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Abstract
A cornerstone of physics, Maxwell‘s theory of electromagnetism, apparently contains
a fatal flaw. The standard expressions for the electromagnetic field energy and the self-
mass of an electron of finite extension do not obey Einstein‘s famous equation, E =
mc2, but instead fulfill this relationwith a factor 4/3 on the left-hand side. Furthermore,
the energy and momentum of the electromagnetic field associated with the charge fail
to transform as a four-vector. Many famous physicists have contributed to the debate
of this so-called 4/3-problem without arriving at a complete solution. It has generally
been assumed that, as originally suggested by Poincaré, the problems are connected
to the question of stability of the charge distribution, and that relativistic equivalence
between energy and self-mass can only be restored by inclusion of stabilizing forces.
Alternative solutions to the problems have also been proposed. Nearly a century ago
Fermi suggested a covariant definition of the electromagnetic energy and momentum,
and sixty years later Kalckar et al. argued that the 4/3 problem is caused by omission
of a relativistic correction in the standard evaluation of the self-force from Coulomb
self-interaction. However, the relation between these suggestions has not been clear.
We show that the relativistic correction implies that the mechanical momentum of an
accelerated rigid body must be defined as the sum of the momenta of its parts for fixed
time in the momentary rest frame of the body. For the total momentum of particles
and field to be conserved, the total energy–momentum tensor must be divergence free,
and this then requires that the momentum of the associated electromagnetic field be
defined in the same way, consistent with the suggestion by Fermi. This comprehensive
solution of the 4/3-problem demonstrates that there is no conflict of Maxwell‘s theory
with special relativity and the questions of equivalence of electromagnetic energy
and self-mass and of stability of a classical charge distribution are independent. In
appendices we discuss the relations of our treatment with Fermi‘s seminal paper and
with a classic paper by Dirac where he evaluated the damping self-force on a point
electron from transport of energy and momentum in the electromagnetic field.
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1 Introduction

In classical electrodynamics an accelerated charge gives rise to electromagnetic radi-
ation and also to a field that reacts back on the charge with a so-called self-force.
This force can be divided into components that are even and odd, respectively, under
time reversal and the rate of work done by these force components changes sign or
is invariant, respectively, under time reversal. The former provides an inertial force
resisting acceleration and the latter accounts for energy loss to radiation. In addition,
this odd component of the self-force includes a term that induces reversible energy
exchange with the near field, the so-called acceleration energy or Schott term [1, p.
253], [2]. Apart from the presence of this term, the above distinction is analogous to
that between reactive and resistive impedance in an electronic circuit [3].

Here our focus is on the inertial self-force, characterized by an electromagnetic
mass. According to the theory of special relativity its electromagnetic mass should be
given by

me = Uel

c2
(1)

where Uel is the electromagnetic self-energy in the electron’s rest frame,

Uel = 1

2

∫ ∫
ρ(r′)ρ(r)
| r − r′ | dVdV ′, (2)

where ρ(r) describes the charge distribution of the electron and c is the velocity of
light in vacuum.

As we shall show below, a standard calculation of the total self-force in the rest
frame of an electron, based on Maxwell’s equations, leads to

Ksel f = −4

3
mev̇ + 2

3

q2

c3
v̈, (3)

where v is the velocity, differentiation with respect to time is indicated by a dot, and
me is given by Eq. (1). When the first, inertial term in Eq. (3) is moved to the left
hand side of the equation of motion, M v̇ = K, where K includes an external force,
K = Kext + Ksel f , 4/3 me can be interpreted as a correction to the mechanical mass
M and the unexpected factor 4/3 is referred to as “the 4/3-problem”. In spite of its
century-long history this problem is still discussed in the literature as one that is not
fully resolved (see, for example, Chap. 16 in [4]). Also the form of the second term
is unexpected because the power of the emitted radiation is proportional to the square
of the acceleration according to the Larmor formula. The reason is the presence of the
much debated Schott term mentioned above [5,6].
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The seriousness of the 4/3-problem is emphasized by Feynman in his famous Lec-
tures on Physics [7, Chap. 28]. After the discussion of special relativity andMaxwell’s
theory of electromagnetism he writes: “But we want to stop for a moment to show you
that this tremendous edifice, which is such a beautiful success in explaining so many
phenomena, ultimately falls on its face. There are difficulties associated with the ideas
of Maxwell’s theory which are not solved by and not directly associated with quantum
mechanics.” Also, it turns out that solution of problems in quantum electrodynamics
can often be reduced to the solution of the corresponding classical problem [8–10].

In the textbook by Jackson [4] which is a standard reference in the literature [10]
it is argued that this violation of equivalence between mass and energy of an electron
is a consequence of the fact that the electromagnetic contributions to the energy and
momentum do not transform properly (as a four-vector) but that the problem can be
removedby inclusion of non-electromagnetic forces (Poincaré stresses) required to sta-
bilize the charge [11]. This inclusion gives a total divergence-free energy–momentum
tensor (named ‘the stress tensor’ in [4]) and hence the correct energy–momentum
transformation properties. Such a model proposed by Schwinger [12] is discussed
by Jackson in [4, §16.6] (see also [13]). We discuss the energy–momentum tensor
in Sect. 5. A shell model of the electron as spherical insulator with a surface charge
has been considered in detail by Yaghjian [14] who introduced a negative ‘bare mass’
which reduces the factor 4/3 in Eq. (3) to unity. In an interesting historical account of
the development of electrodynamics [15], Spohn refers to Schwinger, Yaghjian and
Rohrlich for discussions of the 4/3-problem.

At the end of the last century Rohrlich described the state of the problem under
discussion optimistically: “Returning to the overview of classical charged particle
dynamics, one can summarize the present situation as very satisfactory: for a charged
sphere there now exist equations of motion, both relativistic and nonrelativistic, that
make sense and that are free of the problems that have plagued the theory for most of
this century” [16] (see also the textbook [17]). However, the authors Kalckar, Lindhard
and Ulfbeck (KLU) of the paper [18], which unfortunately has gone unnoticed by the
general physics community and apparently was not known to Rohrlich, did not share
this opinion. They stated that “there is a crucial error in the usual derivations of
self-force” and found that, after correction of this error, there is complete equivalence
between thefield energy and the self-mass of an electron andhence noneed to introduce
Poincaré stresses. This conclusion was derived from a comprehensive study of the
acceleration of a rigid systemof charges. Previously overlooked relativistic corrections
associated with Lorentz contraction of a rigid body and time dilation in an accelerated
system turn out to be important even in the limit of velocities much smaller than c.

In the following we shall show how the 4/3-problem can be resolved. First we
calculate the total self-force in the standard way from the interaction between the
elements of charge in a classical model of the electron.This leads to a formula for the
inertial self-force and the associated electromagnetic mass with the troublesome factor
4/3. However, when relativistic effects are included [18] the 4/3-factor disappears. The
key observation is that, owing to Lorentz contraction, different parts of a rigid body
must have different accelerations to preserve rigidity and the time intervals required to
reach a new velocity are therefore different. This modifies the way forces on different
parts of the body should be added.We then demonstrate equivalence from a calculation
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of the self-force from transport of field momentum across the surface of a sphere
surrounding the electron, including a similar relativistic correction. Dirac applied this
type of calculation to a point electron in his famous 1938-paper [2] but to avoid the
problem of infinite self-energy he omitted the reactive term in the self-force.

As an alternative to inclusion of Poincaré stresses Rohrlich suggested a new defi-
nition of the energy–momentum vector of the electromagnetic field around a moving
electron, [17, Chap. 4], as discussed also in Jackson’s textbook, [4, Chap. 16]. Similar
solutions were suggested by Fermi already in 1922 [19] and by Wilson [20] and Kwal
[21]. However, the root of the problem with the standard definition remained elusive
and introduction of Poincaré stresses was considered an alternative option. In Sect.
5 we discuss this (covariant) definition on the basis of the general formalism of the
classical theory of fields in Landau and Lifshitz’ textbook, [22]. The papers by Fermi
and Dirac are discussed in Appendices C and D.

2 Retarded Electromagnetic Fields Around an Electron and the
4/3-Problem

The Maxwell equations for the electric field generated by a moving electron have
two solutions, the retarded field, Eret , and the advanced field, Eadv , with boundary
conditions in the past and in the future, respectively. Normally, only the retarded
solution (Liénard–Wiechert field) is considered to have a physical meaning but the
advanced field can sometimes be useful because it is connected to the retarded field
by time reversal.

Dirac [2] and Schwinger [3] were both only interested in calculating the resistive
component of the self-force which is associated with the component of the retarded
field that is odd under time reversal. Schwinger therefore separated the components
of the field that are odd and even under time reversal,

Eret = 1

2
(Eret − Eadv) + 1

2
(Eret + Eadv), (4)

keeping only the first term. To avoid the problem of infinite self-energy for a point
electron, alsoDirac retained only the contribution to the self-force from the first term in
Eq. (4). We shall be interested in the total self-force and hence postpone the separation
in Eq. (4). The rate at which the electron performs work on the electric field is

−
∫

j · Eret dV , (5)

where j is the current density created by the electron and the integration extends over
the whole coordinate space. This rate is seen to be invariant under time reversal for
the first field component in Eq. (4) and to change sign for the second component.
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2.1 Expansion of Electromagnetic Fields Near an Accelerated Charge

As shown in Appendix A, the retarded electromagnetic fields in the vicinity of a point
charge q are to second order in the distance ε from the charge given by

Eret ≈ q

ε2
n − q

2cε

[
n(nβ̇ββ) + β̇ββ

]

+ q

c2

[
3

8
(nβ̇ββ)2n + 3

4
(nβ̇ββ)β̇ββ − 3

8
|β̇ββ|2n + 2

3
β̈ββ

]
, (6)

Hret ≈ q

2c2
n × β̈ββ. (7)

The velocity of the charge is here assumed to be zero at the time t of observation,
cβ(t) = 0, and derivatives with respect to t are indicated by dots. The unit vector
n points from the position of the charge at time t towards the point of observation.
Note that to second order in ε the magnetic field does not depend on distance. The
expressions for the advanced fields Eadv and Hadv can be obtained from Eqs. (6), (7)
by the substitution β̈ββ → −β̈ββ.

In Eq. (6) only the term proportional to β̈ββ is odd under time reversal and hence the
first term in Eq. (4) has a finite value at the location of the charge,

1

2
(Eret − Eadv) = 2

3

q

c2
β̈ββ, (8)

and this fieldmultiplied by q gives a damping force,Kdamp, accounting for irreversible
energy loss but also for reversible energy exchange with the near field (Schott term),

Kdamp · βββc = 2q2

3c
β̈ββ · βββ = 2q2

3c

(
d

dt
(β̇βββββ) − β̇ββ

2
)

. (9)

Upon integration over time, the first term vanishes for periodic motion or for initial
and final states without acceleration while the second term gives a radiation damping
in accordance with the Larmor formula for the radiation intensity. In contrast to [2],
our aim is to study not the radiative friction but the electromagnetic self-energy and
self-mass of the electron. For this purpose only the first two terms in Eq. (6) are needed.

2.2 The 4/3-Problem for Electron Field Momentum and Self-Force

Consider the Abraham–Lorentz classical model of an electron as a stable spherical
shell with radius R, on which a total charge q is uniformly distributed [23,24]. In an
inertial frame K the shell moves with velocity v. According to standard results, the
density ofmomentumof an electromagnetic field equalsS/c2,whereS = cE×H/(4π)

is the Poynting vector. Introducing the field belonging to the shell, as observed in the
frame K , and integrating over all space one finds a momentum [4,7],

P( f ) = 1

c2

∫
dVS = 4

3

1

c2
q2

2R
γ v, (10)
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where γ = (1 − β2)−1/2. In the rest frame, K ′, the momentum is P′( f ) = 0 and the
energy E ′( f ) = q2/2R (see Eq. (14)), and a Lorentz transformation of this energy–
momentum gives Eq. (10) for the momentum without the factor 4/3. Thus, due to this
offending factor, the energy–momentum fails to transform as a four-vector.

An alternative, more direct way to see the lack of equivalence between electro-
magnetic self-energy and self-mass is through a calculation of the electromagnetic
self-force of an accelerated charge. FollowingHeitler [25, §4], we consider two charge
elements, dq and dq ′, on the spherical shell, separated by the distance ε. The charge
element dq produces an electric field acting on the charge dq ′ with the force dq ′dEret ,
where the field is obtained from Eq. (6) with q replaced by dq. The total force acting
on the electron itself is then equal to

Ksel f =
∫∫

dq ′dEret . (11)

Since the unit vector n in the expression (6), pointing from the charge element dq
towards dq ′, is uniformly distributed over solid angles for fixed ε, we obtain the
following expression for the self-force [25]:

Ksel f =
∫∫

dqdq ′
∫ [

−n(nβ̇ββ)

2cε
− β̇ββ

2cε
+ 2

3

β̈ββ

c2

]
d�

4π
, (12)

where we have omitted odd power terms with respect to the vector n in Eq. (6) because
they vanish after the integration over solid angles d�.

Since for an arbitrary constant vector a we have

∫
[n(na) + a] d�

4π
= 4

3
a, (13)

we obtain Eq. (3) for the electromagnetic self-force of an electron, where

me = 1

c2

∫∫
dqdq ′

2ε
= 1

c2
q2

2R
(14)

is the electromagnetic mass of an electron corresponding to the self-energy in Eq. (2).
The last expression in Eq. (14) is most easily obtained from the capacitor formula,
U = (1/2)qV . The second term on the right hand side of Eq. (3), obtained from the
last term in Eq. (12), gives the expression in Eq. (8) for the damping force.

Thus, we see that the factor 4/3 appears in the equation of motion, violating the
equivalence between electromagnetic mass and self-energy. However, the calculation
above rests on the assumption that at a given instant all parts of the electron have the
same acceleration in a reference frame in which they are all at rest simultaneously. As
we shall discuss below, this was the assumption challenged by Kalckar, Lindhard and
Ulfbeck in [18].
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3 Acceleration of Rigid Body and the KLU Solution

We define the classical electron as a rigid sphere (or spherical shell) with small but
finite extension and total charge q with a spherically symmetric distribution. We shall
now show that the equivalence between electromagnetic energy and mass is restored
if a proper relativistic treatment of the acceleration of a rigid body is introduced. As
it turns out, this breaks the spherical symmetry which eliminates the contribution to
the self-force from the dominant Coulomb term in Eq. (6).

3.1 Relativistic Description of Accelerated Rigid Body

Suppose that at each stage of the motion of the electron there is an inertial frame
of reference in which the velocities of all the components of the electron vanish
simultaneously and that all distances between them remain unchanged in this electron
rest frame while the electron moves in an arbitrary manner in the laboratory frame K
[18]. This corresponds to the relativistic definition of translational motion of a rigid
body, introduced by Born [26].

For simplicity we consider one-dimensional motion of two point-like particles. The
motion occurs in such a way that the distance between them, l0, remains constant in
the common rest frame K ′ (see Fig. 1). This uniquely determines the coordinates
of particle 2 as functions of the coordinates of particle 1. Let (x1, t1), (x2, t2) and
(x ′

1, t
′
1), (x

′
2, t

′
2) be the coordinates of the two particles in reference frames K and K ′,

respectively. The times t ′1 and t ′2 are equal and therefore the Lorentz transformation
from K to K ′ yields the relation

t2 − t1 = β

c
(x2 − x1), (15)

where cβ = cβ1(t1) = cβ2(t2) is the relative velocity of the frames K and K ′. On the
other hand, the transformation from K ′ to K leads to the relation

x2 − x1 = γ (x ′
2 − x ′

1). (16)

Formulas (15) and (16) lead to the definition of a system with rigid acceleration:

x2 = x1(t1) + l0γ (t1), (17)

t2 = t1 + l0
c

β(t1)γ (t1), (18)

where l0 = x ′
2 − x ′

1 is the distance between the particles in the rest frame.
If the velocity is not parallel to the separation l0 between the particles, the product

l0β(t1) in Eq. (18) is replaced by the product of vectors l0 · βββ(t1). Below we focus as
in Sect. 2 on the limit of low (non-relativistic) velocities and set β = 0 corresponding
to t1 = t2 = 0 in Fig. 1. This leads to the relation
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Fig. 1 Minkowski space-time
diagram showing the motion of
particles 1 and 2 in which the
distance between them remains
constant in the common rest
frame. Both particles start out at
t = 0 with velocity zero in the
laboratory system. At the event
points (x1, t1) and (x2, t2) the
velocities are equal,
β ≡ β1(t1) = β2(t2), and the
two events are simultaneous in
the moving rest frame (primed
axes). The dashed line indicates
a branch of the light cone for the
event at (x1, t1)

dt2
dt1

= 1 + 1

c
l0 · β̇ββ(t1), for β = 0. (19)

We conclude that in the common rest frame for a system of many particles the accel-
eration of a particle with coordinates ri relative to a reference particle must be given
by

gi = g0
1 + ri · g0/c2 , (20)

where g0 is the acceleration of the reference particle. The choice of this particle is
immaterial because Eq. (20) satisfies the reciprocity relation

g0 = gi
1 − ri · gi/c2 . (21)

3.2 Self-forces and Self-mass of Accelerated Electron

Kalckar, Lindhard and Ulfbeck calculated the electromagnetic self-force and mass of
the extended electron treating it as a system with rigid acceleration [18]. Their crucial
insight was that for a rigid body there is not a simple relation between the acceleration
and the total force. Consider a system of particles initially at rest and accelerated as a
rigid system with force Ki on the i ′th particle with mass mi and acceleration gi . The
(non-relativistic) equation of motion for this particle is then

migi = Ki . (22)

The total mass is M = ∑
i mi and according to the relation (20) for a rigid body we

obtain

Mg0 =
∑
i

Ki (1 + ri · g0/c2), (23)

123



758 Foundations of Physics (2019) 49:750–782

where as before g0 is the acceleration of a reference particle at r = 0. In a description
of the translational motion of the rigid body as the motion of a point particle with mass
M the force is hence given by the right-hand side of Eq. (23) and not by the simple
sum of the forces on the parts of the body.

In the formula (12) for the self-force the correction factor in Eq. (23) is only impor-
tant for the omitted Coulomb term in Eq. (6). This term now gives a contribution,

�Ksel f =
∫∫

dqdq ′
∫

n
ε2

(r′β̇ββ)

c

d�

4π
. (24)

Using the symmetry between the variables q and q ′ we can rewrite this integral as

∫∫
dqdq ′

∫
d�

4π

r′ − r
ε3

(r′β̇ββ)

c
=

∫∫
dqdq ′

∫
d�

4π

r′ − r
ε3

((r′ − r)β̇ββ)

2c

=
∫∫

dqdq ′
∫
d�

4π

n(nβ̇ββ)

2cε
. (25)

The correction (24) is then seen to cancel the first term in the formula (12) and hence
eliminates the factor 4/3 in Eq. (13). The self-force in the equation of motion now
has the form in Eq. (3) but without the factor 4/3, in agreement with mass-energy
equivalence.

A particularly simple example demonstrating equivalence and irrelevance of
Poincaré forces is discussed in [18]. Consider two particles, both with charge q and
mechanical mass m, accelerated by a force on particle 1 in the direction towards par-
ticle 2 with a strength adjusted to keep the distance R between them constant in their
mutual momentary rest frame. A calculation of the self-force analogous to Eq. (12)
for spherical geometry gives a self-mass equal to the result expected from equivalence
(Eq. (14)) multiplied by a factor two. However, with the correction in Eq. (23) this
factor is reduced to unity. Obviously, there is in this example no room for introduction
of Poincaré forces (see also [27,28]).

3.3 Addition of Forces and Simultaneity

The modification in Eq. (23) of the relation between forces and mass for a rigid body
may look very odd but the modification has a simple interpretation. When a rigid body
originally at rest is accelerated during a time interval dt0 for the reference point, other
points on the body are accelerated through different time intervals, as expressed by
Eq. (19) and illustrated in Fig. 1. For the change of the momentum of the rigid body,
defined as the sum of the momenta of its parts for fixed time in the momentary rest
frame, we therefore obtain

dP
dt0

= d

dt0

∑
i

pi =
∑
i

dpi
dti

dti
dt0

=
∑
i

Ki (1 + ri ·g0/c2), (26)
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in agreement with the relation (23). As stressed in [18], it is important that this relation
is not based on any new definition but follows directly from Born’s definition of a
rigid body and the point dynamics of its parts. We may therefore instead regard the
combination of Eqs. (23) and (26) as demanding the definition of the momentum given
above Eq. (26) in a description of the rigid-body motion as that of point particle with
the total mass M of the body, M = ∑

i mi . Surprisingly, this interpretation of Eq. (23)
was not given by KLU in [18].

Alternatively, we can describe the acceleration process in the accelerated reference
system following the motion of the body. Here the time differences are ascribed to
different rates of clocks at different positions, i.e., to time dilation in a gravitational
field. In [18] such a reference system is called aMøller box, with reference to the book
on relativity by Møller [29]. When a metric containing the spatial variation of the rate
of clocks is introduced, the expression (26) becomes just the addition of forces on the
body so the 4/3-problem disappears in a natural way. However, as noted in [18], the
price to be paid for this simplification is a more complicated equation of motion (Eq.
(A20) in [18]).

4 Equivalence from Exchange of Momentumwith the Surrounding
Field

An alternative to the calculation of self-forces is an analysis of the exchange of elec-
tromagnetic energy and momentum between the electron and the space outside. As we
shall see, the 4/3-problem arises again but it can be resolved by application of a cor-
rection analogous to the KLU prescription in Eq. (23). As mentioned, Dirac developed
a relativistic analysis of the energy–momentum exchange between a region around a
point electron and its surroundings in a famous paper from 1938 (see Appendix D).
This analysis contains a solution of the 4/3-problem equivalent to that in [18], dis-
cussed in Sect. 3. However, to avoid the problem of infinite self-energy (and self-mass)
for a point electron Dirac retained only the resistive self-force, corresponding to the
first part of the field in Eq. (4), and replaced the infinite self-mass by a finite value
through a renormalization procedure.

4.1 Currents of Field Energy andMomentum and Conservation Laws

Consider an electron at rest at time t , represented by a spherical shell with radius R
and total charge q. Electromagnetic energy and momentum balance within a spherical
region of radius ε surrounding the electron is given by the equations

∂

∂t

∫
WdV +

∫
E · j dV = −

∫
S · df, (27)

∂

∂t

(
P( f )
m + P(p)

m

)
=

∫
σmnd fn, (28)

whereW = (8π)−1(E2+H2) is the density of electromagnetic energy,S = (c/4π)E×
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H the Poynting vector, and j the electric current density. The differential surface
element df contains a surface normal n pointing out of the sphere. The vectors P( f )

and P(p) represent the field and particle momenta inside the sphere with radius ε,
where

P( f ) = 1

c2

∫
SdV . (29)

The matrix σmn is the Maxwell stress tensor with indices referring to the coordinates
x, y, z, (see Eq. (33.3) in [22])

σmn = 1

4π

[
EmEn + HmHn − 1

2
δmn(E

2 + H2)

]
, (30)

where δmn is the Kronecker symbol. We use Latin letters for indices running from
1 to 3 and the convention that an index appearing twice is to be summed over. The
integration at the left hand side of Eq. (27) and in Eq. (29) extends over the volume of
the sphere with radius ε while the integration at the right hand side of Eqs. (27) and
(28) is over the surface of that sphere. With the chosen sign of the stress tensor in Eq.
(30), the right hand side of Eq. (28) gives the momentum flux into the sphere.

According to Eqs. (6) and (7) the leading term of the Poynting vector in the vicinity
of the electron is

S = q2

8πcε2
n × (n × β̈ββ), (31)

i.e., it is inversely proportional to square of the distance ε. For terms with a higher
power of ε the integrals in both Eqs. (27) and (29) vanish in the limit ε → 0.

According to Eq. (31), the Poynting vector is perpendicular to the surface normal
of the sphere with radius ε and hence the energy flux in Eq. (27) equals zero. The
second term at the left hand side of Eq. (27) is also zero since j = 0 in the rest system.
The field energy contained in the volume is therefore constant,

∂

∂t

∫
WdV = 0, (32)

and we may conclude that in its rest frame the electron does not emit energy but only
momentum, in contrast to the conclusion in [22] based on the Larmor formula and the
symmetry of the emitted radiation.

For ε → R+, the derivative of the electromagnetic field momentum inside the
sphere with radius ε tends to zero since the volume of this sphere approaches the
volume inside the uniformly charged spherical shell where there is no field, E = 0.
This implies that, in this limit, the right hand side of Eq. (28) represents the rate of
change of mechanical momentum, only, i.e. it represents the self-force,

Ksel f = dP
dt

=
∫∫

ksd f . (33)
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From Eq. (30) we have

ks = 1

4π

[
E(Ens) − 1

2
ns |E|2

]
, (34)

where we have introduced an index s on the surface normal and on the momentum
flux at the surface of integration. The magnetic-field terms in Eq. (30) are of second
order in ε after the integration (33) and can be ignored.

4.2 Self-force fromTransport of Field Momentum

Here we treat the simple case with R � ε, the point electron. As shown in Appendix
B, the result applies for all ε > R. With the approximation above the charge is located
at the center of the sphere so the unit vector n in Eq. (6) is equal to the surface normal
ns . Inserting the expression (6) for the electric field into Eq. (34) and keeping only
terms of order ε−2 or lower we obtain for the momentum flux into the sphere with
radius ε

ks = q2

8πε2

{
ns
ε2

− 1

cε

[
ns(nsβ̇ββ) + β̇ββ

]

+ 1

c2

[
(nsβ̇ββ)2ns + 5

2
(nsβ̇ββ)β̇ββ − |β̇ββ|2ns + 4

3
β̈ββ

]}
. (35)

The first (Coulomb) term and the first three terms in the last parenthesis give no
contribution to the integral in Eq. (33) owing to their odd symmetry under change of
sign of ns . Using the relation (13) we then obtain for the force on the system consisting
of the charged sphere and the field inside the distance ε

Ks(ε) ≈ −4

3

q2

2cε
β̇ββ + 2

3

q2

c2
β̈ββ. (36)

This agreeswithEq. (3)withme givenbyEq. (14), except for the replacement of R by ε.
This difference is consistent with the notion that the electromagnetic energy is located
in the field with the density given below Eq. (28). The dominant term is the Coulomb
field and the energy inside a spherical shell with volume 4πr2dr is proportional to
r−2. The total field energy outside the distance ε is therefore proportional to ε−1 and
for ε = R it equals the energy q2/2R of a uniformly charged sphere. The negative
of the first term in Eq. (36) is the force required to give this field the acceleration cβ̇ββ
(apart from the troublesome factor 4/3 which we discuss below).

According to the KLU prescription, the factor 4/3 in this formulamay be eliminated
by introduction of the relativistic correction factor (1+ri ·β̇ββ/c) in the sum over forces
Ki acting at ri on a rigid body with acceleration cβ̇ββ at r = 0. We should include this
factor in the integration since the sphere is defined in the electron’s rest frame and
follows its motion as a rigid body. For the point electron the momentum flux is given
by Eq. (35). The correction factor is only important for the Coulomb term and we
obtain
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�Ks(ε) = −�mecβ̇ββ = q2

8πε2

∫
d�s

(
1 + (nsβ̇ββ)ε/c

)
ns

= q2

4cε

∫ 1

−1
d cos θ cos2 θβ̇ββ = q2

6cε
β̇ββ. (37)

With this correction to Eq. (36) we obtain full relativistic equivalence between mass
and energy of the field outside the sphere with radius ε. In the limit ε → R we
obtain equivalence between the total field energy and mass. The calculation gives a
physical interpretation of the electron’s self-force as the drag by the inertial mass of
the electromagnetic field.

5 Energy–Momentum Tensor

The KLU paper clearly identified the error in the standard calculation of the electro-
magnetic self-mass of an electron represented by a classical model of a rigid, charged
spherical shell. However, it remains to be explained what exactly is wrong with the
definition in Eq. (10) of the momentum of the field associated with the electron and
with Eqs. (27), (28), expressing conservation of the total energy and momentum of
particles and fields. Is the redefinition of the field momentum and energy suggested by
Rohrlich correct and, if so, what is the justification? In this chapter we elucidate these
questions based on the general discussion of field energy–momentum in [22, §32] and
the application to the electromagnetic field in §33.

We shall use standard four-dimensional relativistic notation, with Greek indices
running from 0 to 3 for four-vectors transforming like the time-space coordinates of
an event, xμ = (ct, x, y, z). In addition to these (contravariant) vectors we introduce
the corresponding vectors with opposite sign of the last three components, called
covariant vectors and distinguished by lower indices, xμ. The invariant scalar product
of two four-vectors xμ and yμ can then be written as xμyμ with the convention of
summing over indices appearing twice. Tensors of rank two, Aμν , transform like the
product of the components of two four-vectors. As for four-vectors, the indices can
be moved up or down with the convention that this changes the sign for the spatial
indices 1,2,3 but not for the time index 0.

5.1 Electromagnetic Field Tensor

The electromagnetic potentials may be combined into a four vector Aμ = (ϕ,A) and
the sources of the fields into a four-current jμ = (cρ, j). A compact representation of
the fields is the electromagnetic field tensor defined by [22]

Fμν = ∂Aμ

∂xν
− ∂Aν

∂xμ
. (38)

The tensor is antisymmetric in the indices μ, ν. The time derivative of the kinetic
energy and momentum of a particle with rest mass m and charge q, interacting with
the fields through the Lorentz force, are then determined by the equation of motion,
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mc
duμ

ds
= q

c
Fμνu

ν, (39)

where uμ = (γ, γβββ) is the four-velocity and ds = cdt/γ .
Also the Maxwell equations for the fields can be written in a compact form. The

equations without source terms can be expressed as the following relation for the field
tensor,

∂Fμν

∂xξ
+ ∂Fνξ

∂xμ
+ ∂Fξμ

∂xν
= 0, (40)

and the equations relating the fields to the sources as the relation

∂Fμν

∂xν
= −4π

c
jμ. (41)

5.2 Energy–Momentum Four-Vector of Field AroundMoving Electron

The energy and momentum densities of the electromagnetic field may be expressed
through an energy–momentum tensor (Eq. (32.15) in [22]),

T αβ =

⎛
⎜⎜⎝

W Sx/c Sy/c Sz/c
Sx/c −σxx −σxy −σxz
Sy/c −σyx −σyy −σyz

Sz/c −σzx −σzy −σzz

⎞
⎟⎟⎠ . (42)

HereW is the energy density,S the Poynting vector, and σmn theMaxwell stress tensor,
given explicitly in Eq. (30). The energy–momentum tensor may also be expressed in
terms of the field tensor (Eq. (33.1) in [22])

Tμ
ν = 1

4π

(
−Fνξ F

μξ + 1

4
δμνFξηF

ξη

)
, (43)

where δμν is the Kronecker symbol.
The energy and momentum of the field on a hyperplane in 4-dimensional space is

then given by

Pα = 1

c

∫
T αβdSβ, (44)

where the differential is an element of the hyperplane, dσ , multiplied by a time-like
unit four-vector perpendicular to that plane and in the future light cone, dSβ = nβdσ .
For the special case of a hyperplane defined by x0 = const ., corresponding to the
3-dimensional space in the laboratory frame K , we obtain the standard expression for
the energy as an integral over space of the energy density W and of the momentum
as an integral of the Poynting vector divided by c2. As discussed in Sect. 2 below
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Eq. (10) this expression for the energy–momentum of the field fails to transform as a
four-vector.

On the other hand, with the choice nβ = uβ the hyperplane corresponds to the 3-
dimensional space in the electron rest frame K ′ and Eq. (44) is Rohrlich’s alternative
definition of the energy–momentum vector of the electromagnetic field associated
with the electron. In the rest frame we have uβ = (1, 0, 0, 0) and Rohrlich’s formula
gives the same result as the standard one, discussed in Eq. (10) and below. However,
since Gα = T αβuβ is a four-vector and the surface element dσ in the rest frame is an
invariant, the energy–momentum vector defined in Eq. (44) transforms as a four-vector
and the 4/3-problem should disappear. As an illustration of the content of formula (44)
we verify this by direct calculation.

In Eq. (44) the integration is over space in the rest frame K ′ while the energy–
momentum tensor is defined in the laboratory, so we first express Gα in the primed
coordinates of the rest frame. We assume that the velocity cβββ is in the x-direction and
obtain from the Lorentz transformation r′ = (x ′, y′, z′) = (γ (x − βct), y, z). The
electromagnetic field from a charge q in uniform motion is given by [22, Eq. (38.6)]

E(r, t) = qγ
(x − βct, y, z)[

γ 2(x − βct)2 + y2 + z2
]3/2 , H = βββ × E. (45)

Expressed as a function of the coordinates in K ′ the electric field is given by

E(r′) = qγ
(x ′/γ, y′, z′)

r ′3 . (46)

We then calculate the spatial part of Gα , G = (Gx ,Gy,Gz),

Gx = γ

c
Sx + γβσxx

= γβ

4π

(
E2 − E2

x

)
+ γβ

8π

(
2E2

x −
(
E2 + β2

[
E2
y + E2

z

]))

= β

8πγ

(
E2 + β2γ 2E2

x

)
,

Gy = γ

c
Sy + γβσyx = 0, Gz = γ

c
Sz + γβσzx = 0. (47)

The field is zero inside the sphere with radius R and hence the field momentum is
given by the integral

Px = γ
q2β

8πc

∫ ∞

R

4πr ′2dr ′

r ′4 = γ

(
1

c2
q2

2R

)
βc = γmeβc (48)

and the result is consistent with the relativistic relation between mass and energy in
Eq. (14).
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5.3 Mechanical Energy–MomentumTensor

To justify the new definition of the field energy andmomentum it is necessary to verify
that it is consistent with the exchange of energy and momentum between particles and
field, as determined by the Maxwell equations and the Lorentz force. For this purpose
we introduce an analogous mechanical energy–momentum tensor for particles with
rest-mass density

μ =
∑
j

μ j =
∑
j

m jδ(r − r j ), (49)

where r j is the position vector of themassm j . The energy–momentum tensor becomes
[22, Eq. (33.5)]

T (p)αβ =
∑
j

μ j c
dxα

j

ds j

dxβ
j

dt
=

∑
j

μ j cu
α
j u

β
j
ds j
dt

. (50)

Applying Eq. (44) for the hyperplane with x0 = const . we obtain the required result,

Pα =
∫ ∑

j

μ j cu
α
j dV =

∑
j

m j cu
α
j . (51)

As discussed in Sect. 4, below Eq. (26), the momentum of a rigid body is the sum
of the momenta of its parts for fixed time t ′ in the rest system K ′. This corresponds
to integration in Eq. (44) over the hyperplane perpendicular to the velocity uβ of the
rest frame of the body with dσ = d3r′, leading to

Pα = c

γ

∫
d3r′ ∑

j

m jδ
(
r − r j

)
uα
j , (52)

where the coordinates r′
j indicate the positions of the mass elementsm j and uα

j = uα

the velocities for fixed t ′. As in the calculation above of the field momentum, we
assume that the velocity is in the x-direction and introduce the primed variables, r′ =
(γ (x − cβt), y, z), in the δ-function with the replacement r →

(
x ′
γ + cβt, y′, z′

)
.

The positions of the mass elements move with the speed cβ in the x-direction and
the two terms proportional to t in the δ-function cancel. The integration then gives a
factor γ and we again obtain the result in Eq. (51) but with the velocities for fixed t ′
so that we obtain the simple relation for a point particle with velocity uα

Pα =
∑
j

m j cu
α
j = Mcuα, (53)

where M = ∑
j m j is the total rest mass of the body.
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5.4 Conservation of Total Energy andMomentum of Particles and Fields

The change with time of the energy and momentum is related through Gauss’ theorem
to the four-divergence of the energy–momentum tensor. For a system of charged par-
ticles interacting with the electromagnetic field the total energy–momentum tensor is
the sum of the particle and field tensors, Tμ

ν = T (p)μ
ν + T ( f )μ

ν . With both charges
and fields in the volume, the particle and field tensors are not separately divergence
free but, as demonstrated in [22, §33], the total energy–momentum tensor is,

∂

∂xμ

(
T (p)μ

ν + T ( f )μ
ν

)
= 0. (54)

To show this we differentiate Eq. (43) and obtain

∂T ( f )μ
ν

∂xμ
= 1

4π

(
1

2
Fξη ∂Fξη

∂xν
− ∂Fνξ

∂xμ
Fμξ − Fνξ

∂Fμξ

∂xμ

)
. (55)

We replace the last factor in the first term using the relation (40) and the second factor
in the last term using the relation (41). This leads to

∂T ( f )μ
ν

∂xμ
= 1

4π

(
−1

2
Fξη ∂Fην

∂xξ
− 1

2
Fξη ∂Fνξ

∂xη

−Fμξ ∂Fνξ

∂xμ
− 4π

c
Fνξ j

ξ

)
. (56)

By renaming the indices one can easily verify that the third term cancels the first two.
This leaves the result

∂T ( f )μ
ν

∂xμ
= −1

c
Fνξ j

ξ . (57)

Next we consider the energy–momentum tensor for the particles in Eq. (50). First we
assume that all particles have the same velocity. The four-divergence of the tensor then
becomes

∂T (p)ξ
ν

∂xξ
= cuν

∂

∂xξ

(
μ
dxξ

dt

)
+ μc

dxξ

dt

∂

∂xξ
uν . (58)

If we replace μ by a continuous rest-mass distribution the first term is proportional
to the four-divergence of the mass current which is zero due to conservation of rest
mass. In the second term, we introduce the equation of motion in Eq. (39) which for
a continuous charge distribution ρ may be written as

μc
duν

dt
= c

γ

ρ

c
Fνξu

ξ = 1

c
Fνξ j

ξ . (59)
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If the particles, or mass elements, do not have the same velocity, as is the case for
an accelerated rigid body viewed from the laboratory frame (Fig. 1), the result in Eq.
(59) is obtained for each small mass element and added together they again give the
negative of Eq. (57). Combining with Eq. (57) we obtain the desired result in Eq. (54).

Integration of Eq. (54) over a region of four-space, delimited by two hyperplanes
with constant times t and t + dt and a spherical surface f , and application of Gauss’
theorem leads to Eqs. (27) and (28)whichwere the starting point for our calculations in
Sect. 4. However, we can now also see the problem with these relations. The integrals
for fixed times t and t + dt of the energy–momentum tensor for the particles, i.e.
for the components of the rigid body, do not represent the energy and momentum we
associate with the rigid body. If we want to represent the motion of the body as that of
a point mass, these quantities should be calculated on hyperplanes corresponding to
fixed times in the momentary rest frames of the rigid body. In order to apply Gauss’
theorem to Eq. (54) we must then also integrate the energy–momentum tensor of the
field over a volume delimited by these hyperplanes.

The expression for the momentum four-vector in Eq. (44) with nβ = uβ is identical
to the one suggested in [17] but the justification is different. The modification of the
standard expression is imposed by the relativistic definition of a rigid body introduced
by Born and corrected in [18]. For consistency of the description the same hyperplane
must be chosen for definition of the energy and momentum of the field as for the rigid
body. Thus the justification is not just a requirement of covariance and there is not the
freedom of definition implied by Jackson [4, Chap. 16]. The field energy–momentum
defined in Eq. (44) would be covariant with any choice of a fixed hyperplane for the
integration. Furthermore, the introduction of Poincaré stresses to solve the 4/3-problem
is not only unnecessary but is hiding the real origin of the problem.

6 Summary and Concluding Remarks

The linked problems in classical electrodynamics of the electromagnetic mass of an
electron and the damping of its motion due to emission of radiation have a long
and interesting history. Early work on a classical model of the electron, in partic-
ular by Abraham [23] and Lorentz [24], focused on the damping and led to the
Abraham–Lorentz equation ofmotion, as discussed in [4, Chap. 16]. Calculation of the
electromagnetic mass required a description of the motion of a rigid body, and Born
is credited with being the first to formulate the relativistic concept of a rigid body in a
series of papers published around 1910. In the description of the motion of a body by
a bundle of trajectories in 4-dimensional space its shape in the momentary rest frame
is determined as the cut of this bundle with a 3-dimensional hyperplane perpendicular
to the four-velocity, and rigidity requires this shape to be conserved [26].

With this definition Born considered the Abraham–Lorentz model of an electron
as a rigid, uniformly charged spherical shell and calculated the self-force and the
corresponding electromagnetic mass as m = (4/3)Uel/c2, where Uel is the electro-
static energy, in violation of the principle of equivalence between mass and energy in
the theory of special relativity, expressed in Einstein’s famous equation, E = mc2.
The crucial mistake in this calculation was Born’s failure to realize the full conse-
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quences of relativity: “We will understand as the resulting force of a force field, the
integral of the product of rest charge and rest force [field] over the rest shape of the
electron” [26, Chap. 3, §11]. The problem with this seemingly innocuous definition
was not realized at the time and instead a remedy was suggested by Poincaré [11].
In the Abraham–Lorentz model of the electron additional forces, so-called Poincaré
stresses, are required for stability, and the combined contributions from these and the
electromagnetic forces to the mass and energy of the electron could be in accordance
with Einstein’s principle of equivalence [4, Chap. 16].

As shown by Kalckar, Lindhard and Ulfbeck [18] and discussed here in Sect. 3, the
conflict with relativistic equivalence is resolved when the relativistic modification of
Born’s definition of total force is taken into account. An alternative to a calculation
of internal forces between charge elements is an evaluation of the energy–momentum
transport through a surface surrounding the charged spherical shell. As demonstrated
in Sect. 4, the result of this type of calculation is consistent with equivalence between
energy and inertial mass of the field when the time differences in rigid acceleration
of the field are taken into account. This was seen to hold not only for the total field
outside the spherical charged shell but for the field outside a sphere with arbitrary
radius. In this sense, we have demonstrated detailed equivalence between mass and
energy for the electromagnetic field around an accelerated electron. The question of
equivalence for an atomic system was discussed in [18] and it was shown that it is
independent of whether a classical description is used or a quantal description like the
Dirac equation.

Curiously, a solution of the 4/3-problem was suggested already around 1920 by
Enrico Fermi [19], as we have discussed in Appendix C. This paper and other related
early Fermi papers have recently been reviewed and extended by Jantzen and Ruffini
[30]. Fermi did not clearly identify the problemwith Born’s definition of total force on
a rigid body, revealed in [18], but pointed in the right direction for solution of the 4/3-
paradox. His suggestion was largely ignored and forgotten at the time but was taken
up by Rohrlich [17], who suggested adoption of the new, covariant definition of field
momentum derived by Fermi. This solution to the 4/3-problem was dismissed in the
introduction to [18] with the comment: “Because of the complications, some authors
have preferred to define an electromagnetic energy–momentum four-vector for the
electron. This will hardly do, however. The basic classical case is not an electron, but
a macroscopic system, for which one is not free to define the electromagnetic self-
energy or self-momentum.” It must be demonstrated that the definition is consistent
with the exchange of energy and momentum between the particles and fields. This we
have done in Sect. 5.

Thuswehave arrived at a comprehensive solution of the 4/3 paradox: in a description
of the motion of a charged, rigid sphere by the dynamics of a point charge with the
total mass of the body, the energy and momentum must be evaluated as a sum over
the elements of the body for fixed time in its momentary rest frame. The factor 4/3
then disappears from the electromagnetic self-mass obtained from the self-force on
an accelerated body. For consistency of the description, the energy and momentum of
the electromagnetic field associated with the charge must then also be evaluated for
fixed time in the momentary rest frame of the body. The energy–momentum vectors
for the particle and the field, calculated in different reference frames, then refer to the
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Fig. 2 Illustration of the
geometry for calculation of the
retarded field in the vicinity of
an electron

same physical quantities, i.e., they are evaluated as sums over the same event points,
and hence they transform as 4-vectors [31].

The authors are especially indebted to the late professor Jens Lindhard for numerous
discussions and criticism on this issue in the first half of the 1990s. The authors are also
grateful to E. Bonderup for detailed constructive criticism and to A.Kh. Khokonov for
useful discussions and interest in this work.

Appendix A: Expansion of Electromagnetic Fields Near Accelerated
Charge

The retarded electromagnetic field at a space-time point (r, t), produced by a point
charge q carrying out an assigned motion r0(t ′), is determined by the state of motion
of the charge at an earlier time t ′ (see [4, formulas (14.13) and (14.14), or [22 formula
(63.8)]),

Eret (r, t) = q

R′2
(1 − β ′2)(n′ − βββ ′)

(1 − n′·βββ ′)3
+

+ q

cR′
n′ × [(n′ − βββ ′) × β̇ββ

′]
(1 − n′·βββ ′)3

, (A1)

Hret (r, t) = n′ × Eret (r, t), (A2)

whereβββ ′ ≡ βββ(t ′) = v(t ′)/c is the velocity of the charge (relative to the speed of light)
and β̇ββ

′ = dβββ ′/dt ′ is the acceleration (divided by c), n′ ≡ n(t ′) is a unit vector in the
direction towards the observation point, r, from the electron position at time t ′ (i.e.,
in the direction of r − r0(t ′) ) and R′ ≡ R(t ′) = |R(t ′) |≡| r − r0(t ′) |. The primed
quantities refer to the time t ′ defined as

t ′ = t − 1

c
| r − r0(t ′) | . (A3)

The expression for the advanced field, Eadv , can be obtained from Eq. (A1) by a
change of variables: βββ ′ → −βββ ′ and modification of Eq. (A3) to t ′ = t + R′/c.
After the following expansions, leading to formulas expressed in variables related to
the electron motion at time t , the corresponding formulas for the advanced field are
obtained simply by a change of sign of the velocity and its second derivative.
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We are interested in the retarded electric field (A1) in the neighborhood of a moving
charge q. The notation for the calculation of the field at time t at a point P with
coordinate vector r is illustrated in Fig. 2. Our aim is to express the field as a function
of the radius vector of the point relative to the position of the charge at the same time t ,
R(t) = r− r0(t) ≡ nε, the acceleration, cβ̇ββ(t), and the derivative of the acceleration,
cβ̈ββ(t). For simplicity, we perform the calculations in the rest frame of the charge at
time t ,

βββ(t) = 0. (A4)

We consider a variation of the distance ε of the point P from the charge for fixed n. The
position of the charge at time t is fixed but the position at the earlier time t ′ = t− R′/c
is a function of ε through the delay τ ≡ R′/c. We want to expand the field (A1) in the
parameter ε. The vector R(t) −R(t ′) = r0(t ′) − r0(t) depends on ε only through the
parameter τ and we may therefore first expand this vector in τ and we obtain

R(t ′) ≈ R(t) − τ Ṙ(t) + 1

2
τ 2R̈(t) − 1

6
τ 3

...

R (t)

= R − 1

2c
β̇ββR′2 + 1

6c2
β̈ββR′3. (A5)

To convert this expression into an expansion of R′ =|R(t ′) | in ε we note that since
β = 0 also the dependence on ε of the vector R(t) − R(t ′) must be of second and
higher order. Hence the series expansion of R′ has the form

R′ ≈ ε + a1ε
2 + a2ε

3. (A6)

Inserting this into Eq. (A5) and keeping terms of up to third order in ε in the norm of
the vector R(t ′) we obtain for the coefficients a1 and a2 in Eq. (A6)

a1 = − 1

2c
(β̇ββn) (A7)

a2 = 3

8c2
(β̇ββn)2 + 1

6c2
(β̈ββn) + 1

8c2
|β̇ββ|2, (A8)

where all quantities on the right hand side are taken at the time t . Also the velocity
cβββ(t ′) is a function of ε only through τ and may first be expanded in this parameter.
To second order in ε this leads to

βββ(t ′) ≈ −ε

c
β̇ββ + ε2

2c2
(
(nβ̇ββ)β̇ββ + β̈ββ

)
. (A9)

For the derivative, we need only include the first-order term β̇ββ(t ′) ≈ β̇ββ − (ε/c)β̈ββ.
The expansion of the unit vector n(t ′)may be obtained from the ratio of the expres-

sions in Eqs. (A5) and (A6), and to second order we obtain
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n(t ′) ≈ n + ε

2c

(
(nβ̇ββ)n − β̇ββ

)

− ε2

2c2

(
1

4
(nβ̇ββ)2n + 1

3
(nβ̈ββ)n + 1

4
|β̇ββ|2n − 1

2
(nβ̇ββ)β̇ββ − 1

3
β̈ββ

)
. (A10)

Inserting these expansions into Eq. (A1) we obtain

Eret ≈ q

ε2
n − q

2cε

[
n(nβ̇ββ) + β̇ββ

]

+ q

c2

[
3

8
(nβ̇ββ)2n + 3

4
(nβ̇ββ)β̇ββ − 3

8
|β̇ββ|2n + 2

3
β̈ββ

]
, (A11)

and from insertion of Eqs. (A10) and (A11) into Eq. (A2),

Hret ≈ q

2c2
n × β̈ββ. (A12)

Expansions of this type were first performed by Page (see formulas (21)–(24) in
[32]). Dirac did the same calculations in covariant form [2] and for β = 0 formula
(A11) is the same as the expression (60) in [2]. Heitler also considered the expansion
(A11), retaining terms of even order in n only (see Eq. (14) in [25, §4]). The first two
terms in Eq. (A11) were applied in [18] and characterized as a first-order expansion
in the acceleration.

Appendix B: Equivalence from Flux of Field Momentum

To prove complete consistency of the two methods for calculation of the electromag-
netic mass, from the internal forces between charge elements and from the flux of field
momentum, we need to show that the result in Eq. (36) also holds for ε → R and
hence agrees with Eq. (14) in this limit. This is a little more complicated because we
must now distinguish between the unit vector n in the direction from a charge element
dq to a point on the surface and the surface normal ns (see Fig. 3). The momentum
flux may be written as a double integral over charges dq1 and dq2 at distances ε1 and
ε2 from a point on the sphere and with unit vectors n1 and n2 towards this point. For
simplicity we include here only the terms in Eq. (6) proportional to ε−2 and ε−1 which
determine the reactive self-force and hence the electromagnetic electron mass. Using
the symmetry between dq1 and dq2 we obtain

ks ≈ 1

4π

∫∫
dq1dq2

{
(n2ns)n1

ε21ε
2
2

− n1
2cε21ε2

[(n2β̇ββ)(n2ns)

+(nsβ̇ββ)] − (n2ns)

2cε22ε1
[(n1β̇ββ)n1 + β̇ββ] − (n1n2)ns

2ε21ε
2
2

+ ns
2cε21ε2

[(n2β̇ββ)(n1n2)+(n1β̇ββ)]
}
. (B1)
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Fig. 3 Geometry for calculation
of the momentum flux into the
sphere S with radius ε. The
electric field is generated by a
uniformly distributed charge q
on a spherical surface with
radius R < ε

This is the momentum flux into the sphere which should be integrated over the surface
as in Eq. (33). For the two terms proportional to (ε21ε

2
2)

−1 this gives zero. Consider then
the second and last terms, both with the pre-factor (2cε21ε2)

−1 and with the factors

−n1[(n2β̇ββ)(n2ns) + (nsβ̇ββ)] + ns[(n2β̇ββ)(n1n2) + (n1β̇ββ)].

We rearrange to

(n2β̇ββ)[(n1n2)ns − (n2ns)n1] + [ns(n1β̇ββ) − n1(nsβ̇ββ)].

In the expression (B1) the distances ε1 and ε2 are fixed for fixed values of (n1ns) and
(n2ns). We keep the position of dq2 fixed but average over the position of dq1 on a
circle around ns , i.e., for fixed (n1ns). This leads to n1 → (n1ns)ns . Introducing this
replacement into the two expressions above we see that they both become equal to
zero. This leaves

ks ≈ 1

4π

∫∫
dq1dq2

−(n2ns)

2cε22ε1
[(n1β̇ββ)n1 + β̇ββ].

First integrate over dq2. Only the Coulomb part of the field has survived and from
electrostatics we know that the Coulomb field from a uniformly charged spherical
shell is the same outside the shell as from the total charge at the center of the sphere.
(The radius ε must remain infinitesimally larger than R, ε → R+. Within the charged
surface the field is only half as large). So the integral becomes

ks ≈ −q

4πε2

∫
dq1

1

2cε1
[(n1β̇ββ)n1 + β̇ββ]. (B2)
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This momentum flux should then be integrated over the sphere with radius ε,

Ks(ε) = ε2
∫
d�sks ≈

− q2

8πc

∫
d�s

4π

∫ 2π

0
dϕ

∫ π

0
dθ sin θ

1

ε1

[
(n1β̇ββ)n1+ β̇ββ

]
,

where the angles θ , ϕ define the direction towards dq1 from the center of the sphere
relative to the direction of ns . We may perform the integration over solid angles first.
For fixed values of θ and ϕ the distance ε1 is constant. The directions ns and n1 rotate
together, covering the 4π solid angle, so the average over ns corresponds to an average
over n1. According to Eq. (13) we therefore obtain

Ks(ε) ≈ −q2

8πc

∫ 2π

0
dϕ

∫ π

0

dθ sin θ√
(ε2 + R2 − 2εR cos θ)

4

3
β̇ββ = −4

3

q2

2cε
β̇ββ. (B3)

For ε = R this result is identical to the reactive self-force in Eq. (3).
In analogy to Eq. (37), we must introduce the KLU-correction in the integral over

forces, now with the expression (B1) for the momentum flux. Again the relativistic
correction factor is only important for the two Coulomb terms. We can apply the same
trick as before and make the replacements n1 → (n1ns)ns and then the two terms
can be combined. Since the scalar multiplication of n1 (or n2) by ns can be carried
out after the integration over dq1 (or dq2) we can use the fact that the field from the
charged shell is the same as that from the total charge placed at the center, and we
once again obtain the correction in Eq. (37).

Appendix C: Fermi Solution of 4/3-Paradox

Around 1920 Enrico Fermi wrote several papers related to the problems encountered
in calculations of the electromagnetic mass of an electron [19]. However, they have
remained relatively unknown to most of the physics community, probably because the
paperswere published in an Italian journal. The concluding paperwas also published in
German and it has recently become accessible on the Internet, translated into English
[19]. In the words of Jantzen and Ruffini [30], though often quoted, it has rarely
been appreciated nor understood for its actual content. These authors give a detailed
account of Fermi’s work but like [18] their paper is published in a journal with a
limited readership, and both papers have received very few citations. We shall here
give a brief account of Fermi’s approach to the problem. As seen below, there are both
similarities and interesting differences to the treatments we have discussed.

There is no doubt that Fermi’s view of the source of the problem was very sim-
ilar to that expressed in the later paper by Kalckar, Lindhard and Ulfbeck [18], as
demonstrated by the following quotes from the introduction. After introducing the
two conflicting values or the electromagnetic mass, with and without the factor 4/3,
Fermi writes: “Especially we will prove: The difference between the two values stems
from the fact, that in ordinary electrodynamic theory of electromagnetic mass (though
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not explicitly) a relativistically forbidden concept of rigid bodies is applied. Contrary
to that, the relativistically most natural and most appropriate concept of rigid bod-
ies leads to the value U/c2 for the electromagnetic mass.” And further below: “In
this paper, HAMILTON’s principle will serve as a basis, being most useful for the
treatment of a problem subjected to very complicated conditions of a different nature
than those considered in ordinary mechanics, because our system must contract in the
direction of motion according to relativity theory. However, we notice that although
this contraction is of order of magnitude v2/c2, it changes the most important terms
of electromagnetic mass, i.e, the rest mass.”

Fermi’s paper is not easy to read and understand, partly because he uses a description
of relativistic kinematics with an imaginary time axis (and there are a number of
confusingmisprints). The Lorentz transformation between reference frames in relative
motion can then formally be described as a simple rotation of the 4-dimensional
coordinate system, with a complex angle of rotation. However, we shall keep the
notation applied in the main part of this paper.

The electromagnetic self-force can be derived from the principle of least action
[22]. Fermi distinguishes between two cases, A and B. In case A we disregard the
relativistic effects and consider the time t to be a common parameter for all elements
of the rigid body. The part of the action responsible for the interaction of the charges
with the electromagnetic field is then

Sint = − 1

c2

∫
Aν j

νd4x = −1

c

∫
dq

∫ t2

t1
Aν

dxν

dt
dt, (C1)

where Aν = (ϕ,A) is the four-potential and jν = (cρ, j) the four-current, with ν =
0, 1, 2, 3. The differential is d4x = cdtdV , where dV is a differential spatial volume.
In the last expression xν(t) is the world line of the charge element dq, xν = (ct, r),
and Aν is the four-potential at this line.

According to the variational principle, the action should remain stationary for vari-
ations of the motion. In this connection, the definition of the integration region in Eq.
(C1) is important. For a point particle, the initial and final coordinates are to be kept
fixed and this constrains the variations of theworld line. Similarly, wemust require that
the charge elements dq in Eq. (C1) have fixed coordinates at the limits of integration
over t in the variation of the action integral,

δSint = −1

c

∫
dq

∫ t2

t1

(
∂Aν

∂xμ
δxμ dxν

dt
+ Aν

d

dt
δxν

)
dt, (C2)

where δx0 = 0 while δxk for k = 1 − 3 are arbitrary functions of t except for the
condition that they vanish at the limits of integration. The last term in Eq. (C2) can be
integrated by parts,

∫ t2

t1
dt Aν

d

dt
δxν = −

∫ t2

t1
dt

d Aν

dt
δxν = −

∫ t2

t1
dt

∂Aν

∂xμ

dxμ

dt
δxν .
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Switching the symbols μ and ν in this last term we then obtain

δSint = −1

c

∫
dq

∫ t2

t1
dt

(
∂Aν

∂xμ
δxμ dxν

dt
− ∂Aμ

∂xν

dxν

dt
δxμ

)

= 1

c

∫
dq

∫ t2

t1
dt Fνμ

dxν

dt
δxμ = 0, (C3)

where Fνμ is the electromagnetic field tensor defined in Eq. (38).When themechanical
action for the particle is included in the variation (C2), the expression (C3) provides
the Lorentz force in the equation of motion for the particle. Here we assume the
mechanical mass to be zero and consider instead the balance between the force from
an external field E(e) and that from the internal field E(i) given by Eq. (6) (first two
terms). In the rest frame all the velocities vanish and only the term with ν = 0 remains
in Eq. (C3). The four-vector F0μ is given by (0,E) and the variational principle leads
to the relation

∫
Edq =

∫ (
E(e) + E(i)

)
dq = 0. (C4)

Fermi notes that “we would have arrived at these equations without further ado, when
we (as it ordinarily happens in the derivation of the electromagnetic mass and as it
was essentially done by M. Born as well) would have assumed from the outset, that
the total force on the system is equal to zero. However, we have derived Eq. (C4) from
HAMILTON’s principle, to demonstrate the source of the error” [19].

As we have seen in Sect. 2, evaluation of the internal contribution leads to the 4/3
coefficient in the self-force,

∫
E(i)dq = −4

3

U

c2
g. (C5)

Here U is the electromagnetic self-energy,

U =
∫∫

dqdq ′

2ε
, (C6)

where ε is the distance between the two charge elements. The external force is obtained
as

K =
∫

E(e)dq, (C7)

and we obtain from Eqs. (C4) and (C5) the force

K = 4

3

U

c2
g. (C8)
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Fermi concludes that comparison of this equationwith the basic law of point dynamics,
K = mg, finally gives us

m = 4

3

U

c2
. (C9)

Fermi then argues that this procedure cannot be correct. Instead we must introduce
the coordinates and the field in the momentary rest frames, i.e., in 3-dimensional
planes perpendicular to the four-velocity, and specify the integration region as a section
between two such planes of the world tube traveled by the body. In Eq. (C1), both
the product of the two four-vectors and the differential are invariant under Lorentz
transformation. We may imagine the integration region split into differential slices
between two such planes. The width of the slices is given by the differential time dt .
From geometrical considerations of rigid acceleration of a body momentarily at rest,
Fermi derived a relation corresponding to Eq. (19) and (D9) for γ = 1,

dt =
(
1 + g · R/c2

)
dt0, (C10)

where dt and dt0 are the incremental times at r and at a reference point on the body,
r0, respectively, g is the acceleration at r0, and R = r − r0. The expression for the
action integral then becomes

Sint = −
∫

dq
∫

ϕ
(
1 + g · R/c2

)
dτ0, (C11)

where τ0 is the proper time for the reference point r0 on the body.
This defines his case B. In his own words: “Now it can be immediately seen,

that variation A is in contradiction with relativity theory, because it has no invariant
characteristics against the world transformation, and is based on the arbitrary space
x, y, z. On the other hand, variation B has the desired invariant characteristics, and
is always based on the proper space, i.e., the space perpendicular to the world tube.
Thus it is without doubt to be preferred before the previous one.”

Instead of Eq. (C3) we then obtain

δSint = −
∫

dq
∫

δr · ∇ϕ
(
1 + g · R/c2

)
dτ0

=
∫

dq
∫

δr · E
(
1 + g · R/c2

)
dτ0 = 0. (C12)

Since the displacement δr is arbitrary, this leads to the relation in Eq. (C4) with the
additional factor in parenthesis. This factor can be neglected for the external field if
we choose the reference point r0 as the center of charge (it is a very small correction
in any case) and we obtain

K = 4

3

U

c2
g − 1

c2

∫
E(i)(gR)dq. (C13)
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Let us consider the last term in Eq. (C13). It is only important for the leading Coulomb
term in E(i) and we obtain

− 1

c2

∫∫
r − r′

|r − r′|3 g·(r − r0)dqdq ′. (C14)

Switching notation, r ←→ r′, we obtain the same expression with the last parenthe-
sis replaced by (r0 − r′). Averaging the two expressions we eliminate the reference
coordinates and obtain for a spherically symmetric charge distribution

− 1

2c2

∫∫
r − r′

|r − r′|3 g·(r − r′)dqdq ′ = −1

3

U

c2
g. (C15)

With this expression for the last term in Eq. (C13) we obtain the proper relativistic
equivalence between electromagnetic mass and energy.

Did Fermi’s 1922-paper then present a satisfactory solution of the 4/3-problem,
which was overlooked, not appreciated, or forgotten? In our view it fell well short
of this. Fermi’s argument for case B to be preferred did not identify the key problem
with the calculation in case A. This calculation is not as claimed in contradiction with
relativity theory and there is nothing wrong with the result in Eq. (C4), except that it
is not directly relevant to the description of an accelerated rigid body. It expresses the
condition for conserved total momentum as a function of laboratory time. However,
as pointed out in [18], the electromagnetic mass of the rigid body is not determined by
the sum of forces in Eq. (C7) through the analogy to point dynamics, leading to Eq.
(C9), but by the forces on the individual parts of the body through the relation in Eq.
(23). As expressed in Eq. (26), this corresponds to a definition of the total momentum
of the body as the sum of the momenta of its parts for fixed time in the momentary
rest frame.

This relation is obtained more directly in case B because here the formulation of the
variational calculation is consistent with the relativistic concept of rigid body motion.
The origin of Fermi’s basic formula (C10) for time differentials at different positions
is the Eq. (4) in [33], which links the proper time intervals in the small spatial region in
the vicinity of the world line in Riemannian space. In that paper Fermi also introduced
the so-called ‘Fermi coordinates’ applied here in case B (see §10, Chap. 2 in [34]).

Fermi’s paper was not cited in [18] but the authors’ view on this and later related
papers is indicated by comments to a list of references in a note for a lecture series
on ‘Surprises in Theoretical Physics’, given by Jens Lindhard at Aarhus University in
1988 [35]: “E. Fermi [19] started out from general relativity and suggested a covariant
definition of self-mass, whereby 4/3 → 1. His suggestion was forgotten, even by
himself. Similar attempts were tried by Wilson [20] and Kwal [21]. Rohrlich took
it up again in his textbook [17], using a formal definition of a covariant classical
electron. Dirac [2] formulated a classical theory of the electron, where he sidestepped
the problem.”
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Appendix D: Solution for Point Electron with Born–Dirac Tube

Following Dirac [2], let us surround the singular point-electron world line in space-
time with a thin tube with constant radius ε in the electron’s rest frame for any instant
of the electron time-coordinate τ in the laboratory frame. The self-force is then to be
calculated from the transport of momentum across the surface of this tube. Consider
the four-vector ημ = xμ − zμ(s), where zμ(s) = (cτ, r0(τ )) is the world line of
the electron and xμ is some point in the vicinity of this world line. The parameter
s is the proper time multiplied by the velocity of light ds = cdτ/γ , where γ (τ) =
(1 − β2)−1/2 is the Lorentz factor and cβββ = dr0/dτ . We assume that the points
xμ are such that the vector ημ is perpendicular to the four-velocity of the electron,
uμ = dzμ/ds, and the surface of the Born–Dirac tube is then defined by two equations
[2,26]

ημημ = −ε2, (D1)

ημuμ = 0. (D2)

These equations define a 2-dimensional structure (a sphere) in 4-dimensional space for
fixed value of s.When the electronmoves, this structure forms a 3-dimensional surface
f of a tube. Equation (D2) defines a 3-dimensional plane which is perpendicular to
the four-velocity and intersects the four-sphere defined by Eq. (D1). An analogue of
the tube in three dimensions is illustrated in Fig. 4.

Following again Dirac, let us make a variation of the point xμ on the surface f
to the point xμ + dxμ, also on this surface. Let us suppose that this point is on the
3-dimensional plane corresponding to s + ds. Differentiating the Eqs. (D1) and (D2)
we obtain

(xμ − zμ)(dxμ − uμds) = 0, (D3)

(dxμ − uμds)uμ + (xμ − zμ)
d

ds
uμds = 0. (D4)

UsingEq. (D2) and the relationuμuμ = 1weobtain from these equations the following
relations

ημdxμ = 0, (D5)

uμdxμ =
(
1 − ημ d

ds
uμ

)
ds. (D6)

Let us split up the four-space variation on the tube surface f into a part,dxμ
⊥, orthogonal

to the four-velocity uμ and a part, dxμ
‖ , parallel to uμ. The latter can be written as

dxμ
‖ = cdt(1,βββ(τ)), i.e., the velocity is the same as that of the electron but the

laboratory times t and τ are different, as we also found from the analysis in Sect. 3.
These differentials can be visualized in the 3-dimensional analogue in Fig. 4. Here the
surface f is two-dimensional and dxμ can be split into a component along the circle,
which is an intersection of the tube surface with the x ′y′-plane, and a component
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Fig. 4 Minkowski diagram of a
3-dimensional analogue of the
Born–Dirac tube around the
world line of an electron (dashed
red line) accelerated in the
x-direction. Here τ is the time
coordinate of the electron in the
laboratory frame (t, x, y) where
it is at rest for τ = 0, η2 ≡ ηiηi
and η′2 ≡ η′iη′

i . The coordinate
system (t ′, x ′, y′) corresponds
to the rest frame at a later time τ .
The two circles with radius ε in
the (x, y) and (x ′, y′) planes
indicate the cuts of the tube
surface with these planes and ηi

with i = 1− 3 are the laboratory
coordinates of a radius vector in
one of the two circles (Color
figure online)

parallel to the t ′ -axis, i.e., parallel to the electron three-velocity in the laboratory
frame at the time τ .

Let us find the connection between the two times. According to Eq. (D2) the 4-plane
intersecting the world-tube is defined by

c(t − τ) = βββ · (r − r0(τ )). (D7)

The time variations of this equation gives,

c(dt − dτ) = (Rβ̇ββ)dτ + βββ · (dr − cβββdτ), (D8)

where R = r − r0(τ ). We found above that if we choose dxμ to be parallel to the
electron velocity then dr = cβββdt . Insertion of this into Eq. (D8) leads to

dt = dτ

(
1 + 1

c
γ 2(Rβ̇ββ)

)
, (D9)

which agrees with Eq. (19).
The 3-dimensional surface element of the tube is equal to d3 f = |dxμ

‖ |dS, where
dS is a surface element of the sphere defined in Eqs. (D1) and (D2), and using the
relation (D6) we find (see also the expression (66) in [2])

d3 f =
(
1 − ημ duμ

ds

)
dsdS. (D10)
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For a calculation of the momentum transport in the rest frame this reduces to

d3 f =
(
1 + ε

c
n · β̇ββ

)
cdτε2nd�. (D11)

We see that the factor in the parenthesis originates in the dependence of the time
differential on the spatial coordinate in Eq. (D9), associated with the spatial variation
of the acceleration. This in turn originates in the Lorentz contraction of the rigid sphere
upon acceleration.

We now obtain for the momentum transport across a section of the tube corre-
sponding to dτ , i.e., the transport through the rigid sphere surrounding the electron
corresponding to this time interval,

dP = dτ

∫ ∫
ks

(
1 + ε

c
ns · β̇ββ

)
ε2d�, (D12)

with ks given in Eq. (34). As we have seen in Sect. 4 this leads to complete equivalence
between the electromagnetic energy and mass outside the sphere.

Dirac calculated the energy–momentum transport through the tube for the retarded
field from an accelerated point charge, including both terms in Eq. (4). However, to
obtain an equation of motion he replaced the divergent inertial self-force (first term in
Eq. (36) but without the factor 4/3!) by a term, −mcβ̇ββ, corresponding to a finite mass
m. He applied an expansion similar to the one discussed in Sect. 2 but more general,
avoiding the assumption β = 0, and obtained a generalization of the formula (8) for
the damping force,

Fμ = 2e2

3c

(
d2

ds2
uμ +

(
d

ds
uν

)2

uμ

)
, (D13)

with the four-force defined as the derivative of the four-momentum with respect to
s ([2], last two terms on the left-hand side of Eq. (24)). Dirac discussed the 0′th
component of the four-force, the power term,

F0 = 2e2

3c

(
d2

ds2
u0 +

(
d

ds
uν

)2

u0
)

. (D14)

The second term corresponds to the power of irreversible emission of radiation and,
according to Dirac, gives the effect of radiation damping on the motion of the electron.
The first term is a perfect differential of a so-called acceleration energy [1] and cor-
responds to reversible exchange of energy with the near field (see also [3]). However,
it should be noted that the other terms of the four-force do not separate so neatly and
are mixed under Lorentz transformations.

An interesting derivation of the formula (D13) is given in [22] (see also [36, §32]).
The first term is an obvious relativistic generalization of Eq. (8) but it does not have
the property required by any four-force that it be perpendicular to the four-velocity.
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The second term is then added as a plausible extension remedying this deficiency. And
it is this term that now accounts for the radiation reaction!
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