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Abstract Squashed entanglement (Christandl andWinter in J.Math. Phys. 45(3):829–
840, 2004) is a monogamous entanglement measure, which implies that highly
extendible states have small value of the squashed entanglement. Here, invoking a
recent inequality for the quantum conditional mutual information (Fawzi and Renner
in Commun. Math. Phys. 340(2):575–611, 2015) greatly extended and simplified in
various work since, we show the converse, that a small value of squashed entanglement
implies that the state is close to a highly extendible state. As a corollary, we establish
an alternative proof of the faithfulness of squashed entanglement (Brandão et al. Com-
mun.Math. Phys. 306:805–830, 2011).We briefly discuss the previous and subsequent
history of the Fawzi–Renner bound and related conjectures, and close by advertising
a potentially far-reaching generalization to universal and functorial recovery maps for
the monotonicity of the relative entropy.
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1 Squashed Entanglement

One of the core goals in the theory of entanglement is its quantification, for which pur-
pose a large number of either operationally ormathematically/axiomaticallymotivated
entanglement measures and monotones have been introduced and studied intensely
since the 1990s [9,21].

In this paper we will discuss one specific such measure, the so-called squashed
entanglement [13], defined as

Esq

(
ρ AB

)
:= inf

1

2
I (A : B|E) s.t. TrE ρ AB E = ρ AB, (1)

where I (A : B|E) = S(AE)+S(B E)−S(E)−S(AB E) is the (quantum) conditional
mutual information, which by strong subadditivity of the von Neumann entropy is
always non-negative [29]; and ρ AB E as above is called an extension of ρ AB . This
definition appears to have been put forward first in [43,44], where it was also remarked
that by restricting the extension of ρ AB to have the form ρ AB E = ∑

i pi |ϕi 〉〈ϕi |AB ⊗
|i〉〈i |E , the minimization reduces to the well-known entanglement of formation [5],

EF (ρ AB) = min
∑

i

pi S(ϕA
i ) s.t.

∑
i

pi |ϕi 〉〈ϕi | = ρ. (2)

While it is fairly straightforward to see from their definitions that both Esq and EF

are convex functions of the state, the former has many properties that the latter lacks,
among them additivity and monogamy [13,26] as well as [14,20], cf. [9,42]. Namely,
abbreviating Esq(ρ

AB) = Esq(A : B), we have

Esq(A : B1B2) ≥ Esq(A : B1) + Esq(A : B2). (3)

In particular, if ρ AB is k-extendible, meaning that there exists a state ρ AB1...Bk such
that ρ AB = ρ ABi for all i (and that w.l.o.g. is symmetric with respect to permutations
of the B-systems), then

Esq(A : B) ≤ 1

k
log |A|. (4)

While clearly Esq ≤ EF , in the other direction, squashed entanglement is an upper
bound on the distillable entanglement and indeed on the distillable secret key in a
state [9,13], which makes it very useful to the theory of state distillation and channel
capacities, cf. [41].

One of the properties much desirable for a quantitative entanglement measure is
faithfulness, i.e. the fact that it is zero if and only if the state is separable, and otherwise
strictly positive. To be truly useful, such a statement ought to come in the form of a
relationship between the value of the entanglement measure, and a suitably chosen
distance from the set of separable states. After being an open problem for a while,
this was finally obtained a few years ago by Brandão et al. [7], and later improved by
us [28].
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In the present paper, we will reproduce this finding in a conceptually simple and
appealing way, by first showing a relation between the value of squashed entanglement
and the distance from k-extendible states, and then invoking a suitable de Finetti
theorem to bound the distance from separable states. (That in the limit of k → ∞ the
state has to be separable was known for some time [36–38], but we shall use more
recent, quantitative, versions).We go on to contrast this finding with the faithfulness of
entanglement of formation. Then, we put the technical result of Fawzi and Renner [17,
Theorem 5.1], on which our proof crucially relies, in the context of other conjectured
inequalities and subsequent results; motivated by a much more general observation
in classical probability, we propose as an open problem to find the “right” quantum
generalization.

2 Main Result

Now we show that the monogamy bound, Eq. (4), has a partial converse:

Theorem 1 Consider a state ρ AB with Esq(ρ) ≤ ε. Then, for every integer k, there
exists a k-extendible state σ AB such that ‖ρ − σ‖1 ≤ (k − 1)

√
2 ln 2

√
ε.

In particular, ρ is O
(

4
√

ε
)
-close to a Ω

(
1
4√ε

)
-extendible state.

Corollary 1 For every state ρ AB with Esq(ρ) ≤ ε, there exists a separable state σ

with

‖ρ − σ‖1 ≤ 3.1|B| 4
√

ε.

In particular, squashed entanglement is faithful: Esq(ρ) = 0 if and only if the state ρ

is separable.

For comparison, the earlier result of Brandão et al. [7, Cor. 1] yields

‖ρ − σ‖1 ≤ √|A||B|‖ρ − σ‖2 ≤ 12
√|A||B|√ε. (5)

The Hilbert-Schmidt (2-)norm bound seems not available with our techniques, but
the trace (1-)norm behaviour is qualitatively reproduced here, albeit with a worse
polynomial dependence on ε but with a slightly better constant. In particular, it is
perhaps of interest that in our bound in Corollary 1 only the dimensionality of one of
the two systems appears (cf. however [8, Eq. (66)]).

The proof of this theorem relies essentially on a recent result by Fawzi and
Renner [17], stating that for every tripartite state ρ AE B there exists a cptp map
R̃ : L(E) → L(E B) such that

− log F
(
ρ AE B, (idA ⊗ R̃)ρ AE)2 ≤ I (A : B|E)ρ, (6)

with the fidelity F of two states α and β defined as F(α, β) = ‖√α
√

β‖1.
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Proof Choose an extension ρ AB E for ρ AB , and use the map R̃ from Eq. (6). Now we
employ a basic inequality from [18, Theorem 1], saying

1 − F(α, β) ≤ 1

2
‖α − β‖1 ≤

√
1 − F(α, β)2, (7)

for the fidelity F(α, β) = ‖√α
√

β‖1. Hence, from Eq. (6),

t := √
4 ln 2 I (A : B|E) ≥ ‖ρ AE B − (idA ⊗ R̃)ρ AE‖1.

But since (idA ⊗ R̃)ρ AE ≈ ρ AE B , we may apply the same map again, say k −1 times,
always to the E system of ρ AE B , arriving at a state

ωAE B1...Bk =
(
idA ⊗ R̃E→E Bk ◦ · · · ◦ R̃E→E B2

)
ρ AE B1 ,

which has the property that for each i , ‖ωABi − ρ AB‖1 ≤ (i − 1)t , by the triangle
inequality and the contractive property of the trace norm under cptp maps. Hence,
tracing out E and considering the symmetrization of the B systems, i.e.

Ω AB1...Bk = 1

k!
∑
π∈Sk

(1 ⊗ Uπ )ωAB1...Bk (1 ⊗ Uπ )†,

we have that it is manifestly permutation symmetric on the B systems, and for all i ,

‖Ω ABi − ρ AB‖1 ≤ k − 1

2
t. (8)

Minimizing over all extensions as required by the definition of squashed entanglement,
allowing I (A : B|E) to get arbitrarily close to 2ε, concludes the proof of the theorem.

��
To show the corollary, we use [30, Theorem 2 and Corollary 5] or alternatively

[10, Theorem II.7’], which say that a k-extendible state is at trace distance at most
2|B|2

k from a separable state. To use the former result, which requires Bose-symmetric
extensions, we have to go from the permutation symmetricΩ AB1...Bk to a permutation
invariant purification

|Ψ 〉AA′ B1B′
1...Bk B′

k =
(√

Ω AB1...Bk ⊗ 1
)

|Φ〉AA′ |Φ〉B1B′
1 · · · |Φ〉Bk B′

k ,

with the non-normalized maximally entangled state |Φ〉 = ∑
i |i〉|i〉. The choice

k =
⌊

4

√
2

ln 2

|B|
4
√

ε

⌋

then does the rest. ��
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3 Comparison with Entanglement of Formation

It is instructive to compare the monogamy relation Eq. (4) and its “converse”,
Theorem 1 for the squashed entanglement, with the analogous statements for the
entanglement of formation:

Proposition 1 In a bipartite system AB, with d = min{|A|, |B|}, if the state ρ AB is
δ-close in trace norm to a separable state σ AB, meaning that if 1

2‖ρ − σ‖1 ≤ δ, then

EF (ρ) ≤ √
δ log d + (1 + √

δ)h2

( √
δ

1 + √
δ

)
. (9)

Conversely, if EF (ρ) ≤ ε, then this implies that there is a separable state σ with
1
2‖ρ − σ‖1 ≤ √

ln 2
√

ε.

Proof The first part is originally due to Nielsen [31], with a slightly different form of
the bound. The present almost optimal bound is from [48, Corollary 4]. For the second
part, consider an optimal decomposition ρ = ∑

i pi |ϕi 〉〈ϕi |, such that

ε ≥
∑

i

pi
1

2
I (A : B)ϕi ≥

∑
i

pi
1

4 ln 2
‖ϕAB

i − ϕA
i ⊗ ϕB

i ‖21

≥ 1

4 ln 2

∥∥∥∥∥ρ −
∑

i

piϕ
A
i ⊗ ϕB

i

∥∥∥∥∥
2

1

,

and the right hand state inside the trace norm is manifestly separable. ��
In other words, while entanglement of formation is essentially about the dis-

tance from separable states, squashed entanglement is about the distance from
highly extendible states (up to log-dimensionality factors and polynomial relation
of ε and δ). Note that squashed entanglement, like the entanglement of forma-
tion, is asymptotically continuous [21]: Alicki and Fannes [3] showed that for
1
2‖ρ AB − σ AB‖1 ≤ ε ≤ 1,

∣∣Esq(ρ) − Esq(σ )
∣∣ ≤ 16ε log |A| + 4h2(2ε), where

h2(x) = −x log x − (1 − x) log(1 − x) is the binary entropy. Using the bounds
presented in [48], it can be improved to

∣∣Esq(ρ) − Esq(σ )
∣∣ ≤ 4ε log |A| + 2(1 + ε)h2

(
ε

1 + ε

)
.

This explains the occurrence of states such as the d × d fully antisymmetric state
αd , which is at trace distance 1 from the separable states for all d, but has Esq(αd) ≤ 2

d
which is arbitrarily small for large d [11,12]. Indeed, this state is (d − 1)-extendible,
so by monogamy of Esq it has to have small squashed entanglement. Conversely by
Theorem 1, this is the onlyway inwhich a state can have small squashed entanglement.
On the other hand, the large distance from separable, and the dimension-dependent
constants in Corollary 1 and Eq. (5), are entirely due to the fact that in large dimension,
quite highly extendible states can be far away from being separable.
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4 Recovery Maps and Related Facts and Conjectures

The form (6) of the Fawzi–Renner bound [17] was arrived at in a succession of spec-
ulative steps. The initial insight is no doubt Petz’s [32,33], who showed a general
statement on the relative entropy

D(ρ‖σ) = Tr ρ(log ρ − log σ).

Indeed, while for any two states ρ and σ on a system H and a cptp map T : L(H) →
L(K ), D(ρ‖σ) ≥ D(Tρ‖T σ) – this is equivalent to strong subadditivity [29] –, Petz
showed that equality holds if and only if there exists a cptp map R such that RT σ = σ

and RTρ = ρ. What is more, this map can be constructed in a unified way from T
and σ alone, as the transpose channel, or Petz recovery map R = R(T, σ ), given by

R(ξ) = √
σ T ∗((T σ)−1/2ξ(T σ)−1/2

)√
σ , (10)

where T ∗ is the adjoint map to T , at least in the finite dimensional case (cf. [4]). These
transpose channels have found increasing attention in recent years, see e.g. [2,27].

The above problem involving the conditional mutual information is recovered by
letting T = TrB , ρ = ρ AE B and σ = ρ A ⊗ ρE B , where it can be checked that

I (A : B|E) = I (A : E B) − I (A : E)

= D(ρ AE B‖ρ A ⊗ ρE B) − D(ρ AE‖ρ A ⊗ ρE ).

In this case, the Petz recovery map reads

R(ξ) =
√

ρE B

(√
ρE

−1
ξ

√
ρE

−1
⊗ 1B

) √
ρE B, (11)

and the recovered state from ρ AE is

ωAE B = (idA ⊗ RE→E B)ρ AE

=
√

ρE B

(√
ρE

−1
ρ AE

√
ρE

−1
⊗ 1B

) √
ρE B .

This map was used to elucidate the structure of ρ AE B [19]: The result is that there has
to exist a decomposition E = ⊕

j eL
j ⊗ eR

j of E as a direct sum of tensor products,
such that

ρ AE B =
⊕

j

p jσ
AeL

j
j ⊗ τ

eR
j B

j .

(In particular, ρ AB is separable). Such states have been called “quantum Markov
chains” [1].
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The recovery map of Fawzi and Renner [17] looks very similar to the form (11):

R̃(ξ) = V
√

ρE B

(√
ρE

−1
UξU †

√
ρE

−1
⊗1B

)√
ρE B V †, (12)

with certain unitaries U (on E) and V (on E B).
The near-equality case of Petz’s theorem seems to have attracted only little attention

until recently, for instance as shown here in the context of squashed entanglement, or
in the approach of Brandão and Harrow to finite quantum de Finetti theorems [8],
or potentially in considerations of many-body physics [25]. One notable exception
is the case of a pure state ρ AB E , for which I (A : B|E) = I (A : B E) − I (A :
E) ≈ 0 corresponds to the treatment of approximate quantum error correction due to
Schumacher and Westmoreland [34].

The conjecture that the Petz recoverymap R in Eq. (11) might yieldωAB E ≈ ρ AB E

in trace norm seems to have been formulated first by Kim [24], cf. [47]:

I (A : B|E)
?!≥ Ω

(
‖ρ AE B − (id ⊗ R)ρ AE‖21

)
. (13)

See also Zhang [51] (cf. [47] once more) for this, who suggested the generalized
version

D(ρ‖σ) − D(Tρ‖T σ)
?!≥ Ω

(
‖ρ − RTρ‖21

)
. (14)

Berta et al. [6] then proposed the more natural conjecture with the fidelity on the
right hand side of Eq. (13), motivated by the observation that the latter is a Rényi
relative entropy:

I (A : B|E)
?!≥ − log F

(
ρ AE B, (id ⊗ R)ρ AE)2

. (15)

By the well-known relations connecting fidelity and trace norm, this would imply
Kim’s conjecture (13). While all of the above conjectures remain open (though sup-
ported by increasing numerical evidence), Fawzi and Renner’s Eq. (6) proves a variant
of the last inequality, with R̃ instead of R. The crucial point of course is that this new
map still only acts on E , and as the identity on A.

Similarly, Seshadreesan et al. [35, Conjecture 26 and Sect. 6.1] suggested the fol-
lowing most general form extending (14), encompassing all of the above:

D(ρ‖σ) − D(Tρ‖T σ)
?!≥ − log F(ρ, RTρ)2, (16)

againmotivated by awayofwriting both sides of the above as (Rényi) relative entropies
or variants thereof.

Since the first arXiv posting of the present paper, statements of this form have been
proven for slight variants of the Petz recovery map, specifically the “swivelled” (or
“rotated”) Petz maps (cf. [15])

Rt (ξ) = σ−i t R
(

T (σ )i tξT (σ )−i t
)

σ i t ,
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which reduces to the Petz recovery map R = R0 for t = 0, and their convex combi-
nations. Namely, Wilde [46], invoking the Hadamard three-line theorem, shows that
there exists a t ∈ R (generally depending on all of T , σ and ρ) such that eq. (16) [and
similarly eq. (15)] holds with Rt in place of R.

D(ρ‖σ) − D(Tρ‖T σ) ≥ inf
t

(− log F(ρ, Rt Tρ)2
)
,

This was then extended to infinite dimension by Junge et al. [23], and improved to a
universal average over t rather than the minimum on the right hand side:

D(ρ‖σ) − D(Tρ‖T σ) ≥
∫

dtβ0(t)
(− log F(ρ, Rt/2Tρ)2

)
,

with the probability density β0(t) = π
2 (1 + cosh(π t))−1.

Sutter et al. [40] presented an essentially elementary, yet highly nontrivial, argument
proving a lower bound for some unknown convex combination R̃ of the Rt , and in
terms of the measured relative entropy:

D(ρ‖σ) − D(Tρ‖T σ) ≥ DM(ρ‖R̃Tρ).

This was again improved by Sutter et al. [39] using complex interpolation tools,
yielding

D(ρ‖σ) − D(Tρ‖T σ) ≥ DM

(
ρ

∥∥∥
∫

dtβ0(t)Rt/2Tρ

)
,

with the same function β0 as above.

5 The Classical Case

It is well-known that for classical random variables XY Z , conditional independence,
i.e. I (X : Z |Y ) = 0, implies that X – Y – Z is a Markov chain in that order.
Furthermore, this is a robust characterization, as the following two inequalities show,
which we are going to prove. They provide much of the motivation for the conjectures
and results presented in the previous section.

Lemma 1 If I (X : Z |Y ) = ε for a distribution P(XY Z), then there exists a Markov
chain of the same alphabets, with distribution Q(XY Z) = P(XY )P(Z |Y ), such
that the relative entropy distance between P and Q is small: D(PXY Z‖Q) = ε. By
Pinsker’s inequality, this implies ‖PXY Z − Q‖1 ≤ √

2 ln 2
√

ε.

This is a special case of the following more general result:

Lemma’ 1 For any two probability distributions P and Q on the same set X , and
a stochastic map T : X → U , there exists another stochastic map R, called the
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transpose channel, and which depends only on Q and T , such that RT Q = Q and

D(P‖Q) − D(T P‖T Q) ≥ D(P‖RT P). (17)

Furthermore, this is an identity if T is deterministic.
The transpose channel is defined by the property that

T (u|x)Q(x) = R(x |u) (T Q)(u),

and this is the classical case of Petz’s recovery map.

Proof Like many classical entropy inequalities, it is an instance of log-concavity.
We have two probability vectors P = (px )x∈X and Q = (qx )x∈X , and a stochastic

matrix T = [tux ]x∈X
u∈U (meaning that for all x ,

∑
u∈U tux = 1). The adjoint of cptp map

translates into the linear map given by the transpose matrix T t . Then,

T P =
(∑

x∈X
tux px

)

u∈U
, T Q =

(∑
x∈X

tux qx

)

u∈U
,

and

RT P =
(

qx

(
T t((T P)u/(T Q)u

)
u∈U

)
x

)
x∈X

=
(

qx

∑
u∈U

tux

∑
x ′ tux ′ px ′∑
x ′ tux ′qx ′

)

x∈X
,

leading to the following expressions for the three relative entropies concerned:

D(P‖Q) =
∑
x∈X

px log
px

qx
,

D(T P‖T Q) =
∑
u∈U

(∑
x∈X

tux px

)
log

∑
x ′ tux ′ px ′∑
x ′ tux ′qx ′

,

D(P‖RT P) =
∑
x∈X

px log

⎛
⎝ px

qx

1
∑

u tux

∑
x ′ tux ′ px ′∑
x ′ tux ′qx ′

⎞
⎠ .

The claimed inequality, that the first expression is larger or equal to the sum of
the last two, can be rearranged as D(P‖Q) − D(P‖RT P) ≥ D(T P‖T Q), which
simplifies to

∑
x∈X

px log

(∑
u∈U

tux

∑
x ′ tux ′ px ′∑
x ′ tux ′qx ′

)
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≥
∑
x∈X

px

∑
u∈U

tux log

∑
x ′ tux ′ px ′∑
x ′ tux ′qx ′

.

However, this is true for each term x , due to the concavity of the logarithm, and∑
u tux = 1.
It can be checked from this that if the channel T is deterministic, i.e. if for each

x ∈ X there is only one u ∈ U such that tux > 0, then equality holds; in particular
this is the case where T is the marginal map from X × Y to X . ��

Observe that the inequality (17) implies the Conjectures (13), (14), (15) and (16)
in the classical case, because of D(P‖Q) ≥ − log F(P, Q)2. The results of [46]
and [40] reproduce this relaxed version of the classical case, because when restricted
to diagonal density matrices, the swivelled Petz maps Rt reduce to R0 = R for all
t . Notably the approach of [40] is strikingly close to our above classical proof by
log-concavity, using pinching to remove non-commutativity and otherwise using only
operator monotonicity and concavity of the logarithm; at the same time it relies on
looking at asymptotically many copies of the state, which is one of the reasons why
− log F appears in the end result rather than the relative entropy.

It is known, by numerical counterexamples, that (17) is false in the quantum case,
already for qubits, and also restricting to the case T = TrB , ρ = ρ AE B and σ =
ρ A ⊗ρE B [24]. However, one might be tempted to speculate that with a variant of the
Fawzi–Renner map, say some R̂ (perhaps even a rotated or averaged Petz map Rt ),
we might have

I (A : B|E)
?!≥ D

(
ρ AE B‖(id ⊗ R̂)ρ AE)

, (18)

which would also imply (6). However, since the first circulation of our earliest unpub-
lished notes [47], this conjecture has been subjected to serious scrutiny, and recently
Fawzi and Fawzi [16] have found an explicit counterexample by rigorous numerical
computer calculations: there does not exists a map R̂ recovering σ , i.e. R̂T σ = σ and
at the same time satisfying Eq. (18).

6 Discussion

Wehave shown howFawzi andRenner’s recent breakthrough in the characterization of
small quantumconditionalmutual information has consequences for the faithfulness of
squashed entanglement.We believe that the same approach can be used also to address
the faithfulness of the multi-party squashed entanglement [50], however technical
issues remain, which are explained in the Appendix.

The breakthrough of [17], and the subsequent results, also finally clarify the “right”
robust version of quantum Markov chains, which are equivalently characterized by
I (A : B|E) ≈ 0 and by the existence of a recovery map such that ρ AE B ≈ (idA ⊗
R̃)ρ AE , cf. [6, Prop. 35]. For classical probability distributions, yet another way of
expressing this is to say that there exists a Markov chain close to the given density, but
this is not the case in the quantum analogue [11,12,22], at least if one wants to avoid
introducing strong dimensional dependence.
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To conclude, looking back at the conjectures and theorems reviewed above, and
contrasting them with the clear picture emerging from the classical case, we wish to
suggest a target for further investigation, which takes us in a direction different from
the conjecture (16) and its descendants.

Namely, the question is,whether it is possible to define a recoverymap R̂ = R̂(T, σ )

for every pair of a cptp map T and a state σ in its domain, such that R̂T σ = σ and

D(ρ‖σ) − D(Tρ‖T σ)
?!≥ D̃

(
ρ‖R̂Tρ

)
, (19)

with a suitable divergence D̃, and such that the following functoriality properties hold.

– Normalization: To the identity map id and any state (of full rank), the identity map
is associated: R̂(id, τ ) = id.

– Tensor: If R̂i = R̂(Ti , σi ) is associated to maps Ti and states σi , then the map
associated to T1 ⊗ T2 and state σ1 ⊗ σ2, is R̂(T1 ⊗ T2, σ1 ⊗ σ2) = R̂1 ⊗ R̂2.

This would clearly imply the inequality (18), with D̃ in place of D. Hence, it cannot
be true for the usual (Umegaki) relative entropy [16]. Note that the Petz map quite
evidently obeys the functoriality properties, in fact in addition also another one:

– Composition: For cptp maps Ti on suitable space, such that we can form their
composition T2 ◦ T1, and a state σ such that we have associated maps R̂1 =
R̂(T1, σ ) and R̂2 = R̂(T2, T1σ), we have R̂(T2 ◦ T1, σ ) = R̂1 ◦ R̂2.

Can all these constraints be satisfied simultaneously? And if so, what would be
the applications of such a result? Note that the Petz recovery map is a very useful
tool in “pretty good” state discrimination and quantum error correction [4,34]; the
functoriality above along with (19) is meant to preserve these good properties. The
current status of this question is the following: We know that one can indeed define a
“universal” recovery map R̂ for inequality (19), with either D̃ = − log F or D̃ = DM

– in fact in the convex hull of the swivelled Petz maps Rt –, where universality refers
to the map depending only on T and σ . It furthermore satisfies the normalization
property, as well as tensorization with the identity [23,39].
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Appendix: Multi-Party Squashed Entanglement

One might wonder if our approach could also be used to prove faithfulness of the
multi-party squashed entanglement [50],

Esq(ρ
A1...An ) = inf

ρ A1 ...An E

1

2
I (A1 : · · · : An|E), (20)

with I (A1 : · · · : An|E) = ∑n
i=1 S(Ai |E) − S(A1 . . . An|E) the conditional multi-

information. That is, Esq(ρ
A1...An ) would vanish iff ρ is n-separable:

ρ A1...An =
∑
λ

pλρ
A1
λ|1 ⊗ · · · ⊗ ρ

An
λ|n .

It seems that with the methods of [7,28] this cannot be approached.
The idea starts from the identity

I (A1 : · · · : An|E) = I (A1 : A2 . . . An|E) + I (A2 : · · · : An|E)

= . . . =
n−1∑
i=1

I (Ai : Ai+1 . . . An|E),

showing that I (A1 : · · · : An|E) ≤ 2ε implies, for all i , I (Ai : A[n]\i |E) ≤ 2ε, and
more generally, for all subsets I ⊂ [n], I (AI : A[n]\I |E) ≤ 2ε.

In particular, if ε = 0, we can use the structure theorem of [19] to find, for each i ,
a projective measurement

(
P(i)

λi

)
on E that commutes with ρ A1...An E , such that for all

λi ,

TrE ρ A1...An E P(i)
λi

= pλi σ
Ai
λi

⊗ τ
A[n]\i
λi

,

i.e., conditioned on the measurement outcomes λi , Ai and A[n]\i are in a product state.
Performing all these measurements in some fixed order, we thus obtain outcomes
λ = λ1 . . . λn such that conditioned on λ, the state is a product state with respect to
all partitions i : [n] \ i , which means that conditioned on λ, A1, . . . , An factorize.

We would like to use the machinery of the recovery maps to extract from E a
large number k of approximate copies of each Ai , using approximate recovery maps
R̃i : L(E) −→ L(E Ai ) according to Eq. (6). With t = √

8 ln 2
√

ε and tracing out E ,

we can indeed get a state Ω A1 A[k]
2 ...A[k]

n , with A[k]
i = A1

i . . . Ak
i consisting of k copies

of Ai , such that

‖ρ A1...An − Ω A1 A
j2
2 ...A jn

n ‖1 ≤ (n − 1)(k − 1)t ≤ nk
√
8 ln 2

√
ε,

for all tuples ( j2, . . . , jn) such that all but at most one ji equals 1.
We cannot say easily that this holds for all tuples ( j2, . . . , jn), because the different

recover maps may interfere with each other. However, if we could conclude that, we
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would be done: by symmetrizing the k copies of each Ai (i > 1) we would find, as

before, that ρ is O( 4
√

ε)-close to a k-extendible state, with k = Ω
(

1
4√ε

)
.

We could then again use the results of [30], now extended to the multi-partite case,

to see that Ω A1 A
j2
2 ...A jn

n is at trace distance at most 2
k (|A2|2 + · · · + |An|2) from a

fully separable (i.e. n-separable) state. Note that a reasoning along these lines goes
through for the – generally larger – multi-party conditional entanglement of mutual
information (CEMI) [49,50]

EI(ρ
A1...An ) = inf

ρ
A1A′

1 ...An A′
n

1

2

[
I (A1A′

1 : · · · : An A′
n) − I (A′

1 : · · · : A′
n)

]
,

as since shown by Wilde [45]. We have to leave the problem of finding an extension
of Theorem 1 to n > 2 parties to the attention of the interested reader.
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