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Abstract
Despite the efforts of many individuals, the disciplines of modern physics and number
theory have remained largely divorced, in the sense that the experimentally verified
theories of quantum physics and gravity are written in the language of linear alge-
bra and advanced calculus, without reference to several established branches of pure
mathematics. This absence raises questions as to whether or not pure mathemat-
ics has undiscovered application to physical modeling that could have far reaching
implications for human scientific understanding. In this paper, we review physical
interpretations of number theoretic concepts developed in the twentieth century, in
an attempt to help bridge the divide between pure mathematical truth and testable
physical theory. Specifically, the relevance of L-functions and modular forms to the
physics of quantum and classical physical systems is addressed, with the objective of
motivating general interest among physicists in these mathematical concepts.

Keywords Quantum · Classical · L-functions · Modular forms

1 Introduction: The StandardModel and Gravity

Throughout its history, theoretical physics has sought to identify the fundamental
constitutents of matter and understand how they behave. This objective has led to the
construction and operation of increasingly larger particle colliders with which these
constituents have been studiedwith greater and greater precision, and ultimately, to the
discovery and validation of the Standard Model of particle physics. This model stands
as a testament to the work ofmany people, and somemight claim it constitutes a theory
of everything once a consensus is reached on how to incorporate the gravitational force
[39].

Interestingly, the coupling constants determining the strength with which funda-
mental particles within the Standard Model interact imply the weak force is 1024
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Fig. 1 Standard Model and gravitational force strength versus distance

times stronger than the force of gravity, as calculated between a pair of protons in an
atomic nucleus [47]. In fact, the strength of the weak force between point particles
is not expected to compare to the strength of the gravitational force until the dis-
tance between the particles decreases by 20 orders of magnitude from the Fermi scale
(≈ 10−15 m) to the Planck scale (≈ 10−35 m). Prior to the advent of string theory, this
fact made unification of the Standard Model forces with gravity awkward, because
particle collider experiments suggest the Standard Model forces unify in strength at
electroweak and grand unification distance scales (10−18 m and 10−31 m), without
suggesting why the gravitational force should exist at all. Figure 1 shows a graph
of the variation in Standard Model force strengths with distance. In this figure, the
Planck scale at which a theory of everything (e.g. string theory) has been hypothesized
to provide a unified description of the forces of Nature is indicated [58].

Visible in Fig. 1 is the symmetry breaking of the electroweak force at the electroweak
scale (10−18 m), where it branches into the weak nuclear force and electromagnetic
(EM) force described over distance scales relevant to the chemistry of atoms [57].
Technically, description of these forces works by computing the probabilities of quan-
tum state transitions in terms of Feynman diagrams,which as shown in Fig. 2, represent
forces as squiggly lines. Importantly, while it is tempting to think of Feynman diagrams
as pictures of real processes occurring in 3+1 dimensional Minkowski spacetime, they
are in fact mathematical bookkeeping devices used for purposes of calculation, and
for this reason the squiggly lines representing the electromagnetic force in Fig. 2 are
called virtual photons. This Standard Model description of the electromagnetic force
is markedly different from the classical description given by Maxwell, in which the
electromagnetic force is mediated by real electromagnetic waves propagating between
charged particles.

From a reductionist perspective, the quantum description of the electromagnetic
force should give rise to the classical description at the scale of atomic radii (10−10 m).
Technically, this requires a distance-dependent parameter α, quantifying the strength
of the quantum electromagnetic interaction, to account for the strength of the classical
electromagnetic force at atomic distance scales. This parameterα, typically understood
to encompass the total effect of virtual photon interactions at sub-atomic length scales,
is called the fine structure constant, and derives its name from its appearance in
formulae for special relativistic corrections δEn,l to the energy levels En,l of the
hydrogen atom [53]:
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Fig. 2 Feynman diagram of a
virtual photon mediating the
electromagnetic force

δEn,l = α2En,l

(
1

n
(
l + 1

2

) − 3

4n2

)
. (1)

Numerically, this constant is expressible in terms of the electric charge e, speed of
light c, Planck’s constant �, and permittivity of free space ε0, as:

α = e2

(4πε0)�c
≈ 1/137.036, (2)

and deep reasoned explanation of its value has long been a subject of interest and con-
troversy amongst physicists. For example, while many modern day physicists accept
an anthropic explanation of α’s experimentally measured value, which suggests its
value could be different in other spacetime regions unamenable to human existence,
one of the progenitors of quantum physics, Max Born, had this to say about its value
[30,42,46]:

If α were bigger than it really is, we should not be able to distinguish matter from
ether, and our task to disentangle the natural laws would be hopelessly difficult.
The fact however that alpha has just its value 1/137 is certainly no chance, but
itself a law of Nature.

Computationally, input of the fine structure constant in the relativistic Schrodinger
equation, also known as the Dirac equation, allows relativistic corrections to the
Bohr emission spectrum of atomic hydrogen to be calculated [40]. Interestingly, upon
separation of radial and angular polar coordinates, this equation is a confluent hyperge-
ometric differential equation, a fact that links the mathematical formalism of quantum
physics to number theory, because confluent hypergeometric functions appear in the
theory of automorphic forms [8]. Of course, in absence of providing any further phys-
ical insight, this link is dismissible as a mathematical coincidence with no relevance
to physics, so our objective in this paper is to review how different number theoretic
concepts have been found relevant to the study of physics, with the underlying motive
being clarification of whether or not number theory has an essential role to play in
physical modeling that could account for the value of fundamental physical constants
such as α.

To this end, Chapter 2 begins by discussing the statistical relationship between the
experimentally measured quantummechanical spectra of atomic nuclei and the zeroes
of Langlands L-functions discovered in the 1950’s. Chapter 3 follows by explaining
how the mathematical formalism of classical mechanics relates to the definition of
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Hasse–Weil L-functions. Chapter 4 discusses how another class of number theoretic
functions, called modular forms, arise in the study of thermodynamics as statistical
mechanical partition functions. Chapters 5 and 6 introduce the subjects of twistor
theory and conformal field theory as a means of relating the discussion in the previous
chapters to the study of gravity. Chapter 7 concludes with some remarks regarding
the relevance of number theory to better understanding the fine tuning of fundamental
physical constants, and the relevance of number theory to applied physics.

2 Nuclear Physics and RandomMatrices

Just as the discrete absorption and emission of electromagnetic radiation by atoms
and molecules reveals their quantum mechanical quality, the discrete absorption of
neutrons reveals the quantummechanical quality of atomic nuclei. To appreciate what
is meant by this statement, Fig. 3 shows the experimentally measured gamma ray
emission from 68Zn nuclei bombarded with neutrons, plotted against incident neutron
energy. Theoretically, the emission peaks in this plot indicate the capture of incident
neutrons by 68Zn nuclei, which produces excited 69Zn nuclear states that relax via
emission of electromagnetic radiation [37]. Accordingly, it is reasonable to associate
a different excited state of the 69Zn nucleus with each emission peak, and take Fig. 3
as evidence there are numerous closely spaced energy levels of the 69Zn nucleus.

In general, large numbers of closely spaced gamma ray emission peaks are
experimentally observed when heavy nuclei are bombarded with neutrons, and the
irregularity of their spacing makes identification of their energy levels with a small
set of quantum numbers impossible [11]. Nevertheless, in 1956, after having stud-
ied the statistical distribution of these energy levels, Wigner proposed a probability
distribution for the spacing of adjacent energy levels of heavy nuclei in terms of the dis-
tribution of eigenvalues of random real symmetric 2×2matrices [14]. This probability
distribution is:

Fig. 3 Experimentally measured gamma ray emission from 68Zn nuclei bombarded with accelerated neu-
trons, plotted against incident neutron energy [37]
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Fig. 4 Histogram of Uranium
238 nuclear energy level
spacings plotted against the
Wigner distribution [14]

p(x)dx = π

2
x exp(−πx2/4)dx (3)

where x is the energy level spacing normalized by the average spacing, and attention
is restricted to real symmetric matrices because nuclear interactions exhibiting time
reversal invariance are described by unitary quantum operators that equate with their
complex conjugates [54]. A histogramof normalized energy level spacings ofUranium
238 nuclei plotted against the Wigner distribution is shown in Fig. 4.

Because heavy nuclei have more than 2 excited states, Wigner also studied the
eigenvalue statistics of random real symmetric M × M matrices, whose distribution
of adjacent eigenvalue spacings turns out to be very similar to distribution (3), and
relevant to the statistical distribution of Langlands L-function zeroes along the critical
line Re s = 1

2 [18,35]. In fact, number theorists have conjectured statistical metrics
describing the distribution of L-function zeroes are equivalent to statistical metrics
describing the eigenvalues of random M × M matrices of various symmetry classes
(e.g. real symmetric). Henceforth, we’ll restrict our attention to the case where the
randommatrices are Hermitian, with complex entries selected at random according to
the Gaussian unitary ensemble (GUE) [44]. In this case, as M → ∞, the normalized
spacing x between adjacent random matrix eigenvalues occurs with probability:

p(x)dx = 32

π2 x
2 exp(−πx2/4)dx, (4)

and conjecturally, this distribution coincides with the distribution of normalized spac-
ings between non-trivial zeroes of primitive Langlands L-functions L(π, s) along the
critical line Re s = 1

2 as Im s → ∞ [4,48]. According to this conjecture, the precise
definition of the primitive Langlands L-function determines the manner in which the
GUE distribution limit is approached as Im s → ∞, but not the distribution itself
[28]. Figure 5 shows a graph of the normalized eigenvalue spacing distribution of
GUE random matrices plotted against the normalized spacing of the ten thousand
non-trivial zeroes of the Riemann zeta function (the prototypical example of a Lang-
lands L-function) above the 1012th non-trivial zero up the critical line [43].

Notably, beyond its relevance to nuclear physics and number theory, randommatrix
theory also describes the normalized energy level spacings of quantum systems defined
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Fig. 5 Probability distribution of
the normalized spacing between
eigenvalues of random M × M
Hermitian matrices in the limit
M → ∞, plotted against the
distribution of normalized
spacings between ten thousand
non-trivial zeroes of the
Riemann zeta function [43]

by “quantizing” classical physical systems with chaotic dynamics [12]. These quan-
tum systems are defined by interpreting classical Hamiltonian functions as quantum
operators with discrete spectra, and their normalized energy level spacing statistics
agree with the predictions of random matrix theory in the limit � → 0 [6]. In the next
chapter, we’ll explain how the mathematical formalism of classical physics relates to
the definition of a second class of L-functions, called Hasse–Weil L-functions.

3 Classical Dynamics and L-Functions

In classical physics, the real time dynamics of a closed system of finitelymanymassive
point particles in 3 dimensions are specified by a single Hamiltonian function from a
classical phase space Jx,p to the real numbers:

H : Jx,p → R, (5)

whose associated vector field determines a 1 dimensional classical system trajectory
inJx,p exhibiting periodic and/or chaotic behavior [20]. Observing that the conserved
value 〈H〉 of the Hamiltonian function H along a trajectory in Jx,p, identifying the
system’s total kinetic and potential energy, specifies a characteristic frequency 〈H〉/�

at which to track the system trajectory in real time, we can define a map:

F∗
〈H〉/�

: Jx,p → Jx,p, (6)

from Jx,p to itself, induced by integrating the flow of the Hamiltonian vector field
over a time period 2π�/〈H〉.

A special case of physical interest occurs when Jx,p is the Jacobian of a Riemann
surfaceΣ , andF∗

〈H〉/�
is the pullback of amap from the Riemann surface to itself [19]:
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Ω
Fig. 6 Mnemonic of L-function reciprocity [7]

F〈H〉/� : Σ → Σ. (7)

In this case, the dynamic L-function:

LDyn(F〈H〉/�) = exp
∞∑
j=1

e− js

j
|FixF j

〈H〉/�
|, (8)

is defined by the values of the coefficients |FixF j
〈H〉/�

|, which count the number of

fixed points of the iterated map F j
〈H〉/�

in Σ [49]. In general, unlike number theoretic
Langlands L-functions, conjectured to satisfy the generalized Riemann hypothesis, the
zeroes of this dynamic L-function in the complex s-plane do not lie on the critical line
Re s = 1

2 [51]. However, in the eventΣ is an algebraicmanifold, it can, by virtue of the
existence of number theoretic maps called Frobenius morphisms, be associated with
infinitely many dynamic L-functions proven to independently satisfy the Riemann
hypothesis [41].

Beyond Riemann surfaces, Frobenius morphisms and dynamic L-functions can
be associated with any algebraic manifold S�

1 , and the product of these dynamic
L-functions is called a Hasse–Weil L-function LS�

1
(s). Interestingly, it has been con-

jectured that every Hasse–Weil L-function is identical to a “reciprocal” Langlands
L-function L(π, s), and this conjecture has been proven in the event the algebraic
manifold S�

1 is a Shimura variety [2,52]. To highlight the importance of this mathe-
matical fact, Fig. 6 depicts a mnemonic of L-function reciprocity LS�

1
(s) = L(π, s)

in which the letter “R” stands for “Reciprocal”. The symbols π and ρ denote the auto-
morphic and Galois representations associated with formal definition of the Langlands
and Hasse–Weil L-functions, and the symbols Ω and τ denote the period matrix of
the Riemann surface Σ and the functional parameter of modular forms introduced in
the next chapter [7].
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4 Partition Functions andModular Forms

In this chapter, we’ll consider how classical physical systems are modeled when they
are open to interact with their environment. In this circumstance, the set of material
particles constituting the classical system must be distinguished from those in its
environment, at which point the effect of environmental dynamics on the system
is modeled statistically. For example, when a classical gas of N identical particles
trapped in a3dimensional chamber arrives at thermal equilibriumwith its environment,
Boltzmann statistics model the likelihood of the system occupying a particular region
of classical phase space, without reference to any environmental variables other than
temperature T . In mathematical terms, this means the classical partition function:

ZC (T ) = 1

N ! · h3N
∫
Jx,p

e−H/T · dxdp, (9)

assigns a probability to the system occupying a hypervolume element of Jx,p that is
weighted by a negative exponential Boltzmann factor e−H/T , to account for variations
in the entropy of the environment as a function of its total energy. Based on this
assignment, the system is most likely to have a total energy H = 〈H〉 where its free
energy:

− T log ZC (T ), (10)

is minimized [34].
Mathematically, as a function of inverse temperature T−1, the right hand side of Eq.

(9) is a decomposition of ZC (T ) into a sum of exponential transients with different
decay rates, whose amplitudes can be resolved by taking a Laplace transform (in T−1):

Laplace[ZC ](s) =
∫ ∞

0
ZC (T ) · e−s/T · d(1/T ). (11)

For example, if we approximate the integral in Eq. (9) as a sum of finitely many
transients, its Laplace transform has a simple pole along the real axis in the complex
s-plane for each transient, and its residue at each pole specifies the transient amplitude.
Therefore, we might suspect there is a natural number theoretic class of classical
partition functions whose Laplace transforms are simply related to L-functions, and
as it happens, if we’re willing to replace the linear Laplace transform in Eq. (11) with
its multiplicative cousin called a Mellin transform (in T−1):

Mellin[Θ](s) =
∫ ∞

0
Θ(T ) ·

(
1

T

)s−1

· d(1/T ) (12)

=
∫ ∞

0
Θ(T ) · e(1−s) log T · d(1/T ). (13)

there is a class of functions familiar to number theorists, calledmodular forms, whose
Mellin transforms can be L-functions [31].
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Fig. 7 Illustration of a 2 dimensional fermionic wave function ψΣ defined as a vector bundle over each
point of a genus 3 Riemann surface

Importantly,modular forms are known to arise in physics as quantumpartition func-
tions ZQ(T ) of open quantum systems at thermal equilibrium with their environment,
and exhibitmodular invariance in a parameter τ = iT−1, where T is temperature [25].
That is, rather than being defined as integrals over classical position and momentum
coordinates as in equation (9), quantum partition functions ZQ(T ) are defined as sums
of Boltzmann factors over the energy eigenstates of quantum Hamiltonian operators.
From a 3 dimensional reductionist point of view, this quantum definition is fundamen-
tal, because Hamiltonian operator dynamics of atoms should account for Hamiltonian
vector field dynamics of larger material objects constructed out of these atoms, and
classical partition function (9) is an approximation to a statistical mechanical partition
function of a quantum system defined in 3 spatial dimensions. That said, this reduc-
tionist view is hypothetical, and the requisite correspondence between quantum and
classical descriptions of Nature whereby approximations of this sort are valid remains
a subject of considerable physical interest. For example, it has been suggested that
quantum-classical correspondence can be understood in terms of coherent quantum
states whose real time quantum dynamics most closely resemble the real time classical
dynamics of points in classical phase space [60].

Leaving aside the question of whether or not this 3 dimensional reductionist view
is fundamentally correct, we’ll point out here that a general class of modular forms
arise as partition functions of quantum systems in 2 spatial dimensions. For example,
the ratio of theta constant and eta modular forms:

θa,b(τ )

η(τ )
(14)

is the quantumpartition function of a fermionic systemdefined over a genus 1Riemann
surface, and similarmodular invariant partition functions are associatedwith fermionic
systems defined over higher genus Riemann surfaces [1]. As a visual aid, Fig. 7 shows
a representation of a 2 dimensional fermionic wave function, labeled ψΣ , defined as
a vector bundle over each point of a genus 3 Riemann surface.

In passing, we note that while quantum partition function (14) is a modular form
of weight 0, it is the weight 1/2 theta constant modular form whose Mellin transform
is simply related to an L-function. That is:
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∫ ∞

0
θ0,0(τ ) · τ s−1dτ −

∫ 1

0
τ s−1 1√

τ
dτ −

∫ ∞

1
τ s−1dτ = π−sΓ (s)ζ(2s), (15)

where ζ(s) is the Riemann zeta function, and the second and third integrals on the left
hand side of the equation subtract divergences of the Mellin transform at small and
large values of τ .

5 Gauge Fields and Twistors

To begin explaining how our discussion in the previous chapters is related to the study
of gravity, we’ll now turn to the subject of gauge fields, and their description in twistor
theory. Historically, the first gauge field of interest to physicists was the electromag-
netic field in 3+1 dimensional spacetime, whose real time classical dynamics are
described by Maxwell’s equations. In this context, the term gauge refers to the math-
ematical invariance of the electric and magnetic fields when the electric and magnetic
potential functions, whose space and time derivatives define the fields, are adjusted
in a particular way at every point of spacetime. Such an adjustment is called a gauge
transformation, and beyond the electromagnetic field, Yang-Mills fields, including
the weak and strong nuclear fields, are invariant under gauge transformations of their
respective potential functions [24].

In quantum physics, gauge transformations of Yang-Mills fields occur in conjunc-
tion with rotations of material particle wave functions at each point of spacetime [59].
For example, in the case of the strong nuclear field, a quark wave function with 3
components:

ψquark =
⎛
⎝ψ1

ψ2
ψ3

⎞
⎠ , (16)

representing three possible “colors” red, green, and blue of the quark, is rotated by
3×3 matrix multiplication at each point of spacetime when the strong field undergoes
a gauge transformation. Technically, this is because the Dirac equation, describing
the quark wave function in the presence of the strong field, expresses the interaction
between the quark and the strong field in terms of the strong field potential, not the
field itself [13].

In twistor theory, gauge fields have a mathematical description in twistor space that
serves as an alternative to their description in spacetime. However, before stating
what this description is, we should first clarify that twistor theory is a non-local
approach to physical modeling, in which physical systems, rather than being described
as configurations of particles and fields satisfying equations of motion referencing
coordinates of points in 3 dimensional Euclidean space, are described in terms of
equations of motion referencing the coordinates of points in a space of light rays
[45]. In other words, rather than identifying spacetime as the fundamental arena in
which to model physical processes, the space of light rays in spacetime is identified
as fundamental, with the understanding that light ray intersections identify spacetime
points. In this approach to physical modeling, for sake of intuition, the term “twistor”
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Fig. 8 Simplified conception of twistor theory in which light ray intersections locate material particles at
points of Minkowski spacetime

can be thought of as a being synonymous with “light ray”. Figure 8 illustrates a set of
light ray intersections in Minkowski spacetime.

In mathematical terms, the space of light rays in 3+1 dimensional spacetime is
R
3 × S

2, because a light ray at time t = 0 can be incident with any point in 3
dimensional space and point in any direction, and differs from twistor space, which
is defined as a complex manifold CP3 with 6 real dimensions. According to this
definition, each twistor is incident with a set of points in “complexified” Minkowski
spacetime, and each point in spacetime is incident with a set of twistors constituting
a Riemann sphere CP1 in twistor space. While providing physical motivation for
the definition of twistor space in terms of complex numbers is not our concern here,
the definition itself is of immediate importance because it implies twistor space has
a natural dual space, in which the coordinates of points are expressed as complex
conjugates of the coordinates of points in twistor space. For our purposes, this is
important, because it turns outYang-Mills fields can be conveniently described in terms
of vector bundles fibered over twistor space or its dual, but not both. That is to say, in
more technical terms, the Yang-Mills field equations in complexified spacetime C

4,
with gauge group GL(m, C), are mathematically equivalent to a patching condition
on rank m holomorphic vector bundles fibered over twistor space [10].

Happily, we can explain how the twistor theoretic description of gauge fields relates
to both modular forms and L-functions without detailing the proof of the previous
statement. To do this, let’s focus our attention on the set of twistors incident with
a point E in real Minkowski spacetime, which is a Riemann sphere CP1 in twistor
space, and consider a rank m vector bundle ψ fibered over this sphere. Intuitively,
we can think of this vector bundle as defining a wave function over a 2 dimensional
subspace of twistor space, in analogy to the way rank 3 quark wave functions are
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Fig. 9 A point E in spacetime corresponds to Riemann spheres in both twistor space and its dual. These
spheres are branch covered by a single Riemann surfaceΣ on which 2 dimensional fermion wave functions
are defined

defined as vector bundles over 3+1 dimensional spacetime. Based on the presence of
matter-antimatter particle interactions in the StandardModel of quantum physics, let’s
also consider a rank m vector bundle ψ fibered over a second copy of the Riemann
sphere, which in the language of twistor theory, would be the space of dual twistors
incident with E . Figure 9 illustrates a point E in spacetime, and two Riemann spheres
in twistor space and its dual, representing the sets of twistors and dual twistors incident
with E .

Also illustrated in Fig. 9 is a Riemann surface Σ fibered by two vector bundles ψΣ

and ψΣ , and two branched covering maps from Σ to the aforementioned Riemann
spheres over which ψ and ψ are defined. With respect to the theory of integrable
systems,we can identifyΣ as a spectral curve, and the stereographic projection of each
Riemann sphere as a complex spectral parameter space. In this context, Σ is defined
by an algebraic equation relating complex eigenvalues λ and μ of two commuting
ordinary differential operators [26]. The eigenfunctions of these differential operators,
called Baker-Akhiezer wave functions, should not be confused with the fermionic
wave functions constituting the vector bundles ψ and ψ , which for our purposes can
be regarded as eigenfunctions of the Dirac operator defined over Σ [33].

As noted in Chapter 3, if Σ is defined by an algebraic equation with coefficients
in an algebraic number field, its reduction at each prime location is defined by an
algebraic equation with coefficients in a finite field Fq=p f , and its associated dynamic

L-function has 2g zeroes along the critical line Re s = 1
2 , where g is the genus of

Σ . Importantly, the spacing statistics of the zeroes of associated with a typical curve
Σ defined over Fq=p f approach GUE eigenvalue spacing statistics as q → ∞, and
can therefore be identified with the non-trivial zero spacing statistics of a Langlands
L-function L(π, s), as suggested by Fig. 6 [27]. In the next chapter, we’ll review
how conformal field theory provides a description of these statistics, and how this
description relates to gravitational physics.

6 Gauge/Gravity Correspondence and Conformal Fields

By way of introducing the subject of conformal field theory, let’s recall the Yang–Lee
theorem as it applies to the ferromagnetic Ising model [9,38]. This theorem states that
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for a general class of ferromagnetic Ising models, the values of an external magnetic
field where the statistical mechanical partition function assigned to the model is zero
are pure imaginary complex numbers, and therefore lie along the critical line Re s = 0
in a manner resmbling the way in which the zeroes of number theoretic L-functions
are hypothesized to lie along the critical line Re s = 1

2 . Specifically, if we define the
Ising energy of an array of g spins as:

H = −B
g∑
j=1

σ j − C
∑

< j1, j2>

σ j1σ j2 , (17)

where C ∈ R specifies the strength of interaction between neighboring spins, and
B ∈ R specifies the strength of interaction between the spins and an external magnetic
field, then for fixed values of C and temperature T , the Yang–Lee theorem states that
the quantum partition function:

ZQ(T ) =
∑
[σ j ]

e−H/T , (18)

has all its zeroes in the complex plane at pure imaginary values of the ratio B/T .
Mathematically, the Yang–Lee theorem holds true independently of the dimension

of the space in which the Ising model is defined, and remains true in the thermody-
namic limit g → ∞. Therefore, if we regard the lattice site spin polarizations as one
dimensional degrees of freedom analogous to position coordinates, which alongside
their conjugate momenta define 2g real coordinates of a Jacobian J associated with
a genus g Riemann surface Σ , we can regard this thermodynamic limit as occurring
in conjunction with the number theoretic limit q → ∞ referenced in the previous
chapter. For our purposes, this is important, because it allows us to regard L-function
zeroes as limit sets of Yang–Lee zero flows in the complex fugacity plane:

z = eB/T , (19)

whose statistics are describable in terms of conformal field theory [36].
To understand what is meant by the previous statement, let’s first think of the local

density of Yang–Lee zeroes in the complex z-plane as specifying a 2 dimensional static
electric charge distribution and an associated 2 dimensional electrostatic potential
φ(z) [5]. By definition, such a potential is an analytic function of the complex variable
z = x + iy away from the Yang–Lee zero locations, where it is a harmonic function:

∂2φ

∂x2
+ ∂2φ

∂ y2
= 0, (20)

whose gradient defines an electrostatic field. Because analytic (i.e. conformal) maps
of the complex z-plane leave the harmonicity of φ unchanged, this electrostatic field
is sometimes called a conformal field [50]. Notable examples of conformal maps
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include Mobius transformations, whose action on the complex z-plane is mathemat-
ically equivalent to the action of the restricted Lorentz group fixing a point E in
spacetime [22].

Presently, the study of 2 dimensional conformal fields is of interest to physicists as a
consequence of a theoretical relationship discovered between the quantum physics of
gauge fields and gravitational physics called the gauge/gravity correspondence [23].
According to this correspondence, statistical mechanical metrics of 2 dimensional
conformal fields (e.g. 2 point functions) have an alternative interpretation as descriptors
of gravitational physics in spacetime [21]. Therefore, to end this review, we will
introduce the mathematical formalism of conformal field theory as it relates to the
gauge/gravity correspondence.

For intuition’s sake, let’s first observe that the mathematical description of a 2
dimensional electrostatic field is equivalent to the description of the 2 dimensional
velocity field of a fluid in 2 dimensional space, whereby the potential function φ(z)
is referred to as a stream function [16]. In the event the fluid is inviscid, its flow
conserves kinetic energy, and can be defined in terms of a stream function φ(x, y) and
a Hamiltonian density functional:

H(φ) =
∫

(∇φ · ∇φ + V (∇φ))dxdy (21)

in much the same way as the classical dynamics of material particles are defined
in terms of Hamiltonian functions. Necessarily, this Hamiltonian definition of fluid
flow is equivalent to a definition given in terms of the Navier–Stokes equation, and
statistical mechanical metrics of the flow can be calculated by directly solving the
Navier–Stokes equation and time averaging properties of the solution [32].

In the context of the gauge/gravity correspondence, the description of conformal
fields can also be given in terms of a Hamiltonian density functional, but instead of
focusing on conformal fields ∇φ = (φx , φy) with two components, the mathematical
entities of interest are conformal fields (φ1, φ2, ..., φd) with d components, where d
is the real dimension of a symmetric space such as a Shimura variety [17]. A clear and
compelling physical interpretation of what these fields represent remains wanting, but
it has been put forth that the statistics of these fields (e.g. correlation functions) describe
the gravitational motion of mass across 2 dimensional “screens” (i.e. surfaces) embed-
ded in the 3 spatial dimensions of Minkowski spacetime [15,56]. In passing, we note
that the correlation functions of these fields, invariant under conformal transformations
of the screen, are hypergeometric functions [15,55].

7 Conclusion

In this paper, the scientific relationship between modern physics and number theory
has been reviewed as a means of better understanding whether or not number the-
ory has an essential role to play in physical modeling, and motivating more general
interest in number theoretic concepts among physicists. Specifically, the experimental
and theoretical relevance of L-functions to nuclear physics and thermodynamics is
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addressed in Chapters 2 and 3, the theoretical relevance of modular forms to quantum
physics is addressed in Chapter 4, and the relationship between these number theoretic
concepts and the gauge/gravity correspondence is addressed in Chapters 5 and 6.

Philosophically, the presentation of ideas in this paper is important, because a deeper
understanding of the laws of physics in number theoretic terms could help provide
a better understanding of why fundamental physical constants adopt their experi-
mentally measured values, and thereby inform the debate surrounding the anthropic
principle. From a distance, this is not unreasonable, because the history of scientific
publication bridging the disciplines of theoretical physics and number theory is long
and storied, and modern day physicists have proposed grand unified theories of Stan-
dard Model quantum physics and gravity in which number theoretic groups such as
PSL(2, 7) play a fundamental role [29]. Upon close review, the possibility of a fruit-
ful union between modern physics and number theory shedding light on this issue is
even more compelling, because the hypothetical alignment of L-function zeroes along
the critical line Re s = 1

2 appears central to the definition of conformal scalar field
theories describing physics in spacetime, and may therefore place sharp constraints
on fundamental constants describing physical processes therein.

Truth be told, the examples of number theory’s relevance to modern physics
reviewed in this paper may well be far removed from any technological application of
physical law that could improve the material quality of life of human beings. However,
if the history of science and engineering is our guide, the gain of scientific knowledge,
through theory and experiment, necessarily precedes unforeseen technological appli-
cation of this knowledge, and it may serve some greater purpose to hazard a guess as
to what economic value a number theoretic understanding of physical law might have.
To this end, at the risk of guessing incorrectly, we’ll suggest L-functions and modular
forms have an essential role to play in modeling self organized critical systems, which
in broad scientific terms, are dynamical systems with critical point attractors [3].

Interestingly, while many examples of self organized critical systems in Nature,
running the gamut from solar flares to earthquakes, have been studied on a case by case
basis, a comprehensive theorydescribing self organized critical systems in general does
not exist. This absence leaves way for a number theoretic description of self organized
critical point attractors that could provide human civilization with better capability of
predicting natural phenomena such as atmospheric turbulence and earthquakes, and
thereby mitigate the negative consequences of natural disasters.
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