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Abstract In this paper, I compare the use of the thermodynamic limit in the theory of
phase transitionswith the infinite-time limit in the explanation of equilibrium statistical
mechanics. In the case of phase transitions, I will argue that the thermodynamic limit
can be justified pragmatically since the limit behavior (i) also arises before we get
to the limit and (ii) for values of N that are physically significant. However, I will
contend that the justification of the infinite-time limit is less straightforward. In fact, I
will point out that even in cases where one can recover the limit behavior for finite t ,
i.e. before we get to the limit, one cannot recover this behavior for realistic time scales.
I will claim that this leads us to reconsider the role that the rate of convergence plays in
the justification of infinite limits and calls for a revision of the so-called Butterfield’s
principle.

Keywords Thermodynamic limit · Phase transitions · Infinite-time limit · Rate of
convergence · Approximation · Butterfield principle

1 Introduction

“Hadwebutworld enough, and time” are thewordswithwhichAndrewMarvell begins
his passionate poem in which he tells his lover that things would be different if they
had infinite space and time. While neither the number of particles in real systems nor
the time of measurements are infinite, it is common in statistical mechanics to take the
number of particles and time to infinity in order to recover the values of thermodynamic
observables. These are called the thermodynamic limit and the infinite-time limit,
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respectively. When these limits are taken, it is assumed that, at least for the purpose
of inferring the values of the thermodynamic observables, the infinite case is rather
similar to the finite case (contrary to the situation described by Marvell!). But, is this
so?

In the past few years, there has been a fervent controversy around the use of the
thermodynamic limit in the statistical mechanical treatment of phase transitions. For
some (e.g. [1–4]), the assumption of the thermodynamic limit—and so of an infinite
system—is not innocuous since it describes a situation that is qualitatively different
from a situation in which there is an arbitrarily large number of particles, generally
put in terms of the “singular nature” of the thermodynamic limit. As a consequence, it
is claimed that the behavior in the limit is physically real [3] or that phase transitions
are not reducible to statistical mechanics (e.g. [2,4,5]). Others (e.g. [6–8]) arrive at
the opposite conclusion in that they claim that the invocation of the thermodynamic
limit can be justified pragmatically. They arrive at this conclusion by arguing that
the thermodynamic limit satisfies what Landsman [9] calls Butterfield’s principle,
according to which the limit is justified if and only if the same behavior that arises in
the limit also arises, at least approximately, “on the way to the limit”.

Analogously, the use of the infinite-time limit in the explanation of equilibrium
states has also motivated a discussion in the physical and philosophical literature (e.g.
[10–13]). For some (e.g. [12]), the fact that the infinite-time limit cannot always be
associatedwith finite time averages is one of themainmotivations to abandon the asso-
ciation of phase averages with time averages in the ergodic explanation of equilibrium.
Others (e.g. [11,14]) have recognized the problems associated with the traditional
ergodic approach but have suggested a pragmatic justification for the infinite-time
limit, which relies on the necessity of adapting the time-scale of the analysis to the
phenomenon we want to describe.

Despite its importance, the infinite-time limit has been generally left aside from
the recent philosophical debate around the use of infinite idealizations in statistical
mechanics.1 In this paper, I will contribute to filling in this gap by comparing the use of
the thermodynamic limit in the theory of phase transitions with the infinite-time limit
in the explanation of equilibrium statistical mechanics. In the case of phase transitions,
I will argue (Sect. 2) that the thermodynamic limit can be justified pragmatically, since
the limit behavior also arises before we get to the limit and for a number of particles
N that is physically significant. However, I will contend (Sect. 3) that the justification
of the infinite-time limit is less straightforward. In fact, I will point out that even in
cases where one can recover the limit behavior for finite time t , i.e. before we get to
the limit, one fails to recover this behavior for realistic time scales. I will argue that
this leads us to reconsider the role that the rate of convergence plays in the justification
of infinite limits and calls for a revision of the so-called Butterfield’s principle. I will
end this paper (Sect. 4) by offering a criterion for the justification of infinite limits
based on the notion of controllable approximations.

1 An exception isNorton [15]whodiscusses the infinite-time limit in the explanation of reversible processes.
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2 The Thermodynamic Limit in the Theory of Phase Transitions

Phase transitions are rapid changes in the phenomenological properties of a system
observed, for example, in the transition from liquid water to gas. In recent years,
these familiar phenomena have captured the attention of philosophers of science. The
reason is that they make particularly salient the importance of infinite idealizations in
the recovery of macroscopic behavior from microscopic theories. Indeed, it has been
argued that without the thermodynamic limit, which consists in letting the number of
particles and the volume go infinity, statistical mechanics cannot recover the values
of the thermodynamic observables and, therefore, cannot give a reductive account of
phase transitions.

In this section, I will explain the apparent need for the thermodynamic limit in the
statistical mechanical treatment of phase transitions and I will argue—in the same
vein as Butterfield [6]—that, despite some claims about the “singular nature” of the
thermodynamic limit, this idealization can be justified pragmatically.2

2.1 The Problem of Phase Transitions

In thermodynamics, phases correspond to regions of the parameter space where the
values of the parameters uniquely specify equilibrium states. Phase boundaries, in con-
trast, correspond to values of parameters at which two different equilibrium states can
coexist. The coexistence of different equilibrium states at phase boundaries expresses
itself as discontinuities of thermodynamic quantities, which are related to the first
derivatives of the free energy with respect to a parameter such as pressure or tem-
perature. If the system intersects a phase boundary when going from one phase to
another, i.e., encounters a discontinuity in a macroscopic observable, the system is
said to undergo a first-order phase transition. If the system moves from one phase to
another without intersecting a phase boundary, the system is said to undergo a con-
tinuous phase transition, in which case there are no discontinuities involved in the
macroscopic observables, but there are divergences in the second derivatives of the
free energy.

In the statistical mechanical treatment of phase transitions, which is generally con-
structed on the basis of Gibbs’ canonical ensembles, one can describe phase transitions
in terms of discontinuities or divergencies of the derivatives of the free energy by
invoking the thermodynamic limit. However, it appears that one cannot do so without
the infinite limit. In fact, in the canonical ensemble, the free energy is defined as the
logarithm of the partition function Z :

F = −kBT ln Z , (1)

2 Since the goal here is to relate the problem of the thermodynamic limit in the theory of phase transitions
with the infinite-time limit in the explanation of equilibrium, I will be deliberately brief in my exposition
of the problem of phase transitions. A more detailed treatment of these topics can be found, for instance, in
Kadanoff [16], Butterfield [6], Batterman [17], and Butterfield and Buoatta [7].
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where kB is the Boltzmannian constant. The partition function is the sum over all
states accessible to the system:

Z =
∑

i

e−βHi , (2)

where β = 1
kbT

and Hi is the energy associated to a particular microstate i . Since the
Hamiltonian is usually a non-singular function of the degrees of freedom, it follows that
the partition function is a sum of analytic functions. As a consequence, neither the free
energy nor its derivatives can have the singularities that characterize phase transitions
in thermodynamics. Taking the thermodynamic limit, which consists of letting the
number of particles and the volume of the system go to infinity, i.e., N → ∞, V → ∞,
in such a way that N/V remains constant, allows one to recover those singularities
and provide a rigorous definition for the phenomena that turns out to be empirically
adequate.

Since we assume that real systems have a finite number of degrees of freedom, the
question that arises is how can one justify the use of the thermodynamic limit in the
statistical mechanical treatment of phase transitions, notwithstanding the fact that we
know that it relies on an infinite idealization. In other words, what is the justification
that we have for applying a theory that uses the thermodynamic limit to finite systems.
One might think that what explains the success of the theory is that it provides us with
a mathematical model that approximates the behavior of finite systems. The question
is then under which conditions are we allowed to arrive at that conclusion.

Butterfield [6, p. 1077] says that we could arrive at that conclusion if we could
show that the value of the quantity f evaluated on the limit system v( f∞), when
N = ∞, is equal to the limit of the sequence of values obtained as N tends to
infinity, limN→∞ v( fN ) (this is the case of non singular limits). Moreover, he argues
that in cases when the limit limN→∞ v( fN ) is not well defined, one could arrive
at the same conclusion if the values of the quantities evaluated on a system with
“actual” N0 approximate the values of the quantities evaluated on the limit system:
v( f∞) ≈ v( fN0).

According to Butterfield, this would allow us to give a “straightforward justi-
fication” of the limit in terms of convenience and correctness. The limit will be
mathematically convenient, because it will make calculations easier (it is generally
easier to dealwith infinite sums thanwith large but finite ones) and itwill be empirically
correct from the point of view of finite statistical mechanics, because this mathemati-
cal model will give us an approximation of the values of the quantities that we obtain
for large but finite N .

Unfortunately, as Butterfield himself recognizes, there are at least three difficulties
that seem to prevent one from giving a straightforward justification to the thermody-
namic limit in the treatment of phase transitions.

(i) The first difficulty, pointed out most notably by Batterman in a series of papers
(2002, 2005, 2011), concerns the so-called “singular nature” of the thermody-
namic limit. According to Batterman, a limit is singular “if the behavior in the
limit is of a fundamentally different character than the nearby solutions one
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obtains as ε → 0” [3, p. 2], where ε → 0 is taken as the “limiting behavior”,
which means that v( f∞) �≈ v( fN0). Batterman argues that the thermodynamic
limit is singular in the previous sense because even if we take N to be arbitrarily
large, as long as it is finite, the derivatives of the free energy will never display a
singularity. It is important to note that he arrives at that conclusion by assuming
that the singular behavior of a quantity is qualitatively different from its analytic
behavior. As will be seen in the next section, this assumption is far from trivial.

(ii) The second difficulty regards the apparently essential role of the thermodynamic
limit in the renormalization group approach. In order to give an account of the
quantitative behavior of continuous phase transitions, it was necessary to incor-
porate renormalization group (RG) techniques. These techniques rely on the
existence of non-trivial fixed points, which are points in a space of Hamiltonians
at which different renormalization trajectories arrive after repeated iterations of
a renormalization group transformation (details elsewhere, e.g, in [18,19]). It
has been claimed [4,5] that the thermodynamic limit is “ineliminable” in this
approach, because no matter how large we take N to be, as long as it is finite,
the RG trajectory will not converge towards a non-trivial fixed point. This is
supposed to follow from the fact that finite systems cannot display a divergence
in the correlation length and therefore cannot present a loss in the characteristic
length scale, which is necessary to define non-trivial fixed points in the space of
Hamiltonians.

(iii) The third difficulty is the problem of generality. Even if we could show that in
some cases the values of the quantities that successfully describe phase transi-
tions in the limit “N = ∞” approximate the values of the quantities evaluated
for large but finite N , there remains the question of whether this is so in all cases
in which the thermodynamic limit is used to describe the phenomena of phase
transitions. [9] argues, for instance, that for the case of quantum systems display-
ing spontaneous symmetry breaking and the classical limit h̄ → 0 of quantum
mechanics, the situation is different and much more challenging than in classical
phase transitions.

2.2 Butterfield’s Principle and Butterfield’s Solution to the Problem of Phase
Transitions

The difficultiesmentioned in the previous section havemotivated controversial claims.
For instance, it has been argued that the need for the thermodynamic limit in the
theory of phase transitions and, especially, in the theory of continuous phase transitions
implies the failure of the reduction of thermodynamics to statistical mechanics [1,4,5].
Moreover, it has been argued that as a consequence of the “singular” nature of the
thermodynamic limit, one should conclude that the singularities that describe phase
transitions in the limit are physically real [3].

Independently of whether these conclusions actually follow from the problems
pointed out above, the fact is that, in light of those difficulties, the use of the thermo-
dynamic limit in the theory of phase transitions appears as conceptually puzzling and
requires an explanation.
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So the question is: can we restore a straightforward justification for the thermody-
namic limit despite the objections mentioned above? Butterfield [6] actually argued
that we can. In order to support his view, he presents a series of examples to show that
the “qualitative” difference between the behavior of the relevant quantities in the limit
and close to the limit is only apparent, since it is the consequence of focusing on the
wrong quantities. Let me summarize his argument. Consider a sequence of functions:

gN (x) =

⎧
⎪⎨

⎪⎩

−1 if x ≤ −1/N

Nx if − 1/N ≤ x ≤ 1/N

1 if x ≥ 1/N

As N goes to infinity, the sequence converges pointwise to the discontinuous func-
tion:

g∞(x) =

⎧
⎪⎨

⎪⎩

−1 if x < 0

0 if x = 0

1 if x > 0

If one introduces another function f , such that

f =
{
1 if g is discontinuous

0 if g is continuous

then one will conclude that the value of f∞ at the limit N = ∞ is fundamentally
different from the value when N arbitrarily large but finite: f∞ �≈ fN . Consequently
we will conclude that the thermodynamic limit is “singular” in Batterman’s sense.
However, if one looks at the behavior of the function g one will see that the limit
value of the function is approached smoothly and therefore that the limit system
is not “singular” in the previous sense. Thus, if one looks only at the quantity f ,
one will not be able to see what is revealed when one looks at the behavior of the
quantity g, namely that the limit is actually an approximate description of the behavior
before we get to the limit. According to Butterfield, this is exactly what happens with
classical phase transitions, and, for typical examples of phase transitions, he seems
right. Consider the paramagnetic–ferromagnetic transition in magnetic materials. This
transition is characterized by the divergence of a second derivative of the free energy—
the magnetic susceptibility χ—at the critical point. If we introduce a quantity that
represents the divergence of the magnetic susceptibility and attribute a value 1 if the
magnetic susceptibility diverges and 0 if it does not (analogous to the function f in
Butterfield’s example), then we might conclude that the limit quantities have values
that are considerably different from the values of the quantities for arbitrarily large
but finite N . However, if we focus on the behavior of a different property, namely
the magnetic susceptibility χ itself, we will arrive at a different conclusion. In fact,
the magnetic susceptibility χ , which is the quantity that is physically meaningful, is
defined as the derivative of the magnetization with respect to an external magnetic
field χ = ∂M/∂H . As N grows, the change in the magnetization becomes steeper
and steeper, and the quantity smoothly approaches a divergence in the limit (analogous
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to the function g). This means that in statistical mechanics one can, in principle, find
finite systems that have values of the magnetic susceptibility χ that approximate the
thermodynamic behavior.

I take it as a moral of Butterfield’s argument that the “singular” nature of a limit is
not in conflict with the straightforward justification of the limit explained in Sect. 2.1.3

In fact, this is an argument that suggests that in finite systems, the relevant quantities
that serve to describe phase transitions, such as themagnetic susceptibility, will display
values that approximate the values obtained in the limit: v(χ∞) ≈ v(χN0), for a large
but finite N0. This satisfies the criterion for straightforward justification exposed in
the previous section.

In the literature this criterion for restoring a straightforward justification has been
taken as equivalent to what has been sometimes called the “Butterfield principle”. As
Landsman [9] puts it:

Butterfield’s Principle is the claim that in this and similar situations, where it has
been argued (by other authors) that certain properties emerge strictly in some
idealisation (and hence have no counterpart in any part of the lower-level theory),
“there is a weaker, yet still vivid, novel and robust behaviour […] that occurs
before we get to the limit, i.e., for finite N. And it is this weaker behaviour which
is physically real.” (p. 383)

Here “novel and robust” represent the behavior that is novel and robust with respect
to the behavior of systems with finite N : in the case of phase transitions that is the
discontinuities and singularities in the derivatives of the free energy. And the word
“weak ” is meant to emphasize that the behavior that arises before one gets to the limit
only approximates the behavior that is observed in the limit.

Norton [8] also seems to take this as a criterion when he suggests that most of the
controversy around phase transitions is dissolved after one recognizes that this theory
does not require idealizations (i.e. systems that provide inexact descriptions of the
target system) but only approximations (i.e. inexact description of the target system)
of the behavior of systems with very large number of particles.

It is important to note, however, that if one wants to transformButterfield’s criterion
into a principle, one needs to show not only that this criterion is necessary for giving a
straightforward justification of infinite idealizations (which seems hard to deny), but
also sufficient. In this respect, it is surprising that little attention has been given to the
rate of convergence in the justification of infinite limits.

3 One needs to recognize that this only solves the first of the problems pointed out above and does not
allow us to conclude that the same argument applies to other cases of phase transitions (problem (iii)), or
to explain the role of the thermodynamic limit in renormalization group techniques (problem (ii)). These
other problems have been studied extensively, for example, by Batterman [4], Morrison [5], Norton [8] and
Butterfield himself [6,7]. Since I do not have space to discuss these other issues here, I will restrict my
analysis to the cases in which one can actually show that the values of the quantities that describe phase
transitions in the thermodynamic limit are approximately the same as the values of the quantities before we
get to the limit. The paradigmatic examples are the paramagnetic-ferromagnetic transition described above
and the liquid-vapor transition at the critical point in which the compressibility behaves analogously to the
magnetic susceptibility.
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More to the point, if we assume that the limit will be justified if we can prove
that the idealized mathematical model is just an approximation of the behavior of
realistic systems, it does not suffice to show that the behavior of phase transitions
can be recovered for large but finite N , but it must also be shown that it is recovered
rapidly enough, which means for values of N that are physically significant, i.e. for
N0 ≈ 1023. This means that for an ε sufficiently small

||gN0 − g∞|| ≤ ε, (3)

where N0 ≈ 1023. The size of ε will be determined by pragmatic considerations, such
as measurement precision, estimation of finite-size effects, etc.4 In the examples dis-
cussed here, such an ε exists. For instance, one can show that the value of the magnetic
susceptibility χN0 for N0 = 1023 is negligibly close to the limit value limN→∞ χN .
Therefore, one can be confident that the idealized model for phase transitions is a good
approximation of realistic systems.Actually, Butterfield [6] seems to realize this, when
he points out that one needs to show that the values of the relevant quantities in the
limit should approximate the values of the quantities for “actual” or realistic values
of N (p. 15). However, this condition is lost in what has been later considered as the
“Butterfield Principle”, which only refers to the values of the quantities for large but
finite N and does not say anything about realistic values of N . Sure enough, in the
examples of phase transitions Butterfield refers to, the values of the quantities for
realistic N are so close to the values obtained in the neighborhood of the limit that
distinguishing between such values does not seem to be crucial. However, this is not
necessarily the case in other examples of infinite limits. Indeed, we will see next that
in the infinite-time limit the values of the relevant quantities for very large but finite
time can vary significantly from the values obtained for realistic t .

3 The Infinite-Time Limit in the Ergodic Explanation of Equilibrium

The infinite-time limit, which consists in letting time go to infinity t → ∞, has played
an important role in statistical mechanics and, like the thermodynamic limit, has also
been matter of controversy in the philosophical literature (e.g. [10–13]).

In this section, I will first discuss the role of the infinite-time limit in the expla-
nation of equilibrium in Gibbsian statistical mechanics and I will then expose the
difficulties for giving a straightforward justification of the limit. Contrary to the case
of the thermodynamic limit in the theory of phase transitions, I will argue that these
difficulties are not related to whether or not one can recover the limit values of the
relevant quantities for finite t , i.e. before we get to the limit, but rather to whether or
not one can recover those values for realistic t . This will reveal the important role of
the rate of convergence in the justification of infinite limits.

4 I thank an anonymous referee for pointing this out.
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3.1 The Problem of the Infinite-Time Limit

In order to understand the use of the infinite-time limit in the Gibbs’ framework, one
needs to become familiar with the Gibbs formalism. The most important concept here
is the notion of ensemble, defined as an infinite collection of systems governed by the
same Hamiltonian but distributed differently over the phase space�. An ensemble can
also be understood as a probability distribution ρ over�, which reflects the probability
of finding the state of a system in a certain region of �. The uniform probability
distribution on an hypersurface �E of this space � is referred to as themicrocanonical
ensemble, where the energy and the number of particles are constant. There is a phase
function f : �E → R associatedwith each relevant physical quantity. The expectation
values of those functions will correspond to phase averages, defined as follows:

〈 f 〉 =
∫

�E

fρ d�E (4)

Phase averages play an important role in this approach because they correspond
to the values of the macroscopic quantities measured in experiments. In fact, if we
measure the macroscopic quantities of a gas in equilibrium which is enclosed in some
container, we will observe that these values coincide with the values predicted by
Gibbs’ phase averages, even if we do not have any information about the microscopic
configuration of the gas.

The question that has puzzled physicists and philosophers of science is why phase
averages coincide with values measured in real physical systems. The answer is not
clear. First of all, this formalism is built upon the notion of ensemble, which is a
fictional entity that does not make direct reference to the behavior of a single system.
Second, phase averages do not tell us anything about the dynamics, i.e. they do not
give us information about how the system—at themicroscopic level—behaves in time.
Third, this formalism does not explain why the experimental values always correspond
to the average values and are not spread around the mean.5

The most intuitive explanation for the success of phase averages consists of asso-
ciating them with time averages 〈 f 〉t . Time averages have a clearer physical meaning
because they make reference to the fraction of time that the system spends in the
regions of the phase space associated to the mean values of the macroscopic observ-
ables. In other words, if we assume that measurements take some time, then we might
think that we succeed in measuring phase averages because they correspond to the
average values that actually occur during the time of measurement. And here is when
the infinite-time limit comes into scene. In order to associate phase averages with
time averages, one generally needs to introduce the infinite-time limit. For exam-
ple, the Birkhoff theorem tells us that if we define the invariant mean of time 〈 f 〉t
of time dependent functions f (t) (which is nothing but the same phase function f )
as

5 See Frigg [20], Uffink [21] and van Lith [22] for a more detailed description of the problems associated
with the Gibbs formalism.
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〈 f 〉t = lim
T→∞

1

T

∫ T

0
f (t) dt, (5)

it follows that for almost all points (except on a set with measure zero):

(i) 〈 f 〉t exists for every integrable function f in �E .
(ii) If the system is ergodic, then 〈 f 〉 = 〈 f 〉t .
Note that in this approach, in order to derive the equivalence between phase averages

and time averages 〈 f 〉 = 〈 f 〉t , one needs to assume that the system is ergodic, which
means that as time evolves the dynamic trajectories pass through every set of nonzero
measure in �E .6 The assumption of ergodicity has been itself a matter of controversy
in the foundations of statistical mechanics, but for the sake of brevity I will leave
this discussion aside and focus instead on the appeal to the infinite-time limit for the
justification of equilibrium.

The introduction of the infinite-time limit in the definition of time averages is
far from trivial, especially if one thinks that the original motivation for relating phase
averages with time averages is the belief that the latter have a clearer physical meaning.
In fact, we know that measurements do not take an infinite amount of time: so, what
is that justifies the use of the infinite-time limit in this context? One might try to give
a straightforward justification for the limit along the lines of Butterfield’s principle by
saying that even if themeasurement times are short with respect to humanmacroscopic
scales, they are very long with respect to the microscopic time scales, i.e. time of
collision between particles, and therefore they are well approximated by infinite time
averages.7 If so, one might think that one has good reason to consider the infinite-
time average as a mathematical model that approximate the values obtained in finite
time measurements and will have good reason to give a pragmatic justification for
it. For example, that it allows us to wash out fluctuations we deem irrelevant, that it
is mathematically convenient and that it allows us not having to decide in advance
how long the time of measurement should be. Unfortunately, there are difficulties that
prevent us from arriving at this conclusion as quickly as we would like.

(i) The first is that even if the limit defined in (4) exists, it does not mean necessarily
that it describes a system in equilibrium.Uffink [21, p. 92] expresses this difficulty
pointing out that generally:

lim
T→∞

1

T

∫ T

0
f (t) dt �= lim

t→∞ f (t), (6)

where the right-hand side describes a constant value of a physical quantity f (t)
and the left-hand side represents an average value of the same quantity. Note that
for periodical motions the left-hand side exists whereas the right-hand side does
not.

6 Strictly speaking, this theorem was formulated in terms of metric transitivity instead of ergodicity. Metric
transitivity is a property of dynamical systems that captures the same idea as ergodicity but in measure
theoretic sense. For more details see Uffink [21, Sect. 6] and van Lith [22, Chap. 7].
7 One can find arguments in this direction, for example, in Gallavotti [14] and Emch and Liu [11].
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(ii) Second, there is a problem related to the apparent indispensability of the infinite
limit in the derivation of the equivalence between phase and time averages (this
problem is similar but not equivalent to the problem of “singular” limits dis-
cussed above in the context of the thermodynamic limit). We saw that Birkhoff’s
theorem states that one can derive the equivalence between phase averages and
time averages after taking the infinite time limit, but this theorem does not tell us
anything about how these two averages are related for large but finite times. Frigg
expresses this point as follows: “… the infinity is crucial. If we replace infinite
time averages by finite ones (no matter how long the relevant period is taken
to be), then the ergodic theorem does not hold any more and the explanation is
false.” [20, p. 147]

(iii) Finally, there is the difficulty that even if one can show that the limit in (4)
converges, this does not imply that it converges rapidly enough to be empirically
meaningful. Measurement times generally take a very short time with respect
to human macroscopic time scales. Thus, in order to show that the infinite time
average is a good approximation for finite time averages, one needs to prove that
the infinite time average is approached within realistic measurement time scales.
In the remainder of this paper, Iwill focusmainly onproblem (iii), because it is this
problem that reveals the most important difference between the thermodynamic
limit discussed in Sect. 2 and the infinite-time limit.

3.2 The Dog-Flea Model and a Straightforward Justification for the
Infinite-Time Limit

In order to understand under which conditions one could give a straightforward justi-
fication for the infinite-time limit it is useful to consider a toy model. The toy model
that can best help us to grasp these conditions is the Dog-Flea model, invented by
Ehrenfest-Afanassjewa and Ehrenfest [23]. A version of the model is as follows. Con-
sider two dogs, Poomba andWoori, that share a population of N fleas. Assume further
that N is even and that the fleas are labeled by an index from 1 to N . The macroscopic
observables of the model are n and m, representing the number of fleas in Poomba
and Woori, respectively. A microscopic description of the system corresponds to the
specification of the positions of all fleas in each dog. The time evolution of the system
is described like this: At every second, a number from 1 to N is taken randomly from
a bag and announced. When hearing its name, the corresponding flea jumps immedi-
ately from the dog it pestered to the other. Let p(xt = n) denote the probability that
there are n fleas on Poomba at time t , then the model predicts that in the long run
(t → ∞), and independently of the initial distribution p(xt=0 = n)|n = 1, 2, . . . , N ,
the process leads to a time-invariant probability distribution that is symmetric around
the value p = N/2 and it is very peaked at that value, all the more so when N is large.
It is important to emphasize that the model admits only one time-invariant probability
distribution, which is the same as the distribution in classical probability theory that in
a sequence of N trials of a fair coin, exactly p heads come up. In this way, the model
illustrates quite nicely that under certain statistical assumptions, it is possible to obtain
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the properties that characterize equilibrium. And, analogously to the case described
above, the equilibrium distribution is defined in the limit t → ∞.

Following the strategy used in the previous section, we might think that the asymp-
totic distribution will approximate the behavior of a finite time measurement if the
measurement time (macroscopic time scale) is very long with respect to the time that
it takes for a flea to jump from one dog to the other (microscopic time scale), which
is here one second. If this is the case, we might also say that the infinite-time limit is
justified pragmatically, since it is mathematically convenient and it enables us to wash
out fluctuations.

An advantage of the Dog-Flea model is that it allows us to perform computer
simulations to test our hypothesis. Emch and Liu [11, Sect. 3.4] present the results of
these simulations for two different time scales:

(a) The first run consists of 102 iterations.
(b) The second run consists of 104 iterations.

In both cases, the number of fleas is N = 100.Remarkably, even if the twomacroscopic
time scales are long with respect to the microscopic scale (a single iteration), the
results for (a) are significantly different from the results obtained for (b). Whereas (a)
exhibits values of n,m that are constantly changing, (b) exhibits equilibrium behavior
(with chaotic fluctuations) that is in good agreement with the equilibrium distribution
obtained in the infinite time limit.

Based on these results, we should conclude that the time invariant distribution (for
t → ∞) gives us a good approximation for the values of the macroscopic observables
in (b) but not in (a). Accordingly, we can say that we are justified in using the limit
distribution for describing the situation for (b), but not for (a). Note, that this justifica-
tion is not related with whether or not the system approaches the equilibrium values
in a finite time, but rather with whether or not the system approaches those values in a
time that is short with respect to the time of measurement. This obliges us to consider
the convergence rate, which represents the rapidity at which the limit is reached. In the
first case (a), the convergence is not rapid enough. Indeed, the system will eventually
approach equilibrium, in a long but finite time, but since this time is much longer than
the measurement time, the average values of the observables will not coincide with the
values predicted by the time invariant distribution. Therefore, the asymptotic average
value will not provide a good approximation of the values measured during that time.

3.3 The Importance of the Rate of Convergence

For the present discussion, the important lesson of the Dog-Flea model is that talking
about “long time” is useless unless we specify the relevant time scales of the problem
under investigation. In this sense, if we want to justify the infinite-time limit in the
explanation of equilibrium, it does not suffice to argue that the time of measurement is
“very long” with respect to microscopic time scales, but rather we need to specify the
rate of convergence and guarantee that the asymptotic value will be reached within the
time scales that we are interested in. As one might suspect, specifying the convergence
rate is not a trivial task. To give a more precise idea, let 〈 f (T )〉 represent the average
value calculated at time T , that is:
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〈 f (T )〉 = 1

T

∫ T

0
f (t)dt. (7)

Then in order to determine the convergence rate, one needs to find a finite ε(T ) such
that:

||〈 f (T )〉 − 〈 f 〉t || ≤ ε(T ), (8)

where 〈 f 〉t is the time invariant mean defined in (4). Even in simple models, to obtain
definite values of ε(T ) is often difficult in both theory and practice, and to demonstrate
that this value is very small, i.e, ε(T ) ≈ 0, for realistic measurement times is even
harder. More importantly, it is perfectly conceivable to have a situation in which the
values of the functions are constantly changing so that the time needed to attain the
time average is of the order of the recurrence time, i.e. the time necessary to visit the
entire surface �E . One can estimate that the recurrence time for a small sample of
diluted hydrogen gas is unimaginably longer than the age of the universe, and this
time is even longer if we consider more complicated systems. In situations like this,
there might well exist a finite ε(T ) that satisfies Eq. (7). However, the time for which
ε is sufficiently small will be much longer than realistic measurement times, which
means that for realistic time scales T ′, say 2/10 s, 〈 f (T ′)〉 �≈ 〈 f 〉t .8

The previous argument just tells us that, even if we could demonstrate that the
asymptotic average will be reached within finite but very large times (or in other
words “on the way to the limit” as in Butterfield’s principle), this does not imply that
the asymptotic average will be reached for realistic t and, therefore, it does not imply
that we can interpret the limit as giving us a good approximation of the systems that
we are interested in. This has an important philosophical consequence because it tells
us that the so-called “Butterfield’s principle” is not sufficient to justify the limit in this
case.

Boltzmann himself was aware of the problem of the rate of convergence in the
justification of the infinite-time limit, and in order to reconcile this limit with the
rapid approach to equilibrium, assumed that the “the macroscopic observables, had
an essentially constant value on the surface of given energy with the exception of
an extremely small fraction ε of cells” [1874 (quoted in [14, p. 16])]. Unfortunately,
this assumption is not uncontroversial, and to some extent it does not really solve
the problem. In fact, even if we accept the premise postulating, for example, that the
functions satisfy symmetry conditions, we still need an argument to associate phase
averages with time averages. In other words, we still need an argument that allows us
to conclude that the system does not spend so much time in the small fraction of cells
that differ from the mean phase values. Ironically, this seems to beg the question, in
that it brings us back to the original problem for which the infinite time limit entered
the picture, namely the problem of deriving the equivalence between phase and time
averages.

Different alternatives have been offered in the literature to deal with this and the
other problems associated with infinite time averages. Maybe the most radical was
the proposal by Malament and Zabell [12], where they argue that one can explain the

8 For a quantitative estimation, see Gallavotti [14].
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empirical adequacy of phase averages without appealing to time averages at all. Their
argument is based on two assumptions: (i) the system exhibits small dispersion with
respect to the phase average (analogously to Boltzmann’s assumption), and (ii) the
microcanonical measure represents the probability of finding a system in a particular
region of the phase space. According to them, these two assumptions taken together
lead to the conclusion that the probability that phase functions are always close to
their phase averages is very large, without making any reference to infinite time aver-
ages. Even if this view looks appealing, two main criticisms have been raised in the
literature. The first is that in order to justify assumption (ii), they invoke a version
of ergodicity, which is an hypothesis that has been questioned in the foundations of
statistical mechanics (e.g. Earman and Redei [10], [20,22]). The second, which is
more important for us, is that they justify assumption (i) based on Khinchin–Lanford
dispersion theorems, which tell us that for functions that satisfy strong symmetry con-
ditions, the dispersions from the mean will go to 0 in the thermodynamic limit. The
appeal to the thermodynamic limit would not be problematic, if we could demonstrate
that—like the case of phase transitions—there is a straightforward justification for it.
Unfortunately, the use of the thermodynamic limit in this context appears to be less
straightforward than in the case of phase transitions, because Butterfield’s principle is
not enough to justify the limit. In fact, for realistic N ≈ 1023, one can estimate, based
on Khinchin’s theorem, that the probability that there is a relative deviation from the
mean of more than a tiny ε is very small, but not sufficiently small to discard that these
states will occur in nature. This means that one cannot regard (at least not without
risks) the asymptotic results obtained in this and other similar theorems as providing
us with a good approximation of the behavior of realistic systems. This problem is
also referred in the literature as the measure-epsilon problem (See [20–22]).

An alternative approach can be found in Earman and Redei [10]. They do not
invoke ergodicity for the explanation of the success of phase averages, but they are
quite sympathetic towards the explanatory role of “ergodic-like behavior”. According
to them, ergodic-like behavior only requires weak mixing behavior with respect to a
set of finite observables. It is important to note that the definition of mixing offered by
them still requires the appeal to the infinite-time limit. Interestingly for what we are
discussing here, they explicitly include rapid convergence as an additional condition
for the explanation of equilibrium. To justify this assumption they suggest (although
not necessarily endorse) two possible routes: (a) The first is to make reference to
matter-of-fact initial states. (b) The second is to assume that systems are subjected to
perturbations from outside that act as a kind of ‘stirring’ mechanism which rapidly
drive the observedvalues of themacroscopic quantities.9 Even if one should not discard
that some progress can be done in each of these lines of research, one should recognize
that they aremethodologically complicated since they oblige us to the consider specific
features of the systems of interest.

The explanation of the empirical success of phase averages is still an open problem
in the foundations of statistical mechanics. Although there is some skepticism in the
philosophical literature towards the idea of explaining this success via infinite time

9 A review of this attempts can be found in [24].
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averages, the infinite-time limit continues playing an important role in physics. It is far
beyond the scope of this paper to offer a final assessment for the appeal to the infinite-
time limit in the explanation of equilibrium. However, it suffices for our purposes to
have shown that much of the problems for providing a justification for such a limit
come from the conceptual and methodological difficulties to specify the rapidity at
which the limit is approached. I argued that this has an important consequence for the
current philosophical literature on infinite limits, because it teaches us an important
lesson about the role of the convergence rate in the justification of infinite limits.

4 Conclusion: Infinite Limits as Controllable Approximations

Although there is no consensus regarding the status of infinite limits in physics, it seems
reasonable to interpret these idealizations as mathematical models that approximate
the behavior of finite systems. The question that one needs to ask, however, is under
which conditions are we allowed to arrive at that conclusion. In the debate on phase
transitions, it is often assumed that we are allowed to interpret the infinite limit as
providing an approximation of finite systems as long as the behavior that arises in the
limit also arises, at least approximately, “on the way to the limit”, which is what we
called here the “ Butterfield principle”. However, in this paper I argued that in the
case of the infinite-time limit this condition is not sufficient to justify the limit. This is
because in this case the values of the relevant quantities “before we get to the limit”,
that is for finite but very large t , can take values significantly different from the values
obtained for realistic time scales t .

The above result leads us to a revision of Butterfield’s principle that would apply
more generally than the original formulation. A proposal is as follows:

We can justify infinite limits, when x → ∞, as being mathematical models that
approximate the behavior of real finite systems, iff (i) the behavior that arises in
the limit also occurs, at least approximately, before we get to the limit, i.e., for
finite x ., and (ii) it also arises for realistic values of x .

A concept that captures the main idea of the previous statement is the notion of
controllable approximations. Emch and Liu ([11], p. 526) define controllable approx-
imations as the ones in which the deviations of the model with respect to realistic
systems can be quantitatively estimated. When no such estimation can be given, the
approximation is said to be uncontrollable. Uffink [21, p. 109] makes this notion more
precise, suggesting that in the case of controllable approximations involving infinite
limits one has control over how large the value of the parameter must be to assure that
the infinite limit is a reasonable substitute for a finite system. Since we are interested
in the behavior of realistic systems, I claim that this “control” should also involve a
specification of the rate of convergence. This will allow us to warrant that the limit is
reached for realistic values of the parameters and therefore that it is a good approx-
imation of the target systems. In the cases of phase transitions analyzed in Sect. 2,
the thermodynamic limit appears to be controllable in this sense. However, for what
has been argued in Sect. 3, we do not seem to be in the position of deriving the same
conclusion for the case of the infinite-time limit.
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