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Abstract
In previous articles we presented a simple set of axioms named “Contexts, Sys-
tems and Modalities” (CSM), where the structure of quantum mechanics appears as 
a result of the interplay between the quantized number of modalities accessible to 
a quantum system, and the continuum of contexts that are required to define these 
modalities. In the present article we discuss further how to obtain (or rather infer) 
Born’s rule within this framework. Our approach is compared with other former 
and recent derivations, and its strong links with Gleason’s theorem are particularly 
emphasized.

Keywords Quantum mechanics · Born’s rule · Gleason’s theorem

1 Introduction

Many recent articles [1] claim to provide new derivations of Born’s rule, that is 
clearly a major theoretical basis of quantum mechanics (QM). Other views are pos-
sible [2, 3], including that deriving Born’s rule is a nonsense, and that it must essen-
tially be postulated [4]. In this article we take a medium position, that is: Born’s rule 
cannot be logically proven, but it does not have either to be postulated. Actually, 
it can be inferred from some simple physical requirements or postulates, based on 
established (quantum) empirical evidence [5]. After the realization of loophole free 
Bell tests [6] and in the era of quantum technologies [7], these postulates can be 
simply formulated [8–13]. They are presented here in a synthetic form, and various 
consequences are obtained and discussed.
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2  Definitions and Postulates

Definition 1 We consider a quantum system S and a specified ensemble of measure-
ment devices interacting with it; this ensemble is called a context.1 The best physi-
cally allowed measurement process provides a set of numbers, corresponding to the 
values of a well-defined and complete set of jointly measurable quantities; these val-
ues will be found again with certainty, as long as the system and context are kept the 
same.2 The physical situation occurring after such an ideal repeatable measurement 
process is called a modality.

As an example using QM notations (not required yet), for K particles with spin 1/2, 
the set of observables {S(i)

z
, i = 1...K} constitutes a context, and the observation of a 

given set of results {m(i), i = 1...K} , where m(i) equals either +ℏ∕2 or −ℏ∕2 , consti-
tutes a modality. The modalities are not defined in the same way as the usual “quan-
tum states of the system”, since they are explicitly attached to both the context and 
the system.

From the above definition, justified by empirical evidence, one measurement pro-
vides only one modality. Therefore in any given context the various possible modali-
ties are mutually exclusive, meaning that if one result is true, or verified, all other 
ones are not true, or not verified. We have then the

Basic postulate (contextual quantization): The number N of mutually exclusive 
modalities for a given quantum system is the same in any relevant context. 

In the above example one has N = 2K.

Definition 2 (incompatible modalities): Modalities observed in different contexts 
are generally not mutually exclusive, they are said to be incompatible.

Here incompatible means that if a result is true, or verified, one cannot tell 
whether the other one is true or not.

Definition 3 (extravalence3): When S interacts in succession with different contexts, 
certainty and repeatability can be transferred between their modalities. This is called 
extracontextuality, and defines an equivalence class between modalities, called 
extravalence.4

1 The word “context” includes the actual settings of the device, e.g. measurement of Sz rather than Sx : the 
context must be factual, not contrafactual. On the other hand all devices able to measure Sz are equivalent 
as a context, in a (Bohrian) sense that they all define the same conditions for predicting the future behav-
iour of the system.
2 We omit the free evolution of the system; if it is present, the result of a new measurement can still 
be predicted with certainty, but in another context that can be deduced from the free evolution. Mutatis 
mutandis, this is equivalent to full repeatability.
3 In [10] extravalent modalities in different contexts are considered to be the same modality, transferred 
from a context to another. This is however not satisfactory, since a modality belongs to a specific context 
and system. The notions of extracontextuality and extravalence are thus more suitable, as explained in 
[12].
4 Note that extravalent modalities appear only if N ≥ 3 , this has an obvious geometrical interpretation in 
relation with Gleason’s theorem (see below).
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The equivalence relation is obvious, for more details and examples of extrava-
lence classes see [12].

The intuitive idea behind these definitions and postulate is that making more 
measurements in QM (by changing the context) cannot provide “more details” about 
the system, because this would increase the number of mutually exclusive modali-
ties, contradicting the basic postulate. One might conclude that changing context 
randomizes all results, but this is not true: some modalities may be related with cer-
tainty between different contexts, this is why extravalence is an essential feature of 
the construction.

3  Theorems

Theorem  1 Given an initial modality and context, obtaining another modality in 
another context must (in general) follow a probabilistic law.

First, let us emphasize that modalities in different contexts are always considered 
different, even if they are extravalent, so some care is required when counting 
modalities. Let us start from an initial modality for a system in context Cu , and per-
form a measurement in another context Cv . Several situations can be considered:

(i) From the basic postulate there are N mutually exclusive modalities in each 
context, and one of them is realized when doing a measurement. Therefore the situ-
ation where all modalities in context Cv would have a probability p = 0 to occur is 
excluded by construction.

(ii) If one modality in the new context Cv is obtained with certainty, this means 
that Cv contains a modality extravalent with the initial one; then p = 1 for this 
modality, and p = 0 for all other (mutually exclusive) ones. If the situation is the 
same for all modalities in Cu , then they are all extravalent with a modality in Cv , 
and the modalities in the new context can be seen as a rearrangement (permutation) 
of the initial ones. So let’s try again with another context Cw ; if the situation is the 
same again in all other contexts, it means that there are only N classes of extravalent 
modalities, going through all contexts. This means that the context is unique up to a 
rearrangement (permutation) of the modalities; therefore there are no incompatible 
modalities, and the situation is essentially classical.

(iii) Since case (i) is excluded, and case (ii) is classical (there are no incompatible 
modalities), the general case (where incompatible modalities do exist) is that obtain-
ing a modality in the new context is probabilistic (0 < p < 1) , hence the theorem is 
demonstrated.   ◻
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The core of this proof is that measuring in a new context cannot be a “refine-
ment” of the previous measurement, because this would extend the number N 
of mutually exclusive modalities. To see that more explicitly, let us consider an 
initial modality u0 in Cu , connected to at least two modalities v1 or v2 , accord-
ing to (iii) above. Now let us measure again in Cu : if u0 is found again with cer-
tainty, then there would be two mutually exclusive situations, u0 → v1 → u0 and 
u0 → v2 → u0 . This would give at least (N + 1) mutually exclusive modalities, in 
contradiction with the quantization postulate. Therefore the randomness is not 
only from Cu to Cv , but also back from Cv to Cu [13]. This makes clear that prob-
abilities necessarily follow from the fixed value of N, i.e. from the maximum 
number of mutually exclusive modalities for a given system, imposed by the basic 
postulate.

Theorem  2 Given an initial modality and context, the probability to get another 
modality in another context keeps the same value as long as the initial and final 
modalities belong to the same respective extravalence class, independently of the 
embedding contexts.

Let us start again from an initial modality ui and context Cu , and follow again 
the steps above when performing a measurement in another context Cv . 

 (i) The situation where no modality can be obtained in the new context (p = 0) is 
excluded as said above.

 (ii) The situation where obtaining one modality in the new context is certain 
(p = 1) means that the new context contains a modality extravalent with the 
initial one. Then p = 1 corresponds to modalities in the same extravalence 
class, this is the definition of extravalence.

 (iii) In the general case one gets another modality vj with a probability 0 < p < 1 . 
Given this new modality vj , changing again the context to another one Cw 
containing a modality wk extravalent to vj will yield wk with certainty. In that 
case the probability for going from ui to vj will be the same as the one for going 
from ui to wk (Fig. 1). Moreover, if one starts from a modality xl extravalent to 
ui , and one goes to ui then to vj , the probability for going from xl to vj will be 
the same as the one for going from ui to vj.

i j

x w

Fig. 1  The four modalities {ui, vj, xl, wk} belong to four different contexts, and ui (resp. vj ) is extravalent 
with xl (resp. wk ). Then all probabilities represented by dashed lines are equal according to Theorem 2
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Therefore the probability to get another modality in another context only depends on 
the extravalence classes of the initial and final modalities, and the theorem is dem-
onstrated.5 ◻

This theorem shows that the probability to get a new modality starting from an 
initial one is linked neither to the context, nor to the modalities themselves, but to 
their extravalence class. In some approaches this property is called “non-contextual 
assignment of probabilities”, and this is a very fundamental feature of quantum 
mechanics, which appears here as a theorem. It also suggests the major next step, i.e. 
that the probability law should be obtained by attributing a mathematical object to 
an extravalence class, in such a way that all the above requirements are fulfilled. As 
a general feature of such an inductive or inference reasoning [5], it cannot be shown 
that the proposed solution is unique (i.e., necessary), but it can be shown that it ful-
fills all the requirements (i.e., that it is sufficient).

Theorem 3 Let us associate a N × N rank-1 projector Pi to each extravalence class 
of modalities, and a set of N mutually orthogonal projectors to each context. Then 
the probability law f (Pi) built from these projectors obeys Born’s rule, and different 
sets of mutually orthogonal projectors are related by (complex) unitary matrices.

Since the N × N projectors are associated to extravalence classes of modalities, 
the probabilities are a function f (Pi) of these projectors, in agreement with Theo-
rem 2. Since a context (set of mutually exclusive modalities) is associated to a set of 
N mutually orthogonal projectors, the probabilities for this set of projectors sum to 
1. This condition only requires to add probabilities for commuting (orthogonal) pro-
jectors, avoiding known objections to other derivations [3]. Then all the hypotheses 
for Gleason’s theorem [14] are fulfilled (see Sect. 4), and thus Born’s rule applies 
[12]. By construction orthogonal sets of projectors are connected by complex uni-
tary matrices. Complex numbers are required to connect continuously the identity 
matrix to all permutations of modalities: this cannot be done by (real) orthogonal 
matrices, which split into two subsets with determinants ± 1 ; see [10, 12].   ◻

Here we have considered initial and final modalities, i.e. rank 1 projectors [12], 
but more generally Gleason’s theorem provides the probability law for density oper-
ators (convex sums of projectors), interpreted as statistical mixtures. This clarifies 
the link between Born’s rule and the mathematical structure of density operators 
[19].

4  An Overview of Gleason’s Theorem

Gleason’s theorem has the reputation of being un-penetrable by physicists, who 
usually keep away from this frightening monument (see also Sect.  5). Therefore 
we want to present here a “physicist’s demonstration”, where most mathematical 

5 In order to make sense of Theorem 2, it is essential to distinguish between modalities and vectors in an 
Hilbert space, that will correspond to extravalence classes of modalities (see below). This issue is also 
essential for a good understanding of Gleason’s hypotheses.
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difficulties are deliberately omitted, in order to reveal the big picture. All the (nice) 
mathematical details can be found in “An elementary proof of Gleason’s theorem”, 
by Cooke [15], which is more recent and reader-friendly than the original work by 
Gleason [14].

Let us consider a separable Hilbert space H over ℝ or ℂ , and if dim(H ) = N we 
denote it CN (over ℂ ) ou RN (over ℝ ). Then we define a real-valued non-negative 
function f acting on the unit sphere of H , such that for any orthonormal basis {xi} of 
H , one has 

∑
i f (xi) = 1.

The function f (xi) can be seen as the probability to get the result xi , in a “state” 
defined by f. Note that if f (xj) = 1 for the vector xj , then f (xk≠j) = 0 for all other 
vectors in the orthonormal basis {xi} : the results xi are mutually exclusive as we 
required. The non-obvious hypothesis is why f (xi) depends only on xi and f, and 
not on the other vectors {xk≠j} in the orthonormal basis: this is where the discussion 
above plays a crucial role, by associating xi to an extravalence class of modalities.

Here our goal is to sketch a demonstration of Gleason’s theorem: If N ≥ 3 , there 
exists a density operator6 � defined on H such that f (xi) = ⟨xi���xi⟩ for all unit vec-
tors xi . Then f is said to be “regular”.

For simplicity we will assume that the extreme value f (xi) = 1 is reached, 
and then present the (easier) result that in that case � is a projector �x⟩⟨x� , so 
f (xi) = ⟨xi�x⟩⟨x�xi⟩ = �⟨xi�x⟩�2 : this is the usual Born’s rule for pure states (or for 
extravalent modalities).

Step 1: prove the following “reduction lemmas”
L1 - In RN , f is regular iff it is the restriction to the unit sphere of a quadratic 

form (this is clear by writing explicitly � as a self-adjoint operator)
L2 - If f is regular in R3 , then it is also regular in any 2-dimensional subspace R2 

of R3 (this is clear by restricting the quadratic form from R3 to R2)
L3 - If f is regular in any subspace R2 of C2 , then it is regular in C2 (not obvious, 

see [15])
L4 - If f is regular in any subspace C2 of CN , then it is regular in CN (not obvious, 

see [15])
Crucial lemma: If f is regular in R3 , then it is regular in CN (use L2, then L3, 

then L4).
Therefore it is enough to show that f is regular in R3 . This explains why the theorem 

requires N ≥ 3 : in fact, f is regular in any C2 considered as a subspace of CN , but not in 
C2 considered alone. Said otherwise, it is well known, e.g. from Clauser [16], that one 
can build a “classical model of a (unique) qubit”. However this classical model fails if 
this qubit is one among several qubits, which is fine as far as QM is concerned.

Step 2: prove that f is regular in R3

Now one looks for a probability function f(u), where u is a normalized vector in R3 , 
so that 0 ≤ f (u) ≤ 1 and f (u) + f (v) + f (w) = 1 for any orthonormal basis {u, v,w} of 
R3 . One does not assume that f is continuous, but here we assume that the extreme 

6 A density operator is a positive semidefinite Hermitian operator with unit trace. It describes a pure 
state if it is a rank one projector.
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values 0 and 1 are reached (this is only for simplification, and the general case is treated 
in the full theorem [14, 15]).

Given a normalized vector p and an orthonormal basis {u, v,w} , the quantities 
cos2(u, p) , cos2(v, p) , cos2(w, p) are the squares of the components of p in the basis, so 
they sum to 1. Therefore cos2(u, p) for a fixed p is an acceptable function f(u), and actu-
ally it is the good one. But why is it the only such function? We will split the answer in 
two parts.

Why is there no � ?
In R3 a normalized vector u is defined by two polar angles � and � , and in cos2(u, p) 

there is only one angle, why? To be specific let us choose p as the vector such that 
f (p) = 1 (since this value is reached), and position it at the pole of the unit sphere in 3 
dimensions (see Fig. 2). As a consequence, f (q) = 0 for all vectors on the equator, and 
for any vector one can define h(u) = cos2(u, p) , which depends on the “latitude” of u 
(the polar angle � ), but not on its “longitude” (the azimuthal angle �).

One can then use two lemmas to show that for any two vectors u, v in the northern 
hemisphere such that h(u) > h(v) , one has f (u) ≥ f (v) ; this is done in Annex 1. Then 
define the smallest and largest values of the possible values of f(u) for a given latitude:

One has M(1) = m(1) = 1 at the pole, M(0) = m(0) = 0 at the equator, and if 
x < x′ then M(x) ≤ m(x�) due to the above lemmas. In addition one has obviously 
m(x) ≤ M(x) and m(x�) ≤ M(x�) , so if x → x′ one gets a contradiction (M less than 
m), unless m(x) = M(x) , i.e. f(u) depends only on the latitude.   ◻

Why only cos2(u, p) ?
Given that cos2(u, p) is an acceptable f(u), one may think that any other function 

f (u) = g(cos2(u, p)) should be acceptable also. To show this not the case, one uses a
Magical lemma: Consider a function g over [0, 1], verifying the hypotheses (i) 

g(0)=0, (ii) a < b ⇒ g(a) < g(b) , (iii) a + b + c = 1 ⇒ g(a) + g(b) + g(c) = 1 . Then 
g(a) = a for any a within [0,1].

m(x) =Inf{f (u) such that h(u) = x}

M(x) =Sup{f (u) such that h(u) = x}.

q u v 

w 

Fig. 2  We look for a probability function f(u), where u is a normalized vector in R3 , so that 0 ≤ f (u) ≤ 1 
and f (u) + f (v) + f (w) = 1 for any orthonormal basis {u, v,w} of R3 . To be simple (see text) we assume 
that the extreme values 0 and 1 are reached, we define a normalized vector p such that f (p) = 1 , and put 
it at the pole of the 3D sphere. As a consequence, f (q) = 0 for any q on the equator. Given an orthonor-
mal basis {u, v,w} , the quantities cos2(u, p) , cos2(v, p) , cos2(w, p) are the squares of the components of p 
in this basis, so they sum to 1. Therefore h(u) = cos2(u, p) is an acceptable function f(u), and Gleason’s 
theorem shows that it is the only one



1788 Foundations of Physics (2020) 50:1781–1793

1 3

The proof (subtle but not difficult) is given in Annex 2. It is easily seen 
that g(cos2(u, p)) fulfills the hypothesis of the lemma for any orthonormal 
basis {u, v,w} , with a = cos2(u, p) etc. So from the magical lemma one gets 
g(cos2(u, p)) = cos2(u, p) , and the additional function g is useless.   ◻

Step 3: conclude that f is regular in CN
Therefore f is regular in R3 , and also in CN from the reduction lemmas. The dem-

onstration can be reconsidered in the more general case where the value f (p) = 1 is 
not reached, and one finds7 that � is no more a projector, but a density matrix associ-
ated with a statistical mixture.   ◻

5  Discussion

An essential feature of the contextual quantization postulate, i.e. the fixed value N 
of the maximum number of mutually exclusive modality, turns out to be the dimen-
sion of the Hilbert space. In the spirit of [5] and as shown is [10, 12], this provides 
one more heuristic reason for using projectors. Then the projective structure of the 
probability law warrants that, despite the availability of an infinite number of incom-
patible modalities, N cannot be “bypassed” by getting more details on any of them.

This would not be the case in the usual probability theory, based on partitions: 
making a partition of all modalities in N sub-ensembles for each given context would 
not prevent sub-partitions, that would correspond to additional details or “hidden 
variables”, that are forbidden by our basic postulate. This corresponds mathemati-
cally to Bell’s or Kochen–Specker’s theorems, and all their variants, which basically 
show the inadequacy of partition-based probabilities. This problem obviously van-
ishes when projectors are used, and then from Gleason’s theorem no other choice is 
left than Born’s rule. It is worth emphasizing also that Bell’s or Kochen-Specker’s 
theorems consider discrete sets of contexts, whereas Gleason’s theorem is based 
upon the interplay between the continuum of contexts, and the quantized number 
of modalities accessible in a given context. This feature also fits perfectly with the 
CSM ideas.

We note that some recent derivations of Born’s law [17–19] dismiss Gleason’s 
theorem, on the basis that its hypotheses are either too strong (extracontextuality) or 
unjustified (projective probabilities). More precisely, the authors of [17–19] argue 
for the non-relevance of Gleason’s theorem to QM, in opposition to the CSM view. 
Quoting [19]: “As mentioned in the introduction, Gleason’s theorem and many other 
derivations of the Born rule assume the structure of quantum measurements. That 
is, the correspondence between measurements and orthonormal bases {�i}, or more 
generally, positive-operator valued measures. But in addition to this, they assume 
that the probability of an outcome �i does not depend on the measurement (basis) it 
belongs to.” 

7 In the general case in R3 , the maximum (resp. minimum) value of f is 0 ≤ M ≤ 1 (resp. 
0 ≤ m ≤ 1 ), and one shows [15] that there exist an orthonormal basis {p, q, r} such that 
f (u) = M cos2(u, p) + m cos2(u, q) + (1 −M − m) cos2(u, r) with M + m ≤ 1.
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In  [19] this additional assumption (which is physically true) is called “non-
contextuality”, that is clearly misleading, clashing with the terminology used in 
the Kochen-Specker theorem. As written above, a better name is “non-contextual 
assignment of probabilities”, and the best name is just extracontextuality, that has 
deep physical roots. This is made clear by associating projectors to extravalence 
classes, clearly distinguishing the physical result (the modality) and the mathemati-
cal construction (the projector). To answer the remark about “assuming the structure 
of quantum measurements”, we do posit the projective structure of quantum prob-
abilities [12], not as a deduction but as a duly justified inference [5]. In the CSM 
approach the mathematical formalism works because physics tells the rules, and not 
the opposite.

Therefore in our approach Gleason’s hypotheses have a deep physical content, 
linking contextual quantization and extracontextuality of modalities. Since these 
features are required from empirical evidence, the QM formalism provides a good 
answer to a well-posed question.

6  Algebraic Scheme for Quantum Measurements

A consequence of our approach is that usual textbook quantum mechanics, which 
is limited to type-I operator algebra as introduced initially by Murray and Von Neu-
mann [20], is not universal because it does not include the context. This issue was 
already discussed by Von Neumann [21], and again later in the framework of alge-
braic quantum theory [22].8 Nevertheless, as discussed in these articles, it is possible 
to get a full picture by including the context in the formalism, taking into account 

System Cut Context (unbounded) 
Type I (countable basis) Type II or III  (uncountable basis) 
Unitary equivalence Loss of unitary equivalence
Superpositions Sectorization + updating
o X

System Ancilla Cut Context (unbounded)  
Type I (countable basis) (goes together Type II or III  (uncountable basis) 
Unitary equivalence with the system) Loss of unitary equivalence
Superpositions Entanglement Sectorization + updating
o X

Fig. 3  Generic scheme including the system, a possible ancilla, and the context. The number of degrees 
of freedom in the context is unbounded, which makes its algebra non type-I. The cut separates a type-I 
system algebra, where usual QM applies, from the type-II or III context algebra where there is no more 
unitary equivalence of representations

8 A detailed review on quantum measurements (including the algebraic framework) is presented in 
Landsman [22]. Note however that the ontological views expressed in this article are quite different from 
ours.
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that its number of degrees of freedom is unbounded, which makes its algebra of 
operators non-type I [21, 22].

Figure 3 displays such a generic scheme, including the system (plus ancillas) and 
context, separated by a (movable) cut. The full scheme is then universal, but the 
mathematical description including type II or III algebra does not allow arbitrary 
quantum superpositions at the context level – in agreement with empirical evidence. 
Then a quantum measurement proceeds as follows:

– Before the measurement the modality is associated with the following (density) 
operator in context C1 : 

 Specifying the modality requires to give both ��i⟩⟨�i� and �(C1)

i
 because the pro-

jector ��i⟩⟨�i� specifies only an extravalence class of modalities.
– After the measurement carried out in context C2 , but before reading out the 

result, the sectorized state (statistical mixture) is 

 This form is completely generic from a mathematical point of view because the 
context is unbounded, and it can be justified in several possible ways: sectoriza-
tion in the non-type-I algebra, loss of off-diagonal elements of the reduced den-
sity matrix, flow of information to the environment, loss of interference, loss of 
the ability to create entanglement in a projective measurement... They all lead to 
the same results, as discussed e.g. in [23].

– After reading out the measurement result k in context C2 , the new modality can 
be updated and it is associated with the operator: 

 This defines a new pre-measurement modality, and ��k⟩⟨�k� may evolve unitarily 
until the next measurement is performed.

Summarizing, the non-unitary step in the measurement is due to the fact that the 
whole unbounded context is involved in a transient way; this is not an additional 
ingredient, but a required part of the full (non type-I) formalism. Looking at ��⟩ as 
the “state of the system”, as done usually, is misleading because the vector (or pro-
jector) is associated with an extravalence class of modalities. The basic CSM tenet, 
that the modality belongs to both the system and the context, appears explicitly here 
under a mathematical form.

As a conclusion, usual type I QM provides a description of (idealized) iso-
lated quantum systems. A state vector or projector is “incomplete” because it is 
not associated with an actual modality, but with an extravalence class of modali-
ties, belonging to different contexts. From a physical point of view, the modality 
belongs jointly to a quantum system, and to a specified context. From a mathe-
matical point of view, the behavior of modalities can be studied using type-I QM, 

�𝜓i⟩⟨𝜓i�⊗ 𝜌
(C1)

i

�

j

pj �𝜙j⟩⟨𝜙j�⊗ 𝜌
(C2)

j

�𝜙k⟩⟨𝜙k�⊗ 𝜌
(C2)

k
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where Born’s rule applies as a consequence of Gleason’s theorem. On the other 
hand, the description of (unbounded) contexts requires a non type-I formalism. 
Overall, these combined tools provide a consistent picture of quantum measure-
ments within a unified quantum framework.

Annex 1: Proof of the Geometrical Lemmas
Here we show that for two vectors u, v in the northern hemisphere with 

h(u) > h(v) , one has f (u) ≥ f (v).
For this purpose we define Du , the great circle going through u and cutting the 

equator at two points corresponding to vectors orthogonal to u. By convention Du 
is called the “descent through u”, and u is obviously the “northern vector” in Du . 
Then one proves the two lemmas:

Basic lemma One has f (u) ≥ f (u�) for any u′ in Du.

Proof Consider a vector u, and another vector u′ within Du . Let v (resp. v′ ) be a 
vector in Du orthogonal to u (resp. u′ ). Adding a vector w perpendicular to the Du 
plane, {u, v,w} and {u�, v�,w} are two orthonormal basis. By definition of f one 
has f (u) + f (v) + f (w) = f (u�) + f (v�) + f (w) therefore f (u) = f (u�) + f (v�) since 
f (v) = 0 because v is on the equator. Since f (v�) ≥ 0 one has f (u) ≥ f (u�) .   ◻

Piron’s lemma Consider u, v such that h(u) > h(v) . Then there is a series of 
N vectors wn such that w0 = u , wN = v , and each wn is within Dwn−1

 , i.e. in the 
descent through the previous vector of the series.

Proof It relies on a smart geometrical construction due to Piron [24]. It is conveni-
ent to project the northern hemisphere on a plane tangent at the pole p, using a pro-
jection from the center of the sphere. The different latitudes are then concentric cir-
cles centered on p, and the equator is projected at infinity. The descent through u is a 
straight line, tangent at u to the circle corresponding to the latitude of u. Then there 
are two cases:

– If u and v have the same longitude, one takes u = w0 , v = w2 , and there exists 
w1 with a latitude between those of w0 and w2 , located on Du = Dw0

 , and such 
that w2 is on Dw1

 (this is clear by looking at the previous projection, u and v are 
on the same line coming from p).

– If u and v have different longitudes, one can take u = w0 , v = wN , and build the 
other vectors wn by progressively rotating between the two circles associated 
to the two latitudes. When these latitudes get closer, N becomes larger, and 
it tends to infinity for two different longitudes with almost the same latitude 
(again this is clear from a drawing). This proves the lemma.

Therefore the basic lemma relates u and u′ within the descent through u, and 
Piron’s lemma relates u and v from a succession of descents through the vectors in 
the series wn . As a conclusion, one deduces from the two lemmas that for u, v in the 
northern hemisphere with h(u) > h(v) , one has f (u) ≥ f (v) .   ◻
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Annex 2: Proof of the Magical Lemma
For mathematical reasons related to continuity9, it is assumed that g is defined on 

[0,1] except an at most countable set K of points, and that the hypotheses (i) g(0)=0, 
(ii)  a < b ⟹ g(a) < g(b) , (iii)  a + b + c = 1 ⟹ g(a) + g(b) + g(c) = 1 are 
valid under these same conditions. One has then g(1) = 1 , since g(0) = 0 and 
g(a) + g(b) + g(c) = 1 . Considering the rational numbers r and s, and a0 outside K, 
one gets:

Taking the limit r → 1∕a0 one gets g(1) = g(a0)∕a0 = 1 and thus g(a0) = a0 and 
g(ra0) = ra0 .   ◻
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