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Abstract
ComplexifiedLiénard–Wiechert potentials simplify themathematics ofKerr–Newman
particles. Here we constrain them by fiat to move along Bohmian trajectories to see if
anything interesting occurs, as their equations of motion are not known. A covariant
theory due to Stueckelberg is used. This paper deviates from the traditional Bohmian
interpretation of quantum mechanics since the electromagnetic interactions of Kerr–
Newman particles are dictated by general relativity. A Gaussian wave function is used
to produce theBohmian trajectories, which are found to bemulti-valued.A generalized
analytic continuation is introduced which leads to an infinite number of trajectories.
These include the entire set of Bohmian trajectories. This leads to multiple retarded
times which come into play in complex space-time. If one weights these trajectories
by their natural Bohmian weighting factors, then it is found that the particles do not
radiate, that they are extended, and that they can have a finite electrostatic self energy,
thus avoiding the usual divergence of the charged point particle. This effort does not
in any way criticize or downplay the traditional Bohmian interpretation which does
not assume the standard electromagnetic coupling to charged particles, but it suggests
that a hybridization of Kerr–Newman particle theory with Bohmian mechanics might
lead to interesting new physics, and maybe even the possibility of emergent quantum
mechanics.

Keywords Quantum gravity · Kerr–Newman · Bohm · Complex space-time ·
Electron model · Emergent quantum mechanics

1 Introduction

This paper studies Kerr–Newman charged particles moving along free-particle
Bohmian trajectories embedded in complex space-time. These are coupled directly
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to the electromagnetic fields in the standard way, and the resulting Liénard–Wiechert
potentials are analyzed. This form of coupling is dictated by the theory of general
relativity. In the Bohmian interpretation of quantum mechanics, no such coupling of
Bohmian particles to classical electromagnetic fields is assumed. Therefore, in this
paper, I am deviating from the Bohmian interpretation, but using the Bohmian trajec-
tories nonetheless. The Bohmian interpretation is perfectly consistent, and I do not
mean by this to detract from it in any way. Rather I’m trying to see if there is anything
to be learned about Kerr–Newman particles in this way. It appears that there might be.

Recently Maldacena and Susskind have proposed that quantum entanglement and
the Einstein–Rosen bridge might be intimately related to one another [1,2]. They and
others argue that gravity may be an emergent phenomenon, and that quantum entan-
glement is a crucial ingredient of this emergence [3–5]. Einstein thought that quantum
theory might possibly be derivable from general relativity and electromagnetism. This
is clear from some of the statements in the Einstein and Rosen paper [6], as well as
many other writings of Einstein dealing with unified field theory [7]. The quest for
a deeper understanding of quantum mechanics is still an active research topic. I cite
only a small but significant sampling along these lines [8–12]. The results presented
here touch upon these issues, and on the possibility of emergent quantum mechanics.

This paper is a follow-up to an earlier study [13,14] in which the complexified
Lorentz–Dirac equation was analyzed, and by means of analytic continuation some of
the runaway solutions became oscillatory, providing a mechanism for zitterbewegung,
whose importance for the foundations of quantum mechanics has been emphasized
[15,16]. The analytic continuation was justified by complex manifold techniques that
have been prevalent in the Kerr–Newman metric literature [17–19]. In this paper,
I extend these results by incorporating Bohmian trajectories for the Kerr–Newman
particles. The idea that elementary particles might be Kerr–Newman singularities in
general relativity has been boldly, eloquently, and persistently championed byAlexan-
der Burinskii [20–25]. He also believes strongly in the connection between string
theory and his Kerr–Newman electron theory, since the locus of singularities form one
dimensional rings. The idea proposed here is that these particlesmay be traveling along
Bohmian trajectories moving in complex space-time. Reviews of Bohmian mechanics
are given in [26–29]. I want to develop a covariant theory here, and the original Bohm
model, being non-relativistic, is not suitable. Although there are Bohmian models
for the Dirac and Klein–Gordon equations in the literature, I have chosen for this
first attempt a trajectory theory based on the relativistically covariant “proper time”
wave mechanics of Fock and Stueckelberg [30,31]. An excellent review is the book
by Horwitz [32]. The application of Bohmian mechanics to this system was done by
Kyprianidis and Fanchi in [33–35]. Holland has made some critical comments in [29],
but I choose to work with it despite these, because the Stueckelberg approach allows
separability in all four space-time axes, and this facilitates finding exact solutions
needed for analytic continuation without errors. The problem of relativistic Bohmian
mechanics was also considered in [36], and other approaches proposed there. Those
could be considered in the future. In all of these Bohmian references there is no
assumed coupling between the charged particles and the classical electromagnetic
fields. In this paper I am borrowing the trajectories from the Bohmian interpretation,
but then I’m deviating from the Bohm interpretation by treating the particles as stan-
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dard Kerr–Newman particles in complex space-time which do couple to the classical
electromagnetic fields. My initial interest in doing this was curiosity, but I would say
that now the results obtained in this way are interesting. But it should not be taken as
implying that the standard Bohmian interpretation of quantum mechanics should be
modified by this, because it doesn’t need such modification.

The null retarded and advanced time solutions determine the Liénard–Wiechert
potentials in classical electromagnetism. In real Minkowski space, there are generally
only two null solutions—one advanced and one retarded—for a given observation
point and for a single classical timelike particle. In the complexified space-time there
can be many complex-valued null solutions for a given trajectory, and the goal here is
to study these. Since such particles would be very light, their gravitational distortion
of the metric would be ignorable to a good approximation. But, the lingering effect
that cannot be ignored is the complex space-time embedding. If there are multiple
Riemann sheets for the Liénard–Wiechert potentials in complex space-time, as was
found for example in [13], then this feature cannot be ignored, even when the metric
distortions due to particlemasses can be ignored. This fact has been largely overlooked
in the physics literature because multi-valued fields and trajectories in complex space-
time have not been given serious consideration previously.1 So, in this paper, I shall
work in complex Minkowski space, and consequently the mathematical description
is tremendously simplified compared with curved metrics. But the lingering and crit-
ically important influence of gravity and general relativity is the complex space-time
embedding, and the multi-valued Riemann sheet structure of both particle trajectories
and their electromagnetic field interactions. These effects are not proportional to the
gravitational constant, and can therefore affect measurements significantly in the small
particle limit. Nevertheless, they can still be interpreted as gravitational effects.

The reader may reasonably ask if I’m proposing here that the complex space-time
is actually an ontological reality. Personally, I’m agnostic on that point. One of the
principle adherents of complex space-time approach, Ezra Newman, does not believe
it’s real, but that it’s an extremely useful construct for mathematically analyzing the
equations of general relativity for reasons that remain somewhat obscure [37]. In
Sect. 11 I offer my own more detailed thoughts on this issue.

Kerr–Newman solutions are obtained most easily by considering point particles in
complexMinkowski space. In all cases covered by the Kerr–Newman solutions (i.e. all
values of mass, charge, and spin that define a solution), the particle is first considered
as a structureless point particle. Spin arises by displacing the particle from the real
axis. This is why I have chosen to begin here with the Klein–Gordon–Stueckelberg
equation rather than a spin 1/2 version, since spin implies some sort of internal structure
to the particle, but the Klein–Gordon solution does not. It seemed like a good place
to start. My ultimate goal is to try and describe the spin 1/2 case as well, and I
am studying this problem, but am not sure precisely how to proceed. I’m interested
in possibly combining the results of [13], which gave a model for zitterbewegung
within the Kerr–Newman framework, together with Bohmian trajectories. Alexander

1 The static Kerr–Newman solution to the electromagnetic field is double valued when the observation
point is continued along paths in space-time. This is well known and studied. Here we are talking about
multi-valued analytic functions of the world time variable when the trajectory is a function of this time and
not static.
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Burinskii has a different model for zitterbewegung which is based on a gravitating
bag model involving additional field effects [38,39], and he has argued that this leads
to an explanation for Dirac equation. The bag structure gives internal structure to
the particle, and it’s no longer a simple point in complex space-time. I’ve chosen
to work with the Stueckelberg formalism because it satisfies Wigner locality, and is
manifestly Lorentz covariant, and in addition the solutions are simpler because there
is no mass shell constraint, and this allows separable solutions along all four space-
time axes, without the mass constraint messing up separability. I wanted to work with
exact closed-form solutions so that analyticity could be exactly studied, and analyticity
cannot be studied with approximate solutions. This is a starting point. Future research
can examine various ways to introduce spin. If this approach proves fruitful, then it
may lead to a second application of Bohmian mechanics which links it to classical
general relativity in a way that might point to a path to emergent quantum mechanics.

2 Covariant BohmianMechanics

Following [33,35],wefirst develop aHamilton–Jacobi description of themany-particle
covariant Stueckelberg equation inMinkowski space (metric signature [+,−,−,−]with
c = 1). This version of relativistic mechanics, both classical and quantum, goes by
other names such as Fock–Stueckelberg, proper time formalism, world or historical
time formalism, Stueckelberg–Horwitz–Piron theory, covariant Schrödinger equation,
etc. A fine recent review is given by Horwitz [32]. It introduces an additional Lorentz
invariant and universal world time, which is denoted here by the variable s. It plays
a role similar to the proper time in relativistic classical mechanics, but it is not the
same as proper time. The basic wave equation is a generalization of the many particle
Schrödinger equation

i�
∂Ψ

∂s
= KΨ (1)

K =
N∑

a=1

1

2ma

(
−i�

∂

∂xaμ

− e

c
Aμ
a

)(
−i�

∂

∂xμ
a

− e

c
Aaμ

)
+U (x1, . . . , xN ) (2)

where the momentum operator for particle a is pμ
a = −i�∂/∂xaμ. We follow the sign

convention and metric signature used in [35] with no loss of generality.
The wave functionΨ depends on a single Lorentz invariant “world time” parameter

s as well as the N-tuple of Minkowski coordinates xaμ. It is assumed to be a single
valued function of the xaμ, at least when they are restricted to real values. Aμ

a is
the external 4-vector potential acting on particle a. The extra potential U describes
an additional non-electromagnetic potential term. All potentials are assumed to be
analytic functions of all of their arguments. The normalization condition is

∫
Ψ ∗(x1, . . . , xN , s)Ψ (x1, . . . , xN , s)d4x1 . . . d4xN = 1 (3)
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In the standard Bohmian trajectory approach, followed in [35], one writes

Ψ (x, s) = R(x, s)ei SB (x,s)/�, SB = �Im(ln(Ψ )) (4)

where for all xa and s real, R and S are real, ρ = R2, and R ≥ 0. The conservation
equation is

∂ρ

∂s
+

N∑

a=1

∂aμV
μ
a ρ = 0, Vμ

a = 1

ma

(
∂μ
a SB − e

c
Aμ
a

)
(5)

The vector potentials Aμ
a as seen by particle a will depend not only on xa , but also in

general on the other N − 1 coordinates of the other interacting particles. These equa-
tions cannot be considered a complete description of the electromagnetic interaction,
since the Liénard–Wiechert potentials for inter-particle interaction involve retarded (or
maybe even advanced) times, and for relativistic particles such times depend not only
on the particle positions but also on their entire trajectories for their calculation. But in
quantum theory we do not have a trajectory to work with. One way to remedy this situ-
ation is to develop a second quantized field theory to handle the interactions, as is done
in QED. This has led to a 5d version of electromagnetism called pre-Maxwell theory
[40–42]. If we try to use the Bohmian trajectories in real space time to calculate the
electromagnetic fields produced, we quickly get unphysical results. For example, for
a single free quantum particle, the Bohmian trajectories in general will be accelerated
(and/or decelerated) by the quantummechanical potential, and if they are charged then
they will radiate electromagnetically and lose energy, but this clearly doesn’t happen
for free particles as Ehrenfest’s theorem proves that they don’t slow down in quantum
mechanics, and experiments support this. In this paper, we consider the fields created
by Bohmian trajectories, not in real, but in complex space-time where the radiation
formulas are different. It is my hope that this will lead to new and interesting results,
and perhaps allow the Bohm trajectories to be interpreted as classical sources for
the electromagnetic fields. The reason that complex space-time makes a difference is
that the Liénard–Wiechert potentials can have more than the two null-time solutions
which they have in real space time. This comes about because of the possibility of
multi-valued retarded times and even multi-valued trajectories in the complex case.
We can create a single particle current density by integrating the continuity equation
over the other N − 1 particle positions. Suppose we want to integrate over all but
particle a. We obtain

ρa(xa, s) =
∫ ⎛

⎝
∏

m �=a

d4xm

⎞

⎠ ρ(x1, . . . , xN , s) (6)

Jμ
a (xa, s) =

∫ ⎛

⎝
∏

m �=a

d4xm

⎞

⎠ Vμ
a (x1, . . . , xN , s)ρ(x1, . . . , xN , s) (7)
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so the single particle continuity equation becomes

∂ρ

∂s
+ ∂aμ J

μ
a (xa, s) = 0, ∂aμ

∫ +∞

−∞
Jμ
a (xa, s)ds = 0 (8)

So we can identify the electromagnetic 4-current density for particle a by

J ν
a EM(x) = qa

∫ +∞

−∞
Jμ
a (xa, s)ds (9)

and where qa is a constant which is just the charge of the particle Qa up to a normal-
ization factor.

Qa =
∫

d3xJ 0
a EM(x) (10)

The Bohmian trajectory equation is the solution to the differential equation

dxa(s)μ

ds
= 1

ma

(
∂

∂xaμ

SB(x, s) − qa
c
Aμ
a (x)

)
(11)

One distinguishing characteristic of Fock–Stueckelbergwavemechanics is that the rest
masses of particles are not fixed, but can change due to interactions. The off-mass-shell
possibility in quantum theory has been analyzed in a series of papers by Greenberger
[43–46]. The classical electromagnetic interaction alone cannot change the mass, but
if the potential termU (x1, . . . , xN ) is weak, then if the masses are initially on or near
their mass shell values ma , then as the world time variable s advances, the mass shell
constraint will remain approximately satisfied so that ma ≈ pμ

a paμ, as described in
[32]. In this way the Stueckelberg theory includes the the Klein–Gordon equation as
a limiting case when the masses can be taken as fixed. The advantage of the variable-
mass Stueckelberg equation as opposed to the Klien–Gordon or other fixed mass
equations is that Newton–Wigner locality holds for the position operators [32] while
maintaining manifest covariance. It is also very similar to the Schrödinger equation,
being first order in s derivatives, and so many of the results of the usual Bohmian
mechanics are easily carried over. The question of what draws particles back to the
mass shell if they have somehow wandered off it is an area of active current research
[47,48].

These functions Ψ , R, and SB in (4), defined for real arguments, are assumed to
be sufficiently analytic locally to allow analytic continuation to all complex values for
x and s. This technique was used, for example, in [49–52]. R and S can then become
complex valued, and the resulting trajectories will trace out a curve in real space-time
for real values of s, and for complex values of s, it will describe a 2D surface embedded
in the 8D complex Minkowski space. The projection of this 2D surface onto the real
hyperspace will look like a string, a point often emphasized by Burinskii [21].
The free particle case

i�
∂Ψ

∂s
= − �

2

2M
∂μ∂μΨ = − �

2

2M

[
∂20 − ∂21 − ∂22 − ∂23

]
Ψ = p̂μ p̂μ

2M
Ψ (12)
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We can consider a basis set of plane wave solutions, as usual, except that the mass is
not constrained to be on the mass shell here

Ψ (x, s) =
∫

d4 p

(2π�)4
Ψ̃ (p, s)eip

μxμ/� (13)

In general, pμ pμ �= M2. The operator for momentum is simply p̂μ = −i� ∂
∂xμ

. We
have a straightforward uncertainty relation for each of the four coordinates, including
a time-energy relation

σxμσpμ ≥ �

2
, μ ∈ {0, 1, 2, 3} (14)

The rest mass associated with a plane wave solution ism2 = pμ pμ, with no limitation
on the four independent values pμ. Negative energy particles are interpreted asmoving
backwards in time, which are in turn interpreted as anti-particles, an idea originally
due to Stueckelberg which has long since been incorporated into quantum field theory.
Negative m2 particles are considered as tachyons. The question of how the particle
mass avoids unobserved off-shell behavior is an area of current research [47,48,53].
These plane wave states are eigenstates for the m̂2 = p̂μ p̂μ operator. We say that if
a state is built up by linear superposition from plane waves whose mass is given by
m2 = M2, then the particle is “on its mass shell”. For all eigenstates of m̂2, the wave
equation (12) becomes the standard Klein–Gordon equation by separating variables

Ψ (x, s) = ψm(x)e−ism2/2M�,
[
m2 − p̂μ p̂μ

]
ψm(x) = 0 (15)

A general state can be an arbitrary superposition of different mass plane waves. The
“on-mass-shell” subset of wave functions do not form a complete set for the Hilbert
space with inner product

〈φ|ψ〉 =
∫

φ∗(x)ψ(x)d4x (16)

For completeness, off-mass-shell states must be included.
Bohmian description of the plane wave case

ψ(x) = Aeip
μxμ/� (17)

and so the Bohm–Hamilton–Jacobi function is, from (4) (up to an irrelevant additive
function of s)

SB(x) = pμxμ (18)

In this case, the velocity of the Bohmian trajectory is simply given by

uμ = dxμ(s)

ds
= ∂μSB

M
= pμ

M
(19)
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and the Bohmian trajectory is simply given by xμ(s) = uμs + xμ(0). If the particle is
on the mass shell, then uμuμ = 1, otherwise not. The plane wave is not normalizable,
and so it’s not a proper state for the Hilbert space. Note that the trajectory is single
valued here as a function of s.
Gaussian wave functions and double-valued trajectories
Holland [29] (in Sect. 4.7) derives the Bohmian trajectory for a Gaussian wave
function. We generalize his calculation to covariant Bohmian mechanics. For the non-
relativistic free particle Schrödinger equation, i� ∂Ψ

∂t = − �
2

2m∇2Ψ , starting with the
initial (t = 0) wave function

ΨS(
−→x , 0) =

(
2πσ 2

0

)−3/4
exp

(
i
−→
k · −→x − −→x 2/

(
4σ 2

0

))
(20)

defining −→u = �
−→
k
m one obtains for time t

ΨS(
−→x , t) = (2πs2t

)−3/4
exp

(
i
−→
k ·
(

−→x − 1

2
−→u t

)
− (−→x − −→u t

)2
/ (4stσ0)

)
(21)

st = σ0
(
1 + i�t/2mσ 2

0

)
(22)

The Bohmian action function is then

SB(
−→x , t) = f (t) + �

−→
k ·
(

−→x − 1

2
−→u t

)
+
(−→x − −→u t

)2
�
2t/2mσ 2

0

4σ 2
0

(
1 + �2t2/4m2σ 4

0

) (23)

where f (t) doesn’t depend on x and plays no role in determining the trajectory whose
equation is

d−→x (t)

dt
= 1

m
∇SB(

−→x , t) = −→u +
(−→x − −→u t

)
�
2t

4m2σ 4
0

(
1 + �2t2/4m2σ 4

0

) (24)

Holland finds the Bohmian trajectory for this system

−→
X B(t) = −→u t + −→

X 0

(
1 + (�t/2mσ 2

0

)2)1/2
(25)

Next we generalize these results to the covariant Bohmian case. We have separability
in the 4 Minkowski coordinate variables

ΨCB(x, s) =
3∏

μ=0

ψμ(xμ, s) (26)

Despite this notation, Ψμ is not a Lorentz vector, but rather an indexed set of functions
for a separation of variables. We will have a solution if the x0 dependent wave function
in this product satisfies the free particle equation (identical to the Schrödinger equation)

i�
∂ψ0(x0, s)

∂s
= − �

2

2M

∂2

∂x0 2
ψ0(x

0, s) (27)
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while simultaneously the x j dependent functions satisfy the complex conjugate equa-
tion.

i�
∂ψ j (x j , s)

∂s
= + �

2

2M

∂2

∂x j 2ψ j (x
j , s), j ∈ {1, 2, 3} (28)

Using Holland’s results, choose an initial (i.e. at s = 0) wave function of the form (26)
with factors (no sum over μ here):

ψμ(xμ, 0) = eik
μxμ

(
2πσ 2

Iμ

)−1/4
exp

(
− (xμ

)2
/
(
4σ 2

Iμ

))
, μ ∈ {0, 1, 2, 3} (29)

There are eight free real parameters kμ and σIμ > 0, where uμ = �kμ

M . These wave
functions are normalized in 4D. At other values of s we have by analogy with the
non-relativistic case (21)

ψ0(x
0, s) = e

ik0
(
x0− 1

2 uos
) (

2πΣ0(s)
2)−1/4

× exp
(
− (x0 − u0s

)2
/ (4Σ0(s)σI0)

)
(30)

ψ j (x
j , s) = e

ik j
(
x j− 1

2 u j s
) (

2πΣ j (s)
2)−1/4

× exp

(
−
(
x j − u j s

)2
/
(
4Σ j (s)σI j

))
, j ∈ {1, 2, 3} (31)

where

Σ0(s) = σI0
(
1 + i�s/Mσ 2

I0

)
(32)

Σ j (s) = σI j

(
1 − i�s/Mσ 2

I j

)
, j ∈ {1, 2, 3} (33)

it is convenient to also define

σμ(s) = ∣∣Σμ(s)
∣∣ = σIμ

(
1 +

(
�s/2Mσ 2

Iμ

)2)1/2
(34)

Although we use subscript notation for notational efficiency, this does not imply that
σIμ, σμ, and Σμ(s) transform as Lorentz vectors.

ψCB(x, s) = eik
α(xα−uαs/2)

×
3∏

α=0

(2πΣα(s))−1/4 exp
(
− (xα − uαs

)2
/ (4Σα(s)σIα)

)
(35)

and the Bohmian action (4) is

SB(x, s) = f (s) + �kα (xα − uαs/2) − �

3∑

α=0

(
xα − uαs

)2 Imag
(
Σ∗

α(s)
)

4σIα

∣∣∣∣Σα(s)

∣∣∣∣
2 (36)
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where f (s) is a function only of s. These wave functions are not eigenstates for mass,
energy, or momentum in general. If the σIμ values are all large, then the variance in the
mass, energy, and momentum are all small, and so we can approximate an eigenstate of
the mass with this. If in addition uμuμ = 1 then the particle is nearly an on-mass-shell
eigenstate. Continuing by analogy with Holland’s analysis [29], we obtain the Bohmian
trajectories

Xμ
B(s) = uμs + Xμ

B(0)

(
1 +

(
�s/2Mσ 2

Iμ

)2)1/2
(37)

and the s-velocity fields are given by

V μ
B (s) = uμ + Xμ

B(0)
s
(
�/2Mσ 2

Iμ

)2

(
1 +

(
�s/2Mσ 2

Iμ

)2)1/2

= uμ +
(
Xμ
B(s)μ − uμs

)
�
2s/4M2σ 4

Iμ

1 +
(
�s/2Mσ 2

Iμ

)2 (38)

The mass is variable along this trajectory. It is given by the formula

m2(s) = M2V μ
B (s)VB μ(s) (39)

Notice that the mass depends on Xμ
B(0), and that if this 4-vector is spacelike and very

large, then m2(s) can become negative in principle. However, plugging plausible num-
bers into these formulas, this only occurs when Xμ

B(0) is many standard deviations from
the mean, and I will ignore this complication here for the sake of brevity.
The trajectory function Xμ

B(s) is double-sheeted as a locally analytic function of a
complex variable s due to the square root factor in (37). We may write, for the trajectory
function on the two Riemann sheets

Xμ
B±(s) = uμs ± Xμ

B(0)
(
1 + (Γ (μ))2 s2

)1/2
, Γ (μ) = �/2Mσ 2

Iμ (40)

V μ
B±(s) = uμ ± Xμ

B(0)
s (Γ (μ))2

(
1 + (Γ (μ))2 s2

)1/2 (41)

The asymptotic behavior at large s is

V μ
B±(s) = uμ ± Xμ

B(0)Γ (μ) + O(Xμ
B(0)/Γ (μ)s2) (42)

Xμ
B±(s) = s

(
uμ ± Γ (μ)Xμ

B(0)
)+ O(Xμ

B(0)/Γ (μ)s) (43)

the branch points are at s = ±i/Γ (μ). The branch cut may be chosen to lie on any
arbitrary curve joining these two branch points. Each of the two trajectories are timelike
if Xμ

B(0) is close enough to the origin. For extremely large values of Xμ
B(0), the resulting

trajectory can also be tachyonic or backward in time, depending on the orientation of
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Xμ
B(0). To set the scale for typical atomic problems, consider the value of Γ for an

electron with σIμ = 1E and Xμ
B(0) = 1E. We find

Γ (μ) = 5.781015s−1, and Xμ
B(0)Γ (μ) = 0.0019c (44)

So, the velocities added by the quantum mechanical force are non-relativistic for this
case. These two families of curves are timelike congruences, although they are not
geodesics. In the case where all four Γ (μ) are equal, then they have a time depen-
dent expansion, with the shear and twist both being zero in the language of timelike
congruences [54].

Both Bohmian trajectories in (40) have acceleration. But, averaging the momentum
of these two together yields

Pμ = 1

2
M
(
V μ
B+(s) + V μ

B−(s)
) = Muμ (45)

which is a conserved value, and independent of Xμ
B(0), just as one would expect for

a classical free particle. Moreover, the angular momentum for the pair of trajectories
about the center point of the Gaussian at world time s = 0 is

Mμν
± (s) = X [μ

B±V
ν]
B± (46)

Mμν(s) = 1

2

[
X [μ
B+V

ν]
B+ + X [μ

B−V
ν]
B−
]

= 0 (47)

So the combined orbital angular momentum of the pair of trajectories equally weighted
is zero in this case as well.
Why the double-valued solution is more general than just this one case
Consider the Hamilton–Jacobi equation for Bohm action function SB

dSB
ds

+ 1

2M
∂μSB∂μSB − �

2

2M

∂μ∂μR

R
+ V = 0 (48)

Solve for one of the derivatives we find a double valued solution

∂αSB = ±
(

−ηαα
∑

μ �=α

∂μSB∂μSB

+ ηαα2M

(
dSB
ds

+ 1

2M
∂μSB∂μSB − �

2

2M

∂μ∂μR

R
+ V

))1/2
(49)

In general, the two Riemann sheets evidenced by the ± sign can be visited by analytic
continuation in the complex planes of the arguments of SB . There is at least one excep-
tion. If the wave function is a perfect plane wave, then ∂ j SB is a constant, and has only
one value. So, in general we can expect multi-valued trajectories in Bohmian mechanics
in complex space time. In the case of free particles it is plausible then to expect the
double-sheeted solutions of the form ∂μSB(x, s) = Muμ ± Fμ(x, s) for some vector
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function Fμ. There may be exceptions. The plane wave is an exception, but since it’s
not normalizable it’s excluded from consideration.

3 Generalized Analytic Continuation by Partition of Unity

The possibility that multiple null roots contribute to solutions of the Liénard–Wiechert
potentials suggests that when this occurs the solutions to Maxwell’s equation are not
unique. This was pointed out in [13] where a new form of generalized analytic continua-
tion (GAN) was introduced. In that study, the trajectory function was an entire function
of the complex proper time, although the retarded time was multivalued. In the present
paper, we have found that the Bohmian trajectory function itself is not single valued as
a function of complex world time s. This provides us with the option to apply GAN to
the trajectories before calculating the set of null times. First we define exactly what is
meant by GAN. Let f (z,W ) be a locally analytic function of a single complex variable
z with a discrete set of branch points, poles, and essential singularities, and let W be
a set of complex parameters that f depends on in a smooth and locally analytic way
as well, and contained in some complex manifold. From the values of this function in
any neighborhood of a point in the complex z plane, the function can be derived every-
where else in z by analytic continuation. If the function is multivalued, then this will
be discovered by examining all analytic continuation paths. In general the function will
have multiple Riemann sheets. Let their number be N , although N could be infinite. N
could depend on W , but we can take it to be an upper bound in this case without loss
of generality. Now consider the following construction of a complex partition of unity.
Let the Pi (W ) be smooth and analytic complex functions of the parameters W which
satisfy the condition

N∑

i=1

Pi (W ) = 1, (50)

where N is the number of Riemann sheets of f (z). Let branch cuts be selected which
define the Riemann sheets uniquely. Next, consider a locally analytic point z which does
not lie on any branch cut. Then, there exists a neighborhoodN about z which does not
intersect any branch cut. We define a new function. We start by doing nothing in the
following form

f (z) =
N∑

i=1

Pi (W ) f (z) (51)

and next we create an intermediary function of N variables zi

F(z1, . . . , zN ) =
N∑

i=1

Pi (W ) f (zi ), zi ∈ N (52)

and finally we analytically continue each zi along a different path to arrive back at the
starting value of z, but ending up on the ith Riemann sheet for the function f . In doing
this, the paths for the various zi will leave the local neighborhoodN temporarily as they
must pass through branch cuts in order to reach other Riemann sheets. But eventually
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all the paths return to the starting point z.

F(z1, . . . , zN ) →
N∑

i=1

Pi (W ) fi (zi ) →
N∑

i=1

Pi (W ) fi (z) = G(z, {Pi (W )}) (53)

This is what we mean by generalized analytic continuation or GAN. The new function
G(z, {Pi (W )}) depends on the arbitrary weighting parameters Pi (W ). So there is a great
proliferation of one function into a whole family of GANs. Let us name this mapping
GAN : f (z) → a subset o f all locally analytic f unctions.
A note of caution The GAN continuation of a sum is not necessarily the same as the
sum of the GANs. Some restrictions are required to avoid contradictions. For example,
the function f(z) = 0 is single-valued, and we must insist that GAN on this function
yields just the zero function back again. But we can write 0 = √

z − √
z, and therefore

if we assume linearity by writing GAN (0) = GAN (
√
z) + GAN (−√

z), where the
addition would be the set of pairwise sums of all pairs of functions f1 + f2 where
f1 ∈ GAN ( f1) and f2 ∈ GAN ( f2). Obviously GAN (

√
z) + GAN (−√

z) contains
manymore functions than the zero function. So in general we cannot assume linearity for
GAN. But there are some cases where linearity does not cause a problem. If one or both
of the functions A(z) and B(z) are single valued, then we can safely write GAN (A +
B) = GAN (A) + GAN (B). But in general we cannot. Similarly for multiplication.
If f (z) = A(z)B(z), then in general GAN ( f ) = GAN (AB) �= GAN (A)GAN (B)

unless one (or both) of {A, B} is an entire function in which case equality does hold. By
GAN (A)GAN (B) is meant just pairwise multiplication of the elements of GAN (A)

with those of GAN (B).

Examples For entire analytic functions, like exp(z) or any polynomial in z, the GAN
continuation of the function gives just that single function back. There must be more
than one Riemann sheet to give non-trivial results.

Lemma GAN (
√
z) is the set of functions X

√
z,where X is anarbitrary complexnumber.

Proof
√
z has two Riemann sheets. Let P1 + P2 = 1 with P1 and P2 complex numbers.

The branch point is at z = 0. We can draw the branch cut from this point to ∞ any way
we choose. Once the branch cut is defined, the two Riemann sheets are then defined.
It doesn’t matter how we draw the branch cut and define the two Riemann sheets.
The function

√
z on the first Riemann sheet is the negative of its value on the second

sheet. f1(z) = − f2(z). Let z be a point on Riemann sheet 1. GAN (
√
z) is therefore

P1
√
z − P2

√
z = (P1 − P2)

√
z, but P1 − Ps can take on any complex value. This

function can be extended analytically in z, and we get by so doing the original double-
valued

√
z function, but multiplied by an arbitrary factor (P1 − P2), and so the lemma

is proven. �
In like manner, it can be shown that the GAN of z1/n is Xz1/n , and of ln(z) is X + ln(z)
for any complex X .

Now consider the family of Bohmian trajectories in our free particle example (37).

Xμ
B(s) = uμs + Xμ

B(0)

(
1 +

(
�s/2Mσ 2

Iμ

)2)1/2
(54)
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We require that Xμ
B(0) �= 0 for μ = 0, .., 3. Note that uμs is single valued. In this case

GAN (Xμ
B(s)) = uμs + Xμ

B(0)GAN

((
1 +

(
�s/2Mσ 2

Iμ

)2)1/2
)

(55)

This gives the set of all trajectories of the form

GAN (Xμ
B(s)) =

{
uμs + Aμ

(
1 +

(
�s/2Mσ 2

Iμ

)2)1/2 ∀Aμ ∈ C

}
(56)

The Bohm trajectories, are the subset of these where Aμ are real.

Re(GAN (Xμ
B(s))) = {Bohmian tra jectories} (57)

where Re(GAN (Xμ
B(s))) is the subset of real trajectories. So we see that a single

trajectory determines the whole set of Bohmian trajectories by the GAN procedure.
We see that all the Bohmian trajectories in this case belong to a GAN starting from

a single seed trajectory which satisfies Xμ
B(0) �= 0 for any value of μ = {0, 1, 2, 3}. In

other words if you take one of the Bohmian trajectories, you can derive all the other ones
from it using the GAN procedure without knowing in advance what the wave function
was. This result has been shown for the special case of the Gaussian wave function only.
Whether it is a general result of the Bohmian theory for free particles is not known.
Once you have analytic expressions for all the trajectories as functions of world time,
you can then differentiate them to find the velocity and acceleration of these classical
trajectories. If the external potential force is known, one can then calculate the quantum
mechanical potential force for all of the trajectories as a function of position and world
time.Using the velocities, one can also calculateHamilton’s principle function.Knowing
both the quantummechanical force andHamilton’ principle function, one should be able
to figure out a class of equivalent wave functions that will give this Hamilton–Jacobi
equation using Bohmian mechanics rules. Thus a single trajectory, in the cases studied
in this paper at least, has hidden in its analytic structure information about all the other
trajectories, and one never has to introduce wavemechanics as a separate postulate. This
follows from the GAN procedure as outlined above. The single starting trajectory for
this procedure is a purely particle picture, but the result is that a wave equation can be
deduced from just this one trajectory which then generates all the other trajectories by
the Bohmian mechanics rules. Proving this in general may be difficult, and it may not
be generally true. I don’t know how extensively these results can be extended to other
cases. In the next few sections the electromagnetic fields in complex space-time are
examined, and we shall see how this whole family of trajectories can contribute to the
electromagnetic field produced by a charged particle moving along a single trajectory in
this way. As far as the electromagnetic field produced is concerned, the source acts as a
set or ensemble of trajectories, not just a single one. These conclusions are coming from
a classical field theory, except that we put in the Bohmian trajectory by fiat. Everything
being described here is therefore a classical phenomenon, yet it’s very similar to aspects
of quantummechanics. The key ingredients are complex space-time, the Riemann sheet
structure of multivalued functions, and the GAN.
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4 Electromagnetism in Complex Space-Time

The Kerr–Newman particle is modeled as a point charge which is slightly displaced
from the real hypersurface in complex Minkowski space (CM4) [18,19,23,55–59]. The
complex theory makes contact with reality by ultimately considering the electromag-
netic fields “projected” onto the real space-time hyperspace. There are two equivalent
formalisms that one can use. The Riemann–Silberstein complex vector field can be used
[58] −→

W = −→
E + i

−→
B (58)

or the equivalent covariant form [56]

Wμν = Fμν + i ∗Fμν, ∗Wμν = −iWμν (59)

where ∗W is the dual of W . From (59) we see that Wμν is anti self-dual (ASD). The

electromagnetic energy density and Poynting vector are (
−→
W = CC of

−→
W = −→

W ∗)

Eel = 1

2
−→
W · −→

W , Pel = i

2
−→
W × −→

W (60)

The stress energy tensor on the real hyperspace is a function of the real-valued physical
Faraday tensor

4πTμν = Fμ
phys λF

λν
phys + 1

4
gμνFphysαβF

αβ
phys (61)

and this can be expressed in terms of the complex Faraday tensor with the substitution

Fμν
phys(x) = Re Wμν(x), f or all xα real (62)

This simple prescription gets us back to real fields on real space-time. The absence of
magnetic charge requires that Fphys satisfies the electromagnetic Bianchi identity on
real space-time, i.e. ∂μ

(∗Fphys
)μν = 0.

The static Kerr–Newman particle is modeled as a point charge located at a point in
complex 3-space at z0 = x0 + ib, where x0 and b are real 3-vectors. One introduces a
complex Coloumb potential created by this particle

Φ(z) = q/

√
(z − z0)2 (63)

and from this the fields can be derived, and they allow a metric of the Kerr–Schild type.

5 Liénard–Wiechert Potentials in Complex Spacetime

The Liénard–Wiechert potentials are [60]

Aμ(x) = qvμ(s)

v(s) · (x − z(s))

∣∣∣∣
s=sr

(64)
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Normally only one retarded time contributes to the field from a single real timelike
trajectory. The Faraday tensor from a single root may be calculated from the formula

Fμν(x) = q

VB(s) · (x − XB(s))

× d

ds

[
(x − XB(s))μ V ν

B (s) − (x − XB(s))ν Vμ
B (s)

VB(s) · (x − XB(s))

]∣∣∣∣
s=sr

(65)

Let xμ be an arbitrary field point in realMinkowski space where wewish to calculate the
electromagnetic field generated by the moving charged particle. Then the null condition
for calculating the null world times is

(
xμ − Xμ

B(s)
) (
xμ − XBμ(s)

) = 0 (66)

Sincewe areworking in complex space-time, we include all roots for the variable s in the
complex plane. This is a major difference between the complex space-time embedding
and the usual real Minkowski space electromagnetism. The solutions to this equation
are functions of the field point x which we take to be real. The multiple solutions to this
equation will be denoted by {sn(x)}. If XB(s) is a polynomial of degree N in s, then there
will be 2N roots in the complex s plane obtained by standard analytical continuation.
An example of this kind of multiple root situation was studied in [13] where there were
an infinite number of roots.

If XBμ(s) is multivalued as a function of s, as is the case for our Bohmian Gaussian
example, then we can consider any root from any of the GAN continuation trajectories
as possibly contributing to the field. We get the most interesting results if we apply
GAN two times, first to the trajectories themselves, and next to the Liénard–Wiechert
potentials.We look for all roots in the complex s plane, and there can bemany such roots.
In our case, we have just one retarded root per trajectory, assuming that only timelike
trajectories are included in the Bohmian trajectory set, and therefore we include only
these roots.2 So we now plug in the covariant Bohmian trajectories calculated above
into this formula. For simplicity, let us choose all of the σIμ equal to each other. Let σI

denote the common value. Define a value of Γ which is independent of μ as

Γ = �

2Mσ 2
I

(67)

The fundamental trajectory equation is then

Xμ
B(s) = uμs + Xμ

B(0)
(
1 + Γ 2s2

)1/2
(68)

where Xμ
B(0) is restricted to real values, and represents any one of the ensemble of

Bohmian trajectories at s = 0. So, the root equation for a single trajectory becomes

2 The non-timelike trajectories in the Bohmian set constitute a negligibly small fraction and are ignored
here.
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(notation (x)2 = xμxμ).

(
x − us − XB(0)

(
1 + Γ 2s2

)1/2)2 = 0 (69)

Applying a GAN transformation to the trajectory as in 56 and 57 we obtain

Re GAN (Xμ
B(s)) = {All real Bohmian tra jectories} (70)

Although the GAN transformation produces complex trajectories as well as real ones,
we ignore these by assuming that the weighting function has support only over real
trajectories. Therefore we have one retarded time for each Bohmian trajectory, and they
all contribute in a weighted sum to the electromagnetic field. Denote the solutions by
{sr (x, XB(0))}, and here XB(0) can be any real 4-vector. Each root solution produces
a Liénard–Wiechert solution, and so we can write

Fuv(x) =
∑

XB (0)

P(XB(0))Fμν

XB (0)(x, sr (x, XB(0))) (71)

where Fμν

XB (0)(x, sr ) is the field at point x produced by a particle of charge Q moving
along a trajectory that passes through XB(0) , and P(XB(0)) is the weight given to the
trajectory that passes through XB(0) normalized so that3

∑

XB (0)

P(XB(0)) = 1 (72)

The summation in (71) is just a GAN transformation on the multivalued Faraday tensor.
The solutions to Maxwell’s equations in this case are simply not unique. In general the
P(XB(0)) can be arbitrary complex numbers, but the natural choice for these is the
Bohmian weighting which generates Born’s rule, which becomes an integration over
all starting positions XB(0) restricted to real values, and weighted by their probability
density. ρ = Ψ ∗Ψ is the probability density. We can express it in terms of Bohmian
trajectories

ρ(x, s) =
∑

XB (0)

P(XB(0))δ4(x − XB(s))

=
∫

d4XB(0)ρ(XB(0), 0)δ4(x − XB(s)) = Ψ ∗(x, s)Ψ (x, s) (73)

and the integrated probability current is Jμ(x) = ∫∞
−∞ Vμ(x, s)�(x, s)ds as in (7). The

field is an ensemble average over all these trajectories

Fuv(x) =
∫

d4X0�(X0)F
μν
X0

(x, sr (x, X0)) (74)

3 Q here is the actual physical charge of the particle.
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The result is that the collective current density of the ensemble is proportional to the
probability current calculated from the quantum wave equation. This is then equivalent
to

∂μF
uv(x) = J ν

EM(x) = �q

2Mi

∫ ∞

−∞
dsΨ ∗(x, s)

←→
∂ν Ψ (x, s) (75)

and we see that the classical electromagnetic field can be produced by the coherent sum
of all the Bohmian trajectories, and so it can look as if it’s produced by an extended
object. The reader should note that the integral of J 0

EM(x) over 3-space is independent
of x0 because of (8) and the value of the parameter q must be chosen so that this
value gives the total charge of the particle. In words, a single charged particle trajectory
generates a field whose generating current is that of an extended object. This is due to the
non-unique solutions to the Liénard–Wiechert potentials when embedded in complex
space-time, alongwith the particular solutions to theBohmian trajectorieswhich provide
the mathematical justification, since any single one (excluding a set of measure zero)
can be analytically continued (through GAN) to any other one, and thus a continuum
of retarded times and positions are coherently added together yielding the resultant
electromagnetic field of an extended object. This is an interesting result, but it should be
remembered that it depends on applying GAN to the trajectories first to obtain an infinite
set of them, and then applying it again to the Faraday tensor to produce a weighted sum
over the multitude of retarded times so obtained. It is not obvious that solutions obtained
in this way should be admitted in an electromagnetic theory in complex space-time. But
if they are allowed, then we see that we can potentially obtain a solution to the ancient
problem of the infinite electrostatic self-energy of classical point particles.

6 The Radiation Problem in the Full-Relativistic Case for a Free
Particle

The GAN continuation result provides a nice explanation for understanding why the
free-particle Bohm trajectory need not radiate. Using results from [61] we see first of
all that the Klein–Gordon current of a positive energy free-particle wave function are
non-radiating electromagnetically. To make use of this, we can write any free-particle
wave function ψ as a sum over fixed mass eigenstates

Ψ (x, s) =
∫ ∞

−∞
dmψm(x)e−ism2/2M�,

[
m2 − p̂μ p̂μ

]
ψm(x) = 0 (76)

Now using (75) , we can write the electromagnetic 4-current as

JEM(x) = π�
2q

i

∫ ∞

−∞
dm

1

m
Ψ ∗
m(x)

←→
∂μ Ψm(x) (77)

where q is the charge up to a normalization factor, as explained in 9 and 10. It is necessary
to assume that Ψm = 0 for m < ε for some positive ε. I assume that the Ψm(x) are
built up from positive energy plane waves which is a very good approximation to our
Gaussian wave functions. Now, if two non-radiating currents are added together, then
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the sum is also a non-radiating current [61]. Extending this argument, we see that
JEM(x) can be a non-radiating current provided that Ψm(x) contains only positive
mass and positive energy plane waves, and that certain other convergence conditions
are satisfied as described in [61]. SinceΨ falls off as a Gaussian in all four coordinates, I
expect that the convergence conditions will be satisfied. Strictly speaking, our Gaussian
example does have an extremely small contribution from negative mass states, and so
I’m assuming that these can be safely projected out without affecting the convergence
requirements for the zero radiation proof.

So, if nature chooses to weight the trajectories by Bohm’s prescription, then we get
plausibly at least a non-radiating solution, and by this argument, we can think of each
trajectory as being non-radiating. The only new ingredient is the idea of a GAN applied
to complex space-time embedding. For the general free-particle case, it remains an open
question.

7 The Near Field for an Isolated Particle

What does the electromagnetic field look like if we are near to the particle? This question
introduces a measurement problem. How do we measure the near field of a quantum
particle? One way is to scatter another charged particle off of it, and look at deep
elastic scattering. But this involves solving a different quantum wave equation for the
two-body problem. The near field of an isolated particle is not measurable, because as
soon as we try to measure it we must introduce at least one new charged particle into
interaction with it, and therefore it is no longer isolated. In the far field, we found that for
an isolated charged particle in a particular quantum state the classical electromagnetic
charge density and current could be taken proportional to the probability 4-current
derived from the wave function, and that this avoided radiation. This charge density is
spread out over a large volume compared to say the Compton wavelength of the particle.
It’s not likely to produce any singular field points, although there may be exceptions.
The point particle in complex space-time and moving along a Bohmian trajectory can
therefore act like a kind of jellium of extended charge density in complex space-time.
There is no obvious conflict with experiment if we simply assume that this extended
charge model really does describe the reality of a completely isolated charged particle.
Now if we make this assumption, which is based on the GAN continuation together
with the assignment of the Bohmian weighting factors for each trajectory, then lo and
behold, the classical electromagnetic energy and stress tensor is that of an extended
charge which is no longer definitely singular, but calculable and probably for most wave
functions finite due to the extended charge density. In other words, this theory offers a
possible resolution to the long-standing problem of how to avoid the infinite self energy
of an isolated point charge. In fact, since the extended charge density is non-radiating,
it is conceivable that the self-force of this charge density will be zero too, and therefore
there may not be any runaway solutions that have plagued classical electromagnetism
since the work of Abraham and Lorentz. I do not dismiss the Lorentz–Dirac equation
though, because it may be the origin of zitterbewegung as discussed in [13]. So, at least
there is a possibility in this theory to resolve the ancient paradoxes of point particle
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electrodynamics which have plagued this theory for some time. These results bring to
mind the theory of self-field electrodynamics by Barut and Dowling [62–65].

An experiment has been proposed that could test this jellium picture of an isolated
quantum charged particle. It assumes that in the presence of a weak classical external
electromagnetic field, the extended charge distribution (75) is still valid. This hydrody-
namic model leads to possibly testable bremsstrahlung effects [66].

8 In the Non-relativistic Limit, the Radiation Fields of the Two
Riemann Sheets Cancel If We Average Them Together

In the non-relativistic limit, we can show the lack of radiation in another way that does
not involve the assumption of GAN. In this limit we have

u = {u0, −→u } ,
−→u 2 � (

u0
)2

, and sr+ ≈ sr− (78)

and therefore from (40), (41), and V ν
B−(s) ≈ V ν

B+(s) it follows that the radiation field
from just these two sources vanishes if they are weighted equally.

Fμν(x) = Fμν
+ (x) + Fμν

− (x)

2
= 0 + O

(
1

R2

)
(79)

And so the total electromagnetic radiation is zero in this case also, but only standard
analytic continuation is required, not the more radical GAN technique. Complex space-
time is still required. The radiation fields of the two particles cancel one another in
the non-relativistic limit. So, we have a second possible way of explaining why free
Bohmian particles might not radiate, or radiate very much, in the non-relativistic limit.
BothBohmian trajectories in (40) experience non-zero acceleration.However, averaging
the momentum of these two together yields

Pμ = 1

2
M
(
V μ
B+(s) + V μ

B−(s)
) = Muμ (80)

So the average momentum of the two trajectories is simply a constant, just as one would
expect for a classical free particle. Moreover, the angular momentum for the pair of
trajectories about the center point of the Gaussian at world time s = 0 is

Mμν
± (s) = X [μ

B±V
ν]
B± = u[μXν]

B±(0)

[
s2Γ (ν)2

(
1 + Γ (ν)2s2

)1/2 − (1 + Γ (μ)2s2
)1/2
]
(81)

Mμν(s) = 1

2

[
X [μ
B+V

ν]
B+ + X [μ

B−V
ν]
B−
]

= 0 (82)

So the combined orbital angular momentum of the pair of trajectories equally weighted
is zero.
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Riemann sheet structure of N particle system
Imagine an N particle system of non-interacting particles described by (1). Assume for
simplicity that the wave function is a simple product for starters. Then, there will be
in general two Riemann sheet trajectories per particle. This means that for N particles
there will be 2N Riemann sheets. For entangled states the situation is not clear, and will
be left as a future research problem.

9 Spin-Modeling a Kerr–Newman Particle Off the Real Axis and Riding
Along a Bohmian Trajectory

Up to this point we have been considering real trajectories, and therefore spinless
Kerr–Newman particles, or Reissner– Nordström metric solutions.4 The Kerr–Newman
particle in complex spacetime, and in a Lorentz frame in which it is at rest, is displaced

from the real axis by a fixed amount
−→
O = i

−→
J /mc, where J =

∣∣∣
−→
J
∣∣∣ is the angular

momentum of the Kerr–Newman solution [67]. This is the more interesting case, since
most elementary charged particles (quarks and leptons) have spin. In our Gaussian case,
if uμuμ = 1, then we can move to its rest frame with a single Lorentz boost. So we can

obtain the imaginary part of a moving particle by Lorentz boosting Oμ =
{
0, i

−→
J /mc

}

to a proper velocity u. Oμ(u) = Λ
μ
ν (u)Oν . The natural thing to do is to add this boosted

Oμ to Xμ
B±(0) in (40), but when we do this we run into poblems because then the dis-

placement along the imaginary direction will grow and change with s in a way that will
change its spin value. To see this, recall that for our Gaussian case this would imply

Xμ
B±(s) = uμs ±

(
Xμ
B(0) + O

μ

(u)
) (

1 + Γ (μ)2s2
)1/2

(83)

for large values of s the imaginary term proportional to O
μ
(u) grows linearly in s. The

spin angular momentum is therefore not constant, and also the particle does not remain
close to the real hyperspace. This is inconsistent with the quantization of spin angular
momentum. If Γ (μ) is small enough, and the particle lifetime is short then the present
model might still be possible, but for an electron, as shown above (44), the spin would
vary with s in a physically unacceptable manner. Therefore this way of introducing spin
cannot describe quantum electrons. Muons probably can’t be described either this way.
But quarks have a chance because they are never free, except in the quark gluon plasma.
Vector Bosons W+, W− have very short lifetimes, and their measured g factor is also
reasonably close to 2.0 [68] as predicted by the Kerr–Newman theory. They are too
short-lived for the variation of the imaginary part of their Bohmian trajectory to cause
a problem.

There is another way to plausibly introduce spin. We can simply assume that the
Bohmian trajectories for a free particle give the real part of the trajectory only, and
that the effect of spin is simply to add a constant complex term to this real trajectory.
This leads to the same current density as for the spinless case (75), with a modified

4 For elementary particles, these metrics have a naked singularity due to the electromagnetic field energy. If
the particle becomes effectively an extended jellium by the GAN transformation, then this naked singularity
would generally disappear.
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electromagnetic potential. In the usual real case, the retarded potentials can be written

Aμ(x) =
∫

Jμ(
−→x ′, x ′0

r )√(−→x − −→x ′)2
d3x ′, x ′0

r = x0 −
√(−→x − −→x ′)2 (84)

Now we would like to analytically continue this by x ′ → x ′ + O . Let’s start off with a
real displacement, so all Oμ are real initially. Then the vector potential becomes

Aμ(x, O) =
∫

Jμ(
−→x ′, x ′0

r )√(−→x − −→x ′ − −→
O
)2

d3x ′, x ′ 0
r = x0 − O0 −

√(−→x − −→x ′ − −→
O
)2

(85)
where x ′0

r is the retarded time. In this form, the vector potential can be analytically
continued to complex values of O , and then the projection onto real electromagnetic
fields as in Sect. 4 can be performed.

This model for spin is still too simple to lead to a description for a quantum electron
as a Kerr–Newman particle. An explanation for the quantum behavior of spin is needed
in this context. When one tries to make sense of the Dirac equation as a quantum
wave equation, one is confronted with the zitterbewegung phenomenon. The Foldy–
Wouthuysen transformation removes the zitterbewegung from the motion for positive
energy states and produces a non-radiating current density [61]. One would think that
a description of quantum fermions in the current framework should incorporate some
explanation for zitterbewegung for Kerr–Newman particles. One such is given in [13]
which is based on the classical Lorentz–Dirac equation embedded in complex space-
time. Another model for zitterbwegung has been suggested by Burinskii, based on his
gravitating bag model [38,39]. The bag structure gives internal structure to the particle,
and it’s no longer a simple point in complex space-time, but rather a closed loop string
in space. This ring acts as a waveguide for massless particle excitations travelling the
circumference of the ring, and this is the model for zitterbewegung [69]. It also makes a
connection with string theory which is an interesting way to obtain a connection with the
Standard model of particle physics. It seems reasonable to try and couple the Bohmian
picture with one of these zitterbewegung models. It’s not obvious to me how to proceed
though. So this task remains as a topic for future research.

10 The Non-relativistic Schrödinger Equation

It is straightforward to parallel the treatment provided here for the relativistic case for
the the standard non-relativistic Schrödinger equation. For the Gaussian case we can use
Holland’s results (25) from [29]. We again embed these trajectories in complex space-
time. In the non-relativistic case, the trajectories are functions of the usual time variable
t rather than the world time s. Everything proceeds more or less as in the relativistic
case. The retarded times are still multivalued, and the GAN continuation still generates
all of the trajectories from a single trajectory. The non-radiating property holds as well
for Schrödinger current [61].
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11 Interpretation of Complex Space-Time

A reasonable question to ask is “Don’t we live in a real space-time universe?”, and
consequently “doesn’t that rule out most of this paper?”. The simplest answer I can
give is—maybe we don’t live in a real Minkowski space. Maybe we actually do live in
complex space-time, i.e. a 4 dimensional complex manifold endowed with aMinkowski
metric tensor, at least locally. Imagine that the universe is built up from point particles
moving around but always very near to the real hyperspace, moving say along Bohmian
trajectories and in some interaction with one another. Then all of our experimental appa-
ratuses, being made up of such particles, are aware only of macroscopic distances in the
real space-time which is given empirical prominence because all the matter is located
there and large apparatuses are always therefore embedded in this 4-dimensional real
subspace. For large objects, and for charged macro particles involving many elemen-
tary particles, I expect everything to look like ordinary classical electromagnetism in
real space-time. All of the Bohmian trajectories for many particles will result in much
averaging, and only the dominant retarded time for an extended macro particle will
be found to contribute I suspect (or more honestly hope). When dealing with a single
small elementary particle over small distances, I expect the corrections due to the com-
plex space-time effects to become visible. What we call quantum mechanics might, in
this fanciful picture, be the appearance of complex space time effects for microscopic
objects. The fuzziness of quantum mechanics might be due to the extended particle
nature of the electromagnetic fields produced, and to the multi-valued nature of trajec-
tories and fields when small particles are being focused on. So, we think we live in a
quantum world of 4 real dimensions, and our classical world is the large particle limit
of this which obeys classical equations of motion, but maybe in reality we are living in
a multi-valued but classical universe which consists of 4 complex dimensions, with the
matter concentrated on the real hyperspace, and what we call quantum behavior, that we
observe for small particles, is actually the effects of the complex space-time modifying
the Liénard–Wiechert potentials and generating multi-valued fields and positions for
small particles. I grant that this is a speculative and fanciful picture, but in fact it is in
my mind when I think about these things.

There is another possibility though, and this is slightly different, but I think probably
closer to what might be preferred by relativists. Remember that there is always a projec-
tion to real fields on a real hyperspace at the end of a calculation of the electromagnetic
field produced by some complex trajectory (or real trajectory embedded complex space-
time). So we always end up with real electromagnetic fields. We can simply assume that
classical electromagnetism should include all of the roots that would be obtained by
complex analytic continuation first with the resulting fields then projected down on the
real hyperspace. This would then yield the same result as above where we treated the
space as actually a complex manifold. This would still yield multi-valued fields and
positions for particles.

This is the sense that I meant when I said in the introduction that I’m agnostic about
whether the complex space-time was ontologically real or not.
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12 An Analytic Universe Interpretation of QuantumMechanics

Maybe quantummechanics is a description of amulti-Riemann-sheeted universe. Quan-
tum superposition might be related to the GAN continuation which is a form of linear
superposition of different Riemann sheets. It would need to be applied to the wave
function itself, rather than to the trajectories, and so it might come about in a second
quantization of the wave function treated as a dynamical field. Quantum mechanics is
perfectly linear, asmeasured inmanyexperiments [70–72]. This is surprising. If quantum
mechanics has some deep dynamical origin, how does it arise that linear superposition
of wave functions is exactly correct? In the classical world linearity is always only
approximate. The GAN based on a partition of unity argument gives exact linearity
with absolutely no non-linear term. And yet, it arises from the mathematics of general
relativity, electromagnetism, and Bohmian mechanics in complex space-time. One can
start with the many worlds or Everett interpretation of quantummechanics [73], and ask
if the many worlds can be replaced by a many-Riemann-sheeted interpretation of quan-
tum mechanics? Regarding the Einstein–Rosen bridge and entanglement ideas [1,2],
perhaps these too can be interpreted in terms of Riemann sheets. One might imagine
that collapse of the wave function is related to an abrupt change in the weighting factors
for different Riemann sheets as in the GAN idea, or perhaps in a change in the Riemann
sheet structure itself. This is because a wave function collapse would cause a change
in the Bohmian trajectories and their weighting functions and perhaps in their analytic
Riemann sheet topology. The results of this paper together with [13] and the complex
manifold techniques of general relativity seem to be suggesting such an analytic universe
interpretation as a possibility.

13 Conclusion

If Kerr–Newman particles are coupled to the electromagnetic fields in complex space-
time, and are moving along Bohmian trajectories, then the trajectory equations become
multi-valued with two or more Riemann sheets. If one accepts the GAN proposal as
valid, then for theGaussianwave functions studied here, all the Bohmian trajectories can
be continued into one another, except for a set of measure zero. This explains how such
Kerr–Newman particles need not radiate electromagnetically. It also allows the point
particle to act as an extended charge distribution or jelliumwhichwould generally have a
finite electrostatic energy. The hydrodynamic or jelliummodel makes an experimentally
testable prediction involving bremsstrahlung as well [66]. In the standard Bohmian
interpretation, one is not allowed to couple the charged particles in this way. So these
results are an application ofBohmianmechanics to a hybrid interpretation combining the
Kerr–Newman complex space-time techniques with Bohmian mechanics. The results
here in no way detract from the standard Bohmian interpretation, but add a possible new
application for Bohmian mechanics.

Although metric nonlinearities are ignored in this paper, the complex space-time
embedding is not ignored, and the motivation for this embedding comes from general
relativity. Therefore, the multi-sheeted and multi-valued trajectories and resulting fields
are also a direct consequence of general relativity that cannot be ignored, even in the
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very weak gravity limit. Thus we have a flat space theory in which general relativity is
playing a very major role, and in fact it’s offering potential explanations for some of
the deepest mysteries of quantum mechanics. It also leads to a way to avoid the infinite
self-energy of a static point particle in classical electromagnetism by making a point
charge behave as an extended particle.

For multi-particle systems the multiplicity of Riemann sheets increases exponen-
tially. These results beg the question—Can an interpretation of quantum mechanics be
developed that is based on this multi-sheeted structure, in a sense mapping the spirit
of the many-worlds or Everett interpretation [73] into a single analytic complex world
manifold with many Riemann sheets?
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