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Abstract
It is shown that the one-loop effective action of unimodular gravity is the same as
that of ordinary gravity, restricted to unimodular metrics. The only difference is in
the treatment of the global scale degree of freedom and of the cosmological term. A
constant vacuum energy does not gravitate, addressing one aspect of the cosmological
constant problem.
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1 Introduction

The cosmological constant (CC) presents vexing issues to the dominant worldview
based on general relativity (GR) for the description of gravity and quantum field theory
(QFT) for the description of matter fields and their interactions. The most striking way
to present the problem is based on two assumptions: first, that the observed acceleration
of the universe is due to a CC term in Einstein’s equations and second, that the energy
density generated by vacuum fluctuations depends quartically on a cutoff at the Planck
scale. These assumptions lead to an apparent discrepancy of 123 orders of magnitude
between the “predicted” and observed values of spacetime curvature. Neither of these
assumptions is based on very strong ground, with the second being probably the
weaker one. For example, it has been argued that free massless fields could have
at most quadratic divergences [1,2]. Furthermore, there exist ways of regulating the
theory that completely avoid power divergences and will instead produce an energy
density proportional to the fourth power of the masses of particles. Taking typical
electroweak masses reduces the discrepancy to 55 orders of magnitude [3], which is
enormously smaller but still enormous. We will refer to this as the first CC problem.
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A second problem is that the CC receives contributions from the vacuum energy
of the Higgs field and from the quark condensate of QCD. The vacuum energy is
expected to change during the phase transitions in the early universe by an amount
that is very large compared to its present value. In order to arrive at the present value
a conspiracy involving all the known interactions seems to be required.

Finally, a third problem is to explain why the CC has a value that is roughly com-
parable to the current averaged matter energy density. It is hard to derive such a value
from microphysics [4,5].

A very simple and compelling solution to the first problem is given by Unimodular
Gravity (UG) [6–11]. The solution comes from the fact that in UG a constant vacuum
energy does not gravitate, and therefore does not contribute to spacetime curvature.1

We will review this in Sect. 2.
One may then wonder what becomes of this argument when one goes from the

classical to the quantum theory. This is relevant irrespective of the UV completion and
even if gravity is an “emergent” phenomenon [12]. Insofar as the CC problem is an
infrared one, one would expect that it can be solved within the effective field theory
description.

The differences between GR and UG have been discussed several times in the
literature. At the classical level it is known that the two theories are equivalent except
for the status of the global scale of the metric, and of the CC [13,14]. Besides the
equations ofmotion, the equivalencehas been seen also in the tree-level amplitudes [15,
16]. The possibility of discriminating between the two theories has been discussed in
[17]. At the quantum level the situation ismuch less clear. The issue has been addressed
at the level of the semiclassical theory [18], nonlinear canonical quantization [19–
21], linearized covariant theory [22,23], BRST quantization [24,25] and functional
renormalization group [26–28]. In particular it has been argued in [29] that the two
theories must be equivalent also at the level of the path integral, and that any lack
of equivalence can be attributed to different quantization procedures. The calculation
of ultraviolet divergences in UG, akin to the classic calculations of [30,31], had been
done before in [22–24], with results that differed from GR. On the other hand a more
recent calculation of the gravitational contribution to the scalar scattering amplitude
yielded the same result for both theories [32].

In Sect. 3 we will repeat this calculation in a simpler setup and find that, in a
well-defined sense, the one-loop effective actions are the same in the two theories,
supporting the claim of [29]. This part is based on reference [33], but uses a different
approach to the construction of the path integral.

2 Classical UG

In the following, by GR we mean any metric theory of gravity, without restricting the
formof the action. ByUGwemean a reformulation ofGRwhere the determinant of the
metric is fixed a priori and is not subjected to variation. Letω εμ1...μd dx

μ1 ∧. . .∧dxμd

1 Changes in the vacuum energy do affect the equations, as we shall discuss below.
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be a fixed, non-dynamical volume form. We impose that the metric satisfies

√|g| = ω . (1)

We do not make any assumption about the dimension of the coordinates, so ω may
carry dimensions. If the coordinates have dimension of length, thenω is dimensionless
and without loss of generality we may assume that it is equal to one. This is the origin
of the name “unimodular”, but we shall use the same term also when ω is a general
scalar density of weight one.

The condition (1) should be seen as a choice of gauge, removing one local degree
of freedom from the metric. The total volume (when defined) is diffeomorphism-
invariant and therefore the condition

∫
dd x

√|g| = ∫
dd x ω, which follows from (1),

is a genuine physical constraint. Therefore UG can also be formulated as GR with the
constraint that the total volume is fixed. Physically, the two theories thus differ by a
single quantum mechanical degree of freedom (not one per spacetime point) [13,14].

The condition (1) breaks diffeomorphism invariance. The residual gauge group is
the group SDiff of volume-preserving or “special” diffeomorphisms. The Lie algebra
of infinitesimal gauge transformations are the transverse vectorfields, satisfying

∇μvμ = 0 . (2)

Let SGR = SgGR + SmGR be an arbitrary Diff -invariant action for gravity and matter,
where

SgGR(g) =
∫

dd x
√|g|Lg(g) and SmGR(ψ, g) =

∫
dd x

√|g|Lm(ψ, g)

are the gravitational and matter actions respectively. As specific examples one can
think of the Hilbert action

Lg = ZN R , ZN = 1

16πG
(3)

and minimally coupled scalar

Lm = −1

2
gμν∂μφ∂νφ − V (φ) (4)

and Maxwell fields

Lm = −1

4
gμνgρσ FμρFνσ , (5)

but the following discussion is general. We assume at first that Lg does not contain a
cosmological term. The case when it does will be discussed later.

We define an action for unimodular gravity SUG = SgUG +SmUG by simply replacing√|g| by ω in SGR :

SgUG(g) =
∫

dd x ωLg(g); SmUG(ψ, g) =
∫

dd x ωLm(ψ, g) .
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We now discuss the mechanism by which the equations of motion of UG turn out
to be the same as those of GR, except for the CC. In varying SUG one must impose

δ
√|g| ≡ 1

2
gμνδgμν = 0 .

This leads to the tracefree equations

− Ẽμν + 1

d
gμν Ẽ = 1

2

(
T̃μν − 1

d
gμν T̃

)
, (6)

where

Ẽαβ = 1

ω

δSgUG

δgαβ

and T̃ αβ = 2

ω

δSmUG

δgαβ

is a kind of symmetric but not conserved energy-momentum tensor.
Normally the covariant conservation of the energy-momentum tensor follows from

the diffeomorphism invariance of SmGR . From the SDiff -invariance of SmUG , due to
the constraint (2), there follows the weaker condition ∇μT̃μν = ∇νΣ , where Σ is
some scalar field. This suggests defining an “improved” energy-momentum tensor
T̃μν − gμνΣ , that will be conserved. One can easily guess what Σ is by considering
the energy-momentum tensors for the scalar and Maxwell fields:

T̃μν = ∇μφ∇νφ and T̃μν = FμρFν
ρ . (7)

Using the equations of motion (and the Bianchi identity) one finds

∇μT̃
μν = −∇νLm . (8)

It is clear that in both cases the term coming from the variation of
√|g| is missing,

and this term is proportional to the Lagrangian density. We will therefore define the
symmetric, conserved energy-momentum tensor

Tμν = T̃μν + gμνLm . (9)

This just reconstructs the usual energy-momentum tensor used in GR:

Tμν = 2√|g|
δSmGR

δgμν

. (10)

Since T̃μν and Tμν have the same tracefree part, we can replace T̃μν by Tμν in the r.h.s.
of (6):

− Ẽμν + 1

d
gμν Ẽ = 1

2

(
Tμν − 1

d
gμνT

)
. (11)
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Next, consider the action SgGR . Its Diff -invariance implies the identity

∇μ Ẽ
μν + 1

2
∇νLg = 0 . (12)

In the case of the Hilbert action, this is the familiar contracted Bianchi identity, so we
shall refer to this as a “generalized Bianchi identity”. Acting with ∇μ on both sides of
(11) and using (12) we obtain

∇ν

(
1

2
Lg + 1

d
Ẽ + 1

2d
T

)
= 0 (13)

and therefore
1

2
Lg + 1

d
Ẽ + 1

2d
T = ZNΛ1 (14)

where Λ1 is an arbitrary integration constant and the prefactor ZN is conventional.
Using this in (11) one obtains

− Ẽμν − 1

2
gμνLg + ZNΛ1g

μν = 1

2
Tμν . (15)

This is exactly the equation that onewould obtain by varying the action SGR , except for
the term involving Λ1. For example, if Lg has the Hilbert form (3), Ẽμν = −ZN Rμν

(up to a total derivative) and we obtain Einstein’s equations with an arbitrary CC:

Rμν − 1

2
gμνR + Λ1g

μν = 1

2ZN
Tμν . (16)

So far we assumed that Lg does not contain a cosmological term. Now assume
that it contains −2ZNΛ0. The same CC Λ0 then appears in the equations of motion
of GR. In UG this term merely contributes a field-independent constant to the action
and therefore does not contribute to the equations of motion, which contain again an
arbitrary CC Λ1, unrelated to Λ0.

In UG the value of the “physical” CC (the one that appears in the equation ofmotion
(15)) is fixed in the process of solving the equations of motion and is independent of
any cosmological term that may be present in the action. In this way the first of the
CC problems is eliminated.

If the matter action contains a potential for a scalar field −V (φ), the CC can be
identified with the value of the potential at the minimum. The potential appears in
the equations of motion of UG through the combination V (φ) + 2ZNΛ1. Since Λ1 is
arbitrary, the value of the potential at its minimum can be shifted arbitrarily and does
not have a physical meaning. However, changes in the value of the potential due to a
rolling scalar field, such as occur during inflation, do affect the equations [34].
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3 QuantumUG

In this section we will define the one-loop path integral for UG with the standard
Hilbert Lagrangian (3) and contrast it with the path integral for GR with the same
Lagrangian. The procedure followed here is slightly different from that used in [33],
but it leads to the same results.

There are several ways of defining classical UG, and the definition of the quantum
theorymay depend upon the formulation one starts with. One commonway of defining
UG is to start from the Hilbert action with the standard measure factor

√|g|, and add
to the action a term

∫
dxλ(

√|g| − ω),

where λ is a Lagrange multiplier. This complicates the calculation of radiative cor-
rections. We shall seek a minimal formulation avoiding the introduction of auxiliary
fields.

In the calculation of quantum effects it is inevitable to use the background field
method, splitting the metric gμν into a classical (background) part ḡμν and a quantum
fluctuation hμν . The usual additive parametrization gμν = ḡμν + hμν is ill-suited to
discuss UG (and more generally the action ofWeyl transformations, and the dynamics
of the conformal factor [35–38] ). We will instead follow [26] and use the exponential
parametrization2

gμν = ḡμν(e
X )ρν (17)

demanding that Xρ
ν = ḡρσ hσν be traceless. Although it may not be immediately

obvious, by Taylor-expanding the exponential one sees that if hμν is symmetric, then
also gμν is. Imposing that the background is unimodular

√|ḡ| = ω , (18)

then automatically enforces (1), and tracelessness is a linear condition that one can
confidently impose on the quantumfield,without use ofLagrangemultipliers.With this
parametrization, the path integral of UG will be an integral over symmetric traceless
tensors hμν .

3.1 The path integral.

Before discussing UG we shall first present the path integral of GR in a way that
makes it easy to draw a comparison between the two theories. We start from a formal
Euclidean path integral over metrics

Z =
∫

dμ e−SGR(g) , (19)

2 General arguments in favor of the use of the exponential parametrization in quantum gravity can be found
in [39–41].
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where dμ is a suitable measure and S is the Hilbert action (3). Using the background
field method, the integration measure can be chosen so that dμ = (dh), where hμν is
the fluctuation field in the exponential splitting (17). In contrast to UG, in GR it is not
traceless.

We would like to split the path integral into an integral over the gauge group and an
integral over physical degrees of freedom. Insteadof using the standardFaddeev-Popov
procedure, we will use here the geometrical approach to functional integration over
geometries, that has been discussed in [42–44]. We begin by describing the method in
the context of GR, then the modifications due to the unimodularity condition will be
easy to track.

The symmetric tensor hμν can be decomposed

hμν = hTTμν + ∇̄μξν + ∇̄νξμ +
(

∇̄μ∇̄ν − 1

d
ḡμν∇̄2

)
σ + 1

d
ḡμνh , (20)

where
∇̄μhTTμν = 0 , ḡμνhTTμν = 0 , ∇̄μξμ = 0 , h = ḡμνhμν . (21)

The Jacobian of the change of variables (dh) = (dhTT dξdσdh)J1 is

J1 = det

(
ΔL1 − 2R̄

d

)1/2

det (ΔL0)
1/2 det

(
ΔL0 − R̄

d − 1

)1/2

(22)

where ΔL are the Lichnerowicz Laplacians:

ΔL0φ = −∇̄2φ,

ΔL1Aμ = −∇̄2Aμ + R̄μ
ρ Aρ,

ΔL2hμν = −∇̄2hμν + R̄μ
ρhρν + R̄ν

ρhμρ − R̄μρνσ h
ρσ − R̄μρνσ h

σρ . (23)

Now consider an infinitesimal diffeomorphism εμ. We can decompose the transfor-
mation parameter εμ in its longitudinal and transverse parts (relative to the background
metric):

εμ = ημ + ∇̄μΔL
−α
0 φ ; ∇̄μημ = 0 . (24)

We have inserted here an inverse power of the Laplacian in the definition of the
transformation parameter. We will see that the following constructions do not depend
on this choice of parameterization of φ.

We can then calculate the separate transformation properties of the York variables
under longitudinal and transverse infinitesimal diffeomorphisms. We have

δηξ
μ = ημ ; δφh = −2ΔL

1−α
0 φ ; δφσ = 2ΔL

−α
0 φ , (25)

all other transformations being zero. Note that σ and h are gauge-variant but the scalar
combination

s = h + ΔL0σ (26)

is invariant.
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We expand the action around an Einstein background

R̄μν = R̄

d
ḡμν . (27)

An Einstein metric automatically satisfies the tracefree part of the Einstein equations
with CC Λ0. The remaining trace equation is

E ≡ R̄ − 2d

d − 2
Λ0 = 0 . (28)

The Hessian of the Hilbert action, in exponential parametrization and after York
decomposition, is (see [39,52,53] or Sect. 5.4.6 in [56]):

S(2)
GR = ZN

2

∫
dd x

√
ḡ

[
1

2
hTTμν

(
ΔL2 − 2R̄

d

)
hTTμν

− (d − 1)(d − 2)

2d2
s

(
ΔL0 − R̄

d − 1

)
s − d − 2

4d
Eh2

]
. (29)

Note that on-shell (E = 0), it depends only on the Diff -invariant variables hTT and
s. The last term is entirely absent in UG.

3.2 One loop effective action of GR

The one-loop path integral is

ZGR = e−SGR(ḡ)
∫

(dhTT dξdσdh)J1e
−S(2)

GR(hT T ,s;ḡ) . (30)

The form (29) suggest changing the variables in the path integral to include s instead
of one of the gauge-variant variables σ or h. We can choose to work either with
(hTTμν , ξμ, σ, s) or (hTTμν , ξμ, s, h).

In the first case, we easily see from (26) that the Jacobian of this further transfor-
mation is one, so in the measure

(dσdh) = (dσds) det

(
∂(σ, h)

∂(σ, s)

)
= (dσds) . (31)

Now from (25) we see that ξμ and σ transform by a shift under infinitesimal dif-
feomorphisms. Therefore we can identify these variables as coordinates in the gauge
orbit through the background metric, while hTT and s are gauge-invariant coordinates
in the quotient space.

More precisely, let us first take εμ as coordinates in (an infinitesimal neighborhood
of the identity in) the group of diffeomorphisms. The integration measure on diffeo-
morphisms is dμDiff = (dε). We want to pass to the coordinates η and φ defined in
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(24). Applying to (24) the same reasoning that led to (22) we have

dμDiff = (dε) = (dηdφ) detΔL

1
2−α

0 . (32)

We can now identify a neighborhood of the gauge orbit through the background
metric with a neighborhood of the identity in Diff . Using (25) we can replace ξμ and
σ with η and φ respectively. Then, up to irrelevant numerical constants,

(dξdσ)J1 = (dηdφ) detΔL
−α
0 J1

= dμDi f f det

(
ΔL1 − 2R

d

)1/2

det

(
ΔL0 − R̄

d − 1

)1/2

, (33)

where one of the determinants in J1 has been used to reconstruct the measure (32).
Note that the result is independent of α. Using this in the path integral:

Z = VDiff × e−SGR(ḡ) det

(
ΔL1 − 2R

d

)1/2

det

(
ΔL0 − R̄

d − 1

)1/2

×
∫

(dhTT ds)e−S(2)
GR(hT T ,s;ḡ) , (34)

where VDiff = ∫
dμDiff . We have thus succeeded in factoring the volume of the gauge

group, and we can drop this numerical factor from the path integral.
Evaluating the Gaussian integrals, we find that the integral over s cancels the scalar

determinant, so that [31]

ΓGR ≡ − log ZGR = SGR + 1

2
logDet

(
ΔL2 − 2R̄

d

)
− 1

2
logDet

(
ΔL1 − 2R̄

d

)
.

(35)
If instead of h we decided to eliminate σ , in place of (31) we would find

(dσdh) = (dsdh) det

(
∂(σ, h)

∂(s, h)

)
= (dsdh) detΔL

−1
0 . (36)

Due to (25), h can be identified with −2ΔL
1−α
0 φ, so, using (32),

(dξdσdh)J1 = (dξdsdh) detΔL
−1
0 J1 = (dsdηdφ) detΔL

−α
0 J1

= (ds)dμDiff det

(
ΔL1 − 2R

d

)1/2

det

(
ΔL0 − 4Λ

d − 1

)1/2

. (37)

We are thus led again to (34) and (35).
To summarize, we see that the fields ξμ and either σ or h can be used as coordinates

in the gauge orbits, leading to the factorization of the volume of the gauge group. The
Faddeev-Popov determinant is a piece of the Jacobian of the coordinate transformation.
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It is useful to note that in the parametrization (ημ, φ), the volume VDiff contains a
power of the determinant of the scalar Laplacian. When presented this way, it is not
clear that it can be treated as a field-independent constant and dropped. This follows
instead from seeing it as an integral over the differentially unconstrained field εμ. Such
(divergent) integrals can always be formally treated as being metric-independent.

3.3 One-loop effective action of UG

In UG, instead of (30) we have a path integral

ZUG = e−SUG (ḡ)
∫

(dhTT dξdσ)J1e
−S(2)

UG (hT T ,σ ;ḡ) . (38)

The only difference with the path integral of GR is the absence of the integral over the
trace h. The Jacobian J1 is the same as before.

Again we want to factor the volume of the gauge group, which is now SDiff . There
are two observations to be made at this point. First, since h is not present, only the first
of the two procedures discussed in the preceding sections is available. The variable
σ can be identified with s (up to a Laplacian) and is SDiff -invariant. The quadratic
action reads

S(2)
UG = ZN

2

∫
dd x ω

[
1

2
hTTμν

(
ΔL2 − 2R̄

d

)
hTTμν

− (d − 1)(d − 2)

2d2
σΔL

2
0

(
ΔL0 − R̄

d − 1

)
σ

]
. (39)

Second, the difference between the volume of SDiff and the volume of Diff lies in the
absence of the integral over φ in (32).

Since the field ημ is subject to the differential constraint ∇̄μημ = 0, which depends
on the metric, we cannot treat the formal measure (dη) as field-independent, as we
do for (dε). The question then arises of how to split the determinant of ΔL0 in (32)
between the integral over η and the integral over φ, in such a way that the two integrals
can be treated as metric-independent.

We determine the measure on the group SDiff by matching the missing integral
over h in (38) to the missing integral over φ in the gauge group. More precisely, we
can identify the quotient space Diff /SDiff , infinitesimally parametrized by φ, with
the space of volume forms, infinitesimally parametrized by h. From (25) we see that
(dh) = detΔL

1−α
0 (dφ), so we split

VDiff =
∫

dμDiff =
∫

(dη) detΔL
−1/2
0

∫
(dφ) detΔL

1−α
0 = VSDiff

∫
(dh)

where VSDiff = ∫
dμSDiff and the measure on SDiff has been defined as

dμSDiff = (dη)(detΔL0)
−1/2 . (40)
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According to the standard rules mentioned above, both VDiff and
∫
(dh) can be treated

as metric-independent and therefore so can VSDiff . It is a factor that can be dropped
from the functional integral.3

With this measure, instead of (33) we have now

(dξ)J1 = (dη)J1 = dμSDiff detΔL
1/2
0 J1

= dμSDiff detΔL0 det

(
ΔL1 − 2R

d

)1/2

det

(
ΔL0 − R̄

d − 1

)1/2

. (41)

The integral over σ gives

detΔL
−1
0 det

(
ΔL0 − R̄

d − 1

)−1/2

and cancels the scalar determinants in (41).
The remaining Gaussian integrals work as before, so that ΓUG contains the same

determinants as ΓGR . In particular, they will exhibit the same divergences. We can
think of using the same renormalization prescriptions for the quadratic and logarithmic
divergences.However, inGR thevolume (quartic) divergence has to be renormalized so
as tomatch the observedCC,whereas inUG the cosmological term isfield-independent
and can be dropped altogether, or renormalized to any other value. We can therefore
write for the renormalized effective actions

ΓUG = ΓGR

∣∣∣√|g|=ω
+ C , (42)

by which we mean that for any metric satisfying the constraint (1), the two functionals
are the same, up to an arbitrary constant.

By the general arguments given in Sect. 2, the quantum equations of motion derived
from traceless variations ofΓUG will be the same as those obtained fromunconstrained
variations of ΓGR , except that the value of the CC in the equations is unrelated to the
one appearing in the action.

4 Discussion

It has been shown in Sect. 2 that, apart from the CC, a general classical unimodular
theory of gravity defined by a Lagrangian density L is locally indistinguishable from
classical GR with the same Lagrangian density. This is a consequence of the fact that
the scalar density

√|g| changes under Diff and can always be transformed locally
into any predetermined function, in particular a constant. This means that given an
arbitrary variation of the metric, there exist infinitesimal diffeomorphisms that can be

3 One can also get to the same result by the following argument that was pointed out by D. Benedetti. We
define VSDiff by inserting a delta function δ(∇μεμ) in the integral over ε. Using (32) and ∇μεμ = ∇2φ,

we find VSDiff = ∫
(dη)(dφ) detΔL

1/2
0 δ(ΔL 0φ) = ∫

(dη)(dφ) detΔL
−1/2
0 δ(φ) = ∫

(dη) detΔL
1/2
0 .
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used to cancel the effect of the variation on
√|g|. The discussion in Sect. 3 makes this

more explicit. In the decomposition (20) four variables are pure gauge. By identifying
ξμ and h with the coordinates ofDiff , we can eliminate h from the physical degrees of
freedom and remain with a SDiff -invariant unimodular theory. The equations one gets
from the traceless variations of the metric yield the same equations of motion. As we
have seen, the solution of the traceless equations of motion involves an arbitrary CC.
By decoupling the physical CC, which appears in the equations of motion, from the
CC, or vacuum energy, that may be present in the Lagrangian, UG effectively solves
the first of the CC problems mentioned in the introduction.

This is the main reason for much of the interest in UG, but it is worth recalling
that there are at least two other theoretical arguments in its favor. The first, which was
the starting point for the discussion in [7], is of group-theoretic nature: the spin-two
representation of the Poincaré group is contained in the traceless symmetric tensor.
Insofar as gravity can be seen as a force mediated by a spin-two field, keeping also
the trace part is completely unnecessary.

To state the second reason, let us recall that the physical degrees of freedom of
gauge theories are generally non-local and unwieldy to work with. It is mainly in
order to work with local fields that we accept the complications deriving from the
presence of an infinite-dimensional invariance group. From this point of view it seems
desirable to have as little gauge invariance as is needed to work with local variables.4

In the case of GR (in four dimensions) one usually works with ten local fields and
a gauge group depending on four functions, but this is not optimal. Clearly UG is
better on this count, because it can be formulated in terms of nine local fields and a
gauge group depending only on three functions. The reason why this works is that the
unimodularity constraint is algebraic rather than differential: solving it leaves us with
one less local degree of freedom, and does not introduce any non-locality.

It is also interesting to note that the well-known analogy between the classical
theory of gravity and the chiral models of particle physics [45] also works better in
UG. In both cases the field is matrix-valued, subject to nonlinear constraints, and the
action can be expanded in powers of derivatives. For the chiral models, the first terms
in such an expansion are

S =
∫

dx
[
L2 + L4 + O(∂6)

]

L2 = − F2
π

4
tr(U−1∂U )2

L4 = �1tr

(
((U−1∂U )2)2

)
+ �2

(
tr(U−1∂U )2

)2
. (43)

4 From a theoretical (as opposed to practical) point of view, there are situations when the opposite is useful:
by increasing the number of gauge degrees of freedom one can sometimes show that seemingly unrelated
theories are just different gauge-fixed versions of an overarching theory. One example is theGL(4)-invariant
reformulation of gravity, that reduces to metric and tetrad formulations in specific gauges [45–47]. Other
examples where the gauge can be fixed without generating non-localities are theories obtained by the
Stückelberg trick.
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where U has values in SU (N ). In the case of gravity we have

S =
∫

dx
√
g

[
L0 + L2 + L4 + O(∂6)

]

L0 = m2
PΛ

L2 = −1

2
m2

P R

L4 = αR2 + βRμνR
μν + γ Rμνρσ R

μνρσ (44)

Recalling that the Christoffel symbols have the structure Γ ∼ g−1∂g and that the
curvature tensors contains terms of the form Γ 2 ∼ (g−1∂g)2, the analogy between
the terms L2 (and L4) is striking. In both cases, expanding thematrices around classical
backgrounds leads to very similar non-renormalizable perturbative expansions.

There appear to be two main differences between these actions: in the gravitational
case there is the nontrivial volume element

√|g|, and there is a term L0 containing
no derivatives.5 We observe that in UG (especially if we choose ω = 1) both of these
differences are removed. UG seems therefore to be an even better analog of the chiral
models.

To summarize the main point so far, we have seen that, aside from the total volume,
which is fixed in UG and is a physical observable, the unimodularity constraint is
merely a gauge condition. Therefore, at the classical level, GR and UG are locally
equivalent.

Passing now to the quantum theory, one may ask two questions. The first is whether
“quantization preserves unimodularity”. The second is whether the quantum theory
constructed starting from the classical actions SGR and SUG “are the same”. One
can make these questions precise in the quantum field theoretic approach to quantum
gravity, where one uses the background field method to construct a covariant effective
action that contains all the effects due to the quantum fluctuations on the dynamics of
the metric. We have addressed these questions in a “minimal” formulation where the
metric of GR is seen as the exponential of a symmetric tensor while the metric of UG
is the exponential of a traceless symmetric tensor. In this context, the first question
is answered in the affirmative, because the exponential parametrization automatically
enforces the unimodularity constraint on the quantum field and its expectation value.
The second question also has a positive answer, which is contained in Eq. (42).

There have been conflicting claims in the literature on this last point. In some cases
the disagreements may simpy reflect different quantization procedures or different
classical starting points for the quantization procedure. We believe that a quantization
procedure that respects the classical equivalence of UG and GR is to be preferred.
This is the case of the “minimal” formulation of UG presented here.

The results reported here also hold for the formulation of UG in which the metric
is unconstrained, but there is a Weyl symmetry in the action (sometimes referred to as
“WTDiff ” theory [48–51]). The issue of the quantum equivalence of this formulation
to GR has been raised in [52,53] and answered positively in [33].

5 Actually, in realistic applications also the chiral model has a term without derivatives, but it contains
different powers of the field.
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These results also answer in the affirmative the question raised in [4], whether UG
can be obtained as the classical limit of a satifactory quantum theory of gravity. It is by
nowwell-known that the effective field theory approach to quantum gravity, pioneered
in [54,55], provides a satisfactory (meaning: consistent and predictive) description of
gravity at sub-Planckian energies. The same formalism may even have an UV com-
pletion based on the same variables, if the asymptotic safety approach was successful
[56]. The formalism developed in Sect. 3 provides a unimodular quantum theory of
gravity having classical UG as a classical limit. This certainly works at one loop level
in the effective field theory. It seems likely that the results can be generalized to higher
loops and there seems to be no obstacle to applying functional renormalization group
methods to unimodular metrics, possibly leading to an asymptotically safe unimodular
theory of gravity [26,27]. We note that several results on GR that use the unimodular
gauge can be viewed as results for quantum UG [39,57–60].

Whether it comes from an UV-complete theory, or just an effective field theory, the
unimodular effective actionΓUG is just a classical action for an unimodular metric and
thereforewe can apply to it the results of Sect. 2. In thisway, the conclusion that vacuum
energy does not appear in the equations of motion is extended to the quantum domain.
This eliminates the “prediction” that spacetime should have Planckian curvature, thus
effectively defanging the first CC problem. Attempts to use UG to explain away also
the other CC problems have been made in [7,19,20].

Acknowledgements This paper is based in part on joint work with R. de León Ardón and N. Ohta. I also
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