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Abstract
How can probabilities make sense in a deterministic many-worlds theory?We address
two facets of this problem: why should rational agents assign subjective probabilities
to branching events, andwhy should branching events happenwith relative frequencies
matching their objective probabilities. To address the first question, we generalise the
Deutsch–Wallace theorem to a wide class of many-world theories, and show that the
subjective probabilities are given by a norm that depends on the dynamics of the theory:
the 2-norm in the usual Many-Worlds interpretation of quantum mechanics, and the
1-norm in a classical many-worlds theory known as Kent’s universe. To address the
second question, we show that if one takes the objective probability of an event to be
the proportion of worlds in which this event is realised, then inmost worlds the relative
frequencies will approximate well the objective probabilities. This suggests that the
task of determining the objective probabilities in a many-worlds theory reduces to the
task of determining how to assign a measure to the worlds.

Keywords Foundations of quantum mechanics · Many-worlds interpretation ·
Probability

1 Introduction

We are used to think of a probabilistic situation as one where either an event E or an
event ¬E happens, with probabilities p and 1− p. In many-world theories, however,
probabilistic situations are treated as deterministic branching situations, where some
worlds are created where event E happens, and some worlds are created where event
¬E happens. Does it still make sense to assign probabilities p and 1− p to the worlds
with events E and ¬E?
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This question was already raised at the inception of theMany-Worlds interpretation
byEverett in 1957 [1]. Several early attemptsweremade tounderstandprobability from
a frequentist point of view [2–6] that were mathematically mistaken [7,8]. Progress
had to wait until 1999, when Deutsch proposed a proof of the Born rule from decision-
theoretical assumptions, thatwas subsequently clarified and improveduponbyWallace
[9–12]. In Deutsch and Wallace’s proofs probabilities are understood as tools rational
agents use to make decisions about branching situations, in analogy to single-world
decision theory.

Other derivations of the Born rule in the Many-Worlds interpretation have been
proposed since then by Żurek, Vaidman, Carroll, and Sebens [13–15].

In this paper, we investigate the probability problem by focussing on general many-
world theories that have ameasurement-like branching situation,where a finite number
of possible outcomes can occur, and one set of worlds is created with each outcome.
Each set of worlds has a coefficient associated to them, with the only constraint that
if the coefficient is zero, then no worlds exist with that outcome.

Two concrete many-world theories that fit into this framework are the usual Many-
Worlds interpretation, where the coefficients are the usual complex amplitudes, and a
classicalmany-worlds theory introduced byKent [16]. There, agents live in a determin-
istic computer simulation, and the coefficients are non-negative integers that literally
indicate the number of copies of the simulation that are run with each outcome after
branching.We generalise the Deutsch–Wallace theorem to these many-world theories,
and show that it implies, in Kent’s universe, that the subjective probabilities must come
from the 1-norm of the coefficients, and in Many-Worlds from the 2-norm.

The decision-theoretical approach has been criticized by several authors [16–22].
Besides objections against specific aspects of Deutsch’s and Wallace’s proofs that do
not apply to the current work, the criticism focuses on three main points: (i) the claim
that to derive the branching structure of Many-Worlds via decoherence one needs
to assume the Born rule in the first place, which would make the Deutsch–Wallace
argument circular, (ii) the observation that there are irrational agents who do not use
probabilities to make their decisions, and (iii) the claim that it is incoherent to use
decision theory to derive probabilities that are actually objective. With regards to (i),
it is not true that the derivation of the branching structure depends on the Born rule.
It depends only on being able to say that quantum states that are close in some metric
give rise to similar physics, which is standard scientific practice [23]. In any case,
in this paper we are not concerned with deriving the branching structure, but rather
with making sense of probabilities given that such a branching structure exists. With
regards to (ii) and (iii), one should note that these criticisms apply equally well to
many-world and single-world versions of decision theory, so they are actually against
the whole idea of subjective probability. To a subjectivist they ring hollow, as for them
probability is nothing but a tool used by rational agents. Nevertheless, it is hard to
deny that there is something objective about quantum probabilities.

To address this point, we show that for any many-worlds theory where a fairly
general measure can be assigned to the sets of worlds with a given outcome, an
analogue of the law of large number can be proved, which says that in most worlds the
relative frequency of some outcome will be close to the proportion of worlds with that
outcome. This suggests that we should define the objective probability of an outcome
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as the proportion of worlds with that outcome. While in Kent’s universe it is obvious
how to calculate the proportion of worlds, and thus the objective probabilities, this
is not the case in Many-Worlds. There, the best this argument can do is say that one
should take the relative frequencies as a guess for the proportion of worlds, as in most
worlds one will be right.

We also explore a non-symmetric branching scenario where Kent’s universe and
Many-Worlds assign fundamentally different proportions of worlds to each outcome,
and thus the analogy between these many-world theories breaks down. We argue that
this is due to the fact that the number of worlds in Kent’s universe increases upon
branching, while in Many-Worlds the measure of worlds is conserved. To support this
argument we introduce a reversed version of Kent’s universe where branching con-
serves the number of worlds, and show that it assign proportions of worlds compatible
with Many-Worlds. This breakdown suggests that one of the key rationality principles
that Deutsch and Wallace used in their proofs of the Born rule—called substitutibility
by Deutsch and diachronic consistency by Wallace—is not valid in Kent’s universe,
and therefore should not be accepted for every many-worlds theory. The proof of the
generalised Deutsch–Wallace theorem presented here does not assume this principle,
but instead derives it as a theorem in Many-Worlds and the reverse Kent’s universe.

2 Naïve Decision Theory

The generalised many-world theories we shall be concerned with have very little
structure. We only need them to admit a measurement-like branching situation with n
possible outcomes, where after branching n sets of worlds are created, one with each
outcome. Each outcome i has a complex coefficient ci associated to it whose precise
meaning depends on the physics underlying the many-worlds theory, but obeys the
general constraint that if the coefficient is equal to zero, then no worlds are created
with this outcome.

We want to use this branching situation to play a game where an agent receives a
reward ri in the worlds that are created with outcome i . The game is then defined by a
vector of coefficients c ∈ C

n , and a vector of rewards r ∈ R
n , and can be represented

by the n × 2 matrix

G = (c, r) =
⎛
⎜⎝
c1 r1
...

...

cn rn

⎞
⎟⎠ , (1)

where line i specifies the coefficient and reward associated to the worlds with out-
come i .

We are concerned with the price at which a rational agent with full knowledge about
the situation would accept to buy or sell a ticket for playing a game G. This fair price
is called the value of the game, and is denoted by V (G). From this price we shall infer
subjective probabilities that are attributed by the agent to the outcomes. To determine
this fair price we shall use a fairly basic decision theory, taken from Ref. [24], that is
essentially a formalisation of the Dutch book argument.
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The first rationality axiom we demand is that if in all worlds the game gives the
same reward r1, the agent must assign value r1 to the game. If the value were higher,
the agent would lose money in all worlds when buying a ticket for this game; if it
were lower, the agent would lose money in all worlds when selling a ticket for this
game. This axiom implies that the agent is indifferent to branching per se, and only
cares about the rewards their future selves get. This might be false, as we can easily
conceive of an agent which is reluctant about branching, and would only accept to
pay a value smaller than r1 to play this game. In this case the agent would also be
reluctant to sell a ticket for this game, and demand a price higher than r1, so there is
no fair price that can be agreed upon, and presumably the game simply will not be
played. We deem this behaviour to be irrational. This is specially so in theories where
branching is ubiquitous and unavoidable, such as Many-Worlds.

The axiom is then

• Constancy If for some game G = (c, r) all rewards ri are equal to r1, then
V (G) = r1.

The second axiom we demand is that if for a pair of games with equal coefficients
G and G ′ the rewards of the first game are larger than or equal to the rewards of the
second game in all worlds, then the agent must value the first game no less than the
second game. This could be false, for example, if some agent actively wants to hurt
their future selves that receive rewards smaller than the maximal one, and accepts to
pay more for a game where this happens. We deem this behaviour to be irrational.

The axiom is then1

• Dominance Let G = (c, r) and G ′ = (c, r′) be two games that differ only in their
rewards. If r ≥ r′, then V (G) ≥ V (G ′).

The third axiom we need is that it should not matter if a ticket for a game with rewards
r + r′ is sold at once, or broken down into first a ticket for the a game with rewards r
followed by a ticket for another game with rewards r′, where these games are played
using the same branching situation. If the price of the composed ticket were higher
than the sum of the values of the individual tickets, the agent would lose money in
all worlds when buying the composed ticket and selling the individual tickets. On the
other hand, if the price of the composed ticket were lower, the agent would lose money
in all worlds when buying both individual tickets and selling the composed ticket. The
axiom is then

• Additivity Let G = (c, r) and G ′ = (c, r′) be two games that differ only in their
rewards. Then the game G ′′ = (c, r + r′) has value V (G ′′) = V (G) + V (G ′).

This Additivity axiom is eminently reasonable in the scenario considered, where the
agent should be willing to act as bookie and bettor in the game. In decision theory,
however, one usually considers scenarios where an agent is simply offered the gamble
and is trying to decide how much to pay for it, without needing to act as a bookie.

1 Dominance will only be needed to prove Theorem 1, that says that rational agents in a many-worlds
theory assign subjective probabilities to the worlds. All other results follow without it, including Theorems
3 and 4, that say that rational agents in Kent’s universe and Many-Worlds bet according to the appropriate
version of the Born rule.
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In this case it is not irrational to set V (c, r + r′) < V (c, r) + V (c, r′); it is in
fact necessary to avoid pathological decisions such as Pascal’s Wager and the St.
Petersburg paradox. As shown by Wallace, this scenario can be dealt with using a
more sophisticated decision theory, such as Savage’s [12,25]. But we believe that such
decision-theoretical sophistication distracts from the physical arguments at hand, and
will stick with the simpler bettor/bookie scenario. One should note, anyway, that even
in Savage’s theoryAdditivity is a good approximation when the values being gambled
are small compared to the bettor’s total wealth, and one could constrain the analysis
to games in which this condition is satisfied.

The fourth and last axiom we need from classical decision theory is that the value
function must be continuous on the coefficients and rewards:

• Continuity Let (Gk) be a sequence2 of games such that limk→∞ Gk = G. Then
V (G) = limk→∞ V (Gk)

It is here just for mathematical convenience. It can be left out entirely if one is happy to
restrict the rewards to be rational numbers (as more realistically they would be integer
multiples of eurocents) and the coefficients to belong to some countable subset of the
complex numbers that depends on the particular many-worlds theory (as it would be
physically suspect to demand them to be specified with infinite precision).

The axioms presented up to this point are already enough to imply that the agent
must assign subjective probabilities to the outcomes of the measurement in the game.
The proof is an elementary exercise in decision theory, but we shall include it here
anyway because it is short, enlightening, and mostly unfamiliar to physicists:

Theorem 1 Let G = (c, r) be a game with n outcomes. A rational agent must assign
it value

V (G) =
n∑

i=1

V (c, ei )ri , (2)

where the vectors ei are the standard basis, and V (c, ei ) are the subjective probabil-
ities, as

V (c, ei ) ≥ 0 and
n∑

i=1

V (c, ei ) = 1 (3)

Proof By Additivity

V (c, r) =
n∑

i=1

V (c, riei ), (4)

so we only need to compute the value of games with a single non-zero reward, e.g.
(c, r1e1), upon which we shall now focus. UsingAdditivity again, we see that for any

2 For concreteness, convergence is defined in the metric induced by the norm ‖G‖ := ‖c‖3 + ‖r‖1.
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positive integer b we have that

V (c, br1e1) = bV (c, r1e1), (5)

and setting r1 = 1/b shows us that

V

(
c,

1

b
e1

)
= 1

b
V (c, e1). (6)

Another application of Additivity lets us conclude that for any positive integer a we
have that

V
(
c,

a

b
e1

)
= a

b
V (c, e1), (7)

so this homogeneity is valid for any positive rational number. To extend it for any
rational number q we use Constancy to conclude that V (c, 0) = 0, where 0 is the
vector of all zeroes, and Additivity again to show that

0 = V (c, 0) = V (c, qe1) + V (c,−qe1), (8)

and therefore that

V (c,−qe1) = −V (c, qe1) . (9)

To extend this to any real number μ, let (qk) be a sequence of rational numbers
converging to it. Then by Continuity

V (c, μe1) = lim
k→∞ V (c, qke1) = lim

k→∞ qkV (c, e1) = μV (c, e1), (10)

and therefore for any reward vector r we have that

V (c, r) =
n∑

i=1

ri V (c, ei ), (11)

so the computation of the value of an arbitrary game reduces to the computation of the
values of the elementary games (c, ei ), which are by definition the subjective proba-
bilities. To see that they are positive and normalised first notice that by Dominance

V (c, ei ) ≥ V (c, 0) = 0, (12)

and that by Constancy

V (c, 1) = 1 =
n∑

i=1

V (c, ei ), (13)

where 1 is the vector of all ones. �	
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This is as far as we can go by using the naïve decision theory. Rational agents must
reason about the games by assigning a probability to each outcome, but the decision
theory is silent about what the probabilities must be.

One can go further, though, by assuming an additional axiom reminiscent of the
disreputable3 Principle of Indifference from classical probability [26]. It states that
one should assign uniform probabilities to symmetric situations: coins and dice should
be regarded as equiprobable because there is no preferred side of the coin or face of
the die.

In a deterministic single-world theory the principle is nonsense, as a truly symmet-
ric situation would be incapable of producing an output. Deterministic single world
theories that are capable of producing outcomes, such as Bohmian mechanics, must
have a variable breaking the symmetry. But a rational agent that knows its value should
definitely not assign uniform probabilities, but rather probability one to the outcome
that will actually happen.

Probabilistic single-world theories fare a bit better, as one can have a perfectly
symmetric situation before themeasurement. But after themeasurement the symmetry
is necessarily broken, as only one outcome actually happens, and a rational agent that
knows which should definitely not assign uniform probabilities.

In both deterministic and probabilistic single-world theories, therefore, an indiffer-
ence principle can only apply to agents with restricted knowledge: about the present, in
the deterministic case, or about the future, in the probabilistic case.Only inmany-world
theories can the symmetry remain rigorously unbroken, even after the measurement
is made, and agents with full knowledge about the game can apply the indifference
principle. Note that even if the agent’s future selves could relay information to the past
about which outcome they experience it would not help, as the agent already knows
that they will have future selves experiencing all outcomes.

The axiom is then

• IndifferenceLet G = (c, r) and σ be a permutation. Then the gamewith permuted
coefficients and rewards Gσ = (σ (c), σ (r)) has value V (Gσ ) = V (G)

Notice that this axiom is not merely saying that it does not matter whether we write
down 1 or 2 to label the outcome of a coin toss, but rather that it does not matter if we
exchange the coefficients and the rewards of the set ofworldswith outcome1with those
of the set of worlds with outcome 2. Worlds 1 and worlds 2 are physically different,
if nothing else for having different measurement results. Indifference implies that
whatever these differences are, the coefficients and rewards are the only relevant ones.
This is clearly not true if outcome 1, and not 2, happens.

This axiom suffices to prove that symmetric games have uniform probabilities:

Lemma 2 (Symmetry). Let G = (c, r) be a game with n outcomes such that all
coefficients ci are equal to c1. Then

3 It is untenable in classical probability because in a given situation there are often several different plausible
symmetries that give rise to different probability assignments. This problem does not arise here, as the
symmetry at hand will be the one between the coefficients of the worlds, or the amplitudes of the quantum
state.
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V (G) = 1

n

n∑
i=1

ri . (14)

Proof Let

Gσi = (σi (c), σi (r)) = (c, σi (r)) (15)

be a version ofGwith the i th cyclic permutation applied to the coefficients and rewards,
so that by Indifference V (Gσi ) = V (G). If one then defines the reward vector

ρ =
n∑

i=1

σi (r), (16)

all its components are equal to
∑n

i=1 ri , so by Constancy the game � = (c, ρ) has
value

V (�) =
n∑

i=1

ri , (17)

but also by Additivity

V (�) =
n∑

i=1

V (c, σi (r)) =
n∑

i=1

V (Gσi ) = nV (G), (18)

and therefore

V (G) = 1

n

n∑
i=1

ri . (19)

�	
Now, to deal with games with unequal coefficients, we shall do a fine-graining

argument to reduce them to symmetric games. How the fine-graining works depends
on the precise physics of the many-worlds theory, so we’ll have different fine-graining
axioms for different theories.

3 Kent’s Universe

In Kent’s universe the agent lives in a deterministic computer simulation run by some
advanced civilization. The branching happens at the press of a button that is displayed
on a wall, that in addition contains a list of non-negative integers m = (m1, . . . ,mn)

and real numbers r = (r1, . . . , rn). These integers play the role of the coefficients in
the game, and mi is literally the number of successor worlds which are created with
reward ri in them.
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In this case it is clear how to do fine-graining: if one plays the game

G =
(
1 r1
2 r2

)
(20)

or the game

G ′ =
⎛
⎝
1 r1
1 r2
1 r2

⎞
⎠ , (21)

in both games three successor worlds are created, one with reward r1 in it, and two
with reward r2. The only difference is that while in game G both worlds with reward
r2 are labelled with outcome 2, in gameG ′ one of the worlds with reward r2 is labelled
with outcome 2 and the other with outcome 3. We postulate that this difference does
not matter, and that V (G ′) = V (G). Since G ′ is symmetric, we can evaluate V (G ′)
using Lemma 2, and thus determine that

V (G) = 1

3
r1 + 2

3
r2. (22)

Generalising this argument, we can determine the value of any game by fine-graining
it into a symmetric game. The formal postulate we need is

• 1-Fine-graining Let

G =

⎛
⎜⎜⎜⎝

m1 r1
m2 r2
...

...

mn rn

⎞
⎟⎟⎟⎠ (23)

be a game with n outcomes. Then for any non-negative integers m11,m12 such
that m11 + m12 = m1 the fine-grained game with n + 1 outcomes

G ′ =

⎛
⎜⎜⎜⎜⎜⎝

m11 r1
m12 r1
m2 r2
...

...

mn rn

⎞
⎟⎟⎟⎟⎟⎠

(24)

has value V (G ′) = V (G)

Theorem 3 Let G = (m, r) be a game. A rational agent in Kent’s universe must assign
it value

V (G) = 1

‖m‖1
n∑

i=1

miri . (25)
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Proof Starting from an arbitrary n-outcome game G = (m, r), we can repeatedly
apply 1-Fine-graining to take it to a symmetric game G ′ = (1(

∑n
i=1 mi ), r′), where

1(
∑n

i=1 mi ) is the vector of
∑n

i=1 mi ones. The reward vector r′ consists of m1 rewards

r1, m2 rewards r2, etc., and can be written as r′ = ⊕n
i=1 r

(mi )
i . Its value V (G ′) can

then by calculated via Lemma 2, and is given by

V (G ′) = 1∑n
i=1 mi

n∑
i=1

mi∑
j=1

ri = 1

‖m‖1
n∑

i=1

miri . (26)

�	

4 Many-Worlds

In the Many-worlds interpretation a measurement is a unitary transformation, that via
decoherence gives rise to superpositions of quasi-classical worlds.We shall not discuss
how this happens, as this has been extensively explored elsewhere [27–30]. Rather, we
shall take for granted that this is indeed the case, and that one can instantiate the games
by doing measurements on quantum states, with the complex amplitudes playing the
role of the coefficients.

The game is started by giving the agent a state

|ψ〉 =
n∑

i=1

αi |i〉, (27)

where the |i〉 are distinguishable states of some infinite-dimensional degree of freedom,
such as position. The agent then does a measurement in the computational basis: a
unitary transformation that acts on the basis state |i〉 together with the measurement
device in the ready state |M?〉 and takes the measurement device to the state with
outcome i called |Mi 〉:

|i〉|M?〉 �→ |i〉|Mi 〉. (28)

The game is concluded by giving the agent reward ri in the worlds with outcome i ,
with the whole process taking the initial state

∑n
i=1 αi |i〉|M?〉|r?〉 to the final state

|G〉 =
n∑

i=1

αi |i〉|Mi 〉|ri 〉. (29)

Since the measurement is done in a fixed basis, the game is completely defined by the
vector of coefficients α and the vector of rewards r, and so we can represent it by the
matrix G = (α, r).

We want to proceed as in Kent’s universe, and use a fine-graining postulate to
reduce arbitrary games to symmetric games. It is not so obvious, however, how to
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do fine-graining in the Many-Worlds picture, as we cannot count worlds in order
to say that games are equivalent if they assign the same number of worlds to each
reward. As argued by Wallace, the continuous nature of quantum mechanics and the
arbitrariness of the border between worlds make it impossible to count them in a
physically meaningful way [11]. One could try, instead, to arbitrarily postulate that
there is one world for each measurement outcome with nonzero coefficient, as is often
proposed4 [5,31].

To see that this is untenable, consider the historical Stern–Gerlach experiment [32],
that measured the spin5 of silver atoms by letting them accumulate on a glass plate;
if some atom ended up on the left hand side of the glass plate it had spin +�

1
2 ,

and if ended up on the right hand side it had spin −�
1
2 . Their apparatus, however,

was not doing a left/right measurement, but rather a much more precise position
measurement, that needs to be coarse-grained in order to obtain a two-outcome spin
measurement. Should we then consider the large number of distinguishable positions
to be the number of worlds produced in this experiment? But if so, what would we
make of a more modern Stern–Gerlach experiment, that instead of the glass plate uses
a Langmuir–Taylor detector, a single hot wire that is scanned across the neutral atom
beam [33,34]? Should it be taken to produce two worlds, one in which the atom hit the
wire and another in which it did not? And what if we do a Frankenstein version of the
Stern–Gerlach experiment, with a glass plate on the left-hand side and a Langmuir–
Taylor detector on the right-hand side? Does it create more worlds with spin+�

1
2 than

with spin −�
1
2 ?

This should make it clear that the number of outcomes in a measurement is largely
arbitrary, and of little relevance. What actually matters is that atoms with spin +�

1
2

go left and atoms with spin −�
1
2 go right; these different experimental setups are

equivalent ways to do the measurement, and we shall base the fine-graining argument
in Many-Worlds precisely on this equivalence.

Consider then a game where a measurement is made on the state

|ψ〉 = α|1〉 + β|2〉, (30)

reward r1 is given in the worlds with outcome 1, and reward r2 in the worlds with
outcome 2, taking it to the final state

|G〉 = α|1〉|M1〉|r1〉 + β|2〉|M2〉|r2〉, (31)

which can also be represented as the game matrix

G =
(

α r1
β r2

)
. (32)

4 To the best of our knowledge there has been no attempt to calculate the number of worlds in an even
remotely realistic model of a measurement.
5 Note that Stern and Gerlach were not aware that they were measuring spin, rather they interpreted the
experiment as a proof of Bohr–Sommerfelds spatial quantization hypothesis.
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Fig. 1 One can measure a state in the {|1〉, |2〉} basis by applying a unitary U to |2〉 that takes it to a
superposition of |2〉 and |3〉, measuring the state in the {|1〉, |2〉, |3〉} basis, and label as 2 both results 2
and 3

An equivalent way to play this game, shown in Fig. 1, is to make a measurement on
the state

|ψ ′〉 = α|1〉 + βU |2〉 = α|1〉 + βγ |2〉 + βδ|3〉 (33)

instead, where an unitary U was applied to |2〉, and apply the label 2 and give reward
r2 to both outcomes 2 and 3, leading to the final state

|G ′〉 = α|1〉|M1〉|r1〉 + βγ |2〉|M2〉|r2〉 + βδ|3〉|M ′
2〉|r2〉, (34)

where |M ′
2〉 is a measurement result physically distinct from |M2〉, but with the same

label.
This second way to do the measurement still gives outcomes 1 and 2 whenever the

initial state is |1〉 and |2〉, so it respects the definition of measurement given above and
normal practice in real laboratories.

If one does not, however, coarse-grain the outcomes 2 and 3 together, but rather
leaves them distinct, then we are playing instead the three-outcome game

G ′ =
⎛
⎝

α r1
βγ r2
βδ r2

⎞
⎠ . (35)

We postulate that this labelling choice does not make a difference, so a rational agent
must assign the same value to games G and G ′. This suffices to fine-grain arbitrary
games into symmetric games. As an illustration, consider the game

G =
(

1 r1
2eiθ r2

)
. (36)

Doing the fine-graining with a unitary U that takes the state |2〉 to

U |2〉 = e−iθ

√
2

(|2〉 + |3〉) , (37)
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we take G to

G ′ =
⎛
⎝

1 r1√
2 r2√
2 r2

⎞
⎠ . (38)

Applying similar unitaries to |2〉 and |3〉, we take G ′ to

G ′′ =

⎛
⎜⎜⎜⎜⎝

1 r1
1 r2
1 r2
1 r2
1 r2

⎞
⎟⎟⎟⎟⎠

, (39)

which is a symmetric game, and so V (G ′′) = V (G) can be evaluated via Lemma 2,
resulting in

V (G) = 1

5
r1 + 4

5
r2. (40)

We can now prove the Born rule in the general case by formalising this argument via
the following axiom:

• 2-Fine-graining Let

G =

⎛
⎜⎜⎜⎝

α1 r1
α2 r2
...

...

αn rn

⎞
⎟⎟⎟⎠ (41)

be a game with n outcomes. Then for any complex numbers α11, α12 such that√
|α11|2 + |α12|2 = |α1| the fine-grained game with n + 1 outcomes

G ′ =

⎛
⎜⎜⎜⎜⎜⎝

α11 r1
α12 r1
α2 r2
...

...

αn rn

⎞
⎟⎟⎟⎟⎟⎠

(42)

has value V (G ′) = V (G)

Theorem 4 (Deutsch–Wallace). Let G = (α, r) be a game. A rational agent in Many-
Worlds must assign it value

V (G) = 1

‖α‖22

n∑
i=1

|αi |2ri (43)
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Proof Let then G = (α, r) be a n-outcome game such that the coefficients α j are of

the form α j =
√

a j
b j
eiθ j , and do a trivial 2-Fine-graining in each outcome to take it

to a n-outcome game G ′ = (α′, r) with coefficients α′
i = |αi | =

√
ai
bi
.

Let then d = ∏n
i=1 bi , and define the integer a′

i = dai/bi so that αi =
√

a′
i
d . One

can then fine-grain each coefficient αi into a′
i coefficients equal to 1/

√
d, obtaining

a symmetric game G ′′ = (1(
∑n

i=1 a
′
i )/

√
d, r′) with reward vector r′ = ⊕n

i=1 r
(a′

i )

i . By
Lemma 2 the value of G ′′ is given by

V (G ′′) = 1∑n
i=1 a

′
i

n∑
i=1

a′
i∑

j=1

ri = 1∑n
i=1

ai
bi

n∑
i=1

ai
bi
ri = 1

‖α‖22

n∑
i=1

|αi |2ri , (44)

and by 2-Fine-graining this is equal to V (G).
To generalise this argument for a game G = (α, r) with arbitrary complex

coefficients α j , it is enough to notice that numbers of the form
√

a
b e

iθ are dense

in the complex plane. Let then αk be a sequence of coefficient vectors such that

limk→∞ αk = α and that for all k we have αkl =
√

akl
bkl

eiθl . Let then Gk = (αk, r). By

Continuity, we have that

V (G) = lim
k→∞ V (Gk) = lim

k→∞
1

‖αk‖22

n∑
l=1

|αkl |2 rl = 1

‖α‖22

n∑
j=1

|αi |2r j . (45)

�	
Note that we did not have to assume that the initial statewas normalised, as the proof

implies that a factor of ‖α‖22 must appear on the denominator of the value function.
We did have to assume that the transformations between quantum states are done via
unitaries, but this comes from the background assumption of Many-Worlds quantum
mechanics.

In some textbooks one postulates the Born rule as a fundamental principle, and
motivates unitary evolution from conservation of probabilities, see e.g. Refs. [35–37].
Such an approach would make deriving the Born rule from the unitary evolution a
bit circular. Other textbooks, however, postulate unitarity as fundamental, motivated
by analogy with Hamiltonian classical mechanics, and consider the Born rule a sep-
arate postulate, see e.g. Refs. [38–40]. This latter approach parallels the historical
development of the Schrödinger equation and the Born rule [41,42].

4.1 Generalisation

To emphasize that the Born rule comes from fine-graining through unitary transforma-
tions that preserve the 2-norm, we’d like to generalise the fine-graining argument to
transformations that preserve some other norm.Which norms should we consider? As
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we show in Appendix A, some weak consistency conditions imply that fine-graining
can only be done if the transformations preserve the p-norm of the vectors.

Consider, then, some hypothetical6 many-worlds theory where the p-norm is pre-
served. In such a theory we can fine-grain the game

G =
(

1 r1
2eiθ r2

)
(46)

by using a transformation T that takes the state |2〉 into7

T |2〉 = e−iθ

2

2p∑
i=1

|i + 1〉. (47)

The fine-grained game is then

G ′ =
(

1 r1
1(2p) r2

)
, (48)

where 1(2p) is the vector of 2p ones, and from the analogous argument we conclude
that

V (G) = 1

2p
r1 + 2p − 1

2p
r2. (49)

The general p-Born rule can then be proven via the following axiom:

• p-Fine-graining Let

G =

⎛
⎜⎜⎜⎝

α1 r1
α2 r2
...

...

αn rn

⎞
⎟⎟⎟⎠ (50)

be a game with n outcomes. Then for any complex numbers α11, α12 such that(|α11|p + |α12|p
) 1
p = |α1| the fine-grained game with n + 1 outcomes

G ′ =

⎛
⎜⎜⎜⎜⎜⎝

α11 r1
α12 r1
α2 r2
...

...

αn rn

⎞
⎟⎟⎟⎟⎟⎠

(51)

has value V (G ′) = V (G)

6 One should take seriously the “hypothetical” here, as theories where the p-norm is preserved are rather
pathological.As shown inRef. [43], the only linear transformations that preserve the p-normof all vectors for
p = 1, 2 are permutations composedwith phases. Herewe get around this by only asking the transformation
T to preserve the norm of the computational basis.
7 In this example p must be of the form log2 n for integer n ≥ 2, but in general any real p ≥ 1 works.
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Theorem 5 Let G = (α, r) be a game. A rational agent in a many-worlds theory
where transformations preserve the p-norm must assign it value

V (G) = 1

‖α‖p
p

n∑
i=1

|αi |pri (52)

Proof The proof is similar to theMany-Worlds case, sowe shall only sketch it: consider

a gameG = (α, r)with coefficients α j =
(
a j
b j

) 1
p
eiθ j , do a trivial p-Fine-graining to

get rid of the phase, rewrite the coefficients as
(
a′
i
d

) 1
p
for d = ∏n

i=1 bi anda
′
i = dai/bi ,

fine-grain it into a game with a′
i coefficients equal to (1/d)

1
p for each outcome i , use

Lemma 2 to conclude that the value of the fine-grained game is given by equation
(52), and use Continuity to show that this formula is valid for any game. �	

Notice that not only the proof does not work for the case of the max-norm (often
referred to as p = ∞), but the result is also false, as it is not possible to fine-grain
all games into symmetric games via transformations that preserve the max-norm. For
example, any fine-graining of the game

G =
(
1 r1
2 r2

)
(53)

will have at least one coefficient 1 associated to reward r1 and at least one coefficient
2 associated to reward r2. One could try, nevertheless, to arbitrarily define

V (G) = lim
p→∞

1

‖α‖p
p

n∑
i=1

|αi |pri = 1

#M

∑
i∈M

ri , (54)

where M is the set of i such that |αi | = max j |α j |. This max-Born rule would be
consistent with Constancy, Dominance, Additivity, and Indifference, but not with
Continuity.

5 Objective Probabilities

We do not accept that the behaviour of a rational decision maker should play a
role in modelling physical systems—Richard Gill [17].

Up to now the discussion has been exclusively about subjective probabilities. We
have argued only that it would be irrational to assign probabilities different than those
given by the generalised Deutsch–Wallace theorem because one would unjustifiably
break the symmetries of the theory. We have not argued, though, that it would be
irrational to assign different probabilities because they would predict different relative
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frequencies. Such an argument would be suspect: why should these explicitly subjec-
tive probabilities be connected to the clearly objective relative frequencies? Should
not relative frequencies be connected to objective probabilities instead?

The situation is not as bad as it sounds, because although subjective, these prob-
abilities depend only on the coefficients of the game, which are objective, and their
derivation is done from defensible rationality axioms together with facts about the
world and the theory describing it; it would be rather surprising if these subjective
probabilities turned out to be completely fantastic. In fact, such well-grounded sub-
jective probabilities are even taken to be equal to the objective probabilities by Lewis’
Principal Principle [44], which states that

Pro(E) = Prs(E |HT ), (55)

that is, the objective probability of an event E is equal to the subjective probabilities
assigned to E by a rational agent that knows the history of the world up to this point
H and the theory that describes the world T .

This is still a bit unsatisfactory, because the relationship between objective proba-
bilities and relative frequencies should not depend on the opinions of rational agents or
even their existence. We believe, after all, that radioactive elements have been decay-
ing on Earth much before humans appeared to reason about them, and it would be
absurd to assume that the relative frequencies budged at all when we arrived.

We can do better, though. We shall propose a definition of objective probability
in terms of the proportion of worlds in which an event is realised, and show that the
connection of these objective probabilities with relative frequencies is mathematically
identical to the one in single-world theories. In this way they fulfil the main role8

objective probabilities must play, as defended by Saunders in Ref. [45].
This connection, in single-world theories, is given by the law of large numbers,

that says roughly that for a large number of trials the relative frequencies will be close
to the objective probability, with high objective probability9. More precisely, if the
objective probability of observing some event is p, then after N trials the objective
probability that the frequency fN will be farther than ε away from p is upperbounded
by a function that is decreasing in N and ε, that is, that

Pro(| fN − p| > ε) ≤ 2e−2Nε2 (56)

where the precise form of the upper bound is not relevant, but for concreteness we
used the one given by the Hoeffding inequality.

To see how this works in many-world theories, we shall first consider how the
relative frequencies behave in Kent’s universe, and then generalise. Consider then that

8 We talk about the roles objective probabilities play instead of the definition of objective probabilities
because this is the best we can do. Unlike subjective probabilities, there is no widely accepted definition of
objective probability that we could try to satisfy.
9 One often hears a different story, that in the limit of an infinite number of trials the relative frequency
is equal to the objective probability, full stop. This is simply mistaken, but given that the mathematics we
present here are identical, those that want to insist on this mistake can do it equally well in many-world
theories.
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one is collecting relative frequencies by performing N repetitions of a n-outcome
measurement, where mi worlds are created with outcome i . After N trials there are
nN sets of worlds, each set identified by a sequence of outcomes s = (s1, . . . , sN ),
with si ∈ {1, . . . , n}. The number of worlds where a sequence s is obtained is clearly
given by

#s =
N∏
i=1

#si =
n∏

i=1

mki
i , (57)

where ki is the number of outcomes i in s. If we define then the proportion of worlds
with outcome sequence s as

�s := #s∑
s′ #s′

, (58)

then the proportion of worlds where the relative frequency fN of outcome 1 is k/N is

�(k, N ) =
(
N

k

)
�k1(1 − �1)

N−k, (59)

which is formally identical to the binomial distribution, and therefore allows us to
prove a law of large numbers for the proportion of worlds, which says that in most
worlds the relative frequency of outcome 1 will be close to �1, or more precisely that

�
(
| fN − �1| ≥ ε

)
≤ 2e−2Nε2 . (60)

This suggests that we could try identifying objective probabilities with the propor-
tion of worlds in a general many-worlds theory. Consider then that in such a theory one
is collecting frequencies by performing N repetitions of a n-outcome measurement
as in Kent’s universe. Now the branching coefficients are not the number of worlds
created with each outcome, however, and as argued in Sect. 4 we do not think that
it is possible to assign a sensible world count. We can, however, assign a sensible
world measure10: a function � that assigns a real number �s ≥ 0 to the set of worlds
with outcome sequence s, and defines the measure of a set of worlds with outcome
sequences in some set S to be

�(S) =
∑
s∈S

�s. (61)

Since the branchings are completely independent, it is natural to postulate that

�s =
N∏
i=1

�si , (62)

10 Which does include the counting measure as a particular case, so we are by no means assuming that
worlds cannot be counted.
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that is, that the measure of the set of worlds with outcomes s is the product of the
single-trial measures, and this is enough to show that in most worlds the relative
frequencies will be right. Defining the proportion of worlds with outcome sequence s
to be

λs := �s∑
s′ �s′

, (63)

it follows that the proportion of worlds with relative frequency k/N of outcome 1 is

λ(k, N ) =
(
N

k

)
λk1(1 − λ1)

N−k, (64)

which is again formally identical to the binomial distribution, and thus the law of large
numbers for the proportion of worlds follows.

This implies that in any many-worlds theory with such a product measure it is
eminently reasonable to count relative frequencies, and use them to guess which is the
proportion of worlds with a given outcome: in most worlds one will be right.

This works perfectly well in Many-Worlds, if we take the measure of worlds to
be the one suggested by the Born rule, or, more generally, the p-Born rule. To see
that, consider again the N repetitions of the n-outcome measurement, which in Many-
Worlds is represented by the transformation

N⊗
i=1

n∑
j=1

α j | j〉|Mi
?〉 �→ |w〉 =

N⊗
i=1

n∑
j=1

α j | j〉|Mi
j 〉, (65)

where the final state |w〉 can be written as the superposition of the nN sets of worlds

|w〉 =
∑
s

|ws〉 =
∑
s

N∏
i=1

αsi

N⊗
j=1

|s j 〉|M j
s j 〉. (66)

If we then postulate the measure of the set of worlds |ws〉 to be

�s := ‖|ws〉‖p
p, (67)

then it does decompose as a product of the single-trial measures, as required. Defining
again the proportion of worlds with outcomes s to be

λs := �s∑
s′ �s′

, (68)

we see that the proportion of worlds with relative frequency fN = k/N is again given
by the binomial distribution, from which the law of large numbers for the proportion
of worlds again follows.
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Fig. 2 An agent performs a measurement described by the coefficients c1 and c2. In the worlds where
outcome 2 is obtained, the agent performs the same measurement again

In summary, if the correct way to measure the proportion of worlds is via the p-
norm, then in most worlds we will observe frequencies conforming to the p-Born
rule. Conversely, if we observe relative frequencies conforming to the 2-Born rule, we
should bet that the correct way to measure the proportion of worlds is via the 2-norm.

6 Multiplying or Splitting

The analogy between Kent’s universe and Many-Worlds is not perfect, however, and
it breaks down in the Once-or-Twice scenario shown in Fig. 2 (discussed by Wallace
[23] and Sebens and Carroll [46]). In it, an agent performs ameasurement described by
the coefficients c1 and c2, and in the worlds where outcome 2 is obtained they perform
the same measurement again. What are the subjective and objective probabilities of
the sequences of outcomes (1), (2, 1), and (2, 2)?

First we shall consider the objective probabilities. In Kent’s universe it seems clear
what they are: there are in total c1 + c1c2 + c22 worlds, of which c1 have outcome (1),
c2c1 have outcomes (2, 1), and c22 have outcomes (2, 2), so the proportions are

�1 = c1
c1 + c1c2 + c22

, (69a)

�21 = c2c1
c1 + c1c2 + c22

, (69b)

�22 = c22
c1 + c1c2 + c22

. (69c)

If we measure frequencies, which are after all what objective probabilities should be
connected to, then in most worlds they will be close to these proportions.

In Many-Worlds (and more generally in the hypothetical p-theories), however,
Once-or-Twice is described by the transformation

(c1|1〉 + c2|2〉)|M?〉(c1|1〉 + c2|2〉)|M?〉
�→ c1|1〉|M1〉(c1|1〉 + c2|2〉)|M?〉 + c2c1|2〉|M2〉|1〉|M1〉 + c22|2〉|M2〉|2〉|M2〉,

(70)
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and the measure of worlds is given by Eq. (67), which tells us that

λ1 = |c1|p
|c1|p + |c2|p , (71a)

λ21 = |c2|p|c1|p
(|c1|p + |c2|p)2 , (71b)

λ22 = |c2|2p
(|c1|p + |c2|p)2 , (71c)

a fundamentally different result. If c1 = c2, for example, �1 = 1/3, but λ1 = 1/2.
What is the source of this disconnect? Our proposal is that while in Kent’s universe

the number of worlds is quite literally being multiplied upon branching, this is clearly
not the case in Many-Worlds, as branching increases neither number of particles nor
energy. In fact, the total measure of worlds, as given by Eq. (67), is conserved. A
closer analogue toMany-Worlds would be a reversed version of Kent’s universe where
branching conserves the number of worlds. There the computer simulation starts with
a large number of worlds, and when ameasurement is made each outcome is imprinted
in a subset of the worlds, with the relative sizes of these subsets determined by the
coefficients. In the Once-or-Twice case, it suffices to start with (c1 + c2)2 worlds.
After the first branching (c1 + c2)c1 are imprinted with outcome 1, and (c1 + c2)c2
with outcome 2. Out of the (c1 + c2)c2 with outcome 2 a further c2c1 receive a 1, and
c22 receive another 2. The proportions of worlds are given by

�′
1 = c1

c1 + c2
, (72a)

�′
21 = c2c1

(c1 + c2)2
, (72b)

�′
22 = c22

(c1 + c2)2
, (72c)

now matching Many-Worlds11.
Now turning to the subjective probabilities, we face a difficulty, because the gener-

alised Deutsch–Wallace theorem proved here deals only with simple measurements,
not sequences of measurements. The original versions by Deutsch and Wallace do
attribute probabilities to sequences of measurements, though, through an axiom that
Deutsch called substitutibility and Wallace called diachronic consistency. It says that
the value of a game does not change if one of its rewards is replaced by a game of
equal value, so if an agent attributes value V (G) to some game G, they really must
be indifferent between receving reward V (G) or playing G, even when this reward
would be given as part of another game. More formally, it is

• Substitution Let G = (c, r) be a game, and G ′ = (c′, r′) another game such
that V (G ′) = r1. Then the sequential game where an agent plays G but instead
of receiving reward r1 they play G ′ has value equal to V (G).

11 It should be clear that neither the regular nor the reverse Kent’s universe are realistic analogues of Many-
Worlds: both of them require an exponential number of worlds, either in the end or in the beginning of the
simulation.
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With it, we can prove that the subjective probabilities in Many-Worlds match the
proportion of worlds from equations (71), as expected, but Substitution also implies
that in both the normal and the reverse Kent’s universe the subjective probabilities
match those from equations (72). Here the Principal Principle raises a red flag, as in
the regular Kent’s universe they should match equations (69) instead.

What went wrong?Well, Substitution implies that, in the case where c1 = c2 = 1,
one should be indifferent between playing a game where one future self gets reward r1
and another reward r2, and another game where one future self gets reward r1 but two
get reward r2. If all these future selves are equal, as is the case in Kent’s universe, one
should definitely not be indifferent! One should prefer the second game, and assign
probability 1/3 to each outcome12. This is also the answer one obtains from Elga’s
indifference principle [47].

We should, therefore, reject Substitution as a rationality principle valid for general
many-world theories, as it seems valid only for thosewhere the total measure of worlds
is conserved upon branching. As a substitute, in both the regular and the reverse Kent’s
universe we can unproblematically follow the objective probabilities, and say that a
sequential game is equivalent to a simple game where the same rewards are given
in the same number of worlds. In Many-Worlds the objective probabilities are not
well-established, so instead we argue that different ways of doing a measurement are
equivalent, as done in Sect. 4. Specifically, we say that measuring a state |ψ〉 and then
a state |ϕ〉 in the worlds with outcome 2 is equivalent to doing a joint measurement
on |ψ〉|ϕ〉 and coarse-graining the outcomes of the measurement on |ϕ〉 in the worlds
where the outcome of the measurement on |ψ〉 was different than 2. This allows us to
derive Substitution as a theorem in Many-Worlds and in the reverse Kent’s universe,
but not in the regular Kent’s universe. This is done in detail in Appendix B.

12 Sebens and Carroll claim, however, that an agent that assigns these probabilities can be Dutch-booked
[46]: After the first measurement, but before the second, an agent that is ignorant of the outcome will assign
probability 1/2 to being in each world, and will therefore accept a bet that pays 3e in the world with
outcome 1 and −3e in the world with outcome 2. After the second measurement, the agent will assign
probability 1/3 to being in each world, and will therefore accept a bet that pays −4e in the world with a
single outcome 1 and 2e in the worlds with outcomes (2, 1) and (2, 2). If the agent accepts both bets, then
in all worlds they will lose 1e.
The problem with this argument is that the agent would not have accepted the first bet if they knew that
they would be multiplied in the world with outcome 2: the assignment of probability 1/2 was a mistake,
that the agent corrected after learning of the second multiplication. Given that they accepted the incorrect
bet, however, the agent knows that accepting the second, fair, bet will cause them to be Dutch-booked, so
they would reject it. Note, furthermore, that making two bets about the same situation using two different
probabilities generically leads to Dutch-booking, even in single-world theories. Consider an agent that
believes a coin to be fair, and therefore accepts a bet that pays 3e if heads, and −3e if tails. If the agent
changes their mind, and decides instead that the coin has probability 2/3 of coming up tails, and accepts
a bet that pays −4e if heads and 2e if tails, then the agent will lose 1e independently of the result of the
coin flip.
This raises the question of how a realistic agent in Kent’s universe could ever assign probabilities, since
they would depend on the whole tree of future branchings. The agent could simply recognize that it is not
possible to determine the objective probabilities, and use only the part of the branching tree that they can
foresee to calculate their subjective probabilities. Analogously, a grandparent could decide to divide their
inheritance among their children weighted by how the number of grandchildren they begat, but refuse to
speculate about how many children each grandchild will have.
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In all many-world theories, these arguments imply that the agents should be indif-
ferent to the number of branchings, caring only about which coefficients are associated
to which rewards, thus satisfying the Principal Principle.

7 Conclusion

We investigated how subjective and objective probabilities work in many-world the-
ories.

With respect to subjective probabilities, we generalised the Deutsch–Wallace
theorem, and showed how it can be broken down in three parts: the first is a decision-
theoretical core common to both single-world and many-world theories, that says that
rational agents should use probabilities to make their decisions. The second part is
a symmetry argument very natural for many-world theories, but less so for single-
world ones, that implies that rational agents should assign uniform probabilities to
physically symmetric games. The last part is a fine-graining argument used to reduce
arbitrary games to symmetric ones. This reduction takes different forms depending
on the precise physics of the many-worlds theory in question: in Kent’s universe it
implies that the probabilities come from the 1-norm, while in Many-Worlds it implies
that the probabilities come from the 2-norm.While in Kent’s universe the fine-graining
is motivated explicitly from many-worlds considerations, the Many-Worlds version
depends only on operational assumptions, so if one can stomach the symmetry argu-
ment, this derivation of the Born rule can also be considered valid for single-world
versions of quantum mechanics.

With respect to objective probabilities, we have argued that they should be identified
with the proportion of worlds in which an event happens, and showed that for any
measure of worlds that has a product form an analogue of the law of large numbers
can be proven: in most worlds the relative frequency will be close to the proportion
of worlds. In Kent’s universe, the motivating example, this argument can tell us what
the objective probabilities are, as it is obvious how to measure the proportion of
worlds. Furthermore, one can use the Principal Principle as a consistent check, and
note that theymatch the subjective probabilities from the generalisedDeutsch–Wallace
theorem.

In Many-Worlds, however, it is not clear how to measure the proportion of worlds,
so this argument cannot be used to derive the objective probabilities. It could be used
in the other direction, though: if one takes both the Deutsch–Wallace theorem and the
Principal Principle as true, then one could show that worlds should be measured via
the 2-norm. Alternatively, the argument can simply be used to say that if you want to
find out what the proportion of worlds is, gathering relative frequencies is a good idea,
as in most worlds you’ll get the right answer.

We have also shown that the analogy between Many-Worlds and Kent’s universe
breaks down in the Once-or-Twice scenario, and used this breakdown to argue that a
key rationality principle used in the original version of theDeutsch–Wallace theorem—
that when playing a sequential game agents should be indifferent between receiving
a reward or playing a subgame with the same value—is not valid in general many-
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world theories, and thus one should rely on other arguments to calculate the value of
sequential games.
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Appendix A: Consistent Fine-Graining

For which norms can the fine-graining argument work?
There are multiple ways to fine-grain a game with unequal coefficients into a sym-

metric game. For example, if μ = ∥∥(‖1(n)‖, ‖1(m)‖)∥∥, where 1(n) is the vector with n
ones, one can fine-grain the game

G =
(
1 r1
μ r2

)
(73)

either by first taking it to

G ′ =
⎛
⎝

1 r1
‖1(n)‖ r2
‖1(m)‖ r2

⎞
⎠ , (74)

and then applying two more fine-grainings to take it to

G ′′ =
⎛
⎝

1 r1
1(n) r(n)

2

1(m) r(m)
2

⎞
⎠ , (75)

or by taking G directly to G ′′, which will be possible only if μ = ‖1(n+m)‖. We want
all possible ways of fine-graining a game to give same result, so we demand the norm
to be such that for all vectors v and w with disjoint support

‖v + w‖ = ∥∥(‖v‖, ‖w‖)∥∥. (76)

We also demand the norm to be permutation-invariant, as it seems unphysical to
attribute meaning to the labelling of the vectors, and that ‖(1, 1)‖ = 1, because
otherwise ‖1(n)‖ = 1 for all n, and it is therefore impossible to fine-grain any non-
trivial game.

These conditions are enough to show that these norms must be equivalent to p-
norms when restricted to vectors of rational numbers, as can be seen by adapting an
argument by Bohnenblust [48]. We have then
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Theorem 6 Let ‖ · ‖ : C
N → R be a permutation-invariant norm for N ≥ 3 such that

‖(1, 1)‖ = 1 and

‖v + w‖ = ∥∥(‖v‖, ‖w‖)∥∥ (77)

for all vectors v,w with disjoint support. Then for any vector c such that the absolute
value of its components is rational,

‖c‖ =
(∑

i

|ci |p
) 1

p

, (78)

for some real number p ≥ 1.

Proof Let f be such that f (1) := ‖1‖ and f (n + 1) := ‖(1, f (n))‖. First note that
f (1) = 1, as ‖1‖ = ‖(1, 0)‖ = ‖(‖(1, 0)‖, ‖(0, 0)‖)‖ = ‖(1, 0)‖2.
We need to show that f (n) is monotonous, and that f (nk) = f k(n). For the former,

consider the identity 2( f (n), 0) = ( f (n), 1) + ( f (n),−1) and take the norm of both
sides. By the triangle inequality

2 f (n) ≤ ‖( f (n), 1)‖ + ‖( f (n),−1)‖ = 2 f (n + 1). (79)

For the latter, first we show that f (n + m) = ‖( f (m), f (n)‖. Assume that it holds
for some m. Then

f (n + 1 + m) = ‖( f (m), f (n + 1))‖ = ‖( f (m), 1, f (n))‖ = ‖( f (m + 1), f (n))‖.
(80)

Since it holds for m = 1, by induction it holds for all m. Now assume that f (nm) =
f (n) f (m) holds for some m. Then

f (n(m + 1)) = f (nm + n) = ‖( f (nm), f (n))‖ = f (n)‖( f (m), 1)‖ = f (n) f (m + 1),

(81)

and therefore by induction this is true for all m, as it obviously holds for m = 1. This
implies that f (nk) = f k(n).

Now letm, n ≥ 2 be some fixed integers, and h the integer such that for any positive
integer k

mh ≤ nk < mh+1. (82)

Applying f (·) to these numbers, it follows that

h log f (m) ≤ k log f (n) ≤ (h + 1) log f (m), (83)
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and using the fact that h ≤ k log n
logm and h > k log n

logm − 1 we have that

log f (m)

logm
− log f (m)

k log n
<

log f (n)

log n
≤ log f (m)

logm
+ log f (m)

k log n
. (84)

Taking the limit of k going to infinity lets us conclude that

log f (m)

logm
= log f (n)

log n
, (85)

which means that this fraction is a constant independent of n (and different than 0 as
f (2) > 1). Calling this constant 1/p, we conclude that

f (n) = n
1
p .

Now for any rational number m/n we have that

‖(1,m/n)‖ = 1

n
‖(n,m)‖ = 1

n
‖( f (n p), f (mp)‖ = 1

n
f (n p + mp) = (1 + (m/n)p)

1
p ,

so by homogeneity ‖(a, b)‖ = (|a|p + |b|p) 1
p for any rationals |a| and |b|, and by

induction for any vector c such that the absolute values of the components are rational
numbers

‖c‖ =
(∑

i

|ci |p
) 1

p

. (86)

�	
If one furthermore assumes some regularity condition, then the result is valid for any
complex vector.

Appendix B: Reducing Sequential Games to Simple Games

Consider the sequential game

G =
⎛
⎝
c1 r1
c2 d1 s1

d2 s2

⎞
⎠ , (87)

where in the worlds with outcome 1 reward r1 is given, but in the worlds with outcome

2 the subgame H =
(
d1 s1
d2 s2

)
is played. We want to reduce it to a simple game in both

Kent’s universes and Many-Worlds.
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In the regular Kent’s universe c1 worlds are created with reward r1, c2d1 worlds
are created with reward s1, and c2d2 worlds are created with reward s2, so it seems
natural to postulate that G is equivalent to the simple game

G ′ =
⎛
⎝

c1 r1
c2d1 s1
c2d2 s2

⎞
⎠ . (88)

In the reverse Kent’s universe, there are M(c1 + c2)(d1 +d2) worlds in the beginning.
After the first branching, Mc1(d1 + d2) worlds are imprinted with outcome 1, and the
remaining Mc2(d1 + d2) worlds are split again, with Mc2d1 being imprinted with a
further outcome 1, and Mc2d2 with outcome 2. In the end there are Mc1(d1 + d2)
with reward r1, Mc2d1 worlds with reward s1, and Mc2d2 worlds with reward s2, so
it seems natural to postulate that G is equivalent to the simple game

G ′′ =
⎛
⎝
c1(d1 + d2) r1

c2d1 s1
c2d2 s2

⎞
⎠ . (89)

Note that in the reverse Kent’s universe Substitution is satisfied: the value of the
subgame H is

V (H) = 1

d1 + d2
(d1s1 + d2s2), (90)

and the value of G there is

V (G) = 1

(c1 + c2)(d1 + d2)

(
c1(d1 + d2)r1 + c2(d1s1 + d2s2)

)
(91)

= 1

c1 + c2
(c1r1 + c2V (H)), (92)

which is equal to the value of

(
c1 r1
c2 V (H)

)
, as required. We shall not prove the general

case, as that is quite straightforward.
In Many-Worlds, the game G is instantiated by making a measurement on the state

|ψ〉 = c1|1〉+ c2|2〉, giving reward r1 in the worlds with outcome 1, and in the worlds
with outcome 2 doing a measurement on the state |ϕ〉 = d1|1〉 + d2|2〉, finally giving
rewards s1 and s2 in theworldswith the second outcomes 1 and 2. Thesemeasurements
take the initial state |ψ〉|M?〉|ϕ〉|D?〉 to the final state

|G〉 = c1|1〉|M1〉|ϕ〉|D?〉|r1〉 + c2d1|2〉|M2〉|1〉|D1〉|r2〉 + c2d2|2〉|M2〉|2〉|D2〉|r3〉.
(93)

An equivalent way to play this game is to make a joint measurement on the state

|ψ〉|ϕ〉 = c1d1|1〉|1〉 + c1d2|1〉|2〉 + c2d1|2〉|1〉 + c2d2|2〉|2〉, (94)
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but in the worlds where the measurement on |ψ〉 resulted in 1 apply the label ? to both
outcomes of the measurement on |ϕ〉, leading to the final state

|G ′〉 = c1d1|1〉|M1〉|1〉|D′
?〉|r1〉 + c1d2|1〉|M1〉|2〉|D′′

? 〉|r1〉
+ c2d1|2〉|M2〉|1〉|D1〉|s1〉 + c2d2|2〉|M2〉|2〉|D2〉|s2〉 (95)

where |D′
?〉 and |D′′

? 〉 are measurements results physically distinct from |D?〉, but with
the same label.

If one does not, however, coarse-grain the results (1, 1) and (1, 2) together, then
this measurement procedure can be regarded as playing the simple game

G ′′′ =

⎛
⎜⎜⎝
c1d1 r1
c1d2 r1
c2d1 s1
c2d2 s2

⎞
⎟⎟⎠ (96)

instead. We postulate therefore that a rational agent in Many-Worlds should regard G
and G ′′′ as equivalent, or more formally that:

• Reduction The sequential game

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

α1 r1
...

...

αn β1 s1
...

...

βm sm

⎞
⎟⎟⎟⎟⎟⎟⎠

(97)

where subgame (β, s) is played in the worlds with outcome n, has the same value
as the simple game

G ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1β r1
...

...

αn−1β rn−1
αnβ1 s1

...
...

αnβm−1 sm−1
αnβm sm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (98)

This Reduction postulate suffices to prove Substitution as a theorem, as the value of
the subgame (β, s) is

V (β, s) = 1

‖β‖p
p

m∑
j=1

|β j |p, (99)
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and the value of G is

V (G) = 1

‖α‖p
p‖β‖p

p

⎛
⎝‖β‖p

p

n−1∑
i=1

|αi |pri + |αn|p
m∑
j=1

|β j |ps j
⎞
⎠ (100)

= 1

‖α‖p
p

(
n−1∑
i=1

|αi |pri + |αn|pV (β, s)

)
, (101)

as required.
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