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Abstract
For a simple set of observables we can express, in terms of transition probabilities
alone, the Heisenberg uncertainty relations, so that they are proven to be not only
necessary, but sufficient too, in order for the given observables to admit a quantum
model. Furthermore distinguished characterizations of strictly complex and real quan-
tum models, with some ancillary results, are presented and discussed.

Keywords Heisenberg uncertainty relations · Statistical invariants · Quantum models

Surely, one would like to be able to deduce the quantitative
laws of quantum mechanics directly from their anschaulich
foundations, that is, essentially, relation δ p δq ∼ h.

(Werner Heisenberg [8], p. 196)

1 Foreword

The problem of understanding the empirical basis of the quantum mechanical formal-
ism has been approached, starting from eighties, by means of the method of statistical
invariants [1,2]. Themain idea of this approach, borrowed from the Klein’s program of
Erlangen [3], is to classify the probabilistic models according to statistical invariants,
expressed in terms of the transition probabilities of the physical observables. That is to
say, one considers the transition probabilities as the basic empirical data from which
the mathematical model should be deduced. The statistical invariants for some simple
systems were explicitly computed and it was shown how they allowed to distinguish
among Kolmogorovian, real Hilbert space and complex Hilbert space models. Actu-
ally necessary and sufficient conditions for the existence of each model were found
[1,4,5]. When applied to the quantum-mechanical transition probabilities, they proved
not only the necessity of a non classical probabilistic model, but also the necessity of
using complex rather than real Hilbert spaces [1,5], so offering the solution to the open
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problem of “...singling out in full generality the empirical basis for the choice of com-
plex numbers in quantum theory....” [6]. Furthermore the Kolmogorovian statistical
invariant was recognized as a form of the celebrated Bell inequality [1], expressed by
the transition probabilities instead of the correlation functions. In the present paper we
pursue the study of a triple of two-dimensional observables undertaken in [1] and, by
means of the notion of quantum models, we show as their statistical invariants repre-
sent the Heisenberg uncertainty relations expressed in terms of transition probabilities
alone. This allow us to affirm that uncertainty relations are not only necessary, but
sufficient too, in order for the given observables to admit a quantum model.

2 Preliminary Definitions and Results

In the oft quoted paper [1] a triple A, B, C of two-valued observables subject to take
values (aα), (bβ), (cγ ) were studied, given their transition probabilities

P(A = aα|B = bβ), P(B = bβ |C = cγ ), P(C = cγ |A = aα) (1)

under the symmetry assumptions1

P(A = aα|B = bβ) = P(B = bβ |A = aα), ... (2)

By observable it is meant any quantity arising from an experiment, regardless of its
nature. The transition probability P(A = aα|B = bβ) is the conditional probability
that A takes the value aα conditioned by the fact that B is known to assume the value
bβ. We will denote the transition probabilities (1) as

P(A|B) =
[

p 1 − p
1 − p p

]
=

[
cos2 α

2 sin2 α
2

sin2 α
2 cos2 α

2

]
, (3)

P(B|C) =
[

q 1 − q
1 − q q

]
=

[
cos2 β

2 sin2 β
2

sin2 β
2 cos2 β

2

]
, (4)

P(C |A) =
[

r 1 − r
1 − r r

]
=

[
cos2 γ

2 sin2 γ
2

sin2 γ
2 cos2 γ

2

]
, (5)

assuming, unless otherwise specified, that

0 < p, q, r < 1, (6)

for which the angles can be chosen such that

0 < α, β, γ < π. (7)

The transition probabilities (1)were said to admit a complex (resp. a real)Hilbert space
model if there exist three orthonormal bases {φα}, {ψβ}, {χγ } of a two-dimensional

1 In all the equations, ellipsis stands for all similar relations involving the observables left over.
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complex (resp. real) Hilbert space H such that

P(A = aα|B = bβ) = |〈φα|ψβ〉|2, ... (8)

In particular a complexHilbert spacemodelwas said a spin model if the three o. n. bases
can be taken as the normalized eigenvectors ψα(u A), ψβ(u B), ψγ (uC ) (α, β, γ =
1, 2) of the spin operators u A · σ, u B · σ, uC · σ for some u A, u B , uC ∈ S(2), where
S(2) denotes the real unit sphere inR

3 and u ·σ is defined in terms of the Pauli matrices

σ1 :=
[
0 1
1 0

]
, σ2 :=

[
0 −i
i 0

]
, σ3 :=

[
1 0
0 −1

]
(9)

as
u · σ := u1σ1 + u2σ2 + u3σ3 (10)

In the latter case we can write (8), in terms of the angles û Au B, û BuC , ûC u A, as

|〈ψ1(u A)|ψ1(u B)〉|2 = cos2
û Au B

2
, ... (11)

|〈ψ1(u A)|ψ2(u B)〉|2 = sin2
û Au B

2
, ... (12)

In the present paper we prefer to focus our attention on observables rather than
on transition probabilities alone. So we can recover the usual formalism of quantum
mechanics [7] according to which observables are postulated in correspondence with
self-adjoint operators on a suitable complexHilbert space. In this frame the uncertainty
relations we are concerned with find their most general formulation, so that we are led
to give the following

Definition 2.1 The observables A, B, C are said to admit a quantum model if and only
if there exist a complex Hilbert space H and self-adjoint operators Â, B̂, Ĉ acting2

on it such that the values of each observable coincide with the eigenvalues of the
corresponding operator and the transition probabilities (1) admit the complex Hilbert
space model defined by the o. n. bases ofH made up of the normalized eigenvectors3

of Â, B̂, Ĉ . The model will be called a real quantum model if H can be taken real,
or a strictly complex quantum model otherwise.

Next theorem shows a first expected link between quantum models of observables
and Hilbert space models of the relative transition probabilities.

Theorem 2.1 The following assertions are equivalent:

(i) the observables A, B, C admit a quantum model;
(ii) their transition probabilities admit a spin model;
(iii) their transition probabilities admit a complex Hilbert space model.

2 Â, B̂, Ĉ are defined up to a common unitary transformation, cfr. [1, Corollary 8]. A self-adjoint operator
having eigenvalues ∓1 is just a spin operator.
3 Said eigenstates as well.
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Proof To prove that (i) is equivalent to (ii) it is suffices to observe that, for every
observable X (with values x1,x2) of the triple A, B, C, the operator

ŜX := 2

x1 − x2
X̂ − x1 + x2

x1 − x2
1̂, (13)

where 1̂ is the identity operator, has the eigenvalues∓1, so it is a spin operator and, due
to [ŜX , X̂ ] = 0, it has the same eigenvectors of X̂ . Further, the equivalence between
(ii) and (iii) was proven in [1], Theorem 7.4 ��

Remark 2.1 The particular case of real quantummodels will be discussed later. Notice
that the previous result deals with a (linear) rescaling of the observables preserving
probabilities. Further observe that the spin operators ŜA, ŜB, ŜC can be written as
u A · σ, u B · σ, uC · σ respectively, for suitable unit vectors5 u A, u B, uC ∈ S(2),

which so remain associated to the self-adjoint operators Â, B̂, Ĉ respectively.

In this framework we are able to reformulate some results of [1] as follows:

Theorem 2.2 The following assertions are equivalent:

(i) the observables A, B, C admit a quantum model;
(ii) there exist6 u A, u B, uC ∈ S(2) such that u A · u B = cosα, u B · uC = cosβ, uC ·

u A = cos γ ;
(iii) 1 − cos2 α − cos2 β − cos2 γ + 2 cosα cosβ cos γ ≥ 0.

Moreover inequality (iii) is saturated if and only if A, B, C admit a real quantum
model; in such a case, and only then, the unit vectors in (ii) are coplanar.

Proof By Theorem 2.1, (i) is equivalent to the existence of a spin model for the
transition probabilities; this in turn, by Eqs. (8), (11) and (12), as well as due to
cos û Au B = u A · u B, cos û BuC = u B · uC , û AuC = u A · uC , is easily recognized
equivalent to (ii); the equivalence between (ii) and (iii) was established in [1] (see
footnote 4), Proposition 3, just as, from Theorems 9 and 10 therein, it follows straight
the last statement to be proven. ��

Remark 2.2 The inequality in (iii) of the previous theorem is said a statistical invariant
[2] for a quantum model. It is said in particular a statistical invariant for a real
quantum model if the inequality is saturated, or a statistical invariant for a strictly
complex quantum model, otherwise. Many equivalent forms of these invariants were
discovered in [1] (see footnote 4) and some others, involving uncertainty relations,
will appear below.

4 Cfr. Appendix 1.
5 Any common unitary transformation of Â, B̂, Ĉ, referred to in note 2, induces a common rotation of
u A, u B , uC , cfr. [1, Corollary 8] proof.
6 Observe that u A, u B , uC are necessarily distinct and pairwise non collinear, due to the assumption (5).
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3 Uncertainty Relations

Uncertainty relations were introduced in quantum mechanics by Heisenberg [8] and
successively extended and strengthen by many authors [10,11].7 In this paper we will
refer to the following stronger form:

Theorem 3.1 (Schrödinger [11]) For every couple of self-adjoint operators X̂ , Ŷ act-
ing on a complex Hilbert space H and for every state8 ψ the following inequality
holds:9

Var(X̂)Var(Ŷ ) ≥
(
1

2
〈{X̂ , Ŷ }〉 − 〈X̂〉〈Ŷ 〉

)2

+
(
1

2i
〈[X̂ , Ŷ ]〉

)2

(14)

where 〈Ẑ〉 := 〈ψ |Ẑ |ψ〉 and Var(Ẑ) := 〈Ẑ2〉−〈Ẑ〉2 are resp. the average of Ẑ and the
variance of Ẑ in the state ψ, with [X̂ , Ŷ ] := X̂ Ŷ − Ŷ X̂ and {X̂ , Ŷ } := X̂ Ŷ + Ŷ X̂
being the commutator, resp. the anticommutator, of X̂ and Ŷ .

Proof Cfr. for example reference [12] and, of course [11]. ��
Remark 3.1 In the following Lemma 4.4 we show that, for the operators we consider in
this paper, the inequality expressing the Heisenberg–Schrödinger uncertainty relation
is in fact saturated, so that it assumes the form of an identity. From now on H will
denote a two-dimensional complex Hilbert space.

4 Some Useful Lemmas

Lemma 4.1 Whichever X̂ , Ŷ , Ẑ are taken among the operators Â, B̂, Ĉ associated to
the given observables A, B, C one has, for every state,

〈Ẑ〉 = z1 + z2
2

+ z1 − z2
2

〈uZ · σ 〉 (15)

and

Var(Ẑ) =
(

z1 − z2
2

)2

Var(uZ · σ) (16)

where z1,z2 are the values of the observable Z , as well as

1

2
〈{X̂ , Ŷ }〉 − 〈X̂〉〈Ŷ 〉 = x1 − x2

2

y1 − y2
2

(
1

2
〈{u X · σ, uY · σ }〉 − 〈u X · σ 〉〈uY · σ 〉

)

(17)
and

1

2i
〈[X̂ , Ŷ ]〉 = x1 − x2

2

y1 − y2
2

1

2i
〈[u X · σ, uY · σ ]〉. (18)

7 For a recent review cfr. [9] and the bibliography therein.
8 As known a state is defined as a norm 1 element of H up to a phase factor.
9 The first addend in the r.h.s. is said the covariance term and the second the commutator term.
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Consequently the Heisenberg–Schrödinger uncertainty relation (14) holds for a couple
of operators X̂ , Ŷ acting on H if and only if it holds for the associated spin operators
u X · σ, uY · σ. Furthermore the former relation is saturated if and only if the latter
is.

Proof Cfr. Appendix 2. ��
Lemma 4.2 For every u, v, w ∈ S(2) the following identities hold in each eigenstate
ψk(w) of w · σ (k = 1, 2):

〈u · σ 〉 = (−1)k−1u · w, (19)

Var(u · σ) = 1 − (u · w)2, (20)
1

2i
〈[u · σ, v · σ ]〉 = (u × v) · w (21)

and just for every state:
1

2
〈{u · σ, v · σ }〉 = u · v. (22)

Proof Cfr. Appendix 3 ��
Lemma 4.3 For every state ψ of the Hilbert space H there is a w ∈ S(2) such that
ψ = ψ1(w), where ψ1(w) is the eigenstate10 of the spin operator w ·σ, corresponding
to the eigenvalue 1.

Proof We can put, up to an irrelevant phase factor, ψ = [|ψ1| 	(ψ2) + i
(ψ2)
]T

while as known11 ψ1(w) =
[√

1+w3
2

w1+i w2√
2(1+w3)

]T
, so that we can solve the vector

equation ψ1(w) = ψ for w, getting w1 = 2 |ψ1| 	(ψ2), w2 = 2 |ψ1| 
(ψ2),

w3 = 2 |ψ1|2 − 1. ��
Lemma 4.4 For every couple of self-adjoint operators X̂ , Ŷ on a two-dimensional
complex Hilbert space H and for every state ψ the following identity holds:

Var(X̂)Var(Ŷ ) =
(
1

2
〈{X̂ , Ŷ }〉 − 〈X̂〉〈Ŷ 〉

)2

+
(
1

2i
〈[X̂ , Ŷ ]〉

)2

(23)

Proof Due to Lemma 4.1 we can limit ourselves to the case in which X̂ , Ŷ are spin
operators, that is X̂ = u ·σ and Ŷ = v ·σ for suitable u, v ∈ S(2).However the generic
state ψ, by Lemma 4.3, can be written as ψ = ψ1(w), for a suitable w ∈ S(2). So
(23) by means of Lemma 4.2 can be written as

(1 − (u · w)2)(1 − (v · w)2) = (u · v − (u · w)(v · w))2 + ((u × v) · w)2; (24)

10 One has also that ψ = ψ2(−w), but it is not required here; w is known as a representation of the state
ψ on the Bloch’s sphere S(2).
11 In a basis ofH in which the Pauli matrices have the usual form (9), cfr. for example [1], p. 170.
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expanding and simplifying it becomes

1 − (u · w)2 − (v · w)2 − (u · v)2 + 2(u · v)(u · w)(v · w) = ((u × v) · w)2 (25)

which is surely identically satisfied, since each side equals the square of the volume
of the parallelepiped of sides u, v, w. ��

5 TheMain Result

Theorem 5.1 Assuming that the two-valued observables A, B, C admit a quantum
model, the following assertions12 hold and are equivalent:

(i) Â, B̂ satisfy the saturated Heisenberg–Schrödinger uncertainty relation for every
state:

Var( Â)Var(B̂) =
(
1

2
〈{ Â, B̂}〉 − 〈 Â〉〈B̂〉

)2

+
(
1

2i
〈[ Â, B̂]〉

)2

; (26)

(ii) the following inequality13 holds in each eigenstate ψk(C) of C (k = 1, 2) :

�A �B ≥
∣∣∣∣12 〈{ Â, B̂}〉 − 〈 Â〉〈B̂〉

∣∣∣∣ ; (27)

(iii) the following inequality holds:

4pqr − (p + q + r − 1)2 ≥ 0. (28)

Furthermore (iii) implies the hypothesis and the previous inequalities are saturated if
and only if A, B, C admit a real quantum model.

Proof (i) follows from the hypothesis by Lemma 4.4, since the operators associated
to A, B, C are self-adjoint, acting on a two-dimensional complex Hilbert space, by
definition of quantum model. If (i) holds for every state then, in particular, it shall
hold in each of the two eigenstates of C; so, omitting the last addend and taking the
square roots, one gets (ii). By Lemma 4.1, we can replace the operators Â, B̂, Ĉ with
the corresponding spin operators u A ·σ, u B ·σ, uC ·σ, achieving in each of the two
eigenstates ψk(uC )

�(u A · σ) �(u B · σ) ≥
∣∣∣∣12 〈{u A · σ, u B · σ }〉 − 〈u A · σ 〉〈u B · σ 〉

∣∣∣∣ ; (29)

so the difference between the squares of l.h.s. and the r.h.s. must satisfy

Var(u A · σ)Var(u B · σ) −
(
1

2
〈{u A · σ, u B · σ }〉 − 〈u A · σ 〉〈u B · σ 〉

)2

≥ 0. (30)

12 Similar assertions hold taking any permutation of the operators Â, B̂, Ĉ .

13 where �Ẑ :=
√

Var(Ẑ) denotes the standard deviation of Ẑ . The r.h.s. is said the correlation term.
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The latter, taking account of (24) and (25) in the proof of Lemma 4.4, can be written

1− (u A · u B)2 − (u B · uC )2 − (uC · u A)2 + 2(u A · u B)(u B · uC )(uC · u A) ≥ 0 (31)

namely, since cos û Au B = u A · u B, cos û BuC = u B · uC , ûC u A = uC · u A,

1 − cos2 α − cos2 β − cos2 γ + 2 cosα cosβ cos γ ≥ 0 (32)

and this, by virtue of (iii) of Theorem 2.2, implies the hypothesis. Furthermore (32)
is also equivalent to (iii) because, with the notations of Sect. 3, its l.h.s. equals14

4(4pqr − (p + q + r − 1)2). Finally the saturation statement follows from the last
part of Theorem 2.2. ��
Remark 5.1 It appears quite astonishing that the, apparently, much weaker relation in
(ii) above turns out rather to be equivalent to the Heisenberg–Schrödinger uncertainty
relation in full generality.

6 Ancillary Results

Corollary 6.1 Under the hypothesis of the preceding theorem, the observables A, B, C
admit a strictly complex quantum model, resp. a real quantum model, if and only if15

〈[ Â, B̂]〉ψk (C) �= 0, resp. 〈[ Â, B̂]〉ψk (C) = 0, in each eigenstate ψk(C) of C (k = 1, 2).

Proof It has been shown in the proof of the preceding theorem that the assertion
ii) is equivalent to the inequality (31), whose l.h.s., taking account of (25), equals
((u A × u B) · uC )2 that, in turn, due to Eq. (21) of Lemma 4.2, equals ( 1

2i 〈[u A · σ, u B ·
σ ]〉ψ1(uC ))

2. Therefore the assertion ii) of the theorem, thanks to Lemma 4, turns out
to be equivalent to (〈[ Â, B̂]〉ψk (C))

2 ≥ 0. Moreover it will be saturated as soon as (27)
will be and this completes the proof. ��
Corollary 6.2 If the observables A, B, C admit a strictly complex quantum model then
every couple of the associated operators do not commute. Further, for every state, at
least two couples have non vanishing commutators averages.

Proof Let X , Y , Z be whichever permutation of A, B, C . The assumption [X̂ , Ŷ ] = 0
would imply 〈[X̂ , Ŷ ]〉ψ1(Z) = 0, against what asserted in the preceding Corollary 6.1,
and this proves the first statement. Further, by Lemma 4.4, for every state ψ there is
a unit vector w ∈ S(2) such that, due to Eq. (21) of Lemma 4.2, we can write

1

2i
〈[u X · σ, uY · σ ]〉ψ = (u X × uY ) · w. (33)

If this is zero then w belongs to the plane spanned by u X , uY and may be neither in
the plane uY , uZ nor in the plane uZ , u X , because u A, u B, uC are not coplanar16 by

14 Cfr. Appendix 4.
15 Cfr. Note 12. The symbol 〈 〉ψ denotes the average computed in the state ψ.

16 Furthermore cfr. note 6.
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Theorem 2.2. So we get 1
2i 〈[uY · σ, uZ · σ ]〉ψ �= 0. and 1

2i 〈[uZ · σ, u X · σ ]〉ψ �= 0.
and, by Eq. (18) of Lemma 4.1, the last statement is proven as well. ��

7 Conclusions

We have proven that the statistical invariant 4pqr − (p + q + r − 1)2 ≥ 0 is the
expression of the Heisenberg–Schrödinger uncertainty relations for every couple of
observables of the considered system. It depends neither on the values of the observ-
ables nor on their scales and units of measure but only on the transition probabilities
and provides a condition not only necessary, but sufficient too, in order for a quantum
model to exist. In particular the inequality is strict if and only if there exists a strictly
complex quantum model. In this case some ancillary results involving commutators
have been found. Furthermore real quantum models have been characterized by the
saturation of the uncertainty relation (ii) in Theorem 5.1 or, alternatively, by the van-
ishing of the commutator average appearing in Corollary 6.1 or, definitively, in terms
of transition probabilities alone, by the equation 4pqr − (p + q + r − 1)2 = 0. The
latter confirms however the exceptional character of real quantum models, requiring
an unlikely functional dependence of the given transition probabilities. In closing, one
should highlight that, as the transition probabilities can be estimated starting from rel-
ative frequencies experimentally observed, we are able in principle, for the considered
simple system, to deduce the mathematical quantum formalism from the Heisenberg
uncertainty relations alone.

Appendix

1. Results quoted from [1].

Theorem 7 The following assertions are equivalent:

(i) the transition matrices P, Q, R admit a complex Hilbert space model;
(ii) the transition matrices P, Q, R admit a spin model;
(iii) cos2 α + cos2 β + cos2 γ − 1 ≤ 2 cosα cosβ cos γ ;
(iv) −1 ≤ cos2 α

2 +cos2 β
2 +cos2 γ

2 − 1

2 cos α
2 cos β

2 cos γ
2

≤ 1;
(v) −1 ≤ p + q + r − 1

2
√

p q r ≤ 1;
(vi) [√pq − √

(1 − p)(1 − q)]2 ≤ r ≤ [√pq + √
(1 − p)(1 − q)]2

Proposition 3 Three vectors a, b, c ∈ S(2) satisfying

cosα = cos âb, cosβ = cos b̂c, cos γ = cos ĉa

exist if and only if

cos2 α + cos2 β + cos2 γ − 1 ≤ 2 cosα cosβ cos γ.
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Theorem 9 The transition matrices P, Q, R admit a real Hilbert space model if and
only if p + q + r − 1

2
√

p q r = +1 or p + q + r − 1
2
√

p q r = −1 or equivalently
√

r = √
pq +√

(1 − p)(1 − q) or
√

r = ∣∣√pq − √
(1 − p)(1 − q)

∣∣.
Theorem 10 The transition matrices P, Q, R admit a real Hilbert space model if and
only if they admit a spin model defined by a coplanar triple of vectors in S(2).

2. Proof of Lemma 4.1 Putting for simplicity z+ := z1+z2
2 and z− := z1−z2

2 , by equa-
tion (10) we get

〈Ẑ〉 = z+ + z− 〈uZ · σ 〉
and, since 〈(uZ · σ)2〉 = 〈1̂〉 = 1,

〈Ẑ2〉 = (z2)+ + 2z+ z− 〈uZ · σ 〉,

from which we obtain
Var(Ẑ) = z2− Var(uZ · σ).

Further, with easily understood notations, we have

1

2
〈{X̂ , Ŷ }〉 = x+ y+ + x− y+ 〈u X · σ 〉 + x+ y− 〈uY · σ 〉 + 1

2
〈{u X · σ, uY · σ }〉,

so that

1

2
〈{X̂ , Ŷ }〉 − 〈X̂〉〈Ŷ 〉 = x− y−

(
1

2
〈{u X · σ, uY · σ }〉 − 〈u X · σ 〉〈uY · σ 〉

)
;

last, quite directly, we get

1

2i
〈[X̂ , Ŷ ]〉 = x− y−

1

2i
〈[u X · σ, uY · σ ]〉.

��

3. Proof of Lemma 4.2 By definition u · σ =
[

u3 u1 − iu2
u1 + iu2 −u3

]
, so that for every

state ψ one has

〈u · σ 〉 = 〈(u · σ)ψ |ψ〉 = [ψ1 ψ2][u3ψ1 + (u1 − iu2)ψ2 (u1 + iu2)ψ1 − u3ψ2]T

= 2u1	(ψ1ψ2) + 2u2
(ψ1ψ2) + u3(|ψ1|2 − |ψ2|2.).

Since17 as known ψ1(w) =
[√

1+w3
2

w1+i w2√
2(1+w3)

]T
and ψ2(w)

=
[√

1−w3
2 − w1+i w2√

2(1−w3)

]T
, putting them in the former formula, with easy calcu-

lations we get 〈u · σ 〉ψ1(w) = u · w and 〈u · σ 〉ψ2(w) = −u · w as asserted in Eq.

17 In a basis ofH in which the Pauli matrices have the usual form (9), cfr. for example [1], p. 170.
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(19). Further it is soon seen that (u · σ)2 = 1̂, so that 〈(u · σ)2〉 = 1, thus, in the
said states, Var(u · σ) = 〈u · σ 〉2 − (〈u · σ 〉)2 = 1 − (u · w)2 as stated in Eq. (20),
that therefore is proven. Further, due to18 [σ j , σk] = 2iεjklσl for every j, k, one has

1
2i [u · σ, v · σ ] = Det

⎡
⎣σ1 σ2 σ3

u1 u2 u3
v1 v2 v3

⎤
⎦ = (u × v) · σ, so that, taking the averages in the

states ψk(w) and considering that 〈σk〉 = wk for k = 1, 2, 3, (21) is proven. Lastly,
due to {σh, σk} = 2δhk 1̂ for every h, k, we have {σ · u, σ · v} = 2u · v1̂ so that,
taking the averages in whichever state, we get Eq. (22) and the proof of the lemma is
complete. ��

4. With the notations of Sect. 3, thanks to the trigonometric identity cos θ =
2 cos2 θ

2 − 1, we can write cosα = 2p − 1, cosβ = 2q − 1, cos γ = 2r − 1,
so that

1 − cos2 α − cos2 β − cos2 γ + 2 cosα cosβ cos γ

= 1 − (2p − 1)2 − (2q − 1)2 − (2r − 1)2 + 2(2p − 1)(2q − 1)(2r − 1)

that suitably simplified becomes 4(4pqr − (p + q + r − 1)2) as asserted. ��
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