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Abstract
In this paper I continue the investigation in Viaggiu (Class Quantum Gravity
35:215011, 2018), Viaggiu (Phys Scr 94:125014, 2019) concerning my proposal on
the nature of the cosmological constant. In particular, I study both mathematically and
physically the quantum Planckian context and I provide, in order to depict quantum
fluctuations and in absence of a complete quantum gravity theory, a semiclassical
solution where an effective inhomogeneous metric at Planckian scales or above is
averaged. In such a framework, a generalization of the well known Buchert formalism
(Buchert in Gen Relativ Gravit 33:1381, 2001) is obtained with the foliation in terms
of the mean value s(t̂) of the time operator t̂ in a maximally localizing state {s} of a
quantum spacetime (Doplicher et al. in CommunMath Phys 172:187, 1995; Doplicher
in Space-time and fields: a quantum texture, in Karpacz, new developments in fun-
damental interaction theories, arXiv:hep-th/0105251, 2001; Bahns et al. in Advances
in algebraic quantum field theory, Springer, Cham; Tomassini and Viaggiu in Class
Quantum Gravity 28:075001, 2011) and in a cosmological context (Tomassini and
Viaggiu in Class Quantum Gravity 31:185001, 2014). As a result, after introducing a
decoherence length scale LD where quantum fluctuations are averaged on, a classical
de Sitter universe emerges with a small cosmological constant depending on LD and
frozen in a true vacuum state (lowest energy), provided that the kinematical backre-
action is negligible at that scale LD . Finally, I analyse the case with a non-vanishing
initial spatial curvatureR showing that, for a reasonable large class of models, spatial
curvature and kinematical backreation Q are suppressed by the dynamical evolution
of the spacetime.
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1 Introduction

Vacuum Planckian fluctuations at the Planck length scale LP are generally expected
to generate a cosmological constant [1–7] � looking like � ∼ 1/L2

P . This is a rather
huge value, about 10122 greater than the one effectively observed, thus representing
an embarassing problem from a theoretical point of view. In order to be in agreement
with the value for � dictated by quantum field theory, an improbable fine tuning of
about 122 orders is required. In such a irrealistic case, supersymmetry is required,
but this elegant mechanism has not been observed at LHC collider. New ideas are
thus urgent. To this purpose, an alternative approach to the usual one can be found
in [8], where a semiclassical approximation is considered with quantum fluctuations
generating a stochastic field depicted in terms of an effective inhomogeneous metric.
There, a de Sitter universe with a small cosmological constant emerges, after invoking
parametric resonance. Another new study can be found in [9] with the introduction of a
dynamical cosmological constant embedded in a background obtained by an extension
of the general relativity in terms of the Ashtekar variables. The authors of [9] found a
new possible uncertainty relation between the dynamical cosmological constant and
the Chern-Simons time. In [10] the author suggests that the cosmological constant
is effectively of the order of 1/L2

P , but it is hidden by quantum fluctuations that in
turn generate an inhomogeneous spacetime, both in time and space. The author claims
that its proposal is a practical realization of the old Wheeler idea [11] concerning
the spacetime at the Planckian scales seen as a ’spacetime foam’. The interesting
feature of the study presented in [10] is that in practice the strong inhomogeneities
of the spacetime at Planckian scales inhibit dynamic in the spacetime, with a large
class of initial data hiding the effects of a huge � at a macroscopic level within the
Buchert averaging scheme. Many technical and physical issues are present in [10], as
for example the definition of a suitable time coordinate. However, the model in [10]
cannot explain the smallness of the cosmological constant. Finally, my proposal in [12]
and further analyzed in [13] is1 an attempt to follow a physically and mathematically
sound alternative point of view. In [12] the cosmological constant � is splitted in
the usual way as � = � + �vac, where � is the non-interacting bare cosmological
constant and �vac represents the contribution due to quantum fluctuations, with �

the observed one. The new idea in [12] is that Planckian fluctuations can generate a
very large (interacting) cosmological constant, due to large density fluctuations, but
these fluctuations average on bigger and bigger scales and as a result the effective
cosmological constant becomes smaller, up to the decoherence length scale LD where
a de Sitter spacetime emerges with � frozen in the lowest energy state. In such a way
my model can explain the birth of the cosmological constant in terms of averaged
Planckian fluctuations and its smallness by introducing a quantum decoherence scale.

1 See also [14–16] for an application of my proposal to the black hole case and [17] in a more general
context and [18] for an earlier proposal also in terms of massless excitations within the apparent horizon.
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Within a semiclassical model, a modified Buchert averaging scheme is used. In this
paper I further analyse the mathematical and physical background in [12], paying
particular attention to the averaging procedure.

In Sect. 2 we specify the classical background together with the prescription to
obtain, generalizing the theorem in [12], the cosmological constant equation of state.
In Sect. 3 Planckian fluctuations are studied by means of a quantum spacetime, while
in Sect. 4 a semiclassical solution with an averaging procedure is presented. Finally,
Sect. 5 collects conclusions and final remarks.

2 Classical Background and the Equation of State for3

In this paper I depict the genesis of a positive cosmological constant. Hence, without
loss of generality, as also stated in [12], it is sufficient to consider as a classical back-
ground the de Sitter spacetime with zero spatial curvature in comoving coordinates:

ds2 = −c2dt2 + a2(t)
(
dr2 + r2dθ2 + r2 sin2 θ dφ2

)
, (1)

where a(t) ∼ ect
√

�
3 and � is the measured (interacting) cosmological constant. To

start with, we consider a spherical ball of proper areal radius L = a(t)r . As shown in
[12], the first step of my approach is to realize that the matter energy content within
L is not arbitrary and quasi-local energy Ems = Mmsc2, i.e. the quasi local Misner-
Sharp mass Mms [19], can be calculated at a classical level, to obtain Ems = c4

2G
L3

L2
A
,

where L2
A = 3

�
. The first goal is to obtain a physical microscopic description of

the cosmological constant. The new approach presented in [12] is based on three
fundamental considerations, often missing in the literature.

To startwith, in the usual treatment of the cosmological constant, the vacuumenergy
is obtained as a summation over all possible vacuum contributions from different
energy scales. However, it should be stressed that in the energy-momentum tensor
Tμν energies composing the universe enter as densities. A vacuum energy representing
a cosmological constant with the suitable equation of state can be written as Tμν =
−8πGρvacgμν . Hence,when one considers a given specific contribution to the vacuum
density ρvac, it should be specified, in a general relativistic context, the volume, i.e.
the length scale, at which a given energy density emerges. This is a crucial point in
my new approach to the cosmological constant problem.

A second important ingredient of the proposal in [12], as mentioned above, con-
cerns the geometrical constraints on the energy provided by general relativity. In fact,
if one considers, for example, a spherical region of areal radius L , general relativity
furnishes the quasi-local energywithin L in terms of theMisner–Sharpmass [19]. As a
consequence, if we want to depict the cosmological constant in terms of energy densi-
ties in a given volume, then this constraint must be taken into account. In this form, this
constraint is practically absent in the literature. In fact, in the usual approach present in
quantumfield theory, energy densitiesρ are expressed in terms of the expectation value
of Tμν in some state {s}. Unfortunately, we have not at our disposal a complete univer-
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sally accepted quantum gravity theory, with a complete non-commutative spacetime at
Planckian scales for a curved spacetime. In light of these deficiencies, we use a semi-
classical phenomenological approach: the metric is assumed to be classical, but coor-

dinates {xα} belong to the spectrum of quantum operators {x̂ i } satisfying physically
motivated spacetime uncertainty relations (STUR). To this purpose, in the classical
background and for a Friedmann spacetime, theMisner-Sharpmass in a proper volume
V is provided by ρmsV . Hence, for the reasonings above, we must obtain an expres-
sion for the energy density from semiclassical reasonings of the form ρ = ρms + ρ f ,
where ρ f is provided by Planckian fluctuations. These fluctuations are expected to be
very strong at Planckian scales and negligible at scales well above the Planck one.

Another important point refers to the equation of state of the cosmological con-
stant. As it is well known, the equation of state for the cosmological constant is
c2ρvac = −pvac, with pvac the pressure and {ρvac, pvac} constant both in time and
space. As an example, if one considers the usual expression of the energy levels of
an harmonic oscillator, En = (

n + 1
2

)
�ω, with ω the angular frequency, the vac-

uum energy, according to Heisenberg uncertainty principle, is E0 �= 0. However,
this contribution to the vacuum energy is related to a radiation field, rather than to
one with a cosmological-like equation of state. This simple reasoning indicates that
a vacuum energy effectively contributes to the cosmological constant if and only if
the equation of state c2ρvac = −pvac is satisfied: only in this case we can write
Tμν = −8πGρvacgμν . My new idea presented in [12] is that the vacuum contribu-
tions considered in the literature (QED, QCD, GUT energies...) in practice represent
radiation fields and do not contribute to an effective cosmological constant equation
of state or more generally to an inflationary universe. Only Planckian fluctuations can
generate a cosmological constant equation of state. The physical mechanism, depicted
also in [16] for a black hole and generalized in [17], is capable to transform a radiation
field into one with a γ linear equation of state with pvac = γ c2ρvac. This can be done
by considering the cosmological constant composed of massless excitations where
Planckian fluctuations come into action to transform the initial radiation-like equation
of state (with γ = 1/3) into a cosmological constant one (γ = −1). To this regard,
we can generalize the proposition shown in [12]. To be more precise, suppose to have
a radiation field composed of massless excitations with frequency spectrum {ω(0)},
with partition function Z (0), internal energy U (0) > 0, free energy F (0) and equation

of state P(0) = c2 ρ(0)

3 . Note that the spectrum ω(0) can be discrete as in [12] or also
continuous: in any case the following proposition still holds:

Proposition Let ω(0) denote the angular frequency of N massless excitations within a
volume V of proper areal radius L. The excitations with energy �ω = �ω(0) + �

�(L)
N

have a linear equation of state PV = γU provided that the differentiable function
�(L) satisfies the following equation

�
[
L �,L(L) + �(L)

] = U (L)(1 − 3γ ), (2)

together with the condition

U (L) − � �(L) > 0. (3)
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Proof With the usual relation U (L) = −ln(ZT ),β , we obtain

U = U (0) + � �(L). (4)

Since we have U (0) > 0, condition (4) follows. For the free energy F we have
F = −NKBT ln(Z) = F (0) + � �(L). Moreover

F,V = � �,L L ,V + L ,V F (0)
,L = −P, (5)

with L ,V F (0)
,L = −P(0) and P(0)V = U (0)

3 . Hence, from (13) we get

�
L

3V
�,L − U (0)

3V
= −P. (6)

After using the (4) with PV = γU (L), from (6) we obtain the equation (2). ��
In this new formulation, the proposition above is more general than the one in [12],
since it is independent on the particular expression for ω(0), provided that the initial
massless distribution represents a radiation field. Note that the role of �, since it is
independent on the temperature T of the radiation field, is similar to the one of the
fluctuations in solid state physics. However, at this stage of the treatment, no quantum
fluctuations are considered. As shown in [12], by settingU (L) = Ems = c4

2G
L3

L2
A
, from

(2) we obtain the solution:

��(L) = (1 − 3γ )
c4

8G

L3

L2
A

. (7)

With (7), for (3) we obtain γ > −1. Hence, exactly the cosmological constant case
is forbidden with U = Ems , i.e. by using classical setups. In fact, the only possibility
with γ = −1 is thatU (0) = 0, that is possible, with N �= 0, only for vanishing thermo-
dynamical temperature T = 0. In [12] I named the related cosmological constant as
the bare non interacting (i.e. non dressed by quantum fluctuations) cosmological con-
stant . These reasonings clearly show that, in order to obtain the case with γ = −1,
quantum modifications must be taken into account, and as a consequence Planckian
fluctuations come into action.

3 Planckian Fluctuations

As it is well known, a complete quantum gravity theory is, at present, not at our
disposal. The natural arena for Planckian fluctuations is to consider a quantum space-
time at Planckian scales. There [20–24], spacetime coordinates qμ are satisfying
non-trivial physically motivated uncertainty relations (STUR). These commutation
relations [20,21] generate a non commutativeC∗ algebra ε acting on a generic abstract
Hilbert spaceH. In a Minkowskian background, spacetime coordinates {qμ} become
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selfadjoint operators, with the classical Poincaré symmetry lifted at a quantum level
for the commutation rules [qμ, qν] = ı�Qμν , with Qμν a covariant tensor only under
proper Lorentz transformations. The suitable treatment of a non-commutative curved
spacetime is much more involved. In particular, the implementation of the diffeomor-
phism covariance at a quantum level represents a formidable task. As suggested in
[21,22], the following system should be addressed:

[qμ, qν] = ı�Qμν(gμν), (8)

Rμν − 1

2
Rgμν = Tμν(ψ), (9)

F(ψ) = 0, (10)

where Tμν is supposed to depend on some field ψ with equation of motion given
by (10). Note that commutators in (8) depend on the background metric gμν that
in turn depends on the commutators among coordinates {qμ}: the solution of (8)–
(10) represents a formidable task. As suggested in [21], we can adopt a semiclassical
approximation, where for themetric g its classical solution is considered and instead of
Tμν we have its expectation value on some allowed state {ω} i.e.< Tμν >ω = ω(Tμν).
A first step toward this task has been obtained in [24] for a Friedmann flat spacetime.
The semiclassical metric can be written in Cartesian coordinates {x, y, z} as:

ds2 = −c2dω(t̂)2 + a(ω(t̂))2
(
dx2 + dy2 + dz2

)
, (11)

where ω(t̂) = t denotes the expectation value of the time operator t̂ = q0 in a given
state {ω} and obviously t belongs to the spectrum of q0. Also the spatial coordinates
{x, y, z} are elevated to selfadjoint operators {qi }. In [24] the STUR are written in
terms of t and of the proper spatial variables ηi = a(t)xi . The STUR in [24] satisfy
commutation relations of the form (8), where their exact expression is not relevant in
this paper.What is relevant for our purposes is that [12] there existmaximally localizing
states {s} minimizing the STUR. For such states we have c�s t ∼ �sη

i ∼ �sη and
also [12] we have �s E�s t ∼ �

2 . Moreover, in a de Sitter universe where s(H�) =
c
√

�
3 , we have �s L ∼ �sη

i and since �sη
i ∼ LP , we have that �s E ∼ c�

2�s L
.

As a consequence, we can write down the so physically motivated expression of the
generalized Misner–Sharp energy Ums(L):

Ums(L) = c4

2G

L3

L2


+ χ
c4

2G

L2
P

L
, (12)

where the first term in (12) is the classical contribution Ems with L2
 = 3


and the

second one represents the correction due to Planckian fluctuations. The constant χ

is a phenomenological one with χ ∈ (0, k], with k ∼ 1, and cannot be fixed at a
semiclassical level. As we will see in the next section, this new parameter determines
the decoherence scale LD . Note that in a quantum spacetime L cannot be set to zero
thanks to the STUR with Lmin ∼ LP . The solution of (2) for γ = −1 is:
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��(L) = c4

2G

L3

L2


+ 2χc4

G

L2
P

L
ln

(
L

L0

)
, (13)

where L0 can be set of macroscopic sizes thus assuring that the existence condition
(3) is satisfied up to such a macroscopic scale L0. The dressed cosmological constant,
that is a consequence of (12), is given by

�L =  + 3χL2
P

L4 . (14)

At this point of the treatment, it should be noticed that the expression (14) denotes the
effective cosmological constant within a sphere of proper radial radius L and thus its
value depends on L . This could lead to the bad conclusion that we have introduced
a quintessence field, where the value of the effective cosmological constant depends
in practice on the dimensions of the observable universe, but this is not the case. If
we want to depict a cosmological constant, � must be constant in space and time at
a classical level. Hence, a correct way to see the formula (14) is the following. The
metric at the Planck length can be considered rather as inhomogeneous, in space and
time. If some average procedure is available at some physical scale L , (14) can be
considered as an averaged, emergent cosmological constant at the physical scale L . At
the Planck scale LP the cosmological constant can have a huge value, the one predicted
by quantum field theory, by setting k ∼ 1. However, at scales above the Planck length
the Planckian fluctuations become less relevant. At a scale LD , the decoherence one,
such fluctuations become negligible and as a result a classical de Sitter universe (1)
emerges with

�LD = � =  + 3χL2
P

L4
D

. (15)

This does happen because the decoherence scale is defined as the onewhere an absolute
minimum for Ums given by (12) is obtained. When this minimum is reached at this
scale, the cosmological constant is frozen at this value, and at scales L ≥ LD the
expression (15) holds. For the minimum of Ums from (12) we have:

LD =
(

χL2
P



) 1
4

. (16)

From (16) and (15) we obtain �(L = LD) = 4. Hence, for L ∈ [LP , LD), the
system evolves with an energy given by (12), while for L ≥ LD the crossover to
classicality is reached and the system evolves with energy Ums = c4L3

2GL2
�

with L2
�

=
3
�

= 3
4 . The dressed observed cosmological constant is given by � = 4χ

L2
P

L4
D
,

thus depending on the phenomenological quantum gravity parameters χ and LD . For
χ ∼ 1,we have the observed value for� ∼ 10−52/m2 for LD ∼ 10−5m, implying that
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classicality is reached at volumes of the order of 10−9cm3. This could be a reasonable
value for LD , but unfortunately, I have not experimental arguments to confirm this
result. For a less value for χ with χ < 1, a lower decoherence scale is obtained that
for χ << 1 can be made near the Planck scale LP . The important fact is that our
model furnishes a physical mechanism, formula (2), transforming a given radiation
field, thanks to quantum fluctuations, to one with the correct equation of state and also
is capable to explain the smallness of the cosmological constant.

In our treatmentwe used themodel in [24] to obtain the expression (12) representing
the generalizedMisner–Sharp energy.However, to go furtherweneed to depict our idea
dynamically, by solving the equation (9) in a quantum spacetime. Unfortunately, this
task is at present day unattainable since a physically sound quantum gravity theory is
not at our disposal. In order to study the birth of the cosmological constant dynamically,
we can use once again a semiclassical approximation by a suitable modification and
study of the well known Buchert formalism [25]: this will be done in the next section.

4 A Semiclassical Solution: Averaging Quantum Fluctuations

4.1 Fitting Problem: From Cosmological to Planckian Scales

As it is well known, our universe on small scales is very lumpy, with clusters and
superclusters of galaxies forming a kind of web structure. However, when bigger and
bigger scales are considered, our universe, on average, becomes practically homoge-
neous and isotropic. As a consequence our universe, according to astrophysical data,
is very well depicted in terms of a Friedmann flat metric equipped with a small non-
vanishing cosmological constant. Nevertheless, it is interesting to study the effects of
these small scale inhomogeneities on the cosmological parameters. To this purpose,
the Buchert equations [25] have been remarkably used in literature in order to study
the effects of the inhomogeneities present at small cosmological scales on the evo-
lution of the universe.2 In particular, Buchert equations [25] are an attempt to solve
the fitting problem: a given inhomogeneous metric, representing an exact solution of
Einstein equations for a real universe where inhomogeneities are present, is interpreted
in terms of a constant curvature hypersurface by means of a template metric, provided
that backreaction Q is taken into account by means of Buchert equations. This tem-
plate metric is not an exact solution of Einstein equations, but rather of the Buchert
ones. Kinematical backreaction is a consequence of the smoothing out procedure of
the inhomogeneities. The backreaction has been also debated in the literature (see for
example [27]) as a possible source for the cosmological constant, but its effect seems
to be completely insufficient in order to explain the actual value of �. This is because
kinematical backreaction becomes practically negligible when averaged at the scale
of homogeneity Lo, i.e. QLo 	 0. Remember that the vanishing of Q is a necessary
and sufficient condition in order to regain the classical Einstein equations.

The Buchert scheme has been proposed in [12] in order to study in a semiclassi-
cal approximation the evolution of a background metric in a quantum spacetime. In

2 See also the paper [26] and references therein.
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practice, the lumpy universe at small scales is translated at Planckian scales in order
to depict, in a semiclassical way, the strong fluctuations at Planckian scales. The scale
of homogeneity Lo at a cosmological context is translated into the LD one, denoting
the crossover to classicality. We expect a very large class of initial conditions at t = t0
such thatQLD (t0) 	 0, ensuring the transition to classicality with a classical de Sitter
spacetime. Also in [10] a preliminary study of an emergent cosmological constant
from Planckian fluctuations is present. There, attention is posed on the initial con-
ditions assuring that the initial spatial curvature becomes smaller and smaller when
averaged3 on bigger and bigger scales with respect to the Planck scale. However, the
model in [10] cannot explain the smallness of �, and a study of the evolution of the
initial conditions, due to the dependence on the time coordinate chosen, is not a simple
task. In [12] I have proposed to use the Buchert scheme where the time coordinate
t belongs to the spectrum of the time operator t̂ , together with the use of spherical
maximally localizing states saturing the STUR [20,21].

To bemore concrete, the starting point, in line with the semiclassical approximation
discussed above,4 is the inhomogeneous metric at Planckian scales given by:

ds2 = −N (t, xi )c2dt2 + hi j (t, x
i )dxidx j , (17)

where N (t, xi ) denotes the lapse function, and {t, xi } ∈ {sp(t̂, sp(x̂ i ))}, with {xi }
the usual Cartesian coordinates with x̂ i denoting quantum operators acting on some
abstract Hilbert space H. Obviously, the coordinates in the semiclassical metric (17)
can be seen as expectation values on some state {ω}. In the following we use privileged
states that are, as explained in the section above, maximally localizing states {s}
saturing the STUR [24]: {t, xi } = {s(t̂), s(x̂ i }).

The further step is to fit in a suitable way the metric (17) on a given time slicing of
the spacetime by means of a template metric, mimicking the cosmological case. First
of all we must fix the hypersurface S where the spatial average is performed: this is
provided by the surfaces s(t̂) = k ∈ R. Hence, according to the Buchert procedure
[25], we can consider a given proper spherical volume V (S) given by

VS =
∫

S

√
g(3)d3x, (18)

where g(3) denotes the determinant of the three-metric hi j on the slice S. For any
scalar field ψ(s(t), s(xi )) its spatial average is:

< ψ(s(t̂), s(x̂ i ) >VS = 1

VS

∫

S
ψ(s(t̂), s(x̂ i ))

√
g(3)d3x, (19)

3 Also in [10] a Buchert scheme is proposed in order to study Planckian fluctuations.
4 See also the interesting paper in [8], where a similar semiclassical approximation has been studied in
terms of an inhomogeneous metric at Planckian scales.

123



1296 Foundations of Physics (2019) 49:1287–1305

For the averaged expansion parameter < θ >S and the effective volume scale factor
aS(s(t̂)) we have:

< θ >VS = V̇S
VS

= 3
ȧVS
aVS

, aVS (s(t̂)) =
(
VS(s(t̂))

VS(s(t̂0))

) 1
3

(20)

In order to address the fitting problem on Planckian scales, one must analyse the lapse
function in (17). First of all note that, thanks to the huge inhomogeneities at Planckian
scales, the lapse function is expected to vary also in space. The choice N = 1 can be
used if the gradient in the space of the gravitational energy can be neglected [26]. As
an example and in a cosmological context, in [26] the lapse function is averaged to
unity at the scale of homogeneity Lo (Lo ∼ 70–100 Mpc) , while it is expected to be
different from the unity on smaller scale below Lo and in presence of a non-vanishing
spatial curvature. It is reasonable to expect that a similar phenomenon does appear at
microscopic scales, where the role of the cosmological scale Lo is played in our context
by the decoherence scale LD , given by (16) and representing the absolute minimum
(true vacuum state) for the generalized Misner–Sharp energy Ums in (12). Moreover,
according to our translation of the cosmological context at Planckian scales, a relation
between N and the behavior of the spatial curvature (3)R emerges: for huge spatial
inhomogeneities we expect values for N different from the unity. In particular, for
the averaged value of N , i.e. < N (s(t̂, s(x̂ i ))) >S = N (s(t̂)), we generally expect
values greater than onewith negative averaged spatial curvatures (positive gravitational
energy), and values less than one for positive averaged spatial curvatures (negative
gravitational energy). As shown in [10], although some physical arguments hint a small
value for the averaged spatial curvature R 	 0, also by assuming a non-negligible
spatial curvature at Planckian scales, there exists a large class of initial conditions
assuringdecaying spatial curvaturewhen averaged at smallmacroscopic scales.Hence,
when the averagingprocedure is outlinedonbigger andbigger scaleswith LD > L I1 >

L I2 > · · · > LP we expect, for averaged negative spatial curvatures R < 0, that5:

1 = NLD < NL I1
< NL I2

< · · · < NLP , (21)

while for averaged positive spatial curvatures R > 0 we must have:

1 = NLD > NL I1
> NL I2

> · · · > NLP . (22)

As a consequence, if a non-vanishing non-negligible statial curvatureR at Planckian
scales is assumed, we expect a decreasingR when averaged on bigger scales than the
Planck one and at the decoherence scale LD we can assume that NLD = 1.

Finally, for the case of negligible spatial curvature also at Planckian scales, we are
legitimate to assume N = 1 also at scales below the decoherence scale.

For the reasonings above, we separately study the dynamics of our semiclassical
model for R = 0 and R �= 0. In all the cases discussed, the effective cosmological
constant is provided by (14) with the energy Ums given by (12).

5 See Ref. [27] in a cosmological context.
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4.2 Dynamical Evolution withR = 0

For a vanishing spatial curvature at scales L the effective template metric, after using
the short notation t = s(t̂), xi = s(x̂ i ), can be written as:

ds2 = −c2dt2 + a2L(t)
[
dr2 + r2

(
dθ2 + sin2 θdφ2

)]
, (23)

where aL(t) denotes the effective volume scale factor in (20) at the scale L with L
the areal radius of the spatial average surface S. The relevant generalized Buchert
equations at microscopic Planckian scales for irrotational fluids are:

3
ȧL2

a2L
= c2 + 3c2χL2

P

L4 − QL

2
= c2�L − QL

2
, (24)

6QL ȧL + aLQ̇L = 0, (25)

QL = 2

3

[
< θ2 >L − < θ >2

L

]
− 2< σ >2

L , (26)

where QL is the kinematical backreaction at the scale L and σ denotes the shear
and dot denotes time derivative with respect to t . Similarly to the average problem
in a cosmological context [26], the shear parameter σ is expected to be more and
more smaller when the decoherence scale is approached and it is expected to be non-
negligible near the Planck scale. On general grounds we can suppose, as happens in
a cosmological context [26], that QL > 0 on sufficiently large microscopic scales,
while for L ∼ LP , the variance in the shear can be very large and the situationQL < 0
can arise. Hence, in the following we suppose a positive backreaction. The case of
negative backreaction will be analysed at Sect. 4.4. To integrate the equation (24), one
must first integrate the equation (25):

QL(t) = QL(t0)

(
aL(t0)

aL(t)

)6

. (27)

From (27) it is evident that, if the system evolves with an averaged scale factor aL(t)
monotonically increasingwith respect to t , then the kinematical backreaction becomes
vanishing at late times. To confirm this fact, we put the solution (27) in (24).We obtain:

ȧL2

a2L
= c2

�L

3
− QL(t0)

6

(
aL(t0)

aL(t)

)6

. (28)

Equation (28) can be integrated to obtain:

ca3L(t)

√
�L

3
+

√
c2a6L(t)

�L

3
− QL(t0)

6
a6L(t0) = K0e

3c(t−t0)
√

�L
3 , (29)
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where

K0 = ca3L(t0)

√
�L

3
+

√
c2a6L(t0)

�L

3
− QL(t0)

6
a6L(t0). (30)

From (30) the following existence condition holds:

QL(t0) ≤ 2c2�L , (31)

with the conditon QL(t0) ≥ 0 discussed above.
Condition (31) is important because it implies that if initial conditions are such

that the kinematical backreaction violates this inequality, we have no solution to the
fitting problem. Note that a huge value for QL(t0) means huge inhomogeneities for
the metric (17). This can be also interpreted in light of the results in [11] and cited
in [10]: a spacetime, solution of Einstein equations, equipped with a positive cos-
mological constant but with sufficiently strong inhomogeneities does not evolve and
as a consequence a de Sitter spacetime cannot emerge. Translated into the Buchert
language, if (31) is violated, backreaction is not longer negligible and the resulting
region evolves differently from the behavior predicted by the Friedmann paradigm. In
this case, Planckian fluctuations are expected to be rather huge, and the transition to
classicality, i.e. to a classical de Sitter universe, is practically absent.
With the condition (31), the explicit solution for (29) is:

aL(t) = 1
[
2K0c

√
�L
3

] 1
3

⎡
⎣K 2

0 e3c(t−t0)
√

�L
3 + QL(t0)a6L(t0)

6e3c(t−t0)
√

�L
3

⎤
⎦

1
3

. (32)

As evident from (32), a de Sitter universe solution of the classical Einstein equations
emerges only at times for t → ∞. At the decoherence scale LD , the spacetime
has a minimum in the energy Ums and as a consequence the cosmological constant
remains frozen at the value given by (15). Concerning the expression forQL(t0), it is
expected to be a monotonically decreasing function of the physical length scale where
averaging is performed. In particular, it is expected that, at the decoherence scale LD ,
with (31), one has QLD (t0) 	 0. As a result, at the scale LD the spacetime exactly
becomes the classical one (1) solution of Einstein equations with the frozen observed
cosmological constant �. Moreover, at the decoherence scale we have the crossover
to classicality and the mean values {s(t̂), s(x̂ i )} behave as the classical coordinates
and thus a classical de Sitter universe emerges with a small frozen cosmological
constant. As a final consideration, if for somemodelwe relax the physically reasonable
hypothesis QL > 0 and consider the one with QL < 0, we have no restriction from
(30).
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4.3 Dynamical Evolution withR �= 0: a Power Law Behavior

The case of an initial non-vanishing spatial curvature RLD (t0) is more complicated
than the one withR = 0. To start with, the relevant equations for irrotational fluids at
the decoherence scale LD are:

3
ȧ2LD

a2LD

= c2 + 3c2χL2
P

L4
D

− QLD

2
− RLD

2
= c2� − QLD

2
− RLD

2
, (33)

∂t

(
a6LD

QLD

)
+ ∂t

(
a6LD

RLD

)
= a2LD

RLD∂t

(
a4LD

)
, (34)

whereQLD is given by (26) with obviously L → LD . The first step is the integration
of (34). Obviously this equation cannot be integrated directly because it does not
represent an exact differential. First of all, note that (34) can be rewritten as:

∂t

(
a6LD

QLD + a6LD
RLD

)
= a2LD

RLD∂t

(
a4LD

)
(35)

From a first inspection of (35), by setting QLD + RLD = 0, from (33) we realize
that the only possible solution is QLD = RLD = 0, the trivial solution leading to the
classical Friedmann equations. Another simple possibility is provided by the particular
solution:

QLD + RLD = c0
a6LP

. (36)

Under the assumption that for the constant c0 wehave c0 > 0, from (36)withRLD �= 0,
we have aLD = q ∈ R+, with the condition from (33) c2� = c0

2q : in practice,
with this particular solution, backreaction due to a non-vanishing spatial curvature
generates an averaged spacetime with an effective vanishing cosmological constant
and thus the resulting spacetime is stationary on average. Apart from these particular
fine tuned solutions, we expect, for a large class of initial conditions, as shown in
[10], an expanding spacetime with an averaged spatial curvature negligible at the
decoherence scale. It is in fact physically reasonable to impose that the averaged
quantitiesQLD andRLD are monotonically decreasing functions of LD and t :QLD =
QLD (t, LD), RLD = RLD (t, LD). We could in principle invert these relations to
obtain t = H(QLD ,RLD ) and LD = K (QLD ,RLD ). Hence, on general grounds
we have a functional relation between QLD and RLD : g(QLD ,RLD ) = 0. Since a
functional relation is chosen, equation (35) can be integrated. Since, as stated above,we
expect that forQLD small alsoRLD is small, the simplest and reasonable assumption,
also for practical purposes, is

QLD = αRLD , α ∈ R. (37)
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Also in this section, we retain the conditionQLD > 0. With (37), the solution of (35),
with α �= −1, is given by:

RLD = RLD (t0)

(
aLD (t0)

aLD (t)

) 2(1+3α)
(1+α)

. (38)

From (38) we deduce that, for an expanding averaged spacetime, backreaction is
decreasing in time if and only if α ∈ (−∞,−1) ∪ (− 1

3 ,+∞)
. For the setups above,

for negative values forαwehaveRLD < 0while for positive valueswehaveRLD > 0.
With (38), equation (33) can be integrated to obtain:

aLD (t) = 1
[
2K1c

√
�
3

] 1+α
1+3α

⎡
⎢⎣K 2

1 e
1+3α
1+α

c(t−t0)
√

�
3 + (1 + α)RLD (t0)a

2(1+3α)
(1+α)

LD
(t0)

6e
1+3α
1+α

c(t−t0)
√

�
3

⎤
⎥⎦

1+α
1+3α

,

(39)

where

K1 = ca
1+3α
1+α

LD
(t0)

√
�

3
+ a

1+3α
1+α

LD
(t0)

√
c2

�

3
− (1 + α)RLD (t0)

6
. (40)

Similarly to equation (31), from (40) we deduce the existence condition:

2c2� ≥ (1 + α)RLD (t0). (41)

Condition (41) means that, if the initial conditions are such that the initial averaged
spatial curvature RLD is sufficiently small with RLD 	 0 (QLD 	 0), then we have
the crossover to classicality and (39) reduces to the exact solution (1). This simple
instructive example and the studyof the caseR(t0) = 0 show that there exists, as shown
in [10], a large class of initial conditions leading to an emergent de Sitter spacetime
with a small cosmological constant, thus giving a physically reasonable solution to
the cosmological constant problem, without introducing quintessence fields.

As noticed 6 in [28], if we look for solutions of the integrability condition (34) in
terms of power law behavior:

QL ∼ a p
L , RL ∼ anL , (42)

only two cases are possible. The first one is with n = p, that is the one considered in
this section by (37). This solution corresponds to the case where there exists a direct
strong coupling between Q andR, and is the case where kinematical backreaction is
expected to be huge. The other solution is the one with n = −2, p = −6 and it is

6 Note that in [28] these solutions have been studied in a dust filled universe with a vanishing cosmological
constant in order to explain � in terms of Q.
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expected to be suitable for the cases with negligible backreaction. Also in this case the
conditionQLD (t0) = 0 is a necessary and sufficient condition to ensure the crossover
to classicality.

4.4 Morphon Field, Initial Conditions and Caveats

In order to study more general solutions, it is helpful to introduce the ’morphon’ field
defined in [28] in terms of a scalar field �L and evolving in an effective potentialUL :

− 1

8πG
QL = ε�̇ 2

L −UL , (43)

− 1

8πG
RL = 3UL , (44)

where [28] ε = +1 for a field with a positive kinetic energy and ε = −1 with a
negative kinetic energy. The field �L satisfies a Klein-Gordon equation

�̈L + < θ >L�̇L + εUL,�L (�L) = 0, (45)

where comma denotes partial derivative. The kinematical backreaction can thus be
written as:

QL = −RL

3
− ε8πG�̇ 2

L . (46)

In relation to the general case with RL = 0, the necessary and sufficient initial
condition for the birth of the de Sitter universe at L = LD is the following:

�̇LD (t0) = 0 → �LD (t0) = k ∈ �. (47)

The (47) is similar to the slow roll inflation condition, but applied to the scalar field
�L . In the case studied in the subsection 4.3 with QLD = αRLD we have:

ε�̇ 2
LD

=
(

−α − 1

3

) RLD

8πG
(48)

In order to have a time-decreasing expression forRLD , equation (38), wemust impose
α �= − 1

3 . Hence, initial condition (47) still holds. In more general cases, we may think
of a complicated relation between QLD and RLD . In such a case, condition (47) is
necessary but not sufficient.

However, it is reasonable that spatial curvature, created by fluctuations, is strongly
coupled to kinematical backreation in such a way thatQLD (t0) = RLD (t0) = 0. As a
result, the following condition becomes necessary and sufficient:

�̇LD (t0) = 0, ULD (�LD (t0)) = 0. (49)
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Hence, the condition for the crossover to classicality is provided by a kind of slow-roll
initial condition for the scalar field �LD , created by vacuum fluctuations.

For a first look at case with negative backreaction, consider the Buchert equation7:

3
äLD

aLD

= � + QLD . (50)

A positive backreaction mimicks a positive cosmological constant, while a negative
backreaction struggles with �. In the case with QLD < 0, we have from (50) an
accelerating (äLD > 0) template spacetime for � > −QLD , while a decelerating
one is obtained for � < −QLD . Concerning the existence condition, in the case with
RLD = 0, it is satisfied for a positive �. Moreover, with RLD �= 0, we have the
condition:

c2� − QLD

2
− RLD

2
> 0. (51)

Condition (41) is a particular case of (51). For realistic models with time-decreasing
|QLD | and |RLD |, existence condition follows from equation (33):

c2� − QLD (t0)

2
− RLD (t0)

2
> 0. (52)

Note that (52) is a general condition, independent on the sign ofQLD . ForQLD (t0) < 0
the (52) is non-trivial only when RLD (t0) > 0. This is because a positive curvature
struggleswith the cosmological constant�. Otherwise, forQLD (t0) > 0 (52) is always
non-trivial.
If (52) is violated, no solution to the fitting problem is present. This result, once again,
can be interpreted in light of the results in [11]: if initial conditions are such that
inhomogeneities are sufficiently strong, the � is hidden.

As a final consideration, some reasonings about the limitations of the Buchert-like
approach proposed in this paper can be outlined. At cosmological scales, the Buchert
equations give a solution to the fitting problem by means of a template metric and
initial conditions are given on a constant curvature hypersurface. This fitted metric
is not a solution of the exact Einstein equations. As a consequence, it is far from
obvious that a given initial condition imposed on QLD and RLD is compatible with
an inhomogeneous spacetime (17) that in turn is a solution of the Einstein equations.
The same obviously generally applies to our ’microscopic’ translation of the Buchert
formalism. The metric (17) is expected to satisfy Einstein’s equations but with a
semiclassical approximation, i.e. Gμν = 8πG

c4
< Tμν >s for some state {s} with the

expression for Tμν = −8πGρvacgμν . After performing the average at the proper
volume (18) at the scale L , we have the template metric aL together with the effective
cosmological constant�L , where the observed value is fixed at the scale LD . However,
a difference from the cosmological case arises. In a cosmological context, backreaction
has been invoked [28] to explain the acceleration of the universe without �. To this

7 This equation is dependent on the system (33)–(34)
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purpose, a huge backreaction, strongly coupled with a huge negative curvature, is
required also at scales well above the homogeneity one (∼ 70 Mpc). It is thus far from
obvious that [28] the averaged spacetime can be obtained starting from a realistic
metric (17). It can be stressed that, differently from the model in [28], the model of
this paper does not depict the birth of � in terms ofQLD , but instead, in order that the
classical solution (1) emerges above LD , initial condition (49) is imposed at t = t0.
As a consequence, it is not required to have a particular expression forQLD andRLD ,
but only the vanishing of these quantities, expressed in (49) in terms of the useful
’morphon’ formalism, at t = t0. It is thus expected, also according to the finding
in [10], that there exists a wide range of realistic models with (49) satisfied, with the
expression forQLD depending, via averaging procedure, on the ’exact’metric (17) that
in turn is a consequence of the Planckian model used to depict quantum fluctuations
of the spacetime geometry. This can certainly matter for a future investigation with an
explicit estimation concerning the ’phenomenological’ parameters χ and LD .

5 Conclusions and Final Remarks

In this paper I have continued the study presented in [12] concerning the birth and fea-
tures of the cosmological constant. In my view, the cosmological constant is generated
at Planckian scales, where quantum fluctuations come into action and are supposed
to be very strong. To this purpose, a mechanism mimicking the solid state physics
[12] is proposed transforming, thanks to these huge Planckian fluctuations, a radiation
field into one with the cosmological constant equations of state. The usual way to
look at vacuum energy, where contributions arise from different physical scales, could
be incorrect since these contributions represent radiation fields and thus they cannot
contribute to the cosmological constant: only for a radiation field sufficiently near the
Planck scale LP fluctuations are so strong to permit its transformation into a cosmo-
logical constant equation of state, via equation (2). A further ingredient is provided
by noticing that energy contributions enter in Einstein’s equations in terms of energy-
densities and thus one must specify the physical scale such that a given contribution
is averaged. To this purpose, I propose that the cosmological constant born at Planck-
ian scales acts also at bigger scales, but with a monotonically decreasing behavior in
terms of the length scale L , namely equation (14), motivated by a non-commutative
spacetime. Since the modified Misner–Sharp energy (12) has an absolute minimum
at L = LD given by (16), this minimum represents the decoherence scale where the
crossover at the classicality is recovered: this scale determines the observed small
value of the cosmological constant �. This picture is different from the interesting
proposal in [10]. There, the cosmological constant is also believed to be generated at
Planckian scales but it is also assumed that this cosmological constant is hidden by
the Planckian fluctuations and as a result the spacetime is expanding with a residual
cosmological constant at macroscopic scales. This picture, although interesting, does
not explain the smallness of �. Moreover, the paper in [10] contains the important
information regarding the existence of a large class of initial conditions leading to a
negligible spatial curvature at macroscopic scales.
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In this paper I have depicted dynamically the new scenario in [12]. To this purpose,
one should solve the system (8)–(10) proposed in [21,22]; a formidable task. To make
the problem more tractable, a semiclassical approximation has been used. In a semi-
classical approximation context, the starting point is the inhomogeneous metric (17),
where for the coordinates we have {t, xi } ∈ {sp(t̂, sp(x̂ i ))}. In particular, privileged
states exist, namely maximally localizing states {s} [21,22] saturing the STUR of a
quantum spacetime [24]. With the semiclassical metric (17), the next step is to intro-
duce an averaging procedure, mimicking the Buchert formalism [12] but applied in
order to average out the Planckian fluctuations. This procedure can be obtained with
an averaging procedure on the slice at s(t̂) = constant . In this paper I considered
separately the case with an initial vanishing spatial curvature from the one with a non-
vanishing spatial curvature. In the former case, the lapse function can be averaged to
unity and the average procedure can be outlined also below the decoherence scale LD .
In the latter case the average procedure can be consistently obtained at the decoherence
scale. In my view, the decoherence scale plays the role of the homogeneity scale Lo in
cosmology [26]. What is physically relevant is that, in both cases, we have existence
conditions, namely conditions (31) and (41). These conditions do imply that the initial
backreaction and the initial spatial curvature must be sufficiently small, otherwise the
system is not evolving and the fitting problem has no solution. Physically, this is in
agreement with the fact that for an initially very inhomogeneous metric (17) solution
of Einstein equations, a spacetime also equippedwith a positive cosmological constant
is not evolving as a de Sitter spacetime. Conversely, according to [10], there exists
a large class of initial conditions assuring a vanishing kinematical backreaction and
spatial curvature at the scale LD . These initial conditions, assuring the emergence of a
classical de Sitter universe with a small cosmological constant�, have been expressed
in terms of a morphon field by means of (49).

The proposal in [12] that is further studied in this paper, is capable of depicting
the birth of the cosmological constant with a simple physical process where quantum
fluctuations transform a radiation field in one with the suitable equation of state for
a cosmological constant, mimicking the solid state physics and without introducing
a quintessence field. The model in [12] is also capable of explaining why only a
positive cosmological constant generally emerges and not one with � < 0. Finally,
the smallness of the cosmological constant can be explained in terms of a decoherence
scale LD representing an absolute minimum for the generalized Misner–Sharp mass
dressed by Planckian fluctuations and the crossover to classicality can be obtained
with a large class of initial conditions. For all these results, I think that my proposal
is physically viable and can represent a possible, simple and physically reasonable
solution to the cosmological constant problem. It is thus expected that the semiclassical
treatment and the physicalmechanisms outlined in this paper and in [12] can be present
in a future physically sound quantum gravity theory, where particles and quantum
fluctuations are rigorously depicted in terms of quantum fields.
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