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Abstract
We investigate in this work the meaning of weak values through the prism of property
ascription in quantum systems. Indeed, the weak measurements framework contains
only ingredients of the standard quantum formalism, and as such weak measure-
ments are from a technical point of view uncontroversial. However attempting to
describe properties of quantum systems through weak values—the output of weak
measurements—goes beyond the usual interpretation of quantum mechanics, that
relies on eigenvalues. We first recall the usual form of property ascription, based
on the eigenstate-eigenvalue link and the existence of “elements of reality”. We then
describe against this backdrop the different meanings that have been given to weak
values. We finally argue that weak values can be related to a specific form of property
ascription, weaker than the eigenvalues case but still relevant to a partial description
of a quantum system.

Keywords Measurement in quantum mechanics · Properties of quantum systems ·
Weak measurements · Post-selected quantum systems

1 Introduction

Weak values and weak measurements were introduced by Aharonov, Albert and Vaid-
man 30 years ago [1] as a tool to understand the properties of quantum systems
at intermediate times between preparation and a final state obtained by measuring
a chosen observable. Initially applied to elucidate apparently paradoxical behavior
in quantum systems, such as the three-box-paradox [2], weak measurements have
become increasingly popular in the last 10 years, in part due to several experiments
that were able to observe weak values [3–5], and also due to promising technological
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applications, in particular regarding the amplification ofweak signals [6,7].Weakmea-
surements have also been claimed to play a role in reformulating quantum theory [8,9].

Although the theoretical framework of weak measurements (WM) and weak values
(WV) only involves ingredients of standard quantum mechanics, WM and WV were
criticized [10,11] very soon after their inception, and the criticism has persisted to
this day. We will leave aside the substantial fraction of the criticism that is rooted
in misunderstandings or erroneous readings of the formalism. Instead the bulk of the
arguments, while recognizing the formalism is correct, denies that WM have anything
to say concerning the properties of quantum systems at intermediate times. Actually,
in the first published criticism of theWM framework, Leggett had already asserted that
in his view, weak measurements could not be qualified to be measurements at all [10].

The reasonWMandWVhave remained controversial is that although the formalism
is unambiguous, in the sense that all the ingredients come from standard quantum
mechanics, the latter remains silent on many interpretative issues, and in particular
has no provision to account for the properties of a system without making a projective
measurement – but doing so renders the very question adressed byWM (to understand
the properties at an intermediate time) meaningless, since a projective measurement
radically modifies the system evolution. Hence the idea at the basis of WM: induce
a weak coupling between a system observable and a quantum pointer, a coupling so
weak that the evolving state vector is minimally modified and that the probability of
obtaining a given outcomewhenmaking the finalmeasurement is notmodified relative
to the no coupling situation. The weak value is precisely the number characterizing
the motion of the quantum pointer due to the weak interaction.

The question is then whether this weak value (or rather, its real part, since, as we
will recall below, WV are complex) can be taken as a generalized form of eigenvalue
as advocated in the original paper [1], or are instead meaningless or arbitrary numbers
or at any rate useless to describe the properties of a quantum system at an intermediate
time. The rationale for the latter position is that WV can lie outside the eigenvalue
spectrum, so that for example the weak value of a projector can be negative. Should
this be taken as yet another strange quantum feature, or does it mean there is an
irremediable flaw when attempting to attribute a value to a quantum property through
weak values? What is at stake here is not only the status of weak values, but more
fundamentally the relevance of the results obtained within the weak measurements
framework in order to understand the physical nature of quantum systems. Indeed,
WM open a new observational window into the quantum world, allowing to acquire
information on a system without substantially modifying its evolution. It is crucial to
assess the nature of this information, viz. whether it is related to the properties that
are weakly measured.

In the present manuscript, we investigate these questions by reexaming how a
property value is ascribed to a quantum system. We start by discussing the eigenstate-
eigenvalue link, which is the basis of property ascription in quantum systems.
We introduce the notion of pre-selection and post-selection and examine how the
eigenstate-eigenvalue link ascribes properties in such circumstances, i.e. state prepa-
ration (pre-selection) followed by an intermediate projective measurement and finally
post-selection (filtering of a particular outcome of a final projective measurement of
a different observable). We then introduce the Weak Measurements framework (Sect.
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3) and give a few properties of weak values that are important in the present context.
Section 4 critically examines the different meanings that have been given to weak val-
ues. Indeed, by construction, property ascription for weak values cannot rely on the
eigenstate-eigenvalue link, andWV have therefore been related to other features (such
as conditional averages over statistical ensembles or response functions to a small per-
turbation). We will nevertheless argue (Sect. 4.6) that there is room to relate weak
values to quantum properties but in a very specific, elusive manner, in a much weaker
way than what is provided by the eigenstate-eigenvalue link. We then expose our view
on themeaningofweakvalues (Sect. 4.7) andfinally present ourConclusions inSect. 5.

2 Properties in Quantum Systems

2.1 The Eigenstate-Eigenvalue Link

The standard approach to quantum mechanics is to ascribes a property to a quantum
system when the system is in an eigenstate of a given observable. If a given property
is represented by an observable A with eigenstates |ak〉 and eigenvalues ak , ie

A |ak〉 = ak |ak〉 (1)

(assumed here discrete and non-degenerate), then if the system is in a state |ψ〉, that
can generally be represented as

|ψ〉 =
∑

k

ck |ak〉 , (2)

the value of the property represented by A is not defined, unless |ψ〉 is an eigenstate
of A (in which case all the ck vanish except one).

The fact that a definite value cannot be ascribed to an observable in an arbitary state
was already quite clearly stated in Dirac’s early textbook (see Sects. 9 and 10 of Ref.
[12]): “The expression that an observable ‘has a particular value’ for a particular state
is permissible in quantum mechanics in the special case when a measurement of the
observable is certain to lead to the particular value, so that the state is an eigenstate
of the observable”. Otherwise Dirac writes that “a disturbance involved in the act of
measurement causes a jump in the state” of the system ([12], p. 36). This approach, a
cornerstone of the orthodox interpretation, is often known as the eigenstate-eigenvalue
link (see Ref. [13] for a historical account of the term).

In his textbook Quantum Mechanics, a masterly exposition of the orthodox
approach, Bohm explains in addition that a given property value only appears when
the system is actually measured, after it has interacted with a measuring apparatus
[14]. The physical underlying model is due to von Neumann [15]. In von Neumann’s
impulsive measurement model, the quantum states of a measuring pointer are explic-
itly introduced. Suppose that initially (at t = ti ) the system is prepared into the state
|ψ(ti )〉. Let |ϕ(ti )〉 designate the initial state of the quantum pointer. The total initial
quantum state is the product state
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|�(ti )〉 = |ψ(ti )〉 |ϕ(ti )〉 . (3)

We assume the pointer state is initially compactly localized around some position
x0; we will use the notation 〈x | ϕx0

〉 = ϕx0(x). Assume further that the system and
the pointer interact during a brief time interval τ . Let A be the measured system
observable. The interaction between the system and the quantum pointer is given by
the coupling Hamiltonian

Hint = g(t)AP. (4)

g(t) is a smooth function that vanishes for times t � ti or t � ti + τ and such that
g ≡ ∫ ti +τ

ti
g(t)dt appears as the effective coupling constant. If g is large we can

neglect the self Hamiltonians of the system and of the pointer and consider that the
evolution during the short time interval τ is solely driven by Hint . This leads to

|�(ti + τ)〉 = e−ig AP/� |ψ(ti )〉
∣∣ϕx0

〉
(5)

=
∑

k

|ak〉 〈ak | ψ(ti )〉 e−igak P/�
∣∣ϕx0

〉
(6)

=
∑

k

〈ak | ψ(ti )〉 |ak〉
∣∣ϕx0−gak

〉
, (7)

where we have used in the last line the properties of the translation operator.
Equation (7) associates each pointer state

∣∣ϕx0−gak

〉
(shifted relative to the initial

pointer state by a distance proportional to the eigenvalue ak) with the corresponding
eigenstate |ak〉. At this post-interaction stage, we still have an entangled state: the
interaction Hamiltonian (4) drives the system to the observable eigenstates, but not
yet to a definite eigenvalue. In some sense, the system has acquired the property (the
one represented by themeasuredobservable) relative to the pointer, but not yet its value.
A definite value only appears when the linear superposition (7) is replaced by a single
term corresponding to the observed value. There is no consensus on the origin or nature
of this collapse (that can be taken as apparent or fundamentally real, depending on the
specific interpretation [16]), though it has to do with some irreversible amplification
that takes place at the macroscopic scale when the pointer is measured. The overall
process described by von Neumann’s model is known by the rather syncretic term of
“projective measurement”.

The eigenstate-eigenvalue link calls therefore for an interaction between the system
and the pointer with a large coupling constant (large meaning that the shift is larger
than the spatial width of the initial state ϕx0(x)) and a collapse to a final pointer state
unambiguously correlated with an eigenstate of the measured observable.

2.2 Element of Reality

The eigenstate eigenvalue link is intimately related to the notion of “elements of
reality”, as introduced by Einstein, Podolsky and Rosen (EPR) [17]: “If, without in
any way disturbing a system, we can predict with certainty (i. e. , with probability equal
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to unity) the value of a physical quantity, then there exists an element of physical reality
corresponding to this physical quantity”.

Indeed, it can be noticed that Eq. (7) is an entangled state, not unlike an EPR
pair. Measuring the pointer shift to be gak1 immediately correlates with the system
eigenstate being

∣∣ak1

〉
. This can be checked by repeating the same measurement (with

a second, identical pointer). We know with certainty that the pointer will be shifted
by the quantity gak1 . Hence, because of the correlation encapsulated in the entangled
state, after the measurement the system is with certainty in the state

∣∣ak1

〉
. This implies

that the corresponding eigenvalue is an “element of reality”, and property ascription
follows from there since we know with certainty the system property and its value.1

The relation between the eigenstate-eigenvalue link and an element of reality was
already noted by Redhead [18], who coins this relation the “Eigenvector rule” (see
Chapter 3 of Ref. [18]). Redhead also notes that the “no disturbance” condition in
EPR’s definition of “elements of reality” is unnecessary (and even potentially con-
fusing) as far as the Eigenvector Rule is concerned. Hence we can state that when
the eigenvalue-eigenstate link holds the corresponding property can be ascribed to a
quantum system. This property is then an element of reality.

2.3 ExpectationValues

As is well known, there is no consensus as to whether the state vector provides a
description (complete or incomplete) of an individual system, or describes instead an
ensemble of similarly prepared systems, although the standard view has increasingly
tilted toward the statistical approach to state vectors (see eg Chapter 9 of Ref. [19]).
Expectation values however are never assumed to refer to properties of a single system.
An expectation value is instead obtained when the system is prepared in state |ψ(ti )〉
and the measurement of the property represented by A, as described by the von
Neumann model given above, is repeated several times, with random outcomes ak

obtained with probability pk = |〈ak | ψ(ti )〉|2 , leading to the standard expression

〈A〉|ψ(ti )〉 = 〈ψ(ti )| A |ψ(ti )〉 =
∑

pkak . (8)

In each run, the system ends up in the eigenstate |ak〉 – the system has the property
given by the corresponding eigenvalue – but the expectation value is obviously not an
“element of reality”.

2.4 Counterfactuals

It is intuitively tempting to go beyond the eigenstate-eigenvalue link and attempt to
ascribe properties to a quantum system as the system evolves from its initial state
to the final state obtained as the result of a projective measurement. This can only
be done by counterfactual reasoning. Indeed, ascribing a value to a property would
involve performing a projective measurement at some intermediate time, but doing so

1 Note that this reasoning assumes the pointer states
∣∣ϕx0−gak

〉
of Eq. (7) are orthogonal. Otherwise a

pointer state does not correlate with a single eigenstate and no element of reality can be defined.
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would modify the original experimental arrangement and affect the system evolution
dramatically (the system may not even reach the original final state).

Counterfactual definiteness conflicts with quantum mechanics on the general
ground [20] that it leads to ascribe to quantum systems joint properties that can never
be simultaneously measured. This point was made early on by Bohr, in particular
in his reply [21] to EPR [17]. Bohr writes there that “we have in each experimental
arrangement suited for the study of proper quantum phenomena not merely to do with
an ignorance of the value of certain physical quantities, but with the impossibility of
defining these quantities in an unambiguous way ”, which can be seen as vindicating
the eigenstate-eigenvalue link in order to ascribe properties. Bohr further pointed out
that countefactual reasoning usually leads to paradoxes.

2.5 Properties in Pre and Post-selected Systems: the ABL rule

Pre-selected and post-selected systems are systems forwhich not only is the initial state
prepared in a known state (this is the pre-selected state) but also the final state is fixed
(this state is known as the post-selected state). In practice post-selection is performed
by filtering the outcome of the final projective measurement. This is particularly useful
when starting from a preselected state |ψ(ti )〉, an intermediate standard projective
measurement of some observable A is made before a final measurement of a different
observable B takes place. The ABL rule [22] states how to compute probabilities for
the outcomes ak of A when the system has been preselected in state |ψ(ti )〉 and will
finally be found in the post-selected eigenstate

∣∣b f
〉
of B. The probability of obtaining

an in the intermediate measurement is given by

P(an|ψ(ti ), b f ) =
∣∣〈b f

∣∣ an〉 〈an| ψ(ti )〉
∣∣

∑
k

∣∣〈b f
∣∣ ak〉 〈ak | ψ(ti )〉

∣∣2
. (9)

The ABL rule is a standard quantum mechanical result that follows from the Bayes
rule and the Born rule. It illustrates that ascribing properties to a quantum system is a
delicate task. Consider indeed a particle that is allowed to take three paths, eg a spin-1
charged particle in a Stern-Gerlach like setup.2 Let the pre and post-selected states be
given by

|ψ(ti )〉 = (|ψ1〉 + |ψ2〉 + |ψ3〉) /
√
3 (10)

∣∣b f
〉 = (|ψ1〉 − |ψ2〉 + |ψ3〉) /

√
3, (11)

where
∣∣ψ j

〉
denotes the state vector on path j . We want to compute the probability

of finding the particle on path 1 (conditioned on obtaining the final state
∣∣b f

〉
). The

result depends however on how the measurement is implemented (and hence how
the observable is defined). If a projective measurement is made on each path then
the eigenstates |ak〉 that can be obtained are |ψ1〉, |ψ2〉 and |ψ3〉 and Eq. (9) yields
P(a1) = 1/3. If instead we measure path-1 vs. non-path-1 (the latter being measured

2 This implementation of the three-box paradox [2] has been described in details elsewhere [23,24].
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for instance by connecting paths 2 and 3 together and placing ameasurement apparatus
at that point, see Fig. 1 of [23]), then the eigenstates |ak〉 that can be obtained are now
|ψ1〉 and |ψ2〉 + |ψ3〉 and Eq. (9) leads to P(a1) = 1; this implies that P(a2+3) = 0,
a straightforward consequence of the fact that the eigenstate |ψ2〉 + |ψ3〉 obtained at
the intermediate time is orthogonal to the post-selected state

∣∣b f
〉
given by Eq. (11).

This means that in this situation, we are certain to find the particle on path 1.
Note that according to our analysis in Sect. 2, the fact that the system will be on

path 1 with unit probability is an unambiguous property of the system, an element of
reality. This is not an innocuous remark, because as is well-known [2], we can repeat
exactly the same argument for a path 3 versus non-path 3measurement (we now have a
measurement apparatus on path 3 and another apparatus at a point where paths 1 and 2
are connected). That is if we compute the probability P(a3) to find the particle on path
3 on a path 3 versus non-path 3 measurement we find P(a3) = 1 and P(a1+2) = 0.
We are thus certain to find the system on path 3. This apparent paradox has triggered
vivid discussions on counterfactuals in pre and post-selected systems [20,27–30]. We
will just note here that both properties following from P(a1) = 1 and P(a3) = 1
are well-defined, but each in its own configuration, involving different measurements
and experimental arrangements. For instance when measuring path 1 versus non-path
1, |ψ3〉 is not an eigenstate of the corresponding measurement, and no value can be
ascribed to the property “the particle is on path 3” (contrarily to a path 3 vs. non-path
3 measurement). A paradox only appears if counterfactuals are employed, and value
assignment is made without reference to the eigenstate-eigenvalue link. Conversely,
embracing the eigenstate-eigenvalue link dispels the paradox but evades the question
concerning the value of the path projectors at intermediate times. This is the difficulty
that weak measurements aim to bypass.

3 WeakMeasurements

3.1 WeakMeasurement Protocol

Weak measurements [1] deal with extracting information about a given property, rep-
resented by an observable A, as the system evolves from a prepared initial state towards
the final eigenstate obtained after measuring a different observable B. The context is
identical to the one exposed above concerning the ABL rule, Sect. 2.5: the system is
prepared in the pre-selected state |ψ(ti )〉, a weak measurement of A takes place and
finally B is measured and outcomes corresponding to the post-selected state

∣∣b f
〉
of

B are filtered. The difference is that A is not measured through a standard projective
measurement that would bring the system to one of the eigenstates. Instead, a very
weak interaction is established between the system and a quantum pointer, so as to
leave the system state “essentially undisturbed”, meaning that the perturbation is so
small that the post-selection probabilities are not affected by the weak interaction.

Let us therefore represent the initial system-pointer state as in Eq. (3) by

|�(ti )〉 = |ψ(ti )〉 |ϕ(ti )〉 . (12)
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We will take the system-pointer interaction to be given again by Hint = g(t)AP as
in Eq. (4). Let us assume that the interaction takes place in a time window [tw −
τ/2, tw + τ/2], i.e. tw is the average interaction time and τ the duration. If τ is small
relative to the system evolution timescale, the interaction can be simply taken to take
place precisely at tw (for a proof of this “midpoint rule”, see Ref. [31]). As in von
Neumann’s impulsive measurement scheme (see below Eq. (4), g ≡ ∫ tw+τ/2

tw−τ/2 g(t)dt
appears as the effective coupling constant, but we now require g to be very small.
Finally, we will allow for the system to evolve from ti to tw and denote U (tw, ti ) the
corresponding unitary operator, but disregard instead the self-evolution of the pointer.
After the interaction (t > tw + τ/2) the initial uncoupled state (12) becomes:

|�(t)〉 = U (t, tw)e−ig APU (tw, ti ) |ψ(ti )〉 |ϕ(ti )〉 (13)

= U (t, tw)e−ig AP |ψ(tw)〉 |ϕ(ti )〉 (14)

= U (t, tw)
∑

k

e−igak P 〈ak | ψ(tw)〉 |ak〉 |ϕ(ti )〉 . (15)

At time t f the system undergoes a standard projective measurement of the observ-
able B. Filtering the results of this projectivemeasurement by keeping only projections
to the postselected state

∣∣b f
〉
yields

∣∣ϕ(t f )
〉 =

∑

k

[〈
b f (tw)

∣∣ ak〉 〈ak | ψ(tw)〉] e−igak P |ϕ(ti )〉 , (16)

where we have used
〈
b f (tw)

∣∣ = 〈
b f (t f )

∣∣ U (t f , tw). ϕ(x, t f ) is then given by a super-
position of shifted initial states We now use the fact that the coupling g is small, so
that e−igak P ≈ 1 − igak P holds for each k. Equation (16) takes the form

∣∣ϕ(t f )
〉 = 〈

b f (tw)
∣∣ ψ(tw)〉

(
1 − ig P

〈
b f (tw)

∣∣ A |ψ(tw)〉
〈
b f (tw)

∣∣ ψ(tw)〉

)
|ϕ(ti )〉 (17)

= 〈
b f (tw)

∣∣ ψ(tw)〉 exp
(
−ig Aw

f P
)

|ϕ(ti )〉 (18)

where

Aw
f =

〈
b f (tw)

∣∣ A |ψ(tw)〉
〈
b f (tw)

∣∣ ψ(tw)〉 (19)

is the weak value of the observable A given pre and post-selected states |ψ〉 and∣∣b f
〉
respectively. We will drop the index f and write Aw instead whenever the post-

selection state is uniquely fixed and no confusions may arise.
Note that here we have not explicitly included the pointer coupled to B, which

is a standard von Neumann pointer described in Sect. 2.1. Hence when referring to a
pointer in the remainder of the text, we will usually mean the weakly coupled quantum
pointer that registers the weak measurement. This pointer is a quantum system that
will need to be measured in order to extract the weak value.

123



306 Foundations of Physics (2019) 49:298–316

3.2 WeakValues: Properties

The interpretative questions relative to the property of the system at the intermediate
time tw will be examined below in Sect. 4. Here we note a few basic properties of
weak values that will be useful in our discussion below.

3.2.1 Real Part

The first point to note is that in general the weak value is a complex quantity. For an
initially localized pointer state

∣∣ϕx0

〉
, Eq. (18) can be written as

∣∣ϕ(t f )
〉 = 〈

b f (tw)
∣∣ ψ(tw)〉 exp

(
g Im Aw

f P
) ∣∣ϕx0−g Re Aw

〉
. (20)

The real part Re Aw induces a shift
∣∣ϕx0−g Re Aw

〉
. This is similar to the first step, Eq.

(7), of the standard projective measurement, except that here g is small: the original
and the shifted pointer states are almost overlaping, so that extracting Re Aw cannot
be done by performing a single measurement of the pointer, contrary to the case of
strong g which discriminates pointer states correlated with different eigenvalues ak .
Note that if the pre or post-selected states |ψ(tw)〉 or ∣∣b f (tw)

〉
is an eigenstate of A,

the weak value is real – it is actually the corresponding eigenvalue of A. In the general
case, Re Aw is different from the eigenvalues and can lie outside the spectrum of A.
From Eq. (19) it is straightforward to obtain

Re Aw = 〈ψ(tw)| 1
2

(
ρb f (tw) A + Aρb f (tw)

) |ψ(tw)〉
〈ψ(tw)| ρb f (tw) |ψ(tw)〉 (21)

where ρb f (tw) ≡ ∣∣b f (tw)
〉 〈

b f (tw)
∣∣ is the density matrix to the post-selected state

evolved backward in time to the time tw of interaction. Equation (21) has the form
of a conditional expectation value when the system is in state |ψ(tw)〉: the denom-
inator is the average of the projector ρb f (tw) (i.e., the probability of post-selection)
while the numerator is the average of the symmetrized operator ρb f (tw) A + Aρb f (tw)

(measurement of A and projection to
∣∣b f (tw)

〉
).

Note that in the special case
∣∣b f (tw)

〉 = |ψ(tw)〉 (this happens in particular when
there is no self-evolution and the pre and postselected states are the same) Re Aw =
〈ψ(tw)| A |ψ(tw)〉 becomes a standard expectation value.

3.2.2 Imaginary Part

The imaginary part can be put in the form

Im Aw = 〈ψ(tw)| 1
2i

(
ρb f (tw) A − Aρb f (tw)

) |ψ(tw)〉
〈ψ(tw)| ρb f (tw) |ψ(tw)〉 . (22)

The numerator represents the average backaction of the measurement of A on the
post-selection projector. This can be seen from the Liouville equation, where the
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commutator −i[ρb f (tw), A] appears as generating the evolution of ρb f (t) due to the
interaction Hamiltonian Eq. (4) coupling A to the quantum pointer. For the case∣∣b f (tw)

〉 = |ψ(tw)〉 , Im Aw = 0.

3.2.3 Expectation Value

The expectation value of A in state |ψ(tw)〉 , written in the standard form

〈ψ(tw)| A |ψ(tw)〉 =
∑

k

ak pk(ak) (23)

when A is measured through a projectivemeasurement, with pk(ak) ≡ |〈ak | ψ(tw)〉|2,
can also be written as

〈ψ(tw)| A |ψ(tw)〉 =
∑

k

|〈bk(tw)| ψ(tw)〉|2 Re 〈bk(tw)| A |ψ(tw)〉
〈bk(tw)| ψ(tw)〉 (24)

after somemanipulations (see Eqs. (12)–(15) of [32]), by which it can also be seen that
the weighted sum over the imaginary parts vanishes, so that Eq. (24) can equivalently
be written as

〈ψ(tw)| A |ψ(tw)〉 =
∑

k

Aw
k pk(bk), (25)

with pk(bk) ≡ |〈bk(tw)| ψ(tw)〉|2. Equations (24)–(25) involve a projective measure-
ment of B and aweakmeasurement of A. Relative to Eq. (23), the probabilities are now
those of obtaining a given post-selected state |bk〉 while the eigenvalues are replaced
by the real part of the weak values associated with the post-selected state |bk〉.

4 What DoWeak Values Stand For?

4.1 Preliminary Remarks

As mentioned in the Introduction, since its inception, weak values have remained
controversial, stirring much discussion. The fact that experimentally the predictions
of the weak measurements framework are verified is beyond discussion. This is why
the debate has centered on the meaning and significance of the weak values. The
viewpoint developed in this paper is to frame this issue under the question: “Is a
weak value related to a property of the system?”. To this end we recalled in Sect.
2.1 the eigenstate-eigenvalue link, the basis of property ascription in standard quan-
tum mechanics. We have then seen in Sect. 3 that the weak value appears as a shift
in the pointer state [Eq. (18)], pretty much like an eigenvalue [Eq. (7)]; the anal-
ogy is also patent when comparing the expressions for the observable average (23)
and (25) in terms of eigenvalues and weak values respectively. We have also seen
however that the real and imaginary parts of a weak value can be written in terms
of conditional expectations, Eqs. (21) and (22), making weak values look like an
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average. On the other hand, from its definition, Eq. (19) the weak value is seen to
be the ratio of two transition matrix elements, hence weak values are akin to ampli-
tudes.

We will further analyze here the different meanings that the weak values can take.
An important point to keep in mind, obvious for practitioners of weak measurements
but potentially confusing for others, is that previous to the the measurement of B the
system state is undefined, as Eq. (16) represents an entangled system-pointer state.
After post-selection, at t = t f , the final system state

∣∣b f
〉
is an eigenstate of B, and

according to the eigenstate-eigenvalue link, the system has at that point acquired the
property value b f . The weak value also becomes instantiated at t = t f , although, as is
clear from the definition (19), the weak value depends on the physical interaction that
took place at time tw (when the system interacted with the pointer). The weak value
is hence defined retroactively, as if the post-selected state had propagated backwards
in time. This does not call for any sort of retrocausation (except if one endorses [33]
a time-symmetric formulation of quantum mechanics, such as the Two State Vector
Formalism [34,35]), but is a peculiar feature arising from quantum correlations (see
Sects. 4.6 and 4.7).

4.2 WeakValues and the Eigenstate-Eigenvalue Link

By construction, weak measurements do not respect the eigenstate-eigenvalue link.
Indeed, the rationale is that the coupling between A and the quantum pointer should
minimally disturb the system state, that is the coupling must leave the post-selection
probability |〈bk(tw)| ψ(tw)〉|2 = ∣∣〈bk(t f )

∣∣ ψ(t f )
〉∣∣2 unchanged (relative to the sit-

uation without interaction). Therefore, if the eigenstate-eigenvalue link is deemed
necessary in order to ascribe a value to a quantum system, then very clearly weak
values will not be able to ascribe quantum properties. Although to our knowledge,
the status of weak measurements has not been up to now explicitly discussed in
terms of property ascription relying on the eigenstate-eigenvalue link, it seems to
us that much of the criticism raised against weak values is implicitly relying on this
point.

For example for Leggett [10] a weak measurement does not qualify as “a true
measurement process”, true meaning here that the pointer states should be orthogo-
nalized, hence leading to the standard measurement described by Eq. (7). Sokolovski
[36] requests that measurements should create real pathways (calling for orthogonal
pointer states correlated with orthogonal eigenstates) as opposed to virtual pathways
(that take place when the system states in the pointer basis are not orthogonal, leav-
ing the property undefined). Svensson concludes his analysis [37] by asserting that
weak values cannot represent “ordinary properties”, on par with eigenvalues. While
Svensson does not discuss property ascription in quantum mechanics nor mentions
the eigenstate-eigenvalue link, it turns out (for reasons that will become clear in Sects.
4.6 and 4.7) that his requirement of “bona fide” properties can only be fulfilled when
the system ends up in an eigenstate of the measured observable.
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4.3 WeakValues as Ensemble ExpectationValues

The most common way of introducing weak values is to state they represent some
sort of expectation value in pre and post-selected ensembles; a detailed exposition
of this approach is given in [38,39]. The first argument in favor of this thesis is that
experimentally, a weak value can only be determined by measuring an ensemble of
identically prepared and post-selected systems. The shift is indeed very small and can
therefore not be meaningfully measured for a single system; the weak value appears
statistically as the average taken over the ensemble. Second, as we have seen above,
Eqs. (21)–(22), the real and imaginary parts of a weak value are formally equal to
conditional expectation values of different operators. Third, it can be shown [40] that
the weak values define an operator that is the best estimate of an observable A when
not only the initial state but the final state is known.3

In our view, none of these reasons are compelling. The first point appears as a prac-
tical issue in which statistics are employed to reduce the measurement uncertainties,
and has no bearing on fundamental aspects.

The second argument relies on a numerical equivalence: the value of the shift,
given by Re Aw, is equal to a conditional expectation value, but this does not imply
that Re Aw is itself an expectation value, i.e. a statistical quantity relevant to ensembles.
This can be seen very easily in the particular case in which the pre and post-selected
states are arbitrary but identical. Then

Aw = 〈ψ(tw)| A |ψ(tw)〉 , (26)

so the weak value is numerically given by the expectation value. In this case the pointer
state (16) is given by

∣∣ϕ(t f )
〉 =

∑

k

pk(ak)e
−igak P |ϕ(ti )〉 , (27)

with pk(ak) ≡ |〈ak | ψ(tw)〉|2 as above. When g is small it is easy to see that the
weighted superposition (27) over the shifted pointer states gak results in the shift
g 〈ψ(tw)| A |ψ(tw)〉. This is the shift of a single pointer, obtained in a single run.

The third point is an interesting observation, but depends on the choice of a specific
distance in Hilbert space (arguments based on the choice of a different distance have
been put forward to show the opposite, namely that weak values do not behave as
averages, see Sect. 4.4). Moreover, it is difficult to explain how a physical pointer can
be shifted by an optimal estimator, which is by definition an epistemic quantity.

Therefore, leaving aside commitments to a fully epistemic interpretation of the
quantum formalism, for instance if one adheres to the statistical interpretation of quan-
tum mechanics [19] (by which it is assumed that the quantum formalism intrinsically

3 The estimate minimizes a specific distance d in Hilbert space, namely d =
Tr

[
|ψ(ti )〉 〈ψ(ti )| (A − Aest)

2
]
, and the resulting best estimate is [40] Aest =

∑
f Re Aw

f

∣∣b f
〉 〈

b f
∣∣Re Aw

f where Aw
f is the weak value (19).
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describes ensembles) there is no ground to assert that weak values only characterize
ensembles with post-selection.

4.4 WeakValues as Generalized Eigenvalues in a Single System

Weak values were originally introduced [1] as a generalized form of eigenvalues, or
rather “a new kind of value for a quantum variable” [1]. In our context, we will take
this to mean that (i) a weak value is a quantity relevant to a single system (as opposed
to an ensemble property); and (ii) a weak value is relevant to a property of the quantum
system, namely it gives the value of a quantum observable correlatedwith a given post-
selection. There are several arguments in favor of this thesis. First, the pointer motion
that is generated by the weak value, see Eq. (20), is taken to be analogous to the pointer
motion proportional to an eigenvalue in the case of a projective measurement. Second,
the expressions (23) and (25) give the same observable average in terms of eigenvalues
and weak values respectively; in the latter case, the probability pk(bk) appearing in
Eq. (25) is the probability of post-selecting to state |bk〉 assuming the disturbance
induced by the weak interaction can be neglected. An additional argument, that can
be seen as a consequence of the first, was recently given by Vaidman and co-workers
[41]: they examine the effect on the pointer dynamics when the shift is induced by an
eigenvalue, a weak value, or an average (the pointer is then in a mixed state) and find
that for short times the pointer with a weak value shift behaves much more like an
eigenvalue shifted pointer than the mixed pointer state corresponding to an average
value.

It is not difficult, if one agrees that an eigenvalue is a property of a single system,
to admit point (i) above. Indeed, upon post-selection the observable B undergoes a
standard projective measurement and the corresponding pointer at first entangled with
the system ends up indicating the eigenvalue b f which we have assumed to be a
property of a single system. Since the weakly coupled pointer is entangled with the
system, which in turn becomes entangled with the post-selection pointer, the weakly
coupled pointer undergoes a small shift upon post-selection. This shift must also be
the property of a single system, since there is no reason to interpret the entanglement
involving the weakly coupled pointer differently than the entanglement involving the
post-selection pointer. In other words, this shift is an “element of reality”, and hence
the “mechanical effect ” [8] of the system on the weakly coupled pointer is therefore
established as being relevant to a single overall system.

Whether this mechanical effect indicates a generalized eigenvalue representative
of a system property is not so straightforward. In the specific case in which Aw is
indeed an eigenvalue—implying that either the pre-selected or the post-selected state
is an eigenstate of the weakly measured observable A—one relies indirectly on the
eigenstate-eigenvalue link: the eigenstate is either the pre or post-selected state, and
the eigenvalue comes out of the weak measurement by orthogonalization (the pointer
states are indeed orthogonalized despite their overlap).

In the general case, when both the pre and post-selected states are arbitrary, the real
and imaginary parts of Aw, given by Eqs. (21) and (22) involve the ratio of averages
because as we have seen, due to the weakness of the interaction, the pointer captures
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the entire spectrum of the weakly measured observable A. Moreover the expression
does not involve the sole weakly measured observable A, but the projector to the post-
selected state �b f . Finally, we will argue below (Sects. 4.6 and 4.7) that the system
has no element of reality corresponding to Aw. For these reasons the term “generalized
eigenvalue” might not be very appropriate to characterize a weak value.

4.5 WeakValues as Perturbation Amplitudes

The formal definition of the weak value (Eq. 19) is given by a ratio of amplitudes.
This point has often been been put forward [37,42,43] in order to assert that weak
values cannot have any meaningful relevance to physical properties. We have already
stated that any approach that relies, albeit implicitly, on the eigenstate-eigenvalue
link in order to ascribe properties to a quantum system will consistently deny that
amplitudes, and hence weak values, can represent values of quantum properties.

Sokolovski goes further [43] in arguing that amplitudes are ubiquitous when per-
turbation theory is applied, and sees weak measurements as a specific output of
perturbation theory. This is of course indisputable from a technical point of view,
but such arguments do not take into account the peculiar character of this form of
perturbation theory, that is almost identical to a standard measurement process and
induces pointer shifts. In this sense, this type of criticism appears as incomplete [44].

4.6 WeakValues asWeakValues

A standard projective measurement of a property represented by the observable A, of
the type described above (see Sect. 2.1), involves a correlation between the pointer
position and an eigenvalue of A. The entangled state (7) between the pointer and the
system correlates each eigenvalue with an unambiguously discriminate pointer state.
At the end of the measurement process (after the projective collapse), the pointer
indicates the value of the system property.

In a weak measurement, the weakly coupled pointer similarly indicates Re Aw,
but the shift is small and appears after the post-selection collapse, whereby the post-
selection pointer indicates the value b f of the property corresponding to the observable
B. Hence unlike an eigenvalue, Re Aw does not reflect the value of the sole property
A, but the value of A correlated with the system having the eigenvalue b f for the
property B. Moreover, although Re Aw depends on the time tw and on the location
of the interaction zone with the weakly coupled pointer, the weak value only appears
at the post-selection time t f . But at t f the system has a value b f for the property B
and no value can be ascribed to the property A. Strictly speaking the (real part of the)
weak value does not ascribe a property to the system, in the sense that there is no
corresponding element of reality in the system.4

Nevertheless the state of the weakly coupled pointer upon post-selection can be
predicted with certainty and is an element of reality for the pointer. This results from
a mechanical effect of the coupling interaction on the pointer, that we derived in Sect.

4 We have already noticed above that even in the absence of postselection, no element of reality can be
defined if the pointer states are not orthogonal.
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3.1 and that can also be shown to follow from the dynamics of the pointer variable in
the Heisenberg picture [8]. This mechanical effect characterizes the value of A when
the system is filtered to an eigenstate of a different observable.

This is exactly how the expression giving Re Aw [Eq. (21)] can be read: the rel-
evant observable is 1

2

(
ρb f (tw) A + Aρb f (tw)

)
, a symmetrized operator describing the

measurement of A followed by ρb f . A well-known quantity employed in standard
quantum mechanics that has this form is the Schrödinger current jψ(x, t), with the
corresponding operator being given by [45] J = 1

2m (|x〉 〈x | P + P |x〉 〈x |), where
P is the momentum operator.5 The denominator in Eq. (21) accounts for the renor-
malization of the density ρ = |ψ(tw)〉 〈ψ(tw)|, as only the fraction of ρ that reaches
post-selection is to be taken into account.

Note that in a purely classical context, the expression equivalent to Eq. (21) would
represent [46] the motion of a pointer coupled to the system through the classical
interaction Hamiltonian (4), when a filter is implemented. This filter selects the clas-
sical particles that will have a specific value b f at some final time t f , after the weak
interaction.6 Quantum mechanically the filter is the post-selection, and the apparent
retrodictive aspect arises upon post-selection from the quantum correlations imprinted
in the entangled state (16) between the system and the pointer.

4.7 TheMeaning ofWeakValues

We have argued that, despite similarities with eigenvalues, property ascription for
weak values is not straightforward. Indeed, the state of the weakly coupled pointer
after post-selection (at time t f ) can be predicted with certainty—it is an element of
reality as per Sect. 2.2—but regarding the system only the post-selected state

∣∣b f
〉
is an

element of reality. Hence for the system there is no element of reality corresponding
to the weak value, neither at the time tw of the interaction, nor at post-selection. This
is hardly surprising since the system state is minimally disturbed by the interaction at
tw and has acquired the property value b f after post-selection.

Despite the lack of an element of reality in the system corresponding to a weak
value, it remains possible to link the shift Re Aw to a form of system property. As we
have seen in Sect. 4.6, this link is embodied in the correlations encapsulated in the
entangled system-pointer state (16). The weak value—that is the mechanical effect
on the weakly coupled pointer described in Sect. 4.4—reflects retrodictively the value
of A due to the coupling (that took place at the earlier time tw) compatible with

5 Unsurprisingly, the current density appears in the numerator of the followingweakvalueof themomentum,

Re 〈x |P|ψ(t)〉
〈x | ψ(t)〉 = mj(x,t)

ρ(x,t) .
6 The corresponding classical expression is

∫

B f

A(q, tw)
ρ(q, tw)∫

B f
ρ(q ′, tw)dq ′ dq (28)

where ρ(q) is the configuration space classical distribution. The integral is taken over B f which is the
set of all q’s taken at tw such that at the final time t f we have B(q, t f ) = b f . In a classical setting, the
filtering needs to be done before the weak interaction takes place. Note that the denominator is simply the
normalization constant for the density due to the filtering (see [46] for details).
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post-selection. In this sense it is a partial property of the system, relative to a specific
space-time region (defined by the location of the weakly coupled pointer) and relative
to a choice of post-selected observable and eigenvalue. This formof property ascription
is considerably weaker than the one for eigenvalues, which holds for the entire system
and is grounded on the existence of a corresponding element of reality.

Nevertheless, this weaker form of property ascription can bemeaningful and useful.
We have mentioned above the Schrödinger current density as a well known quantity
in standard quantum mechanics having the same structure as weak values. It can
hardly be maintained that the current density at a particular space-time point does not
characterize a partial property of the system at that particular space-time point. We
have amply discussed elsewhere [24–26,32] the case of null weak values. In the case
of a projector A = |ak〉 〈ak | , a null weak value Aw = 0 means that the property
represented by A cannot be registered by the weakly coupled pointer for the given
post-selection. Such a result stems from the quantum correlations between the weakly
coupled and post-selection pointers, and also holds for a strongly coupled intermediate
pointer. Null weak values have been used to interpret phenomena like the Quantum
Cheshire Cat [23,47] or to account for discontinuous trajectories in the proposals
investigating the past of a quantum particle [48–51].

Anomalous weak values (that is WV falling outside the eigenvalue range, such as
Aw = −1 for a projector) are a consequence of the non-commutativity of the pro-
jectors into the pre-selected and post-selected states and the observable A. They are
intimately linked to interference effects and cannot be obtainedwith classical probabil-
ity distributions [40]. As we have argued in this paper, the interpretation of anomalous
weak values as bone fide properties on par with eigenvalues [37] cannot hold: there is
no corresponding element of reality in the system, as a weak value describes a partial
property at a given space-time point, characterizing amplitudes and depending on inter-
ference effects. Anomalous weak values still have explanatory power when the system
is considered as a whole. For instance a negative projector value or a negative particle
number on a given path may not be particularly illuminating by itself, but comparing
with weak values of the analogous projectors on other paths gives an explanation—in
terms of experimentally measurable quantities—of the dynamics of interference, and
further explains the outcomes obtained when projective measurements are made at an
intermediate time. Last but not least, weak values give an additional experimentally
observable confirmation of the validity of the standard quantum formalism at the level
of transition amplitudes, as measured by weakly coupled pointers.

5 Conclusion

We have investigated in this work the meaning of weak values through the prism of
the description of the properties of a quantum system that evolves from an initially
prepared state to a final post-selected one.We first recalled how properties are ascribed
to quantum systems, namely through the eigenstate-eigenvalue link. We focused on
pre and post-selected systems to examine how the eigenstate-eigenvalue links works
when attempting to understand the property of a quantum system at an intermediate
time. The emerging picture is somewhat limited, since such intermediate properties
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depend on the measurements that are made, while any attempt to unify the physical
picture by counterfactual reasoning leads to paradoxes.

The weak measurements framework bypasses these limitations by implementing
a minimally perturbing interaction with a quantum pointer. The weak value, quanti-
fying the imprint of the interaction and the subsequent post-selection on the pointer,
shares some similarities with eigenvalues, in particular the fact that, if an eigenvalue
is assumed to be relevant to a single system (and not an ensemble), then this is also the
case for a weak value. We examined property ascription to a system observable based
on weak values. This turned out to be a subtle issue, as a weak value Aw characterizes
the system observable A filtered by post-selection in a retrodictive manner, mediated
by entanglement and without a corresponding system element of reality.

We discussed several interpretations that have been given to weak values, and
argued that weak values can indeed be seen as ascribing properties to a system but in
a partial way, certainly not on par with the standard property ascription based on the
eigenstate-eigenvalue link. The explanatory power affordedby theweakmeasurements
framework not only concerns the outcomes obtained in standard projective measure-
ments when quantum interferences play a prominent role, but confirm the validity of
the standard formalism at the level of amplitudes. In turn, this could lead to novel
fascinating implications concerning the physical nature of the formalism described by
quantum theory.
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