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Abstract
In this paper, we show that the Kirchhoff equations are derived from the Schrödinger
equation by assuming the wave function to be a polynomial like solution. These Kirch-
hoff equations describe the evolution of n point vortices in hydrodynamics. In two
dimensions, Kirchhoff equations are used to demonstrate the solution to single parti-
cle Laughlin wave function as complex Hermite polynomials. We also show that the
equation for optical vortices, a two dimentional system, is derived from Kirchhoff
equation by using paraxial wave approximation. These Kirchhoff equations satisfy
a Poisson bracket relationship in phase space which is identical to the Heisenberg
uncertainty relationship. Therefore, we conclude that being classical equations, the
Kirchhoff equations, describe both a particle and a wave nature of single particle
quantum mechanics in two dimensions.

Keywords Schrödinger equation · Kirchhoff equations · n Point vortices · Paraxial
wave equation

1 Introduction

Nine different formulations of non-relativistic quantum mechanics exist [1]. They
are, wavefunction formalism, matrix mechanics, path integral formalism, phase space
formalism, densitymatrix formalism, second quantization, variational formalism, pilot
wave theory, and Quantum Hamilton–Jacobi (QHJ) formulations. Of these, the wave
function formalism and the matrix mechanics are popular and few other formalisms
attempt to map the quantum mechanics to classical mechanics. The well known one’s
are the phase space formalism [2] andpilotwave theory. In the phase space formulation,
where Wigner quasi-probability distribution [2] is defined such that it links the wave
function that appears in Schrödinger equation to a probability distribution in phase
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space, but this formalism has a draw back of negative probabilities. This mapping of
quantum mechanics to classical mechanics is of central importance to the philosophy
of physics, and also the interpretation of quantum mechanics.

One of the first attempts to find a classical relationship is given by ErwinMadelung
known as Madelung quantum hydrodynamics [3] and the Madelung equations

∂tρm + ∇ · (ρmu) = 0, (1)

and

du
dt

= ∂tu + u · ∇u = − 1

m
∇ (Q + V ) (2)

whereu is the flowvelocity,ρm = mρ = m|ψ |2 is themass density, Q = − �
2

2m

∇2√ρ√
ρ

= − �
2

2m

∇2√ρm√
ρm

is the Bohm quantum potential, and V is the potential from the

Schrödinger equation. The Kirchhoff equations are given by

dz̄i
dt

=
n∑

1≤i≤n,i �= j

i�i

zi − z j
+ iW (zi ) (3)

which describe the evolution of n point vortices in incomprehensible fluid [4], where
zi = xi + iyi are position of vortices, �i the circulation strength,W (zi ) is background
flow and z̄i = xi − iyi . are derived from Euler Eq. (1) and (2), for the complex velocity
[5]. Readers should note that in deriving Kirchhoff equations quantum potential Q is
not considered.

This Madelung quantum hydrodynamics formalism was later modified by Bohm,
known as the pilot wave formulation [6,7]. de Broglie first proposed the pilot
wave theory of double solution [8], to explain wave particle duality. In this the-
ory, the Schrödinger equation has two solutions, one the regular wave function
ψ(x, y, z) = aeiφ(x,y,z) where a is a constant, and the other physical wave solution
u(x, y, z) = f (x, y, z)eiφ(x,y,z). The two solutions are related by the phaseφ(x, y, z).
The singularities in u(x, y, z) are due to presence of singularities in f (x, y, z) give
rise to particle-like nature. These are moving singularities. The drawback of the the-
ory is that it explains only single particle case. This theory was further developed by
Bohm [6,7] for a system of many particles. In this theory, the wave particle duality
vanishes, quantum system behaves like a particle and a wave, simultaneously, in the
same experimental setup. Then the particles are directed by the pilot wave which will
guide them to areas of interference.

In this paper, the Kirchhoff equations are derived from the Schrödinger equation
by assuming the wave function to be a polynomial like solution. These Kirchhoff
equations describe the evolution of n point vortices in hydrodynamics. TheseKirchhoff
equations are classical equations ofmotion. Therefore, classicalmechanics structure of
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the Kirchhoff equations admits both particle nature and wave nature of single particle
quantum mechanics in two dimensions.

In literature, the fractional quantum Hall effect ground state evolution is described
by Laughlin wave function [9], which is an ansatz, modeled in terms of Kirchhoff
equations [10–13]. TheseKirchhoff equation (3) are in phase space and admit a Poisson
bracket relationship [4] in terms of the complex coordinates given by

{zi , z̄ j } = − 2iδi j�i . (4)

For more details, refer to [4]. The identification of z̄ = ∂zi = Pz with canonical
momenta [10] allows one to replace Poisson bracket with commutator

[zi , ∂zi ] = i�, (5)

where �i = � is the Heisenberg uncertainty relation.
As an illustration we show that the logarithmic derivative of the Laughlin wave

function looks like the right-hand-side of the Kirchhoff equation and their one particle
solutions are complexHermite polynomials. Then,we address thewaveparticle duality
through Kirchhoff equation in terms of interference or as a relative phase. We show
that the equation for optical vortices is derived fromKirchhoff equation using paraxial
wave equation in presence of real constant background.

2 Schrödinger Equation and Kirchhoff Equations

In this section, the Kirchhoff equations are derived from the Schrödinger equation
by assuming the wave function to be a polynomial like solution [5]. These equations
describe the evolution of n point vortices in Hydrodynamics.
Consider the time dependent Schrödinger equation with potential V (x) = 0

i
∂

∂t
ψ(x, t) = �

∂2

∂x2
ψ(x, t), (6)

where � = −�

2m . By introducing a polynomial

ψ(x, t) = (x − x1(t))(x − x2(t)) · · · (x − xn(t))

=
n∏

k=1

(x − xk(t)), (7)

for n = 2 substituting Eq. (7) in Eq. (6)

− i ẋ1(x − x2(t)) − i ẋ2(x − x1(t)) = 2� (8)
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The equations at x = x1 and x = x2

ẋ1 = 2�i

(x1 − x2)
, ẋ2 = 2�i

(x2 − x1)
. (9)

By following a similar procedure for n = 3, the equations at points x = x1, x = x2
and x = x3 are given by

ẋ1 = 2�i

[
1

(x1 − x2)
+ 1

(x1 − x3)

]

ẋ2 = 2�i

[
1

(x2 − x1)
+ 1

(x2 − x3)

]

ẋ3 = 2�i

[
1

(x3 − x1)
+ 1

(x3 − x2)

]

The same procedure for n zeros gives

ẋi = 2�i
n∑

i �= j

1

(xi − x j )
. (10)

Equation (10) are known as Kirchhoff equations which describe the evolution of n
point vortices in Hydrodynamics. Therefore, Schrödinger equation can be written as a
system of n linear equations (10). Kirchhoff equations (10) with the background flow
W(x) are given by

ẋi = 2�i
n∑

i �= j

1

(xi − x j )
+ iW(xi ). (11)

Solution to the stationary Kirchhoff equations (11), that is ẋi = 0, is found by Stieltjes
electrostatic model [14,15]. In this model, there are n unit moving charges between
two fixed charges p and q at − 1 and 1 respectively, on a real line and it is shown
by Stieltjes that the system attains equilibrium at the zeros of Jacobi polynomials.
Further, it is proved by the author that, Stieltjes electrostatic model is analogous to
the quantum momentum function of quantum Hamilton Jacobi [16]. Here the moving
unit charges are replaced by moving poles. They are similar to imaginary charges with
i� placed between two fixed poles like fixed charges. In the process, the background
flow W(x) is identified with the superpotential.

In supersymmetry, the superpotential W(x) is defined in terms of intertwining
operators Â and Â† as

Â = d

dx
+ W(x), Â† = − d

dx
+ W(x). (12)
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from this a pair of factorized Hamiltonians H± is defined as

H+ = Â† Â = − d2

dx2
+ V+(x) − E, (13)

H− = Â Â† = − d2

dx2
+ V−(x) − E, (14)

where E is the factorization energy. The partner potentials V±(x) are related toW(x)
by

V±(x) = W2(x) ∓ W ′(x) + E, (15)

where prime denotes differentiation with respect to x .
As an illustration, we solve the Harmonic oscillator in natural units using the Kirch-

hoff equations

n∑

1≤ j≤n, j �=k

1

xk − x j
− x j = 0, (16)

where W(x) = x j is the superpotential of Harmonic oscillator.
By introducing a polynomial

f (x) = (x − x1)(x − x2) · · · (x − xn), (17)

and taking the limit x → x j and using l’Hospital rule we obtain

∑

1≤ j≤n, j �=k

1

x j − xk
= lim

x→x j

[
f ′(x)
f (x)

− 1

x − x j

]

= lim
x→x j

(x − x j ) f ′(x) − f (x)

(x − x j ) f (x)

= f ′′(x j )
2 f ′(x j )

. (18)

By substituting Eq. (18) in Eq. (16), we obtain

f ′′(x j ) + 2x j f
′(x j ) = 0. (19)

Hence Eq. (19) is a polynomial of order n, and is proportional to f(x) which gives
Hermite differential equation

f ′′(x) + 2x f ′(x) + n f (x) = 0. (20)

Here it should be noted that when we solve the problem for general potential say
Q(x j ) through Stieltjes electrostatic model we end up with the following polynomial
solutions
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f ′′(x j ) + Q(x j ) f
′(x j ) = 0. (21)

Thus, the differential Eq. (21) will have a classical orthogonal polynomial solution
only when Q(x j ) = W(x j ).

As an illustration, consider the Coulomb potential whose superpotential is given
by

Wcoul(r j ) = 1

2
− (l + 1)

r j
. (22)

Then the Kirchhoff equations

n∑

1≤ j≤n, j �=k

1

rk − r j
−=

1

2
− (l + 1)

r j
= 0, . (23)

Using the identity (18) and substituting in Kirchhoff equation (23) gives

f ′′(r j )
2 f ′(r j )

− (
1

2
− (l + 1)

r j
) = 0. (24)

Equation (24) is polynomial of order n given by

r f ′′(r) + (2(l + 1) − r) f ′(r) = 0, (25)

proportional to f (r) gives the Laguerre differential equation

r f ′′(r) + (2(l + 1) − r) f ′(r) + n f (r) = 0. (26)

Similarly, for super potential

W(x j ) = p

x j − 1
+ q

x j + 1
., (27)

the Kirchhoff equations are given by

n∑

1≤ j≤n, j �=k

1

xk − x j
− p

x j − 1
− q

x j + 1
= 0. (28)

Using the identity (18) and substituting in Kirchhoff equation (28) gives

− f ′′(x j )
2 f ′(x j )

− p

x j − 1
− q

x j + 1
= 0. (29)

Equation (29) is polynomial of order n given by

(1 − x2) f ′′(x) + 2[q − p − (p + q)x] f ′(x) = 0. (30)
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is proportional to f (x) gives the Jacobi differential equation

(1 − x2) f ′′(x) + 2[q − p − (p + q)x] f ′(x) + n(n + p + q + 1) f ′(x) = 0.

(31)

Therefore, we can solve all the bound state problems in terms of Kirchhoff equations
by using the Stieltjes electrostatic model.

3 LaughlinWave Function

One of the well known examples of two dimensional systems is fractional quantum
Hall effect. Robert Laughlin proposed the following wave function as an ansatz for
the ground state wave function of fractional quantum Hall effect [9],

ψ =
∏

N≥ j>i≥1

(
z j − zi

)n exp
(

− 1

4l2B

∑

i

|z j |2
)

(32)

where, zi = xi + iyi , N is number of electrons, lB =
√

�

eB is magnetic length, � is
Planck constant, e is electric charge, B is magnetic field, ωB is cyclotron frequency
ωB = eB

m , zi and z j are the position of electrons for the ground state of a two-
dimensional electron gas with the lowest Landau level, where n is written in terms
of ν = 1/n and n is an odd positive integer filling numbers. As the Laughlin wave
function is a trial wave function, it is not an exact ground state of any potential,
in particular, not an exact ground state of Coulomb repulsion problem. But it has
been tested numerically, for the Coulomb and several repulsive potentials, that the
Laughlin wave function has more than 99% overlap with the true ground state [17].
The gap vanishes at the edges and the fractional charges are calculated using Berry’s
connection. In literature, several model Hamiltonians have been proposed which can
admit Laughlin wave function as a solution and first model of its kind was proposed
by Haldane [18]. The Berry connection for N quasi-holes are given by [17]

A(η j ) = − iν

2

∑

1≤k≤N , j �=k

1

ηk − η j
+ iν

η̄ j

4l2B
, (33)

here ηi are the positions of the quasi holes and the ν are the filling numbers defined
in Eq. (32). A similar equation for A(z̄ j ) exist which describes the adiabatic transport
of quasihole at zi when all other quasihole positions are fixed. Taking logarithm of
Laughlin wave function (32) and then differentiating with respect to z, equating the
derivative to zero gives Kirchhoff equations.

i
d

dz j
lnψ(z j ) =

∑

1≤i≤N ,i �= j

in

zi − z j
− i

1

4l2B
z̄ j = 0. (34)
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Equation (34) is Berry’s Connection (33) for the positions of quasi hole,s and the ν’s
are filling numbers defined in Eq. (32). Similarly, by taking the transpose of Eq. (34)
we obtain an equation for A(z̄ j )

∑

1≤i≤N ,i �= j

in

z̄i − z̄ j
− i

1

4l2B
z j = 0. (35)

which describes the adiabatic transport of quasihole at zi when all other quasihole
positions are fixed. Therefore, fromEq. (34), it is clear that the Laughlin wave function
(32) represents a Hamiltonian, and the Kirchhoff equations are obtained by taking
the minimum of logarithm of the Laughlin wave function (32). This represents time
independent Schrödinger equation with background flow W (z̄ j ) = 1

4l2B
z̄ j .

Equations (34) and (35) are Schrödinger equations, and it immediately follows
that the Hamiltonian is not hermitian as the superpotential is complex in nature. In
other words, Kirchhoff equations are function of holomorphic coordinates z = x + iy
with the corresponding momenta ∂zi = 1

2 (∂xi − i∂yi ) and antiholomorphic coordi-
nates z̄ = x − iy with the corresponding momenta ∂z̄i = 1

2 (∂xi + i∂yi ). One notices
that the Laughlin wave function (32) is a product of the van der Mondes determinant
∏

N≥i> j≥1

(
z j − zi

)
times the Gaussian weight function exp

(
−∑

j
1
4l2B

|z|2j
)
. The

van der Mondes determinant is a function of holomorphic coordinates, and the the
Gaussian weight function is a function of holomorphic and antiholomorphic coordi-
nates. In literature these kinds of function are studied in Segal-Bargmann space.

It is well known in literature that the Laughlin wave function is obtained using
Landau Hamiltonian with interaction, for details readers may refer to [17].
The Hamiltonian is given by

H = 1

2m
π · π = �ωB

(
a†a + 1

2

)
(36)

where, the momentum is defined in terms of minimal coupling π = P + eA and
A = − yB

2 x̂ − x B
2 ŷ. Then the lowering operator is defined as

a = 1√
2e�B

(πx − iπy) (37)

= 1√
2e�B

(
−i�

(
∂x + yB

2

)
+ i�

(
i∂x − i

x B

2

))
. (38)

Using the complex coordinates z = x + iy and the corresponding momenta ∂zi =
1
2 (∂xi − i∂yi ) is a holomorphic function and corresponding antiholomorphic coordi-
nates z̄ = x − iy and the momenta ∂z̄i = 1

2 (∂xi + i∂yi ). which allows us to define the
following raising and lowering operators

a† = −i
√
2

(
lB∂z − 1

4lB
z̄

)
, a = − i

√
2

(
lB∂z̄ + 1

4lB
�z

)
. (39)
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Then the lowest landau levels are defined as aψLLL = 0 where

ψLLL = f (z) exp

(
− 1

4l2B
|z|2

)
, (40)

where f (z) is holomorphic function. For particles N > 2 Laughlin proposed

ψLLL(z1 · · · zn) = f (z1 · · · zn)exp
(

−
n∑

i=1

1

4l2B
|z|2i

)
, (41)

and Laughlin proposed Ground state filling fraction ν = 1/m

ψ(z1 · · · zn) =
∏

i< j

(zi − z j )
mexp

(
−

n∑

i=1

1

4l2B
|z|2i

)
. (42)

Here it should be noted that these raising and lowering operators defined in Eq. (39)
are identical to the intertwining operators Â and Â† defined in Eq. (12).

Then the Hamiltonian reads as

Hψ(|z|) = a†aψ(|z|) = (−∂z + �z̄)(∂z̄ + �z)ψ(|z|), (43)

where � = 1
4l2B

, which gives

(∂2|z| + �z̄∂z̄ − �z∂z + �2|z|2)ψ(|z|) = 0. (44)

Equation (44) is the complexHermite polynomial differential Eq. [19] and its solutions
are given by

ψ(|z|) = 1√
2n n! · (�)1/2 · e−�2|z|2 · Hn (�|z|) , n = 0, 1, 2, . . . (45)

Therefore, for single particle Laughin wave function is solved using Kirchhoff equa-
tions and their solutions are found to be complex Hermite polynomials.

4 Wave Particle Duality

One of the major differences between classical mechanics and quantum mechanics
is Heisenberg uncertainty principle in terms of position and momentum given by Eq.
(5). It is widely accepted that Heisenberg uncertainty relationship is a restatement
of wave particle duality, which is the corner-stone of quantum mechanics. It states
that quantum particles are both particles and waves. There are several theories based
on wave particle duality, of which the most widely accepted one is the principle of
complementarity. The essence of this principle is that quantum systems exhibit both
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wave and particle nature. However, the outcome of an event is dependent purely on
an experiment. Either the wave or the particle nature is observed but both will not be
observed simultaneously in a given experiment. Here, we address the wave particle
duality through Kirchhoff equations.

Consider Kirchhoff equations (3) with identical say � are given by

dz̄i
dt

=
n∑

1≤i≤n,i �= j

i�

zi − z j
+ iW (zi ). (46)

where zi = xi + yi . By using the following identity [20] and substituting Eq. (18) in
Kirchhoff equations (46) one gets

f ′′(z j ) + W(zi ) f
′(z j ) = u(zi ) + iv(zi ) = 0, (47)

where u(zi ) and v(zi ) are real valued function. If a relative phase in the Kirchhoff
equations (47) is developed and v(zi ) is not a constant, it gives rise to wave particle
duality. As an illustration, we consider the case v(zi ) is constant, which gives rise to
optical vortices.

The optical vortices are defined as phase dislocation on the beam axis, the quantised
orbital angular momentum, of a Laguerre–Gaussian laser mode [21]. Optical vortex
beams are described in terms of Laguerre–Gaussian modes which are good approxi-
mation to the vortex modes created from Hermite–Gaussian laser modes [22,23]. It is
well known that the Laguerre–Gaussian vortex beam state arises as a solution ot the
paraxial approximation of the Helmholtz equation for light or Schrödinger equation
for electrons in free space. The vortex states are solutions to the Schrödinger equation,
Klein–Gordon equation and Dirac equations [24–27]. The connection between optical
vortices and Hydrodynamiccs is studied in Ref. [28].

In the Eq. (47), if v(zi ) = P is a constant. Then, the Eq. (47) is written as

∂2u

∂z2i
+ 2ik

∂u

∂zi
= 0, (48)

where k = P/� and the position of N vortices given by zα = xi + iyi . Under paraxial
wave approximation the Eq. (47) admit a wave equation which describes the optical
vortices. Expressing the Eq. (48) in terms of coordinates xi and yi gives

∂2u

∂x2i
+ ∂2u

∂ y2i
+ 2ik

∂u

∂zi
= 0. (49)

In optics the wave Eq. (49) is called paraxial wave equation and Gaussian beams of
any beam waist w0 satisfy this wave equation [29] . In paraxial wave approximation,
the term ∂2u

∂z2i
is neglected. Substituting, the term ∂2u

∂z2i
back into the Eq. (49) gives

∂2u

∂x2i
+ ∂2u

∂ y2i
+ ∂2u

∂z2i
+ 2ik

∂u

∂zi
= 0. (50)
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Equation (50) is derived from the Helmholtz equation:

∇2ψ(xi , yi , zi ) + k2ψ(xi , yi , zi ) = 0 (51)

with

ψ(xi , yi , z) = u(xi , yi , zi )e
ikzi . (52)

Therefore, two dimensional n point vortices evolution described by Kirchhoff
equations (46) with the identical circulation strength with the constant imaginary
background flow will admit a wave equation under paraxial wave approximation.

In optics, relative phase gives rise to interference. It is well known, that the parti-
cle nature of electrons passing through Young’s double slit experiment one observe
interference pattern on screen which is the wave nature of electrons. It should be
noted, that Kirchhoff equations (10) are one dimensional and Kirchhoff equations
for the vortices (3) are two dimensional. Therefore, we claim, if Kirchhoff equations
in differential form (47) admits a relative phase then it gives rise to wave particle
duality.

5 Discussion

The fractional Hall effect is a topological insulator. In case of insulators, as the gap
is large, it is characterized in terms of band gap. If the insulators are connected, say
from one insulator to another, without changing the band gap, such that the system
always remains in the ground state, they are called topologically equivalent insulators.
In other words, when some parameter of the Hamiltonian is slowly changed adia-
batically, the ground state of the system remains unchanged. Those insulators which
cannot be connected by the slowly changing Hamiltonian are called topologically
inequivalent insulators. Connecting topologically equivalent insulators gives rise to
a phase transition resulting in the vanishing of gap. In this gapless state, topological
invariants are quantized giving rise to current. For fractional Hall effect, the Berry con-
nection is given in terms of Eq. (33), and the parameter ν gives topological winding
numbers.

It is clear from the above how Kirchhoff equation (11) is derived from one dimen-
sional Schrödinger equation. Hence, Eqs. (11) and (33) both are Kirchhoff equations
for one and two dimensions respectively. Therefore, we conclude the Schrödinger
equation in terms of Kirchhoff equations is a Berry connection.

In the classical Hamilton Jacobi, equation ofmotion is governed by theHamiltonian
and the problem is solved by continuously transforming the Hamiltonian from the ini-
tial state to the final state through canonical transformations. In quantum mechanics,
equation of motion is governed by the Schrödinger equation which is described by
a Hamiltonian. It is well known that the Schrödinger equation is related to classical
Hamilton Jacobi equation in the limit � → 0. It is not possible to continuously trans-
form Schrödinger equation from the initial state to the final state through a canonical
transformation as it has simple poles which are quite evident when the Schrödinger

123



362 Foundations of Physics (2019) 49:351–364

equation iswritten in terms ofKirchhoff equations (11). The analogous n point vortices
of hydrodynamics with the fractional quantum Hall effect has allowed us to identify
the Schrödinger equation as Berry connection. Thus, making the Berry connection
exact gives rise to quantisation. Hence, the quantum numbers are topological invari-
ants arising due to singularities in Schrödinger equation . Therefore, we conclude that
quantisation arises as it continuously connects the topologically inequivalent Hamil-
tonians in the Hilbert space.

Mapping of Schrödinger equation to Kirchhoff equations allows us to draw the
following conclusions: the n point vortices are integrable unto three vortices [4]. If
the vortices circulation strength is identical, then the n point vortices, can be solved
with Stieltjes electrostatic model and their solutions are classical orthogonal poly-
nomials [30]. The n point vortices with identical circulation strength corresponds to
Schrödinger equation and the solutions are classical orthogonal polynomials, and they
are the basis in Hilbert space. Hence, the first postulate: the state of a quantummechan-
ical system is completely specified by a function�(r, t) is a vector in complex Hilbert
space. The complex Hilbert space arise because the Kirchhoff equations are solved
using Stieltjes electrostatic model with imaginary charges [16]. In Stieltjes electro-
static model, the n moving charges between two fixed charges attain the equilibrium
at the zeros of classical orthogonal polynomials depending on the position of the fixed
charges. That is, if the position of fixed charges are at ±∞ the system attains equilib-
rium at zeros of Hermite polynomials. Hence, it is the statistical distribution of these
charges is given in terms of probability distribution. The probability distribution in
terms of wave function is given by

∫ ∞

−∞
�∗(r, t)�(r, t)dτ = 1. (53)

These Kirchhoff equations satisfy a Poisson bracket relationship in phase space which
is identical to the Heisenberg uncertainty relationship. Therefore, we conclude that
the Kirchhoff equations, being classical equations, describe both a particle and a wave
equation nature of single particle quantum mechanics.

6 Conclusion

In this paper, we have shown that the Kirchhoff equations are derived from the
Schrödinger equation by assuming the wave function to be a polynomial like solution.
These Kirchhoff equations describe the evolution of n point vortices in hydrodynam-
ics. In two dimensions, Kirchhoff equations are used to demonstrate the solution to
single particle Laughlin wave function as complex Hermite polynomials.We have also
shown that the equation for optical vortices, a two dimentional system, is derived from
Kirchhoff equation by using paraxial wave approximation. These Kirchhoff equations
satisfy a Poisson bracket relationship in phase space which is identical to the Heisen-
berg uncertainty relationship. Therefore, we conclude that being classical equations,
the Kirchhoff equations, describe both a particle and a wave nature of single particle
quantum mechanics in two dimensions.
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