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Abstract
Three recent arguments seek to show that the universal applicability of unitary quantum
theory is inconsistent with the assumption that a well-conducted measurement always
has a definite physical outcome. In this paper I restate and analyze these arguments.
The import of the first two is diminished by their dependence on assumptions about
the outcomes of counterfactual measurements. But the third argument establishes its
intended conclusion. Even if every well-conducted quantum measurement we ever
make will have a definite physical outcome, this argument should make us reconsider
the objectivity of that outcome.

Keywords Quantum theory · Objectivity · Wigner’s friend · Brukner · Frauchiger
and Renner

1 Introduction

Quantum theory is taken to be fundamental to contemporary physics in large part
because countless measurements have yielded outcomes that conform to its predic-
tions. Experimenters take great care to ensure that each quantum measurement has an
outcome that is not just a subjective impression but an objective, physical event. How-
ever, in the continuing controversy in quantum foundations QBists [1,2] and others
[3–5] have come to question and evendeny the principle that awell-conducted quantum
measurement has a definite, objective, physical outcome. This principle should not be
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abandoned lightly: objective data provide the platform on which scientific knowledge
rests.1 We should demand a water-tight argument before giving it up.

In this paper I analyze three recent arguments that quantum theory, consistently
applied, entails that not every quantum measurement can have a definite, objective,
physical outcome. I say ‘can have’, not ‘has’, because each argument requires a
Gedankenexperiment far more extreme even than that of Schrödinger’s cat. The first
two arguments’ dependence on questionable implicit assumptions severely limits their
significance. But I think the third argument at least succeeds in deflating a certain ideal
of objectivity in the quantum domain. I assume throughout that an outcome of a quan-
tummeasurement is definite only if it is unique—an assumption rejected byEverettians
such as Deutsch [7] and Wallace [8]. Assuming the objectivity of a physical outcome,
an Everettian may take an argument like these considered here as offered in support
of that outcome’s non-uniqueness, as suggested by the title of [9].

2 Brukner’s Argument

Brukner’s argument [3,4] applies Bell’s theorem [10] to an extension of Wigner’s [11]
friend scenario.My restatement of themost recent version [4] of his argument renames
Brukner’s characters and introduces clarifying notation.

Before describing his own Gedankenexperiment, Brukner considers Deutsch’s [7]
twist on Wigner’s original friend scenario. So consider first a scenario in which Zeus2

is contemplating possible measurements on Xena’s otherwise physically isolated lab
X , inside which Xena has measured the z-spin of a single spin-1/2 particle 1 prepared
in the superposed state in the z-spin basis

|x〉1 = 1/
√
2(|↑〉1 + |↓〉1) (1)

Assuming the universal applicability of unitary quantum mechanics, Zeus assigns to
the combined system 1X after Xena’s measurement the entangled state

|�〉1X = 1/
√
2(|↑〉1 |“ up”〉X + |↓〉1 |“down”〉X ), (2)

where |“up”〉X (for example) represents a state in which if Zeus were to observe the
contents of Xena’s lab he would certainly (with probability 1) find her reporting the
outcome of her measurement of z-spin on particle 1 as +�/2 and that her recording
device had indeed recorded that value.

1 Even if no item of data is so certain as to be immune from rejection in the light of further scientific
investigation. Recall Popper’s [6, p. 94] famous metaphor:
“Science does not rest upon solid bedrock. The bold structure of its theories rises, as it were, above a swamp.
It is like a building erected on piles. The piles are driven down from above into the swamp, but not down to
any natural or ‘given’ base; and if we stop driving the piles deeper, it is not because we have reached firm
ground. We simply stop when we are satisfied that the piles are firm enough to carry the structure, at least
for the time being.”
2 Brukner calls this character Wigner, but I have reserved that name for another character with analogous
powers.
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Zeus can try to verify his assignment of state |�〉1X by performing a measurement
of a dynamical variable Ax represented by the operator Âx on H1 ⊗ HX

Âx = |↑〉1 |“ up”〉X 〈↓|1 〈“ down”|X + |↓〉1 |“ down”〉X 〈↑|1 〈“ up”|X . (3)

This measurement will (with probability 1) yield the outcome + 1 while leaving the
state |�〉1X undisturbed. After this successful verification, Zeus’s apparatus and mem-
ory establish the truth of statement A+

x : “Zeus’s outcome is Ax = +1” and the falsity of
A−
x : “Zeus’s outcome is Ax = − 1.” But despite his entangled state assignment, Zeus

may have some reason to believe that Xena has indeed observed a definite outcome
of her measurement of z-spin.

As Deutsch [7] pointed out, no violation of unitary quantum theory is involved if
Xena passes a message out of her lab to Zeus reporting that she has seen a definite
outcome, as long as this contains no information about what that outcome was. Zeus
may try to see for himself whether Xena has seen a definite outcome by performing his
own measurement on her lab and its contents, of a dynamical variable Az represented
by the operator Âz on H1 ⊗ HX

Âz = |↑〉1 |“ up”〉X 〈↑|1 〈“ up”|X − |↓〉1 |“ down”〉X 〈↓|1 〈“ down”|X . (4)

If Zeus’s outcome is Az = + 1 he may judge this to verify the statement A+
z : “Xena’s

outcome is z+,” and falsify A−
z : “Xena’s outcome is z−”, while outcome Az = − 1

reverses these judgments. These judgments are notwarranted by the (false) assumption
that an ideal quantum measurement just faithfully reveals the pre-existing value of
the measured variable. Instead, their warrant rests on the assumption that Xena’s
outcome is accessible to other observers by consulting her records. Failure of such
intersubjectivity would undermine Xena’s outcome’s claim to objectivity, at least in
this epistemic sense.

Since the measurement of Ax leaves the state |�〉1X unchanged, Zeus may first
perform that measurement to establish the truth of A+

x , then measure Az to verify the
truth of A+

z (or, alternatively, of A−
z ). So in this preliminary scenario Zeus has some

reason to believe that not only his own measurements but also Xena’s measurement
had a definite, physical outcome. Moreover, if he measures only Ax he can then pass a
message with its outcome to Xena, also without disturbing the state |�〉1X : so Xena,
too, will have reason to believe that both A+

x and A+
z (or A−

z ) are true and that Zeus’s
measurement of Ax as well as her own measurement of 1’s z-spin had a definite,
physical outcome.

Now consider the statements c(A+
x ): “A+

x would be true if Zeus were to measure
Ax”, c(A−

x ): “A−
x would be true if Zeuswere tomeasure Ax”; c(A+

z ): “Zeus’s outcome
would be Az = + 1 if he were to measure Az”, c(A−

z ): “Zeus’s outcome would be
Az = − 1 if he were to measure Az”. Zeus has reason to believe c(A+

x ) is true and
c(A−

x ) is false whether or not he measures Ax , since |�〉1X predicts the truth of A+
x

(with probability 1).Whether or not hemeasures Az , Zeus has reason to believe that one
of c(A+

z ), c(A−
z ) is truewhile the other is false in state |�〉1X . Assumingmeasurements

have definite, objective outcomes, he should take his conditional outcome simply to
reflect Xena’s actual outcome: Xena got z+ if and only if Zeus would get + 1, while
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Xena got z− if and only if Zeus would get − 1. Provided that Xena’s measurement
had a definite actual outcome it follows that exactly one of c(A+

z ) or c(A−
z ) is true.

After analyzing this preliminary scenario, Brukner [4] introduces his own, more
complex, Gedankenexperiment. Each of Xena and Yvonne is located in a separate
laboratory. These laboratories are initially completely physically isolated, and this
isolation is preserved except for the processes specified below. An entangled pair
of spin-1/2 particles is prepared, with particle 1 in Xena’s lab X and particle 2 in
Yvonne’s lab Y . In [4] the initial state assigned to 12 (in the z-spin basis) is

|ψ〉12 = − sin θ/2
∣
∣φ+〉

12 + cos θ/2
∣
∣ψ−〉

12 , where
∣
∣φ+〉

12 = 1/
√
2(|↑〉1 |↑〉2 + |↓〉1 |↓〉2)

∣
∣ψ−〉

12 = 1/
√
2(|↑〉1 |↓〉2 − |↓〉1 |↑〉2). (5)

Then Xena measures the z-spin of particle 1 in her lab, while Yvonne measures the
z-spin of particle 2 in her lab. Assume that the measurement in each laboratory has a
definite, physical outcome, registered by a particle detector, recorded in a computer
(or on paper) and experienced by Xena or Yvonne respectively.

Each of Zeus andWigner is also located in a separate laboratory. Xena’s laboratory
is located wholly within Zeus’s, while Yvonne’s is located wholly within Wigner’s.
But to this point each laboratory has remained completely physically isolated insofar
as there has been no direct physical interaction between any of these four laboratories.

Assuming (no-collapse) quantum theory is universally applicable, there is a correct
quantum state for Zeus and Wigner to assign to the joint physical system consisting
of the entire contents of both Xena’s and Yvonne’s laboratories and this state evolved
unitarily throughout the interactions involved in each of their spin-component mea-
surements. (Note that in assigning this state, Zeus and Wigner are here treating Xena
and Yvonne themselves as quantum (sub)systems.) Assuming for simplicity that the
spin-component measurements were non-disturbing, wemaywrite this joint state after
Xena’s and Yvonne’s measurements as

|�〉12XY = − sin θ/2
∣
∣�+〉 + cos θ/2

∣
∣�−〉

, where
∣
∣�+〉 = 1/

√
2

(∣
∣Aup

〉 ∣
∣Bup

〉 + |Adown〉 |Bdown〉
)

∣
∣�−〉 = 1/

√
2

(∣
∣Aup

〉 |Bdown〉 − |Adown〉
∣
∣Bup

〉)

. (6)

Here X represents the entire contents of Xena’s lab (including Xena) and Y represents
the entire contents of Yvonne’s lab (including Yvonne), except the measured particles
1, 2.

∣
∣Aup

〉

, |Adown〉 are eigenstates of Âz .
We may define an analogous pair of self-adjoint operators on H2 ⊗ HY as follows:

B̂z = |↑〉2 |“ up”〉Y 〈↑|2 〈“ up”|Y − |↓〉2 |“ down”〉Y 〈↓|2 〈“ down”|Y
B̂x = |↑〉2 |“ up”〉Y 〈↓|2 〈“ down”|Y + |↓〉2 |“ down”〉Y 〈↑|2 〈“ up”|Y

where magnitude Bz on 2Y uniquely corresponds to B̂z and Bx to B̂x . The state
(6) predicts that the statistics of the (assumed, definite) outcomes of Zeus’s and
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Wigner’s measurements will violate the associated Clauser–Horne–Shimony–Holt
inequality

S = 〈Az Bz〉 + 〈Az Bx 〉 + 〈Ax Bz〉 − 〈Ax Bx 〉 ≤ 2 (CHSH)

in which 〈Ax Bz〉, for example, is the correlation function of a probability distribution
for the outcomes of measurements of magnitudes Ax , Bz . The inequality CHSH is
violated, for example, by state |�〉12XY for which S = 2

√
2 if θ = π/4.

Suppose that the sequence of measurements by Xena, Yvonne, Zeus and Wigner is
repeated in many trials, with Zeus’s measurement of Ax or Az and Wigner’s measure-
ment of Bx or Bz varied randomly and independently from trial to trial. Violation of
(CHSH) by statistics collected in a large number of such trials is perfectly consistent
with the assumption

Definite Outcomes: In every such trial each of Xena’s, Yvonne’s, Zeus’s and
Wigner’s measurements has a definite, physical outcome.

The assumption of Definite Outcomes does not even make it unlikely that a large
number of Zeus’s and Wigner’s outcomes in repeated trials will display correlations
in violation of (CHSH). Indeed the Born rule predicts that the outcomes of Zeus’s and
Wigner’s measurements will violate CHSH: if θ = π/4 then S = 2

√
2. Why might

one think otherwise?
Brukner [4] takes his argument to disprove the following postulate

Postulate (“Observer-independent facts”) The truth-values of the propositions
Ai of all observers form a Boolean algebraA.Moreover, the algebra is equipped
with a (countably additive) positive measure p(A) � 0 for all statements A ∈ A,
which is the probability for the statements to be true.

To evaluate the bearing of his argument on the assumption ofDefinite Outcomes one
must specify propositions purporting to describe such outcomes. Brukner’s discussion
of the preliminary scenario suggests these include A+

z , A
−
z , A

+
x , and A

−
x . The symmetry

of the Gedankenexperiment further suggests they include propositions B+
z , B

−
z , B

+
x

and B−
x , each of which states the outcome of an analogous measurement by Yvonne

or by Wigner. Is there any reason to believe that application of Brukner’s Postulate
to the propositions B = {A+

z , A−
z , B+

z , B−
z , A+

x , A−
x , B+

x , B−
x } yields the promised

no-go theorem?
In no repetition are both Ax and Az measured—the experimental arrangements are

mutually exclusive, as are those for Bx and Bz . If Ax is not measured, then neither A+
x

nor A−
x describes an actual outcome: and if Bx is not measured, then neither B+

x nor
B−
x describes an actual outcome. So unless Ax , Bx are measured in a repetition, the

propositions of all observers that describe the actual definite outcomes assumed by
Definite Outcomes is not the whole of B but merely a compatible subset B∗ forming a
Boolean algebra which may readily be equipped with a (countably additive) positive
measure: just use the Born probabilities from state (6) and extend this to each propo-
sition describing the outcome of an actual measurement by Xena or by Yvonne by
equating its outcome to that of the corresponding measurement by Zeus or by Wigner
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(so, for example, A+
z is true if and only if the outcome of Zeus’s measurement of Az

is Az = + 1, and both propositions have the same probability).
If Ax , Bx are measured in a repetition, the propositions of all observers describing

the actual definite outcomes assumed byDefinite Outcomes is the whole of B. But the
propositions {A+

x , A−
x , B+

x , B−
x } form a Boolean algebra whose structure is respected

by the obvious truth-assignments, and the Born probabilities from (6) define a prob-
ability measure on this algebra. In the absence of any further constraints it is easy to
extend this truth-assignment and probability measure to the full algebra B.

So the assumed actual outcomes in each trial can certainly be described by propo-
sitions Ai of all observers forming a Boolean algebra A. Moreover, this algebra may
be equipped with a (countably additive) positive measure p(A) � 0 for all statements
A ∈ A, which may be taken as the probability for the statements to be true in that
trial. A no-go theorem is not derivable through the application of Definite Outcomes
to propositions Ai of all observers that describe their actual outcomes in any, or all,
repetitions of Brukner’s Gedankenexperiment.

What happens if instead the “propositions of all observers” concern not their actual
but their hypothetical outcomes? Consider the set c(B) = {c(A+

z ), c(A−
z ), c(B+

z ),

c(B−
z ), c(A+

x ), c(A−
x ), c(B+

x ), c(B−
x )} of subjunctive conditionals describing the out-

comes of hypothetical measurements. Assume that if such a measurement is actually
made in a trial then the corresponding conditional has the same truth-value as its
consequent (so, for example, if Ax is measured with outcome Ax = + 1 then c(A+

x )

is true as well as A+
x ). Unlike the simpler scenario discussed earlier, when A+

x , A−
x

are replaced by the corresponding subjunctive statements c(A+
x ), c(A−

x ): “If Ax were
measured then the definite outcome would be + 1 (− 1)”, in state (6) there is no rea-
son to suppose that either of these statements even has a truth-value if Zeus does not
measure Ax . Nor should c(B+

x ), c(B−
x ) be expected to have truth-values whenWigner

does not measure Bx .
Unless Ax ,Bx are both measured in a trial, replacement of propositions about actual

definite outcomes of a measurement by such conditionals fails to generate a Boolean
algebra of propositions of all observers whose truth-value assignment respects that
algebra. But quantum theory predicts violation of the inequality CHSH only for the
outcomes of actual measurements. Because of the physical incompatibility of Zeus’s
joint measurement of Ax and Az and of Wigner’s measurement of Bx and Bz , these
predictions must concern four distinct kinds of trials, which is what necessitated vari-
ation of measurements by Zeus and by Wigner from trial to trial. Definite Outcomes
implies that the set c(B) forms a Boolean algebra whose structure is respected by a
joint truth-assignment and is equipped with a (countably additive) positive measure
at most in the case of a repetition in which Zeus measures Ax and Wigner measures
Bx . So the violation of that inequality in state (6) does not refute Definite Outcomes.
As it stands, Brukner’s argument [3,4] provides no good reason to doubt that every
quantum measurement has a definite, objective, physical outcome.

In correspondence, Brukner has proposed a slight modification that avoids this
objection and promises to strengthen the argument. In the modified scenario, Zeus
measures Ax andWigner measures Bx in every trial. As in the simplerWigner’s friend
scenario, Zeus may appeal to the epistemic objectivity of Xena’s outcome to infer that
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c(A+
z ) has the same truth-value as A+

z , and c(A−
z ) has the same truth-value as A−

z .
3

SinceDefinite Outcomes implies that one of A+
z , A−

z is true and the other false, it then
follows that in every repetition one of c(A+

z ), c(A−
z ) is true and the other false, even

though Zeus actually measures Ax and not Az in that repetition. Similarly, in every
repetition one of c(B+

z ), c(B−
z ) is true and the other is false. So in each repetition the

set of propositions {c(A+
z ), c(A−

z ), c(B+
z ), c(B−

z )} always forms a Boolean algebra
whose truth-value assignment and probability distribution follow from those assigned
to the assumed actual outcomes of Xena’s and Yvonne’s measurements. This will be
true in every trial of this modified scenario.

Definite Outcomes now implies that every proposition in the full algebra c(B) has
a truth-value and these truth-values respect the algebra’s structure. Moreover, any
(countably additive) positive measure p(A) � 0 for all statements in c(B) must be
constrained by a transformed inequality obtained from CHSH by replacing each ref-
erence to an actual outcome by a reference to the corresponding hypothetical outcome
(though for Ax ,Bx the hypothetical outcome is the actual outcome). If quantum the-
ory were to predict violation of this transformed inequality then it would imply that
Definite Outcomes is false.

But quantum theory predicts probabilities only for the outcomes of actual measure-
ments, and neither Az nor Bz is actually measured in this modified scenario. Only Ax ,
Bx and the z-spins of 1,2 are measured in each trial, and quantum theory makes no
predictions of the joint probability distribution for Zeus’s and Yvonne’s pairs of mea-
surement outcomes, or that for Wigner’s and Xena’s pairs of measurement outcomes.
This is to be expected, since even if Definite Outcomes is true, these outcome pairs
are not epistemically accessible by any observer (including the four agents named in
this scenario), so their statistics are of no scientific interest.

3 Frauchiger and Renner’s Argument

Here is a simplified restatement of the argument of Frauchiger and Renner [9,12].
The appendix compares its strategy to that of the arguments on which it is based and
supplies a translation to the notation of [12].

Four physical observers are each located in their own separate laboratories. Every
laboratory is initially completed physically isolated, and this isolation is preserved
except for the processes specified below. In one laboratory observer Xena has prepared
a “biased quantum coin” c in state

|ready〉c = 1√
3

|heads〉c +
√
2√
3

|tails〉c . (7)

At time t = 0Xena “flips the coin” by implementing ameasurement on c of observable
f with orthonormal eigenstates |heads〉c, |tails〉c by means of a unitary interaction
with c.

3 Though this inference is now questionable, since in this context the antecedent “Zeus measures Az” of
the counterfactuals c(A+

z ), c(A−
z ) is not merely false but incompatible with Zeus’s actual measurement of

Ax .
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|ready〉c |ready〉X− �⇒ |ψ〉0cX− = 1√
3

|heads〉0c |heads〉X−

+
√
2√
3

|tails〉0c |tails〉X− . (8)

Here and elsewhere I put a numerical superscript n on a state to mark its unitary
evolution up to just after time t = n. X− is a system representing the entire contents
of Xena’s lab (including Xena herself, but neither c nor a qubit system s whose state
she is about to prepare), while X is X−+ c. |heads〉X− , |tails〉X− are orthonormal
eigenstates of a binary indicator observable on X whose eigenvalue x = 1 represents
Xena’s outcome “heads” and whose eigenvalue x = − 1 represents Xena’s outcome
“tails”.

x̂ |heads〉X− = |heads〉X−

x̂ |tails〉X− = − |tails〉X− . (9)

AssumeXena’s measurement of f on c has a unique, physical outcome: either “heads”
or “tails”.

At time t = 1, if the outcome was “heads”, Xena prepares the state of a qubit
system s in her lab in state |↓〉s : if the outcome was “tails”, Xena prepares s in state
|→〉s = 1/

√
2(|↓〉s+|↑〉s). Xena can do this bymeans of a unitary interaction between

s and X , yielding the following state

|ψ〉1cX−s = 1√
3

|heads〉1c |heads〉1X− |↓〉s +
√
2√
3

|tails〉1c |tails〉1X− |→〉s (10)

= 1√
3

(

|heads〉1c |heads〉1X− |↓〉s + |tails〉1c |tails〉1X− |↓〉s
+ |tails〉1c |tails〉1X− |↑〉s

)

. (11)

Xena then transfers system s out of her lab and into Yvonne’s lab, keeping c in her
own lab.

Let Y− be a system consisting of the entire contents of Yvonne’s lab (including
Yvonne but not the system s transferred to her by Xena), while Y is Y−+ s. At time
t = 2 Yvonne measures observable Sz on s with orthonormal eigenstates |↓〉2s , |↑〉2s
by means of another unitary interaction within her lab, yielding state

|ψ〉2cX−sY− = 1√
3

⎛

⎝

|heads〉2c |heads〉2X− |↓〉2s |−1/2〉Y− +
|tails〉2c |tails〉2X− |↓〉2s |−1/2〉Y− +
|tails〉2c |tails〉2X− |↑〉2s |+1/2〉Y−

⎞

⎠ (12)

which we can rewrite as

|ψ〉2XY = 1√
3
(|heads〉X |−1/2〉Y + |tails〉X |−1/2〉Y + |tails〉X |+1/2〉Y ). (13)
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Let y be a binary indicator observable on Y whose eigenvalue y = 1 represents
Yvonne’s outcome “+ 1/2” and whose eigenvalue y = − 1 represents Yvonne’s
outcome “− 1/2”.

ŷ |+1/2〉Y = |+1/2〉Y
ŷ |−1/2〉Y = − |−1/2〉Y . (14)

Assume Yvonne’s measurement of Sz on s has a unique, physical outcome: either
“+ 1/2” or “− 1/2”.

The state (13) of XY just after t = 2 may also be expressed as

|ψ〉2XY = 1√
3
(
√
2 | f ail〉X |−1/2〉Y + |tails〉X |+1/2〉Y ) (13a)

= 1√
3
(|heads〉X |−1/2〉Y + √

2 |tails〉X | f ail〉Y ) (13b)

= 1

2
√
3
(3 | f ail〉X | f ail〉Y + | f ail〉X |OK 〉Y − |OK 〉X | f ail〉Y

+ |OK 〉X |OK 〉Y ) (13c)

where the states | f ail〉X , |OK 〉X are defined by

|OK 〉X = 1√
2
(|heads〉X − |tails〉X )

| f ail〉X = 1√
2
(|heads〉X + |tails〉X ) (15)

and the states | f ail〉Y , |OK 〉Y are defined by

|OK 〉Y = 1√
2
(|−1/2〉Y − |+1/2〉Y )

| f ail〉Y = 1√
2
(|−1/2〉Y + |+1/2〉Y ). (16)

At time t = 3 Zeusmeasures observable z on X with orthonormal eigenstates | f ail〉3X ,|OK 〉3X and records a unique, physical outcome: either “fail”, or “OK”. At time t = 4
Wigner measures observable w on Y with orthonormal eigenstates | f ail〉4Y , |OK 〉4Y
and records a unique, physical outcome: either “fail”, or “OK”. Finally, at t = 5
Wigner consults Zeus and notes the outcome of his measurement of z.

In arriving at the quantum state assignment (13) (and its equivalents), Wigner has
correctly applied unitary quantum theory to the specified interactions. Equation (13c)
implies that with probability 1/12 (slightly more than 8%) the outcomes of Zeus’s and
Wigner’s measurements will both be “OK”. We now investigate Wigner’s reasoning
about the outcomes of Xena’s and Yvonne’s measurements in such a case.
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Step 1 At t = 5 Zeus tells me that the outcome of his measurement of z on X at
t = 3 was “OK”, so I infer that the unique outcome of his measurement of z on X at
t = 3 was “OK”.

Step 2Yvonne measured observable Sz on s at time t = 2. If her outcome had been
“− 1/2” and not “+ 1/2”, then Eq. (13a) implies (with probability 1) that the unique
outcome of Zeus’s measurement of z on X at t = 3 was “fail” and not “OK”. But
I inferred in step 1 that the unique outcome of his measurement of z on X at t = 3
was “OK”. So I now infer (with probability 1) that the unique outcome of Yvonne’s
measurement of observable Sz on s at time t = 2 was “+ 1/2”.

Step 3Xena measured observable f on c at t = 0. If her outcome had been “heads”
and not “tails”, then Eq. (13) implies (with probability 1) that the unique outcome of
Yvonne’s measurement of Sz on s at time t = 2 was “− 1/2” and not “+1/2”. But I
inferred in step 2 that the unique outcome of Yvonne’s measurement of observable Sz
on s at time t = 2 was “+ 1/2”. So I now infer (with probability 1) that the unique
outcome of Xena’s measurement of f on c at t = 0 was “tails”.

Step 4* The unique outcome of my measurement of w on Y at t = 4 was “OK”.
But Eq. (13b) implies (with probability 1) that if the unique outcome of Xena’s mea-
surement of f on c at t = 0 had been “tails”, the unique outcome of my measurement
of w on Y at t = 4 would have been “fail”. So I infer that the unique outcome of
Xena’s measurement of f on c at t = 0 was “heads” and not “tails”.

Since the conclusion of step 4* contradicts the conclusion of step 3, Wigner’s rea-
soning has here led to a contradiction. The reasoning depended on several assumptions,
at least one of which must be rejected to restore consistency. These include the three
assumptions:

UniversalityQuantum theory may be applied to all systems, including macroscopic
apparatus, observers and laboratories.

No collapseWhen an observable is measured on a quantum system in a physically
isolated laboratory, the state vector correctly assigned by an external observer to the
combined system+ laboratory evolves unitarily throughout.

Unique outcome A measurement of an observable has a unique, physical outcome.
Unique outcome corresponds to what Frauchiger and Renner [12] call (S). The

appendix discusses the relation between these three assumptions and Frauchiger and
Renner’s assumptions (C), (Q), and (S). But step 4* depends on an additional assump-
tion that should be questioned and, I argue, rejected:

Intervention insensitivity The truth-value of an outcome-counterfactual is insensi-
tive to the occurrence of a physically isolated intervening event.

An outcome-counterfactual is a statement of the form Ot1 �→ Ot2 where Ot states
the outcome of a quantum measurement at t , t1 < t2, and A�→ B means “If A had
been the case then B would have been the case”: An event then intervenes just if it
occurs in the interval (t1, t2), and it is physically isolated if it occurs in a laboratory
that is then physically isolated from laboratories where Ot1 , Ot2 occur.

To see the problem with step 4* of Wigner’s reasoning, focus on the outcome-
counterfactual “If the unique outcome of Xena’s measurement of f on c at t = 0 had
been “tails”, the unique outcome of my measurement of w on Y at t = 4 would have
been “fail”.” Zeus’s measurement of z on X at t = 3 was an intervening event that
occurred in Zeus’s laboratory Z ∪ X (taken now to encompass the laboratory X on
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which he performs his measurement of z). At t = 3, Z ∪ X is still physically isolated
from Y and W . So the assumption of Intervention Insensitivity would license step 4*
of Wigner’s reasoning.

But Intervention Insensitivity actually conflicts with the other assumptions of the
argument. To see why, consider how Wigner should apply quantum theory to Zeus’s
measurement of z on X at t = 3, in accordance with Universality and No collapse.
Equation (13a) implies

|ψ〉2XY = 1√
3

[√
2 | f ail〉X |−1/2〉Y + 1√

2
(| f ail〉X − |OK 〉X ) |+1/2〉Y

]

(17)

Assume for simplicity that Zeus’smeasurement on X is non-disturbing.Wigner knows
that Zeusmade a non-disturbingmeasurement of z on X at t = 3. So the state he should
assign to XY Z immediately following this measurement is

|ψ〉3XY Z = 1√
3

[√
2 | f ail〉3X |“ f ail”〉Z |−1/2〉3Y +

+ 1√
2
(| f ail〉3X |“ f ail”〉Z − |OK 〉3X |“OK ”〉Z ) |+1/2〉3Y

]

= 1√
24

⎡

⎢
⎢
⎣

|heads〉3X
{ (

3 | f ail〉3Y + |OK 〉3Y
) |“ f ail”〉Z

+ (|OK 〉3Y − | f ail〉3Y
) |“OK ”〉Z

}

+ |tails〉3X
{ (

3 | f ail〉3Y + |OK 〉3Y
) |“ f ail”〉Z

− (|OK 〉3Y − | f ail〉3Y
) |“OK ”〉Z

}

⎤

⎥
⎥
⎦

(18)

What can Wigner legitimately infer about Xena’s outcome at t = 0? Prior to t = 4
he has yet to perform his own measurement of w on Y , and prior to t = 5 he remains
unaware of the outcome of Zeus’s measurement of z on X at t = 3. But even before
t = 4 Wigner can still use |ψ〉3XY Z to reason hypothetically about Xena’s outcome,
conditional on Zeus’s and his own measurements both having the outcome “OK”:
on learning at t = 5 that these antecedents are true, he can then infer the truth of the
consequent of this conditional.Wigner should therefore replace the incorrect reasoning
of step 4* as follows.

Step 4 Assume Zeus’s measurement of z on X at t = 3 had a unique, physical
outcome and that there are then no interactions among X , Y , Z prior to t = 4. Then
the state of XY Z at t = 4 is

|ψ〉4XY Z = 1√
24

⎡

⎢
⎢
⎣

|heads〉4X
{ (

3 | f ail〉4Y + |OK 〉4Y
) |“ f ail”〉4Z

+ (|OK 〉4Y − | f ail〉4Y
) |“OK ”〉4Z

}

+ |tails〉4X
{ (

3 | f ail〉4Y + |OK 〉4Y
) |“ f ail”〉4Z

− (|OK 〉4Y − | f ail〉4Y
) |“OK ”〉4Z

}

⎤

⎥
⎥
⎦

(19)

Suppose that Wigner’s unique physical outcome on measuring Y at t = 4 were “OK”.
Now consider the hypothesis that Xena’s outcome at t = 0 was “tails”. Equation
(19) then implies that the probability of Wigner’s outcome “OK” would have been
1/6. On the alternative hypothesis that Xena’s outcome at t = 0 was “heads”, Eq.
(19) also implies that the probability of Wigner getting outcome “OK” would have
been 1/6. So if Wigner were to get outcome “OK” for his measurement at t = 4
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his knowledge of this outcome would not entitle him to infer the outcome of Xena’s
measurement at t = 0. Indeed, application of Bayes’s theorem would lead him to
conclude that knowledge of the outcome of his measurement at t = 4 should have no
effect on his estimate of the probabilities of Xena’s possible outcomes: they remain
prob(“heads”) = 1/3, prob(“tails”) = 2/3 after conditionalizing on either possible
outcome of his measurement at t = 4, and again after further conditionalizing on
either possible outcome of Zeus’s measurement at t = 3.

Consider, for purposes of contrast, howWigner should reason if he knew that Zeus
performed no measurement at t = 3. In that case he should assign the following state
to XY at t = 4:

|ψ〉4XY = 1√
3
(|heads〉4X |−1/2〉4Y + √

2 |tails〉4X | f ail〉4Y ). (20)

Knowledge of the outcome “OK” of his own measurement of w at t = 4 would then
entitle him to conclude (with probability 1) that the outcome ofXena’smeasurement of
f on c at t = 0was “heads”. This conclusion follows by an inference that parallels step
4* of the reasoning discussed previously. Unlike step 4* itself, the parallel inference
is valid because of the assumption that Zeus performed no intervening measurement.

But that same assumption invalidates the premise of step 1 of the reasoning dis-
cussed previously. Failing the conclusion of step 1,Wigner would no longer be entitled
to take steps 2 and 3. So if he knew that Zeus performed no measurement at t = 3 then
Wigner could no longer validly conclude that the outcome of Xena’s measurement
of f on c at t = 0 was “tails”. In this contrasting case, Wigner should correctly, and
consistently, conclude that the unique outcome of Xena’s measurement of f on c at
t = 0 was “heads”.

The preceding analysis of the two contrasting cases (with, andwithout, Zeus’s inter-
vening measurement) shows clearly why Intervention Insensitivity must be rejected,
as inconsistent with Universality and No collapse. But it may appear to raise a worry
about locality. For how can a physically isolated intervening event like Zeus’s distant
measurement on X have such an impact on Wigner’s reasoning about local matters in
this scenario?

The form of the question suggests an answer to the worry it seeks to express. Zeus’s
measurement on X certainly does not influence the outcome of Xena’s measurement:
if it did, the influence would not be non-local but time-reversed, since Zeus’s measure-
ment occurred later than Xena’s! Xena’s outcome is what it is, irrespective of Zeus’s
measurement. If Zeus’s measurement were to influence anything it would beWigner’s
outcome, not Xena’s. But Wigner’s outcome “OK” has the same probability (1/6)
whether or not Zeus performs his measurement. It is only the correlation between
Xena’s and Wigner’s outcomes that differs between the cases where Zeus does and
does not measure z on X .

While Zeus’s measurement modifies this correlation, it does so despite being
causally unrelated to any of its constituent events. This intervention sensitivity is
not an instance of non-local causal influence. The suspicion that it is may arise from
the view that correlations in non-separable states like |ψ〉4XY are causal because they
specify probabilistic counterfactual dependence between the outcomes of distant mea-
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surements in violation of Bell inequalities [10].While controversy continues [13] as to
whether such counterfactual dependence constitutes or evidences non-local influence,
there are well-known strategies for denying that it does.4 So the failure of Intervention
Insensitivity raises no new worry about non-locality.

4 A Third Argument

I first heard this argument in a talk by Pusey [15], who there credits it to Luis Masanes.
As in sects. 2 and 3 my purpose is not critical but constructive. To understand the
limits of quantum objectivity I look to develop the strongest arguments against the
assumption that every quantum measurement can have a definite, objective outcome.

Once again, the argument is set in the context of a Gedankenexperiment featuring
four experimenters. For variety I have changed their names to Alice, Bob, Carol and
Dan. But while Carol and Dan perform difficult but technically feasible lab experi-
ments, Alice and Bob are credited with even more extreme abilities than the Zeus and
Wigner who figured in the previous arguments (though their exercise of these powers
involves no violation of unitary quantum theory).

Each of Alice and Bob are in their own separate laboratories, totally physically iso-
lated except for a shared Bohm–EPR pair of spin-1/2 particles on which they intend to
perform measurements of (normalized) spin-components, one on each particle from
the pair. Alice is tomeasuremagnitude Aa corresponding to operator Âa with eigenval-
ues {+ 1,− 1} on particle 1, while Bob is to measure magnitude Bb corresponding to
operator B̂b with eigenvalues {+ 1,− 1} on particle 2. a, b label two directions in space
along which Alice and Bob (respectively) set the axes of their spin-measuring devices.
Alice will choose setting a and perform measurement of Aa at spacelike-separation
from Bob’s choice of setting b and measurement of Bb.

But before performing these measurements, Alice and Bob first delegate a similar
task to their friends, Carol and Dan respectively. Carol occupies her own separate
laboratory, initially totally physically isolated from Alice’s: Dan occupies his own
separate laboratory, initially totally physically isolated from Bob’s. Carol and Dan
perform measurements on the Bohm–EPR pair: Carol measures (normalized) spin-
component Cc on particle 1, while Dan measures (normalized) spin-component Dd

on particle 2. Carol’s choice of setting c and measurement of Cc are each spacelike-
separated from Dan’s choice of setting d and measurement of Dd . Assume Carol’s
and Dan’s measurements each have a definite, physical outcome that is registered,
recorded and experienced by them separately in their labs.

It is important to note that Alice and Carol both perform their measurements on
the very same particle 1, and that Bob and Dan perform their measurements on the
very same particle 2. To make this possible, after performing Carol’s measurement
particle 1 is transferred out of her lab and into Alice’s lab, and after performing Dan’s
measurement particle 2 is transferred out of his lab and into Bob’s lab. Assume that
measurement causes no physical “collapse” of the quantum state, so that each spin-
measurement proceeds in accordance with a unitary interaction between the measured

4 My preferred strategy [14] depends on an interventionist approach to causal influence.
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particle and the rest of the experimenter’s lab, and that this is consistent with its having
a definite, physical outcome recorded by the experimenter in that lab. It follows that
Carol’s measurement entangles the state of her lab C with that of particle 1, while
Dan’s measurement entangles the state of his lab D with that of particle 2.

But Alice and Bob use their superpowers to undo these entanglements by applying
very carefully tailored interactions, in the first case between 1 andC , and in the second
case between 2 and D. This restores C and D to their original states, and also restores
the original spin-entangled state of 1+ 2. That is how it is possible for Alice and Bob
to perform spin-measurements on the same Bohm–EPR pair as Carol and Dan.

By assumption, we now have a situation in which successive measurements of
spin-component (in the c and a directions) have been performed on particle 1 of an
individual Bohm–EPR pair, while successive measurements of spin-component (in
the d and b directions) have been performed on particle 2 of that pair. By assumption,
each of these measurements has a definite, physical outcome registered, recorded and
experienced by an experimenter in his or her laboratory. Finally suppose that this
entire situation is repeated very many times, each time with a different Bohm–EPR
pair, giving rise to a statistical distribution of results for the four outcomes in each
trial.

We may use quantum theory to predict the corresponding probability distribution
by applying the Born rule to appropriate quantum states. From Alice’s perspective,
events in a given trial unfold in the following sequence. At time t0 the particles are in
state

|ψ〉 = 1√
2
(|↑〉1 |↓〉2 − |↓〉1 |↑〉2) (21)

while C, D are in states |ready〉C , |ready〉D respectively. Then Dan measures the
d-spin of 2 by means of a unitary interaction Û 2

D as follows

Û 2
D |↓d〉2 |ready〉D = |d-down〉2D

Û 2
D |↑d〉2 |ready〉D = |d-up〉2D . (22)

So at time t1 when Dan has recorded the definite outcome as either d-down or d-up,
Alice assigns the following state to 12D

�1 = 1√
2
(|↑d〉1 |d-down〉2D − |↓d〉1 |d-up〉2D). (23)

Shortly after t1 Carol measures the c-spin of particle 1 by a unitary interaction Û 1
C

Û 1
C |↓c〉1 |ready〉C = |c-down〉1C

Û 1
C |↑c〉1 |ready〉C = |c-up〉1C . (24)
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So at time t2 when Carol has recorded the definite outcome as either c-down or c-up,
Alice assigns the following state to 12DC

�2 = 1√
2
(Û 1

C |↑d〉1 |ready〉C |d-down〉2D − Û 1
C |↓d〉1 |ready〉C |d-up〉2D) (25)

Next Alice “undoes” the effects of Carol’s measurement by applying an interaction
between 1 and C with unitary Û 1†

C , and assigns the state �3 at time t3 to 12D (which
is no longer entangled with that of C)

�3 = 1√
2
(|↑d〉1 |d-down〉2D − |↓d〉1 |d-up〉2D). (26)

Shortly after t3, Alice measures a-spin on 1 and at time t4 gets a definite, physical
outcome of either a-down or a-up. Then Bob “undoes” Dan’s measurement on particle
2 by implementing an interaction in accordance with unitary Û 2†

D , before measuring
the b-spin of 2 and at time t5 getting a definite, physical outcome of either b-down or
b-up.

By applying theBorn rule to theBohm–EPR spin-state at t0, Alice predicts the prob-
abilistic correlation function E(c, d) for Carol’s and Dan’s measurement outcomes

E(c, d) = − cos(c − d). (27)

To predict the correlation function E(a, d) for Alice’s and Dan’s measurement out-
comes, Alice reasons as follows. If Carol had performed no measurement and C and
1 had never interacted, then between t1 and t4 Alice and Dan would just have been
recording a correlation between outcomes of an a-spin measurement on 1 and an
earlier d-spin measurement on 2—a standard Bell experiment with settings and mea-
surements performed at timelike separation. For such a case, the Born rule predicts

E(a, d) = − cos(a − d). (28)

In the present case, C and 1 interacted twice between t1 and t4, but these interactions
had no overall effect on the state of the joint system 12D at the time when Alice
performed her measurement of a-spin: its state was the same at t3 as it had been at
t1 (�3 = �1). It follows that in the present case also quantum theory predicts the
correlation function

E(a, d) = − cos(a − d). (29)

After the effects of Dan’s measurement on 2 have been “undone” by Bob’s imple-
mentation of the interaction Û 2†

D , Alice should again recognize that the outcomes of
her measurement of a-spin on 1 and Bob’s spacelike-separated measurement of b-
spin on 2 constitute a record of a correlation in a standard (spacelike separated) Bell
experiment, with predicted correlation function

E(a, b) = − cos(a − b). (30)
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So far we have been considering the events involved in a single trial from Alice’s
perspective. But those same events should also be considered from the perspective of
Bob. If the labs of Alice, Bob and friends are all in the same state of motion, then
the events we have considered will play out in the same sequence also from Bob’s
perspective. But it is well known that the time-order of spacelike separated events is
not invariant under transformations of inertial frame.

Suppose that Alice’s lab and Carol’s lab are in one state of motion relative to frame
F (moving to the right at speed v, say), while Bob’s lab and Carol’s lab are in a
different sate of motion (moving to the left at speed v, say). To make sure that Alice
is in position to manipulate 1 and C we may assume that they both remain inside,
and move together with, Alice’s lab A: and to make sure that Bob is in position to
manipulate 2 and D we may assume that they both remain inside, and move together
with, Bob’s lab B. This arrangement is depicted in Fig. 1. Relative to the state ofmotion
of Bob and Dan, the same events play out over a period marked by the sequence of
times

〈

t∗0 , t∗1 , t∗2 , t∗3 , t∗4 , t∗5
〉

.
Note that in the ∗’d frame Carol’s measurement precedes Dan’s and Bob’s precedes

Alice’s. Most important, note that the state of 12C is the same at t∗3 as at t∗1 . Paralleling
Alice’s reasoning, Bob should therefore conclude that in this situation the correlation
function for his outcome when measuring the b-spin of 2 and Carol’s outcome when
measuring the c-spin of 1 is E(b, c) = − cos(b − c).

It is a central assumption of this third argument that every spin measurement by
Alice, Bob, Carol or Dan has a definite, physical outcome—either spin up or spin
down with respect to the chosen direction. It follows that in a long sequence of trials of
theGedankenexperiment just described there will be a statistical distribution of actual
outcomes,with a set of outcomes thatmaybe labeled 〈a, b, c, d〉 in each trial. Statistical
correlations between pairs of actual experimental outcomes may be represented in
the usual way by statistical correlation functions corr(a, b), corr(b, c), corr(c, d),

corr(a, d). It follows that these statistical correlations will satisfy the inequality

|corr(a, b) + corr(b, c) + corr(c, d) − corr(a, d)| ≤ 2. (31)

Note that no locality assumption is required to derive this inequality here, since it
is mathematically equivalent to the existence of a joint distribution over the actual,
physical outcomes whose existence has been assumed [16].

But we saw that quantum mechanics predicts probabilistic correlation functions
E(a, b), E(b, c), E(c, d), E(a, d) for these pairs of outcomes that may be compared
to the inequality

|E(a, b) + E(b, c) + E(c, d) − E(a, d)| ≤ 2. (32)

It is well known that quantum theory predicts violation of inequality (32) for certain
choices of directions a, b, c, d. If the particles and labs of the experimenters in the
Gedankenexperiment had been at relative rest, then the choice of four directions in a
plane defined by rotations of a◦ = 0◦, b◦ = 45◦, c◦ = 90◦, d◦ = 135◦ from a fixed
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Fig. 1 Spacetime diagram for third argument
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axis would yield maximal violation of (32) with predicted value

|E(a, b) + E(b, c) + E(c, d) − E(a, d)| = 2
√
2. (33)

The relativistic relative motion of labs and particles makes it necessary to take account
of the associatedWigner rotationof vectors, affecting thepredictedvalue for this choice
of directions. But the inequality is still maximally violated for a different choice of
directions.5

5 Conclusion

Each of the three arguments analyzed in this paper sought to establish a contradiction
between the universal applicability of unitary quantum theory and the assumption
that a well-conducted quantum measurement always has a definite, physical outcome.
The first argument succeeded in doing so only by implicitly relying on assumptions
that the work of Bell [10] and Kochen and Specker [18] gives us good reasons to
reject—in Einstein’s [19] words, that in the circumstances described in the associated
Gedankenexperiment the individual system (before the measurement) has a definite
value for all variables of the system, and more specifically, that value which is deter-
mined by a measurement of this variable. Failing some such naive realist assumptions,
nothing justifies the argument’s application of quantum theory to predict probabilities
for outcomes of hypothetical measurements which would be incompatible with those
actually performed.

Though it does not rely on such naive realist assumptions, the second argument also
depends on a superficially plausible assumption about the outcomes of counterfactual
measurements I called intervention insensitivity, according to which the truth-value
of an outcome-counterfactual is insensitive to the occurrence of a physically isolated
intervening event. But in the circumstances of the associated Gedankenexperiment,
intervention insensitivity is itself incompatible with the universal applicability of uni-
tary quantum theory. Since a contradiction then follows even if each (well-conducted)
quantum measurement does not have a definite, physical outcome in the Gedanken-
experiment, the argument does not establish its intended conclusion.

Unlike the first two arguments, the third argument relies on no implicit assump-
tions about the outcomes of hypothetical measurements, since all the outcomes it
considers are assumed to be actual. I think it succeeds in showing that, in the circum-
stances described in the associated Gedankenexperiment, the universal applicability
of unitary quantum theory implies (with probability approaching 1) that there is no
consistent assignment of values to the (supposedly definite, physical) outcomes of the
measurements in the sequence of trials there considered.

This result prompts further reflection on how to understand quantum theory. But
the circumstances of the Gedankenexperiment in the third argument are so extreme as
forever to resist experimental realization. There are no foreseeable circumstances in

5 [17] specifies the necessary directions in Sect. 4. Rather than being coplanar (with respect to frame F)
these may be chosen to lie on a cone centered on the direction of motion of the lab in which that spin
measurement is performed.
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which the argument would require us to deny that a well-conducted quantummeasure-
ment has a definite, physical outcome. The arguments considered in this paper give us
no reason to doubt the sincerity or truth of experimenters’ reports of definite, physical
outcomes. But I think the third argument should make us reconsider the extent and
nature of their objectivity. This paper was intended to both motivate and prepare the
way for the pursuit of that project.
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Appendix

In restating the argument of [9,12] I have changed the notation to try to make it easier
to follow. The following table supplies a translation between my notation and that
used in [12].

Agent Lab Measured system Measured observable Other observable

F̄ �Xena L � X R � c heads/tails� f
F �Yvonne L � Y S � s up/down� Sz
W̄ �Zeus • � Z L̄ � X w̄ � z • � x
W �Wigner • � W L � Y w � w • � y

Readers familiar with Wigner’s original “friend” argument [11] will be primed to
attribute extraordinary powers to the experimenter I have namedWigner, and I thought
it appropriate to name a second character with such almost “God-like” powers Zeus.
This naturally suggested also giving the experimenters charged with less extraordinary
tasks names whose initial letters are also at the end of the alphabet, with corresponding
labels for their labs and measured observables.

While such changes are merely cosmetic, my restatement deliberately lacks one
feature emphasized by the authors of the argument of [12] that they call “consistent
reasoning”, illustrate in their Fig. 1, and formalize in their assumption (C). Both in
the original and in my restatement it is Wigner (W ) whose reasoning is the ultimate
focus of the argument. But the authors of the original argument consider it important
that Wigner’s reasoning incorporates the reasoning of the other experimenters [via
assumption (C)].

It is vital to check whetherWigner’s reasoning is both internally consistent and con-
sistent with the reasoning of the other experimenters in thisGedankenexperiment. My
restatement makes it clear howWigner can consistently apply quantum theory without
considering the reasoning of any other experimenters. But are the conclusions of this
independent reasoning by Wigner consistent with those of the other experimenters,
based on their own applications of quantum theory? Indeed they are, provided each
experimenter has applied quantum theory correctly. The problem with the argument
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of Frauchiger and Renner is that one experimenter (Xena/F̄) has applied quantum
theory incorrectly.

Recall step 4* of the reasoning in my restatement of this argument (see §3). I
attributed this reasoning to Wigner, while pointing out that Zeus’s subsequent mea-
surement of z renders it fallacious. Frauchiger and Renner initially attribute parallel
reasoning to Xena/F̄ and then use assumption (C) to attribute its conclusion also to
W igner. To see where things go wrong if Xena/F̄ reasons this way, I quote from [12].

“Specifically, agent F̄ may start her reasoning with the two statements

s F̄I = “If r = tails at time n : 10 then spin S is in state |→〉S at time n : 10”
s F̄M = The value w is obtained by a measurement of L w.r.t.{πH

ok , π
H
f ail}”.′′

They conclude that F̄ can infer from s F̄I and s F̄M that statement s F̄Q holds:

s F̄Q = “If r = tails at time n : 10 then I am certain that W will observe

w = f ail at n : 40”.

Startingwith s F̄Q , they then apply assumption (C) to the reasoning of the other agents
successively, eventually to establish that W igner may conclude

sW2 = “ If w̄ = ok at time n : 30 then I am certain that I will observe

w = f ail at n : 40”,

which (given (S)) is inconsistent withW ’s independent conclusion (based on assump-
tion (Q))

sWQ =“I am certain that there exists a round n ∈ N≥0 in which it is

announced that w̄ = ok at time n : 30 and w = ok at n : 40.”
But this chain of reasoning is based on a mistaken starting point, since F̄ has

applied quantum theory incorrectly in asserting statement s F̄Q . Compare s F̄Q with the
corresponding conclusion of Wigner’s fallacious reasoning in step 4* of §3:

“If the unique outcome of Xena’s measurement of f on c at t = 0 had been
“tails”, the unique outcome of my measurement of w on Y at t = 4 would have
been “fail”.

Agent F̄’s reasoning was equally fallacious here. The problem starts with statement
s F̄I : F̄ is correct to assign state |→〉S to S at time n : 10 for certain purposes but not for
others. Suppose, for example, that F̄ had “flipped the quantum coin R” by passing that
system through the poles of a Stern–Gerlach magnet. By applying unitary quantum
theory, F̄ should conclude that this will induce no physical collapse of R’s spin state
but entangle it with its translational state, and thence with the rest of her lab [20]. So
while F̄ would be correct then to assign state |→〉S to S at time n : 10 for the purpose
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of predicting the outcome of a subsequent spin measurement on S alone, she would
be incorrect to assign state |→〉S to S at time n : 10 for the purpose of predicting
correlations between S (or anything with which it subsequently interacts) and her lab
L̄ (or anything with which it subsequently interacts).

By using the phrase ‘is in’, statement s F̄I ignores the essential relativity of S’s state

assignment at time n : 10 to these different applications. By using s F̄I to infer s F̄M ,
agent F̄ is, in effect, taking F̄’s coin flip to involve the physical collapse of R’s state
rather than the unitary evolution represented by Eq. (8). So agent F̄ is mistaken to
assert s F̄Q , and W would be wrong to incorporate this mistake in his own reasoning by
applying assumption (C).

Frauchiger and Renner [12] justify F̄’s inference from s F̄I and s F̄M to s F̄Q by appeal

to assumption (Q). I have argued that F̄ is not justified in asserting s F̄Q , since F̄ is

justified in using the state assignment licensed by s F̄I for the purpose of predicting
the outcome of a measurement on S only where S’s correlations with other systems
(encoded in an entangled state of a supersystem) may be neglected. But the sequence
of interactions in the Gedankenexperiment successively entangle the state of S with
those of R, L̄ , L and W̄ . So in reasoning about the outcome of W ’s measurement of
w, F̄ must take account of this progressive entanglement of the states of S and W̄ .

Specifically, to predict the outcome of W ’s measurement of w, F̄ must represent
that measurement as the second part of W ’s joint measurement on the system W̄ + L .
This interaction betweenW and W̄ was represented in §3 as the apparently innocuous
Step 1 in whichWigner simply asked Zeus what was the outcome of his measurement.
But it is not this interaction but the prior interaction between W̄ and L that undercuts
F̄’s justification for using the state assignment |→〉S in inferring s F̄Q from s F̄I and s F̄M .

Only by neglecting the prior interaction between W̄ and L can F̄ draw the erroneous
conclusion s F̄Q .

W igner can reason consistently about the unique, physical outcomes of all exper-
iments in the Gedankenexperiment of [9,12] without any appeal to the reasoning of
the other agents involved. Each of these other agents may reason equally consistently.
And their collective reasoning is perfectly in accord with assumption (C) as well as
the universal applicability of unitary quantum theory and the existence of a unique,
physical outcome of every measurement that figures in the Gedankenexperiment of
[9,12].
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