.

Consider the context-free quantum mechanical Hamiltonian for molecules and 
examine the equations of motion for the electrons and nuclei. This algebra of observ-
ables forms a W∗-algebra given by a tensor product of the electronic and nuclear 
observables, A = An ⊗ Ae , where An and Ae are both factors of type I (technically 
I∞ ). The position and momentum operators of the electrons are the generators of Ae , 
while the canonical position and momentum operators of the nuclei are the genera-
tors for An . Time evolution, then, is given by the equations of motion for these two 
sets of canonical observables. Note that for t > 0 , the electrons are not a dynamical 
system autonomous from the nuclei when only considering context-free first-princi-
ples quantum mechanics.

Under the clamped nuclei assumption, the algebra A contracts to Ae ⊗� , where 
Ae is still of type I describing the degrees of freedom of the electrons, but � is a 
commutative W∗-algebra describing the molecular structure and motions of the 
nuclei. The algebras of observables describing the electronic and nuclear motions 
is factorizeable indicating the quantum entanglement between nuclei and electrons 
is broken in this limit. This is reflected in the equations of motion as the electronic 
observables now form a distinguished system. The electronic motions are entrained 
by the motion of the nuclear frame.

This is the transition where the quantum entanglements between nuclei and elec-
trons are broken, several nuclear symmetries are broken, nuclear and atomic orbital 
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equivalence classes are distinguished, and new, classical states and observables for 
nuclear motion and molecular shape arise. The algebra Ae ⊗� is a mixed quan-
tum-classical algebra (Sect. 3.2.2). A classical control variable now appears in the 
electronic Hamiltonian. The nuclei form a classical stochastic system with classi-
cal observables in the center of A. The nuclei behave approximately like Newto-
nian point particles, but there are at least two correction factors to consider. First, 
there is an often small stochastic feedback from the electrons. Second, there is the 
remaining quantum nature of the nuclei, where the classical position and momentum 
observables fulfil a stochastic version of Heisenberg’s inequality. The fluctuations 
represented in these relations are much more rapid than the collective translational, 
vibrational and rotational motions of the nuclei. Furthermore, the mean distribution 
of these stochastic trajectories corresponds to the trajectories of the nuclei given by 
the quantum observables in An.

5.6 � Transition of the Algebra

The important point is that the original quantum algebra of observables in the under-
lying, formerly context-free quantum domain has undergone a transition to now 
include observables corresponding to molecular shape. This is the impact of the sta-
bility condition represented in the clamped nuclei situation. Although these observa-
bles do not exist in the underlying quantum domain simpliciter–the underlying alge-
bra contains no such observables–in relevant contexts, these classical observables 
emerge, and have the properties chemists study. The context-free quantum domain 
provides a necessary part of the total set of conditions necessary and sufficient for 
molecular structure. However, it is the concrete context provided by the stability 
condition in an environment that gives rise to the remaining necessary and sufficient 
conditions for the states and observables relevant for molecular shape. Molecular 
structure is a contextual feature of the actual world.

Of course, the environment in which molecules exist plays a key role in such 
coherence and localization–environmental decoherence–but care is needed in under-
standing precisely what this claim means. The environment involves heat baths with 
properties such as temperature and chemical potential, which themselves are con-
textually emergent properties (Sect. 4), so decoherence presupposes a richer context 
than just the underlying quantum domain. For instance, this environment already has 
the KMS stability condition in place, hence temperature is a contextually emergent 
dispersion-free observable with KMS states of different temperatures in different 
superselection sectors. The KMS condition acts like a global acausal constraint for 
the formation of chemical molecules. More importantly, the electromagnetic field 
in quantum electrodynamics has uncountably many superselection sectors (e.g., 
[21]), meaning that molecules are always interacting with classical states in the 
environment. This is the context that leads to the emergence of the classical states 
and observables associated with molecular shape. Decoherence itself is an exam-
ple of contextual emergence when the details are considered (for more discussion, 
see [18], Sect. 6.2.1).
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6 � Discussion

Contextual emergence is a framework that makes explicit what is often left implicit 
in inter-level/inter-domain relations. The concrete examples of temperature and 
molecular structure illustrate how stability conditions relevant to concrete contexts 
play crucial roles in the emergence of physical phenomena, where particular equiva-
lence classes are distinguished. Contextual topologies express the new information 
needed for understanding the relationship between lower-levels/underlying domains 
that are relatively context-free, and higher-level context-rich phenomena, where 
there are transitions between the relevant algebras of observables. Contextual emer-
gence reveals that the physical world is more subtle than the reductionistic impres-
sions based on “fundamental physics” that have been popularized [5, 18, 55].

6.1 � Possibilities and Constraints

Contextual emergence clarifies how to think about fundamentality in physics. The 
oversimplified view is that elementary particles and forces sit at the bottom of a 
hierarchy as the most fundamental elements of reality “governing” everything that 
transpires in the sense of making everything else happen in the universe. According 
to this metaphor, our writing and your reading of this text are just the complex out-
workings of elementary particles in response to elementary forces. In contrast, con-
textual emergence indicates we should not think in terms of governance but in terms 
of possibility and constraint. What the most elementary or underlying particles and 
forces contribute are the necessary conditions defining the space of physical possi-
bility. What is required for the actualization of specific possibilities are stability con-
ditions characterizing concrete contexts (e.g., dimensionality of space, KMS con-
dition for temperature, clamped nuclei–separation of nuclear and electronic frames 
and the entrainment of the latter by the former–for molecular structure).

Contexts are as fundamental as the elementary particles and forces because even 
the “most fundamental” laws always have to come to expression in, and are condi-
tioned by, concrete contexts [7, 15, 18, 26]. First principles are “fundamental” in the 
sense of being universal: they establish the space of physical possibility holding for 
all of reality, but do not determine all of what happens in reality. Concrete contexts 
are restrictions under various kinds of constraints that lead to actual phenomena and 
events, and as such are just as important for the existence and behavior of physical 
phenomena as the first principles.9

9  This implies that any talk of a universal wavefunction as a fundamental entity is incoherent if any-
thing more is meant than the basic fact that quantum mechanics contributes necessary conditions defin-
ing the space of physical possibility [18, Sect. 6.3]. Any wavefunctions are already coming to expression 
in some concrete context. What is more, as noted above, any physical environment already has classical 
thermal and electromagnetic states.
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6.2 � Extended Applications

Contextual emergence can also shed light on the measurement problem though this 
problem is dependent on the quantum theory in question. For example, taking von 
Neuman’s projection postulate seriously as well as the details of quantum measure-
ments in concrete contexts (e.g., that the environment within which any experiment 
takes place always contains classical states interacting with quantum systems, and 
the specifics of the measurement apparatus such as a Geiger counter), any theory 
treating the wave function as ontically real involves an irreducible classical context 
that is sufficient to produce the measurement outcome in interaction with the quan-
tum system. The classical structure of the measurement device (e.g., structure of 
atoms, macroscopic properties, nature of the internal heat bath) acts as a stability 
condition for a reliable transition from the quantum system’s superposition state to 
a particular eigenvalue and subsequent amplification of this outcome. Hence, any 
measurement outcome for a quantum system is the result of a top-down (classical-
to-quantum) constraint [25, 18, Sects. 6.2–6.3]. The interaction between quantum 
system and measurement apparatus is not describable by entanglement because of 
the presence of ineliminable classical thermal and electromagnetic states (one of the 
details missing from typical decoherence accounts). Therefore, any measurement 
of a quantum system always involves a crucial classical contextual constraint lead-
ing to the particular eigenprojection of the wavefunction. Moreover, models for the 
quantum-measurement system in concrete contexts always involve quantum/classi-
cal algebras of observables.

Beyond foundations of physics, contextual emergence as a framework has also 
been applied to cognitive science and neuroscience [1, 8, 13]. For instance, the 
Hodgkin-Huxley equations describing the generation and propagation of action 
potentials involve the electric conductance transmembrane currents, and the kinet-
ics of sodium and potassium ion channel openings. The lower-level ion channels 
are macro-molecular quantum objects that would be in an entangled state of elec-
trons and nuclei as described in the previous section, where the molecular structure 
necessary for pores to be in open or closed states is contextually emergent. In turn, 
the fluctuations of ion channels are stochastic and the Hodgkin-Huxley equations 
describe a contextually-emergent stochastic dynamics  [13]. At a higher level, the 
contextual emergence of mental states from neural states can be described in this 
framework [1, 8].

The breadth of applicability of contextual emergence as a framework along with 
the clarification of fundamentality implies there is an intricate interleaving of levels, 
where both “bottom-up” causes and “top-down” constraints are involved. For exam-
ple, quantum mechanics provides some necessary laws and properties for the exist-
ence of properties such as molecular structure, while the clamped-nuclei stability 
condition provides the remaining necessary and sufficient conditions for molecular 
structure. In turn, the laws and properties of chemistry provide some necessary laws 
and properties for the existence and behavior of biomolecules and biological organ-
isms, while stability conditions at the levels of biochemistry and biology provide 
the remaining necessary and sufficient conditions for the existence and behavior of 
biomolecules.
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Put another way, quantum mechanics provides a broad physical possibility space 
within which chemical phenomena can emerge, but concrete chemical contexts 
determine the subspace of chemical possibilities and its accessibility. In turn, the 
subspace of these chemical possibilities provides the possibility space within which 
biochemical phenomena can emerge, but concrete biochemical contexts determine 
the subspace of biochemical possibilities and its accessibility. Similarly, the sub-
space of these biochemical possibilities provides the possibility space within which 
biological phenomena can emerge, but concrete biological contexts determine the 
subspace of biological possibilities and its accessibility.

So there are interleaving ontological relations among the different possibility 
spaces and their differing accessibility all within the basic physical space of pos-
sibilities. And this is why there are interleaving patterns of descriptions across the 
sciences. Interleaving of descriptions is well illustrated by fields such as biophysics 
and biochemistry. The ineliminable role of contexts is made explicit in contextual 
emergence making clear what has always been present in physics and other sciences, 
but has often been taken for granted or underestimated in its importance.

Useful extensions of this work could develop the relation between the topolo-
gies that characterize contextual emergence, their associated equivalence classes of 
states, and the accessibility relations for the different possibility subspaces defined 
by concrete contexts (e.g., accessibility conditions for the transition from chemistry 
to biochemistry). As well there is much to be explored regarding how the framework 
of contextual emergence can provide a unified view of the sciences while respecting 
the particularities of the different domains and disciplines.

Finally, we note that there are deep connections between contextual emergence 
and renormalization group approaches. This is being explored in other publications.

Acknowledgements  We thank two referees for helpful comments that have clarified and strengthened the 
manuscript.

Appendices

The Appendices cover *-Algebras (Appendix A.1), Strong/Weak Topologies 
(Appendix A.2), and Structural Stability and the Topological Equivalence of 
Dynamical Systems (Appendix A.3).  The final Appendix defines KMS states 
(Appendix A.4).

A.1: *‑Algebras

A ∗-algebra admits an involution ∗ ∶ A → A with the usual properties. A ∗-algebra 
is normed, if there is a mapping ||.|| ∶ A → �+ with the usual properties. A com-
plete normed ∗-algebra is a Banach ∗-algebra. A C∗-algebra is a Banach ∗-algebra A 
with the additional property ||x∗x|| = ||x||2 for all x ∈ A [53, chap. I.1]. The associ-
ated concept of a state is introduced in terms of positive normalized linear function-
als defined over A . For a fundamental theory in physics, the state space is chosen 
such that only the most basic assumptions are required for its definition.
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Algebras can be classified by their central decompositions or factors. A factor is 
of type I if it contains an atom.10 It is of type II if it is atom-free and contains some 
nonzero finite projection. It is of type III if it does not contain any nonzero finite 
projection [53, p.296]. Every factor of type I has normal pure states, though for type 
I∞ not all pure states are normal. Factors of types II and III lack normal pure states. 
For the example of statistical mechanics/thermodynamics, mechanical observables 
used to develop statistical ensembles and their expectation values reside in a type I 
W∗-algebra, while the contextual W∗-algebra defined through the KMS condition is 
of type III, meaning temperature cannot be reducible to statistical mechanics in any 
straightforward sense (Sect. 4).

The center of an algebra contains elements that commute with the rest of the ele-
ments in the center. A center is trivial when these elements are simply multiples of 
the identity operator.

A.2: Strong/Weak Topologies

Algebras of observables are related to the topologies of the state spaces over which 
they are defined. Topologies define the convergence properties for a sequence of 
elements in a space, and can be characterized as strong/fine or weak/coarse. For 
instance, in a Banach space the ∥ ⋅ ∥ norm induces a topology � , while its dual, the 
set of all continuous linear functions, induces a topology � on the Banach space. The 
latter topology is weak while the former is strong; that is to say, 𝜎 ⊆ 𝜏.

The differences between strong and weak topologies can be illustrated by means 
of series expansions [13]. An example of convergence in a strong topology would be 
uniform convergence of a Taylor series of a function within its convergence radius. 
An example of convergence in a weak topology would be the Fourier series of a 
function, which converges only in quadratic norm L2.

A.3: Structural Stability and Topological Equivalence of Dynamical Systems

A fundamental notion of stability for a dynamical system is the stability of a point 
x∗ ∈ � under the flow Φt ∶ x∗ = Φ(x∗) . This means x∗ is a fixed-point attractor for 
the flow. The technique of Poincaré sections can be used to relate limit cycles or 
higher-order tori as attractors to fixed points. More generally, attractors are invari-
ant sets A ⊂ � , such that Φ(A) = A and Φ−1(A) ⊆ A . This invariance property of 
A extends to probability measures � , where �(Φ−1(A) = �(A) , which are called 
stationary or invariant measures. Similarly, a statistical state �� over the algebra of 
continuous functions assigned to the measure � has the invariance property. The 
invariance of thermal equilibrium states is the first condition for KMS states given 
in Haag et al. [31].

10  An atom is a minimal nonzero element of a lattice, which is to say that it cannot be decomposed into 
two proper subsets: For 𝛼 ⊆ A , � is an atom iff for every � , either � ∧ � = � or � ∧ � = 0.
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Structural stability refers to perturbations in the function space of the flow map 
Φ . A system (�,Φ) is structurally stable if there is a neighborhood N  of Φ such that 
all Ψ ∈ N  are topologically equivalent to Φ . Two maps Φ and Ψ are topologically 
equivalent, or conjugated, if there is a homeomorphism h such that h◦Φ = Ψ◦h . As 
Haag et al. [31] pointed out, structural stability is closely related to ergodicity: An 
invariant probability measure � is said to be ergodic under the flow Φ if an invariant 
set A, has either measure zero or one, �(A) ∈ {0, 1} . If � is non-ergodic, there is an 
invariant set A with 0 < 𝜇(A) < 1 corresponding to an accidental degeneracy. Such 
degeneracies are not stable under small perturbations. Therefore, non-ergodic sys-
tems are in general not structurally stable [31].

A.4: Defining KMS States

Consider a C∗-dynamical system with an associated algebra of observables. Suppose 
A be a C∗-algebra and t → �t a strongly continuous group of automorphisms of A . 
An element A ⊆ A , is analytic if there exists a strip I𝜂 = {z∈ ℂ ∶∣ �(z) ∣< 𝜂} and a 
function f ∶ I� → A such that 

(1)	 f (t) = �t(A) for all t ∈ ℝ

(2)	 z → f (z) is analytic for z ∈ I�

For the C∗-dynamical system ( A, �,ℝ) , a state � defined over A is a �-KMS state 
with value � ∈ ℝ if �(A�(B)) = �(BA) for all A, B in a norm-dense, �-invariant ∗
-subalgebra of A� , where � is inverse temperature.
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