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Abstract
We review the gravitational self-force program to analytically compute first-ordermet-
ric perturbations in a Schwarzschild black hole spacetime in the case of a perturbing
(small)massmoving on a slightly eccentric equatorial orbit. The perturbedmetric com-
ponents should then be combined into gauge-invariant quantities to be associated with
physical observables. In this way, for example, one determines the various “potentials”
entering the Effective-One-Body model, i.e., a powerful formalism for the description
of the gravitational interaction of two masses, which is currently successfully used for
the analysis of gravitational wave signals.

Keywords Schwarzschild black hole · Gravitational self-force · Eccentric orbits

1 Introduction

When a particle moves on a given background at the zero-order approximation level
it follows a (timelike) geodesic of the spacetime itself. At the first-order it per-
turbs/modifies the background and the corrections (encoded in ten metric components
functions of the spacetime coordinates) are proportional to the (small) mass of the
particle. The full metric, background plus perturbation, satisfies the (linearized) non-
vacuum Einstein field equations, i.e., a coupled set of partial differential equations for
the various metric components. Moreover, the perturbation (each metric component)
is singular at the location of the particle and unfortunately this is exactly the place
where one needs to evaluate it (or some associated gauge-invariant quantity). A reg-
ularization procedure, familiar from high-energy physics, is thus necessary in order
to extract physical information from the singular field. We will review each of these
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steps in the case of a perturbation due to a particle moving along a slightly eccentric
equatorial orbit in a Schwarzschild spacetime.

The first explicit analytical computation of a gauge-invariant quantity was per-
formed in 2013 in Ref. [1], where Detweiler’s redshift invariant (i.e., the linear-in-
mass-ratio change in the time component of the particle’s 4-velocity)was calculated for
a particle in circular orbit around a Schwarzschild black hole. This result was then tran-
scribed into the knowledge of thefirst order correction to themain radial potential of the
Effective-One-Body (EOB) model [2–4]. According to this formalism the two-body
problem is reduced to the dynamics of a single point particle moving in an effective
metric, whose potentials are determined taking results from post-Newtonian (PN) the-
ory, black hole perturbation theory and numerical relativity. Later on several other
quantities have been computed following the scheme described above or with some
interesting variation, for both circular and slightly eccentric orbits in Schwarzschild
and Kerr black hole backgrounds, including corrections to the circular limit of the
periastron advance, change in the innermost stable circular orbit, spin precession,
tidal invariants [5–16]. The (new) branch of general relativistic research in this sec-
tor is called Gravitational Self-Force (GSF) and represents one the most stimulating
challenges in general relativity today.

2 GSF Calculations in a Schwarzschild Spacetime

ThroughO(m1), a smallmassm1 follows a geodesic in a regularly perturbed spacetime

gRαβ = g(0)
αβ + m1

m2
hRαβ, (1)

where g(0)
αβ is the background Schwarzschild spacetime

g(0)
αβ dx

αdxβ = − f dt2 + 1

f
dr2 + r2(dθ2 + sin2 θdφ2), f = 1 − 2m2

r
, (2)

and (m1/m2)hRαβ is the (regularized) metric perturbation. Henceforth, we shall omit
the superscript R and denotem1/m2 = q. Furthermore, we will denote the large mass
by M (instead of m2) and the small mass by μ (instead of m1), to follow a standard
notation in perturbation theory.

The main steps to analytically compute first-order metric perturbations in a
Schwarzschild spacetime are listed below.

1. Decompose the perturbedmetric and the energymomentum tensor associated with
the perturbing mass in tensor harmonics in some gauge, here the Regge-Wheeler
(RW) gauge.

2. Separate even-parity and odd parity quantities/equations. Odd-parity waves satisfy
the simple RW equation with odd-parity source terms; even-parity waves satisfy
instead the more complicated Zerilli equation with even-parity source terms. Next,
using results by Chandrasekhar [17], the Zerilli equation can be mapped onto a
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RW equation with different source terms, so that one has to solve in both cases a
single RW equation, with appropriate (odd-parity or even-parity) source terms.

3. Solve the homogeneous (radial) Regge–Wheeler equation in various ways:
PN approximation (generic l, weak-field and slow motion), Wentzel–Kramers–
Brillouin (WKB) approximation (large l), Mano, Suzuki and Takasugi (MST)
technique [18,19] (specified values of l).

4. Use the Green method to compute the solutions of the inhomogeneous RW equa-
tion, in both cases of even and odd parity source terms, which are singular at
the location of the particle (being proportional to the Dirac delta function and its
derivatives).

5. Construct the gauge-invariant quantity one is interested in, depending on the
azimuthal number m and the orbital angular momentum number l.

6. Sum over m ∈ [−l, l] by using spherical harmonic identities.
7. Sum over l ∈ [0,∞) after performing the regularization of the otherwise divergent

summation.

The description of each of these points would necessitate a lot of space to be
accounted in detail. We will limit below to a minimal amount of information, pointing
out the main literature where these details can be found.

3 The Regge–Wheeler Equation and Its PN Form

The decomposition of the perturbedmetric into spherical harmonics allows to separate
the angular part of the perturbation. Taking then the Fourier transform of the metric
components reduces theEinsteinfield equations to a set of coupledordinary differential
equations for 6 unknown radial functions of different parity: 3 odd equations (for 2
unknowns) and 7 even equations (for 4 unknown). However, the perturbation functions
of both parity can be expressed in terms of a single unknown for each sector, satisfying
the same Regge–Wheeler equation

L(r)
(RW)[R(even/odd)

lmω ] = S(even/odd)
lmω (r). (3)

Here L(r)
(RW) denotes the RW operator

L(r)
(RW) = f (r)2

d2

dr2
+ 2M

r2
f (r)

d

dr
+ [ω2 − V(RW)(r)]

= d2

dr2∗
+ [ω2 − V(RW)(r)], (4)

with d/dr∗ = f (r)d/dr , and the RW potential

V(RW)(r) = f (r)

(
l(l + 1)

r2
− 6M

r3

)
. (5)

The source terms are singular at the location r = r0(t) of the particle, namely
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S(even/odd)
lmω (r) =

∑
k

s(even/odd)
k (t)δ(k)(r − r0(t)), (6)

with δ(k)(r − r0(t)) denoting the kth-order derivative of the Dirac delta function.

3.1 Perturbing Particle’sWorld Line

Let the particle move along an eccentric geodesic orbit on the equatorial plane of the
Schwarzschild spacetime. The associated 4-velocity U0 (U0 · U0 = −1) is given by

U0 = E0

f
∂t + ṙ0∂r + L0

r20
∂φ, (7)

where

ṙ20 =
(
dr0
dτ0

)2

= E2
0 − f

(
1 + L2

0

r2

)
. (8)

The orbit can be parametrized either by the proper time τ0 or by the relativistic anomaly
χ ∈ [0, 2π ], so that

r0 = Mp

1 + e cosχ
, (9)

which are related by

dτ0

dχ
= Mp3/2

(1 + e cosχ)2

[
p − 3 − e2

p − 6 − 2e cosχ

]1/2
. (10)

The (dimensionless) orbital parameters semi-latus rectum p and eccentricity e are
defined by writing the minimum (pericenter, rperi) and maximum (apocenter, rapo)
values of the radial coordinate along the orbit as

rperi = Mp

1 + e
, rapo = Mp

1 − e
. (11)

They are in correspondencewith the conserved energy E0 = −ut and angular momen-
tum L0 = uφ per unit mass of the particle, via

E2
0 = (p − 2)2 − 4e2

p(p − 3 − e2)
, L2

0 = M2 p2

p − 3 − e2
. (12)

The reciprocal of p, u p = p−1, is also a useful “small” quantity corresponding to
r0/M � 1. Equation (10) can be used to solve the equations for t and φ as functions
of χ , which are expressible in terms of elliptic integrals.

As it is well known, eccentric orbits are characterized by two fundamental frequen-
cies, Ωr0 = 2π/Tr0 and Ωφ0 = Φ0/Tr0, where Φ0 = ∮

dφ is the angular advance
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during one radial period Tr0 = ∮
dt (with

∮
dξ = ∫ 2π

0 (dξ/dχ)dχ ). To second order
in e we find

MΩr0 = u3/2p (1 − 6u p)
1/2

[
1 − 3

4

2 − 32u p + 165u2p − 266u3p
(1 − 2u p)(1 − 6u p)2

e2 + O(e4)

]
,

MΩφ0 = u3/2p

[
1 − 3

2

1 − 10u p + 22u2p
(1 − 2u p)(1 − 6u p)

e2 + O(e4)

]
. (13)

The motion is then specified by

r0(t)

M p
= 1

1 − e
+ (cosΩr0t − 1) e + b2(cos(2Ωr0t) − 1) e2 + O(e3),

φ0(t) = Ωφ0t + c1 sin(Ωr0t) e + c2 sin(2Ωr0t) e
2 + O(e3), (14)

where

b2 = −1

2

1 − 11u p + 26u2p
(1 − 2u p)(1 − 6u p)

,

c1 = −2
1 − 3u p

(1 − 2u p)(1 − 6u p)1/2
, c2 = 1

4

5 − 64u p + 250u2p − 300u3p
(1 − 2u p)2(1 − 6u p)3/2

. (15)

In the perturbed spacetime, we consider a timelike geodesic parametrized by its
proper time τ (different from τ0) and the same orbital parameters p, e as the reference
geodesic of the background. This implies that we are comparing at the same coordinate
radius r (χ is the same in both spacetimes), though not the same t and φ coordinates.
Any such difference is not gauge-invariant, in general.

3.2 Source Terms

For a particle moving on a slightly eccentric orbit in the equatorial plane of the
Schwarzschild spacetime the source terms can be easily written.

In the case of odd-parity metric perturbations the source terms are given by

S(odd)
lmω =

[
s(odd)
0 δ(r − r0(t)) + s(odd)

1 δ′(r − r0(t))
]
Y ∗′

lm

(π

2
, φ0(t)

)
, (16)

with

s(odd)
0 = − 4πμL0

E0λ(λ + 1)r0(t)4
f0(t)

[
2E0λr0(t)

dr0(t)

dt
− imL0 f0(t)

]
,

s(odd)
1 = − 4iπμmL2

0

E0λ(λ + 1)r0(t)3
f0(t)

3. (17)

Here we have denoted f0(t) = f (r0(t)) and
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λ = 1

2
(l − 1)(l + 2) (18)

is such that 2(λ + 1) = l(l + 1), which is unchanged under the transformation l →
−l − 1.

In the case of even-parity metric perturbations we have instead

S(even)
lmω =

[
s(even)
0 δ(r − r0(t)) + s(even)

1 δ′(r − r0(t))

+s(even)
2 δ′′(r − r0(t))

]
Y ∗′

lm

(π

2
, φ0(t)

)
, (19)

with

s(even)
0 = − 8iπμ

ωE0λ(λ + 1)r0(t)5(λr0(t) + 3M)3
f0(t)

×
{
E0λr0(t)

3 dr0(t)

dt
[2λ(λ + 1)E0r0(t) + mωL0(λr0(t) + 3M)]

×[λ(λ + 1)r0(t)(λr0(t) + 3M) + 3M2(2λ + 3)]
+i(λr0(t) + 3M)r0(t) f0(t){−r0(t)

4ωλ2(λ + 1)2(λr0(t) + 3M)

−ωλ(λ + 1)[L2
0λ

2(2(λ + 1) − m2) + 3M2(2λ + 3)]r0(t)3
+Mλ2(λ + 1)[−m(2λ − 3)E0 + 3L0ω(−3λ − 3 + 2m2)]L0r0(t)

2

+3M2λL0[−2m(2λ2 − 3)E0 + L0ω(−7λ2 + 5λm2 − 16λ + 6m2

−9)]r0(t) + 9M3L0[ω(−λ + m2 − 1)L0 − 2λmE0](2λ + 3)}
}
,

s(even)
1 = 8iπμ

ωE0λ(λ + 1)r0(t)4(λr0(t) + 3M)2
f0(t)

2

×
{
3E0λMr0(t)

3 dr0(t)

dt
[2E0λ(λ + 1)r0(t) + mωL0(λr0(t) + 3M)]

−i(λr0(t) + 3M)r0(t) f0(t){mL0E0λ[λ(λ + 1)r0(t)
2 + 18M2]

−3MωL2
0[m2(λr0(t) + 3M) − (λ + 1)(2λr0(t) + 3M)]

+3Mωλ(λ + 1)r0(t)
3}

}
,

s(even)
2 = − 24πμmML0

ω(λ + 1)r0(t)(λr0(t) + 3M)
f0(t)

4. (20)

The expansion of the source-terms in powers of e gives rise to multiperiodic coef-
ficients involving the combined frequencies

ωm,n = mΩφ0 + nΩr0, (21)

with n = 0,±1,±2 when working, e.g., up to order e2.
We proceed to explicitly determine analytical solutions to the homogeneous RW

equation.
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3.3 PN Solutions to the Homogeneous RW Equation

Restoring the factors of c, the homogeneous RW equation L(r)
(RW)Xlω(r) = 0 reads

0 = X ′′
lω(r) + 2Mη2

r2

(
1 − 2Mη2

r

)−1

X ′
lω(r)

+
(
1 − 2Mη2

r

)−2 {
ω2η2 − 1

r2

(
1 − 2Mη2

r

) [
l(l + 1) − 6Mη2

r

]}
Xlω(r).

(22)

Expanding the above equation in series of η = 1/c and solving order by order one can
obtain two independent PN-type solutions: the ingoing (“in”) solution and the upgoing
(“up”) solution. The “in” PN solution behaves as rl+1 and is regular at the origin r = 0,
whereas the “up” PN solution decays at infinity with a power law (r−l ). They share the
property that the PN “up” solution can be obtained from the “in” solution simply by
replacing l → −l − 1. This follows from the fact that the homogeneous RW equation
itself depends only on the product l(l+1), which is invariant under this transformation.

The structure of the “in” solution is

X in(PN)
lω (r) = rl+1

(
1 + Ain (PN , l)

2 η2 + Ain (PN , l)
4 η4 + · · ·

)
, (23)

where the first few coefficients Ain (PN , l)
k are listed below using the notation X1 =

M/r , X2 = (ωr)2:

Ain (PN , l)
2 = − (l − 2)(l + 2)

l
X1 − 1

2(2l + 3)
X2,

Ain (PN , l)
4 = (l − 2)(l − 3)(l + 2)(l + 1)

(−1 + 2l)l
X2
1 + (l3 − 5l2 − 14l − 12)

2(l + 1)(2l + 3)l
X2X1

+ 1

8(2l + 5)(2l + 3)
X2
2,

Ain (PN , l)
6 = − (l − 2)(l − 3)(l − 4)(l + 2)(l + 1)

3(−1 + 2l)(l − 1)
X3
1

−2(15l4 + 30l3 + 28l2 + 13l + 24)

(−1 + 2l)(2l + 1)(l + 1)l(2l + 3)
X2
1X2 ln(r/R)

− (3l4 − 27l3 − 154l2 − 220l − 120)

24(l + 1)l(2l + 5)(l + 2)(2l + 3)
X1X

2
2

− 1

48(2l + 5)(2l + 7)(2l + 3)
X3
2. (24)

The length (and complexity) of these coefficients increases with higher powers of η.
Logarithmic terms (“PN-logs”) first appear in the coefficient Ain (PN , l)

6 and involve
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a priori arbitrary length scales (denoted as R there). They are associated with r -
independent combinations of the type η6X2

1X2 = (η2M/r)2(ηωr)2, and its higher

powers (for higher order coefficients). However, the dependence of X in(PN)
lω on the

choice of these scales is spurious, because changing these scales only modify the
solution by a constant multiplicative factor.

The PN “in” solution cannot be used for l = 0, 1 multipoles, since many of the
above coefficients are singular for these values of l. This is physically related to the
fact that the l = 0(monopole) and l = 1 (dipole) solutions correspond to gauge terms
associated with changes in the backgroundmass and angular momentum, respectively.
Hence, they must be separately added.

Furthermore, when l = 2 the PN “up” solution cannot be used as is at (and beyond)
order η8. Indeed, the coefficient Ain (PN , l)

8 contains a factor ∼ 1/(l + 3) which, when
converted into the corresponding up coefficient (by replacing l → −l − 1), gives a
term ∼ 1/(l − 2) which is singular for l = 2. This situation is quite general and the
formally singular terms ∼ 1/(l − l0) entering the PN “up” solution at O(η6+l0) signal
the appearance of new types of logarithmic terms.

3.4 MST Solutions to the Homogeneous RW Equation

In order to resolve this type of ambiguities arising in the the PN “up” solutions a useful
technique has been developed byMano, Suzuki and Takasugi [18,19]. They introduced
a hypergeometric (HG) expansion solution such that X in

lω is incoming from r = +∞
(and purely ingoing on the horizon), whereas Xup

lω is upgoing from the horizon (and
purely outgoing at infinity). Their analytic expressions are given by

X in(HG)
lω (r) = Cν

(in)(x)
∞∑

n=−∞
aν
n F(n + ν − 1 − iε,−n − ν − 2 − iε, 1 − 2iε; x],

Xup(HG)

lω (r) = Cν
(up)(z)

∞∑
n=−∞

aν
n (−2i z)nΨ (n + ν + 1 − iε, 2n + 2ν + 2;−2i z),

(25)

where the hypergeometric functions are of the usual Gauss-type for the “in” solution
and of the confluent type for the “up” solution. Here, x = 1 − c2r/2GM , z = ωr/c,
ε = 2GMω/c3,

ν = l + 1

2l + 1

[
−2 − 4

l(l + 1)
+ [(l + 1)2 − 4]2

(2l + 1)(2l + 2)(2l + 3)

− (l2 − 4)2

(2l − 1)2l(2l + 1)

]
ε2 + O(ε4), (26)
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and

Cν
(in)(x) = c(in)e

iε[(x−1)−ln(−x)](1 − x)−1,

Cν
(up)(z) = c(up)e

iz zν+1
(
1 − ε

z

)−iε

2νe−πεe−iπ(ν+1),

F(a, b, c; x) = Γ (a)Γ (b)

Γ (c)
F(a, b, c; x),

Ψ (a, b; ζ ) = Γ (a − 2)Γ (a)

Γ (a∗ + 2)Γ (a∗)
Ψ (a, b; ζ ), (27)

with a∗ denoting the complex conjugate of a andΨ the second Kummer function. The

quantities c(in) = η
α

(l)
(in) and c(up) = η

α
(l)
(up) are some l-dependent powers of η = 1/c

defined so that Cν
(in)(x) and C

ν
(up)(z) both start with zeroth order in η. Finally, the two-

sided sequence of coefficients aν
n entering both series (25) are obtained by solving the

three-term recursion relation αν
na

ν
n+1 + βν

n a
ν
n + γ ν

n a
ν
n−1 = 0. To solve this three-term

relation between n = −N and n = +N (included) one initiates the recursion with
aN+1 = 0 and a−N−1 = 0 and chooses a0 = 1 to have a fully determined set of
algebraic equations.

The expansions of X in(HG)
lω and Xup(HG)

lω in powers of η thus have the general form

X in(HG)
lω (r) = c̃inr

l+1
kmax∑
k=0

Ain (HG, l)
k ηk,

Xup(HG)

lω (r) = c̃upr
−l

kmax∑
k=0

Aup (HG, l)
k ηk, (28)

with Ain (HG, l)
0 = 1 = Aup (HG, l)

0 and c̃in and c̃up are some normalization coefficients.
Modulo some logarithmic dependence in r , the coefficients Ak are polynomials in the
two quantities X1 = GM/r (linked to the weak-field expansion), and

√
X2 = ωr

(linked to the near-zone expansion).
Let us discuss the structure of the η expansion of the hypergeometric “up” solutions

for the particular case l = 2. Equation (28) then gives

Xup(HG)

(l=2)ω (r) = − i

16ω2r2
∑
k

Aup (HG, l=2)
k ηk, (29)

with

Aup (HG, l=2)
0 = 1,

Aup (HG, l=2)
1 = 0,

Aup (HG, l=2)
2 = 1

6
X2 + 5

3
X1,
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Aup (HG, l=2)
3 =

(
6iγ − 2π − 43

6
i

)
X1

√
X2,

Aup (HG, l=2)
4 = 7

6
X1X2 + 1

24
X2
2 + 20

7
X2
1,

Aup (HG, l=2)
5 =

[(
10iγ − 10

3
π − 215

18
i

)
X2
1

+
(

−43

36
i + iγ − 1

3
π

)
X1X2 + 1

45
i X2

2

]√
X2,

Aup (HG, l=2)
6 = 5X3

1 +
(

−18γ 2 + 7

3
π2 − 12iπγ − 272551

8820
+ 214

105
ln(2ωrη)

+4729

105
γ + 43

3
iπ

)
X2
1X2 + 7

24
X1X

2
2 − 1

144
X3
2, (30)

where γ is the Euler’s constant. Logarithmic terms of the type ln(2ωrη) first appear at
the 3PN level (i.e., Aup

6 ), whereas squared logarithms like (ln(2ωrη))2 at the 6PN level
(i.e., Aup

12). These logarithms have different physical meanings, being related either to
gauge effects or to far-zone effects or even to tail modifications of conservative effects
as well as radiation-reaction effects.

4 Solutions of the Inhomogeneous Regge–Wheeler Equation: The
Green’s FunctionMethod

TheGreen’s functionmethod is used to solve the inhomogeneous Eq. (3). The retarded
Green’s function is expressed in terms of the two independent homogeneous solutions
X in
lω and Xup

lω of the RW operator (discussed above) as

G(r , r ′) = 1

W

[
X in
lω(r)Xup

lω(r ′)H(r ′ − r) + X in
lω(r ′)Xup

lω(r)H(r − r ′)
]

(31)

≡ G(in)(r , r
′)H(r ′ − r) + G(up)(r , r

′)H(r − r ′),

where Wlω denotes the (constant) Wronskian

Wlω =
(
1 − 2M

r

) [
X in
lω(r)

d

dr
Xup
lω(r) − d

dr
X in
lω(r)Xup

lω(r)

]
= const. (32)

and H(x) is the Heaviside step function. Both even-parity and odd-parity solutions
are then given by integrals over the corresponding (distributional) sources as

R(even/odd)
lmω (r) =

∫
dr ′ G(r , r ′)

f (r ′)
S(even/odd)
lmω (r ′). (33)
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5 Metric Reconstruction

Once the radial function is known for both parities, the perturbed metric components
are then computed by multiplying by the angular part and summing over m ∈ [−l, l]
and l ∈ [0,∞].

5.1 Summation Overm and l

One has first to perform the summation over the magnetic number m. This is done by
using standard spherical harmonic identities namely

Sk,l =
l∑

m=−l

mk
∣∣∣Ylm

(π

2
, 0

)∣∣∣2 , S′
k,l =

l∑
m=−l

mk
∣∣∣Y ′

lm

(π

2
, 0

)∣∣∣2 , (34)

as shown in detail for example in Appendix F of Ref. [20].
The summation over l from 0 to infinity is also straightforward once one takes

the regular part of it. This process is called regularization and consists in removing
the divergent part of the summation (i.e., the large-l limit) due to the fact that one is
computing quantities at the source location, singular by definition.

5.2 The l = 0, 1Multipoles

The contribution of the non-radiative modes l = 0, 1 (when seen from outside, i.e., for
r > r0(t)) comes from the changes in the mass and angular momentum of the black
hole due to the presence of the orbiting particle of massμ. The exterior Schwarzschild
metric perturbed in mass and angular momentum acquires the following nonzero
components

htt = −2δM

r
, htφ = 2δ J

r
sin2 θ , hrr = − 2δMr

(r − 2M)2
, (35)

with δM = μE0 and δ J = μL0, where E0 and L0 are given by Eq. (12).

6 Computation of Gauge-Invariant Metric Quantities

The perturbed black holemetric constructed by following the procedure outlined above
can then be used to compute, in analytical form, gauge-invariant quantities. A useful
such quantity for perturbations induced by a particle orbiting a Schwarzschild black
hole is the inverse redshift invariant function, as suggested by Detweiler in 2008 [21]
for circular orbits and then generalized to eccentric orbits by Barack and Sago [22]. It
is defined as
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U
(
m2Ωr ,m2Ωφ, q

) =

∮
dt∮
dτ

= Tr
Tr

, (36)

where all quantities refer to the perturbed spacetime metric (1). As stated above, the
symbol

∮
denotes an integral over a radial period (from periastron to periastron), so

that Tr = ∮
dt denotes the coordinate-time period and Tr = ∮

dτ the proper-time
period. The first-order SF contribution δU to the function (36), i.e.,

U
(
m2Ωr ,m2Ωφ, q

) = U0
(
m2Ωr ,m2Ωφ

) + qδU
(
m2Ωr ,m2Ωφ

) + O(q2),

is given in terms of the O(q)metric perturbation hμν by the following coordinate time
average (equivalent to the original definition of Ref. [22] in terms of a proper time τ

average)

δU = 1

2
U 2
0 〈huk〉t , (37)

where huk = hμνuμkν , with uμ ≡ utkμ, ut = dt/dτ and kμ ≡ ∂t + (dr/dt)∂r +
(dφ/dt)∂φ , andU0 denotes the proper-time average of ut along the unperturbed orbit,
i.e., the ratio U0 = Tr0/Tr0.

Starting in 2013, the analytical values of the PN expansion coefficients of δU have
been computed in the case of circular motion in a Schwarzschild spacetime from 4PN
[1] to very high PN orders [23–26]. For eccentric orbits δU is currently known up
to the 9.5PN order for the e2 and e4 contributions, and up to the 4PN order for the
higher eccentricity contributions through e20 [27–30]. We quote below some of the
lowest-order PN coefficients to second order in the eccentricity, i.e.,

δU (u p, e) = δUe0(u p) + e2δUe2(u p) + O(e4), (38)

with

δUe0(u p)

= −u p − 2u2p − 5u3p +
(

−121

3
+ 41

32
π2

)
u4p

+
(

−1157

15
+ 677

512
π2 − 128

5
γ − 256

5
ln(2) − 64

5
ln(u p)

)
u5p

+
(
1606877

3150
− 60343

768
π2+ 1912

105
γ + 7544

105
ln(2)+ 956

105
ln(u p)− 243

7
ln(3)

)
u6p

−13696

525
πu13/2p

+
(
17083661

4050
− 1246056911

1769472
π2+ 102512

567
γ + 372784

2835
ln(2) + 51256

567
ln(u p)

+1215

7
ln(3) + 2800873

262144
π4

)
u7p

+81077

3675
πu15/2p + O(u8p), (39)
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and

δUe2(u p)

= u p + 4u2p + 7u3p +
(

−5

3
− 41

32
π2

)
u4p

+
(
−11141

45
+ 29665

3072
π2− 592

15
γ + 3248

15
ln(2)− 296

15
ln(u p) − 1458

5
ln(3)

)
u5p

+
(

−2238629

1575
− 73145

1536
π2 + 17392

105
γ − 167696

105
ln(2) + 8696

105
ln(u p)

+42282

35
ln(3)

)
u6p

−232618

1575
πu13/2p

+
(
2750367763

198450
− 13433142863

3538944
π2 + 5102288

2835
γ + 41285072

2835
ln(2)

+2551144

2835
ln(u p) − 673353

280
ln(3) + 9735101

262144
π4 − 9765625

4536
ln(5)

)
u7p

+2687231

4410
πu15/2p + O(u8p). (40)

The Detweiler–Barack–Sago redshift function has been computed very recently also
in a rotating (Kerr) spacetime for both circular and eccentric orbits in Refs. [31–34].

The interest for this kind of self-force computations is related to the possibility to
convert such information in the PN expansion of several EOB potentials, e.g., a, q, ρ
[27–34], etc., which proved to be very useful in creating fast, accurate analytic tem-
plates largely used in the analysis of the gravitational wave signals recently discovered
by LIGO.

7 Concluding Remarks

The first detection of gravitational-wave signals emitted by a coalescing binary sys-
tem by LIGO [35] has provided a strong incentive for further improving our analytical
knowledge of the relativistic gravitational interaction of a two-body system. Dur-
ing the last years several analytical methods have been actively pursued, mainly
post-Newtonian theory and black hole perturbation theory. The former expands the
equations of motion in the binary separation, thus providing extremely accurate mod-
els at large separations where the gravitational field is weak enough. The latter expands
instead in the mass-ratio of the two bodies, so that it works well in the case of sys-
tems with a very small mass ratio, e.g., the extreme mass ratio inspirals formed by a
stellar mass compact object spiralling towards a black hole. In the strong field regime
and for objects with comparable masses both such approaches fail and numerical
relativity techniques are necessary. The Effective-One-Body model then analytically
interpolates between various regimes by taking results from PN theory, black hole per-
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turbation theory and numerical relativity, and currently is playing an important role
in modeling the gravitational wave emission from the merger of binary black holes in
all phases of its evolution.

We have presented here some recent analytical results of first-order gravitational
self-force computations around black holes. In particular, we have reviewed the
procedure to calculate the redshift invariant for a particle moving along a slightly
eccentric equatorial orbit around a non-rotating Schwarzschild black hole. Comput-
ing gauge-invariant quantities allows to extract all physically meaningful information
and compare results from different approaches. Furthermore, it can be used to cali-
brate the EOB model, which is constantly improving from self-force high-PN-order
calculations.
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support and the organizers of the meeting for a high scientific level conference framed in a very unique
place.
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