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Abstract By assuming a deterministic evolution of quantum systems and taking real-
ism into account, we carefully build a hidden variable theory for QuantumMechanics
(QM) based on the notion of ontological states proposed by ’t Hooft (The cellular
automaton interpretation of quantum mechanics, arXiv:1405.1548v3, 2015; Springer
Open 185, https://doi.org/10.1007/978-3-319-41285-6, 2016). We view these onto-
logical states as the ones embedded with realism and compare them to the (usual)
quantum states that represent superpositions, viewing the latter as mere information
of the system they describe. Such a deterministic model puts forward conditions for
the applicability of Bell’s inequality: the usual inequality cannot be applied to the usual
experiments. We build a Bell-like inequality that can be applied to the EPR scenario
and show that this inequality is always satisfied by QM. In this way we show that QM
can indeed have a local interpretation, and thus meet with the causal structure imposed
by the Theory of Special Relativity in a satisfying way.

Keywords Foundations of quantummechanics ·Quantum locality ·Hidden variables

1 Introduction

Since Einstein, Podolsky, and Rosen questioned the nature of Quantum Mechanics
and its predictions [1], the quest for an interpretation of the paradoxical aspects they
pointed out has taken a wide variety of paths [2–7]. No agreement has been reached,
however. Is a quantum state real, or is it a carrier of information? Is the wave function
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only amathematical construct, evenwhenwe can seewave-like interference patterns in
Young’s double slit experiment? Quantum states in superposition cannot be observed
(the dead-and-alive cat, for instance) suggesting that they merely embody statistical
restrictions on measurement results. Yet we think of them as describing physical
systems that evolve in time in accordance to well given mathematical equations.

This evolution, we picture, takes place in physical spacetime, and this spacetime is
endowed with a locally causal structure. But there is a violation of causality embedded
in Quantum Mechanics (QM); so much so that many interpretations have been given
as to what this violation might physically mean [8–11]. Local causality is imposed on
spacetime by Special Relativity: a sequence of cause and effect that constitutes, we
believe, a fundamental principle on which we think about and do our scientific work.

This means that we need a better understanding of the most basic phenomena of
QM. Several no-go theorems have shut the door for realism and locality [4,12–15]; but
in which way?, with what assumptions?, is the door really locked? In this work wewill
start to examine these questions by proposing a realist hidden variable interpretation
of QM: factuality. Within this perspective we will analyse the first and most important
of the no-go theorems: Bell’s inequality.1 This is only a first step towards developing
a local deterministic formulation of QM.

2 Construction

We will begin by revisiting the tools of QM that are necessary for the construction of
our proposal. To do so, we will make a general statement that will be applied to the
particular case of a spin degree of freedom for fermions (which might be extended to
polarisation for photons).

2.1 Tools and Ontology

QM is a wave theory in that it associates wave properties to particles. But it actually
reduces all mechanics to the mechanics of particles themselves. The wave nature (as
in the double-slit experiment) arises when one observes the statistical behaviour of a
large ensemble of particles, just as ripples in water arise from a statistical behaviour
of many water particles, or electromagnetic waves, in quantum theory, are the result
of a large collection of photons. We see the phenomenon of superposition in waves,
but not in the individual particles which are the building blocks (physical entities) in
QM. With this in mind, we can then say that:

Physical entities do not appear in superposed states, that is, nature in its fun-
damental parts does not emerge as a superposition of states. The superposition
principle is a mathematical construct which can then be applied to the individual

1 Although the inequality that is experimentally tested [16,17] is the variationofBell’s inequality formulated
by Clauser et al. [15], we will revisit Bell’s original construction [12], given that the analysis we make rests
on the common ground of both, and it is easier to look at the original one.
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parts of an ensemble as a statistical description of the ensemble, not to each
individual entity as a realistic description of the latter.

We will also recall the way Bohr [18] interpreted the uncertainty principle: he
ascertained that non-commuting operators defined realities that would appear in a
complementary manner, that is, each one in its own and excluding frame of reference.
Following this notion, we regard a frame of reference as that one which is determined
by a complete set of commuting operators.

With these two statements in hand, we define:

Quantum states as the states generated from linear combinations of different
eigenstates of an observable (not all of them with the same eigenvalue), and
denote them by |ψ〉.
Ontological states as the eigenstates of a complete set of mutually commuting
observables, and denote them by |Ω〉.

So, in any frame of reference, ontological states would be those accessible to the
system, the real states that the system could be in, while quantum states would be
the only available ones we have to describe reality, due to a lack of knowledge of the
complete and deterministic evolution of any state.

It is important to notice that, if we have a quantum state description of a system, we
can always perform a basis transformation so that this description becomes an ontolog-
ical state description. For example: 1√

2

[ | ↑〉z + | ↓〉z] is a quantum state description

of the observable σ̂z , but acquires an ontological meaning when we switch to the
σ̂x -diagonal basis,2 resulting in | ↑〉x .

On the other hand, ensembles of individual particles might be described either as
pure states or as mixed states. Of course, each description depicts different ensembles.
In a pure state description we regard the ensemble as if every one of its components
were in precisely that pure state, while in a mixed state description we regard the
ensemble as one where different components of the ensemble are in different pure
states, with a certain probability distribution. We will denote these two descriptions
as ρ and ρ̃ respectively, i.e.,

ρ = |Ω〉〈Ω|,
ρ̃ =

∑

i

ci |Ωi 〉〈Ωi |.

Along the same line inwhichquantumstates emergeonly as amathematical description
of a system, mixed states only represent a statistical description of an ensemble that
is comprised of many entities, each one in a pure state.

Ontological pairs are those which emerge due to the interaction between A and B,
two physical entities (be them A, an electron and B, a measurement device; or A and

2 That is, 1√
2

[ | ↑ 〉z + |↓〉z] is ontological when the chosen set of commuting observables is {S2, Sx },
rather than {S2, Sz}.
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B two electrons in a spin state S = 0; or any two particles A and B that come together
at time t = t0).

An ontological pair is the complete and known description of a system at a given
time, t0. For example, in a measurement of any given property, what we describe (and
know) is the ontological pair of the system [particle]–[measurement device].

Ontological pairs can exhibit entanglement. Entangled states give rise to non-
separable pure states. These will be denoted by:

ÃρB̃ = [|φ〉〈φ|]ÃB.

As we will see in the following section, we propose that ontological states evolve
according to a function of time and a hidden variable.

2.2 Evolution

In our construction, beyond the realism embedded in the ontological state description
that we put forward above, we must have a deterministic evolution of the ontological
pairs, and thus we should give a function that governs such evolution.

We are analysing the thought experiment of Bohm and Aharonov [19], so we work
with an ensemble of two-body systems in an entangled state

|φ〉AB = 1√
2

[|↑↓〉z + |↓↑〉z] .

Each system divides into its two components and each of these reaches a detector,
where its spin projection is measured.

In our view each individual system is an ontological pair, which will evolve accord-
ing to a function of a hidden variable λ and time t . In this particular case we are only
focusing on the projection of the spin degree of freedom of each component of the
pair, then such function, when evaluated at a given value of the hidden variable λ and
the time of measurement t1, will result in the direction of the spin projection of the
two components of the ontological pair. That is:

F : Λ × R −→ R3 × R3,

where Λ is the set of values that the hidden variable can take, i.e., it is the domain of
λ. So, given λ ∈ Λ and the time of measurement, t1 ∈ R,

F(λ, t1) = (oA , oB ),

where oA and oB are the spin projection orientations of each component of the pair,
and they themselves are functions of λ and t1, oA (λ, t1) and oB (λ, t1). Note that these
functions are absolutely deterministic, and a direct consequence of this is the fact that
the orientation of the detectors is also encoded in λ. There is no what would have
happened if the detector had not been in such and such orientation? The detector will

123



Found Phys (2018) 48:27–47 31

have only one true orientation, determined by all the previous conditions accessible
to it. This is what a truly deterministic scenario entails. A detector in a different
orientation will have different values of λ at all earlier times.

Remaining within our description, the spin degree of freedom of a two-body system
would evolve from one ontological state to the next, while there is a change in frame
of reference. The initial ontological state and frame of reference, being:

|Ω(t0)〉 = |φ〉AB = 1√
2

[|↑↓〉z + |↓↑〉z]

and

{(SA + SB)2, (SA + SB)z},

and the final ontological state and frame of reference being:

|Ω(t1)〉 = | ↑↑ 〉F(λ,t1)

and

{(SA)2, (SB)2, (SA)a, (SB)b},

where a and b are the two orientations of the detectors over particle A and B, respec-
tively.

These are all the tools we need for an ontological and deterministic description of
reality. In the next section we will talk about locality conditions and the mechanism
for entanglement.

3 Locality

We have constructed a description of entanglement that is implicitly local, given the
introduction of hidden variables. We make, though, one statement about deterministic
evolution that was not made when hidden variable interpretations were first introduced
[12] and then we put forward the mechanism for entanglement.

We affirm that the evolution function F(λ, t) must satisfy a condition we call
factuality. Mathematically, this condition is no news: for any given function, different
outcomes of the function must come from different inputs. So, once the values of
hidden variable and time are given, our function F(λ, t) can only acquire a certain
value (oA, oB). Physically, this is the factuality condition: if a system evolved in time
(t0 → t1) to a particular state, it is because only this state was accessible to it given
the initial condition (λ, t0) and, therefore, different states at time t1 must come from
different values of hidden variables λi . This is only a consequence of determinism.

In our view, that non-local correlations emerge from the deterministic evolution of a
shared hidden variable between two components of an ontological pair. Entanglement
arises every time two (or more) physical entities share hidden variables. This suffices
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for the time being, and for the example we work below. In what follows, we will
analyse the emergence of Bell’s inequality within our proposed description of reality.

4 Bell’s Inequality

Suppose a pair of entangled electrons in a singlet state is split into two electrons at
time t = t0. If the spin of electron A is measured at a later time in the z direction
and we get, for example, | ↑〉zA then we can be sure that the spin of electron B is
| ↓〉zB . Locality associates, with the spin of each electron, a hidden variable quality,
that is: A(a, λ) = ±1 where A, the value of the spin of particle A, is a function of the
direction of the detector a and of a hidden variable λ. Same for B in any direction b.
The expectation value of the correlation between A (measured in the direction a) and
B (measured in the direction b) naturally arises,

E(a,b) =
∫

Λ

A(a, λ)B(b, λ)ρ(λ)dλ.

Bell shows [12] that if such functions A and B exist, the expectation value of the
correlation between them must satisfy:

|E(a,b) − E(a, c)| ≤ 1 + E(b, c),

where a, b, and c are three alternative directions of the detectors used to measure the
spin projection of the electrons.

4.1 Under Factuality

First we need to find the relation between the functions A(j, λ) and B(k, λ) and our
deterministic evolution function F(λ, t).

Functions A and B are both results of a measurement, so they must be related to
the function F when the latter is evaluated at the time of measurement, t = t1.

Now,F(λ, t1)gives a pair of orientations, (oA, oB). These twoorientations are those
of the spin projection for particles A and B respectively at the time of measurement,
and it is important to recall that the orientation of the two detectors is also encoded in
the value of the hidden variable λ.

Function A(j, λ) asks the question, “given a detector device with orientation j and
a hidden variable λ, is the electron’s spin orientation j or −j?”. So for this question
to be posed, the electron’s spin orientation must be j or −j. Analogously for function
B(k, λ). Then, these two questions can be posed iff F(λ, t1) = (±j,±k).

Fact 1 functions A(j, λ) and B(k, λ) are simultaneously well defined iff
F(λ, t1) = (±j,±k).

Now we will impose the factuality condition on three deterministic scenarios
(Fig. 1). In the left hand side scenario of that figure, the measurement outcome can
be any of four different possibilities, (a,b), (a,−b), (−a,b) and (−a,−b), that is
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Fig. 1 Three ontological pairs whose spin degree of freedom is described by the function F(λ, t), each
pair subject to a different set of measurements at time t = t1

F(λ, t1) = (±a,±b). In the second scenario, F(λ, t1) = (±a,±c) and in the right
hand scenario F(λ, t1) = (±b,±c).

Under the factuality condition, each of these sets of outcomes must come from a
different set of hidden variables, that is:

F(λ, t1) = (±a,±b) ↔ λ ∈ Λ1, (1)

F(λ, t1) = (±a,±c) ↔ λ ∈ Λ2, (2)

F(λ, t1) = (±b,±c) ↔ λ ∈ Λ3. (3)

Furthermore, Λ1 ∩ Λ2 = Λ1 ∩ Λ3 = Λ2 ∩ Λ3 = ∅, which can be seen by the
simple reasoning:

If λ ∈ Λ1, then F(λ, t1) = (±a,±b) = (±a,±c), then λ /∈ Λ2; etc.
Then, from Fact 1 and Eqs. (1), (2) and (3):

Fact 2.1 functions A(a, λ) and B(b, λ) are simultaneously well defined iff λ ∈
Λ1.

Fact 2.2 functions A(a, λ) and B(c, λ) are simultaneously well defined iff λ ∈
Λ2.

Fact 2.3 functions A(b, λ) and B(c, λ) are simultaneously well defined iff λ ∈
Λ3.

So, if we were to follow Bell’s steps to derive his inequality, we would start by
comparing the expectation values,

E(a,b) − E(a, c) =
∫

Λ1

A(a, λ)B(b, λ)ρ(λ)dλ −
∫

Λ2

A(a, λ)B(c, λ)ρ(λ)dλ,

where we have explicitly written the integration domains imposed by Fact 2.1 and
Fact 2.2. Since Λ1 ∩ Λ2 = ∅ we cannot carry on to Bell’s next step in order to derive
his inequality, so:
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Fact 3 In a local deterministic scenario, governed by factuality, Bell’s inequality
cannot be derived, therefore the violation of his inequality by experiments does
not show that the assumption of locality in this scenario is incorrect.

The statement above begs the question, in which scenario can Bell’s inequality be
derived? And, do experiments violate this inequality in such scenario? We will take a
look at these questions in the next subsection.

4.2 Building Bell’s Inequality

In the previous sections we have worked with a deterministic view of reality, in which
the spin degree of freedom of an ontological pair is governed by a function F(λ, t).

In order to build Bell’s inequality it is required that the set of hidden variables that
lie behind the three different scenarios in Fig. 1 be one and the same (λ ∈ Λ). If we
want this requirement to be satisfied, we can take on two possible paths:

– Each different scenario can be governed by a different function, Fi (λ, t), i =
1, 2, 3.

– On each different scenario the measurement can take place at a different time, so
the final state could be described by F(λ, ti ), i = 1, 2, 3.

When taking any of these two paths, Bell’s steps can be followed further than we
could on the last subsection. As before, we will start by identifying the functions A
and B used by Bell with our function F .

We can directly see that functions A(a, λ) and B(b, λ) can only be simultaneously
identified with F1(λ, t1) (in the first path) or F(λ, t1) (in the second path). We will
take on the first path (the second path is shown in Appendix A).

We know that

F1(λ, t1) = (oA1(λ, t1), oB1(λ, t1)) = (±a,±b),

then we can define

A1(a, λ) ≡ sign(oA1(λ, t1))

and

B1(b, λ) ≡ sign(oB1(λ, t1)).

Note thatwe carried the subscript 1 to distinguish these functions from the ones defined
by F2(λ, t1). In this second case we have:

F2(λ, t1) = (oA2(λ, t1), oB2(λ, t1)) = (±a,±c),

and we can simultaneously define

A2(a, λ) ≡ sign(oA2(λ, t1))
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and

B2(c, λ) ≡ sign(oB2(λ, t1)).

And in the third case:

F3(λ, t1) = (oA3(λ, t1), oB3(λ, t1)) = (±b,±c),

so

A3(b, λ) ≡ sign(oA3(λ, t1))

and

B3(c, λ) ≡ sign(oB3(λ, t1)).

Now that each scenario is governed by a different function Fi we can go back to
Bell’s first step,

E(a,b) − E(a, c) =
∫

Λ

A1(a, λ)B1(b, λ)ρ(λ)dλ −
∫

Λ

A2(a, λ)B2(c, λ)ρ(λ)dλ,

where we have implicitly written the subscripts that define each function Ai , Bi in
terms of the deterministic evolution function of each different experiment.

And to his second step,

|E(a,b) − E(a, c)| =
∣
∣∣∣

∫

Λ

[A1(a, λ)B1(b, λ) − A2(a, λ)B2(c, λ)]ρ(λ)dλ

∣
∣∣∣ , (4)

where we have highlighted A1(a, λ) and A2(a, λ) to stress the fact that for his third
step, Bell takes these two functions to be identical. This is his first assumption (out
of three). We will analyze what can be said about the quantity |E(a,b) − E(a, c)| in
two cases: while taking Bell’s three assumptions, and while taking none of them.

Within Bell’s assumptions
Bell’s three assumptions are (shown in Appendix B):

A1(a, λ) = A2(a, λ),

B1(b, λ) = −A3(b, λ),

B2(c, λ) = B3(c, λ).

These are constraints on the functions Fi (λ, t) that have to be met in order for Bell’s
inequality to be derived. So, the applicable domain of his inequality is the one that
behaves according to these constraints, that is, the deterministic functions Fi (λ, t)
that govern the three experiments built to test Bell’s inequality have to be so that these
constraints are satisfied.
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This has an implication on the expectation values of the correlation between mea-
surements. If these three constraints are satisfied, the predicted expectation values
result in:

E(a,b) = − cos θab,

E(a, c) = − cos θac,

E(b, c) = − cos θab cos θac,

which is caused by the fact that the given constraints tamper with the probabilities of
getting (±a), (±b) or (±c) in the measurements performed. The derivation of these
results is given in Appendix C.

Now, this result leads to two conclusions:
The first one is: if the experiments were to satisfy the constraints necessary to build

Bell’s inequality, then the expectation values would be such that when plugged into
the inequality one would get:

|− cos θab + cos θac| ≤ 1 − cos θab cos θac (5)

and, as shown in Appendix D, this inequality is always satisfied.
The second conclusion is: the experiments used to test Bell’s inequality do not result

in an expectation value given by a product of cosines (− cos θab cos θac), so they do
not behave according to the constraints necessary to build Bell’s inequality, so they
do not have to satisfy such an inequality and the violation of the inequality by the
experiments does not show that reality cannot behave in a local deterministic way.

Without Bell’s assumptions
We will now go back to his second step and build a Bell-like inequality without his

assumptions.

|E(a,b) − E(a, c)| =
∣∣∣
∣

∫

Λ

[A1(a, λ)B1(b, λ) − A2(a, λ)B2(c, λ)]ρ(λ)dλ

∣∣∣
∣

=
∣∣
∣∣∣

8∑

i=1

∫

Λ̃i

[A1(a, λ)B1(b, λ) − A2(a, λ)B2(c, λ)]ρ(λ)dλ

∣∣
∣∣∣
,

where we build the sets Λ̃i , i = 1, . . . , 8, in terms of the different relations that the
functions A1, A2, A3, B1, B2 and B3 hold between them. These 8 sets Λ̃i are defined
as:

Λ̃1 = {λ | A1 = A2, B1 = −A3, B2 = B3},
Λ̃2 = {λ | A1 = A2, B1 = −A3, B2 = −B3},
Λ̃3 = {λ | A1 = A2, B1 = A3, B2 = B3},
Λ̃4 = {λ | A1 = A2, B1 = A3, B2 = −B3},
Λ̃5 = {λ | A1 = −A2, B1 = −A3, B2 = B3},
Λ̃6 = {λ | A1 = −A2, B1 = −A3, B2 = −B3},
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Λ̃7 = {λ | A1 = −A2, B1 = A3, B2 = B3},
Λ̃8 = {λ | A1 = −A2, B1 = A3, B2 = −B3}.

So
∣∣∣∣

∫

Λ̃1

[A1(a, λ)B1(b, λ) − A2(a, λ)B2(c, λ)]ρ(λ)dλ

∣∣∣∣

≤
∫

Λ̃1

[1 + A3(b, λ)B3(c, λ)]ρ(λ)dλ

= Z(Λ̃1) − Z(Λ̃1) cos θab cos θac,

where Z(Λ̃1) is the measure of the set Λ̃1, and the integral of the product A3B3ρ(λ)

results in −Z(Λ̃1) cos θab cos θac given that, when λ belongs to Λ̃1, the functions A3
and B3 are correlated precisely by the constraints used to build the Tables 2, 3, 4 and
5.

Since we are not as familiar with the constraints in Λ̃2 as those in Λ̃1 we will
perform the next integral in more detail.

∣∣∣∣

∫

Λ̃2

[A1(a, λ)B1(b, λ) − A2(a, λ)B2(c, λ)]ρ(λ)dλ

∣∣∣∣

=
∣∣∣∣

∫

Λ̃2

A1(a, λ)B1(b, λ)[1 + A3(b, λ)B2(c, λ)]ρ(λ)dλ

∣∣∣∣ ,

given the first two constraints, which turns to

≤
∫

Λ̃2

[1 − A3(b, λ)B3(c, λ)]ρ(λ)dλ,

by use of the last constraint. We can determine this integral by using the correlations
given in Table 1, obtaining, once again,

∫

Λ̃2

[1 − A3(b, λ)B3(c, λ)]ρ(λ)dλ = Z(Λ̃2) − Z(Λ̃2) cos θab cos θac.

Following the same procedure, one can verify that

∣∣∣∣

∫

Λ̃i

[A1(a, λ)B1(b, λ) − A2(a, λ)B2(c, λ)]ρ(λ)dλ

∣∣∣∣

≤ Z(Λ̃i ) − Z(Λ̃i ) cos θab cos θac
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Table 1 Joint probabilities of A3(b, λ) and B3(c, λ), when λ belongs to Λ̃2

A2(a, λ)

−A3(b, λ)
1 -1

1 1
2 sin2 θab

2
1
2 cos2 θab

2

-1 1
2 cos2 θab

2
1
2 sin2 θab

2

A2(a, λ)

−B3(c, λ)
1 -1

1 1
2 sin2 θac

2
1
2 cos2 θac

2

-1 1
2 cos2 θac

2
1
2 sin2 θac

2

∀i . Adding all these integrals over i , and normalising to the volume of Λ, i.e.

8∑

i=1

Z(Λ̃i ) = 1,

yields the value 1 − cos θab cos θac.
This shows that the inequality the two expectation values must satisfy, when assum-

ing no specific relation between functions A and B, is:

|E(a,b) − E(a, c)| ≤ 1 − cos θab cos θac, (6)

where cos θab cos θac is just a quantity, not an expectation value of a specific scenario.
We have already shown that QM’ predictions and experimental results always sat-

isfy inequality (6).
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Fig. 2 Events A and B, space-like separated, with results A and B from detectors setup at conditions
(angles) a and b, together with their past light-cones. The set (c, λc), with c the values of any variables
that describe the experimental setup, and λc the values of any additional (hidden) variables necessary to
obtain a complete theory, completely specifies the results as it totally screens each result from the other’s
past light-cone. Figure adapted from Fig. 6 of J.S. Bell: “La Nouvelle Cuisine” [21]

5 Conclusions

Local realism can be recovered for QM when the factuality assumption is taken into
account. We conclude this by showing that:

The usual application of Bell’s inequality to experiments is not a proof of the non-
local nature of reality, in that in a factual universe Bell’s inequality cannot be derived
for the conditions of the built experiments.

There is an inequality that can be experimentally tested, that is the Bell-like inequal-
ity we constructed in Sect. 4.2 (Eq. (6)). This inequality is always satisfied byQuantum
Mechanics’ predictions, and thus by the known experimental results.

Our factuality assumption implies a common cause on the detectors and particle
creation process, which is encoded in the hidden variables. This exploits the so-called
freedom of choice loophole, which appears when questioning independence of the
detector settings, from the hidden variables that emerge at the creation of the entangled
states [20]. Let A, B, ∈ {−1, 1} denote the values of the detectors’ results, and a,
b, the angles at which detectors are set. Let c stand for values of any variables that
describe the experimental setup, and λc for values of any additional (hidden) variables
necessary to obtain a complete theory. We define the pair (d, λd) in the same manner
as (c, λc), but at an earlier time (see Fig. 2).

With these definitions, the joint probability P(A, B) of obtaining the particular
results A, B from the detectors is an explicit function of a, b, c, λc, which we denote
by

P(A, B) = P(A, B; a, b, c, λc).

In order to derive Bell’s inequality, it is necessary to assume

P(A, B; a, b, c, λc) = P(A; a, c, λc)P(B; b, c, λc),

which is justified by invoking locality and the fact that (A, a) and (B, b) are space-
like separated, i.e., (A, a) does not depend on (B, b), nor (B, b) on (A, a), but only
on their own local conditions and on their causal past, which is contained in (c, λc).

An additional assumption in the derivation is that a and b may be chosen freely,
by the freedom-of-choice assumption.
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But in the factuality scheme, a truly deterministic scheme, (c, λc) contains informa-
tion about a and about b, and about the correlation between a and b through (d, λd),
which itself contains information from the intersection of the past light-cones of A
and B. That is,

c = c(d), and λc = λc(λd)

so that, in fact, a = a(b) and b = b(a) through c and λc.
Note that the factuality scheme does not discard the chaos or pseudo-randomness

exhibited by complex systems: chaos is totally deterministic in essence, and it is only
our inability to measure with absolute precision what prevents us from predicting
the system’s behaviour at all times. As for pseudo-randomness, it is algorithmic and
therefore deterministic.

In this scheme the results A and B are predetermined by the hidden variables λd
at some point in their (near or far) past, independently of the spatial separation of the
subsystems, because backward light-cones necessarily intersect. It isworthmentioning
that the original experiments of Aspect [16,17] and the much improved experiment of
Weihs [22] to address locality, do not resolve the freedom-of-choice loophole under the
factuality scenario. Nor, for that matter, do the more recent experiments of Zeilinger’s
groups [23–25]with ever-increasing space-like separations between subsystems, under
the scenario here presented. The reader may also wish to see [26].

It seems, then, that a local interpretation of QM may be built. More work is in
order, particularly on the mechanism of entanglement within this scenario. This is
under current consideration.
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Appendix A

We start from:

F(λ, t1) = (oA(λ, t1), oB(λ, t1)) = (±a,±b),

and we define:

A1(a, λ) ≡ sign(oA(λ, t1))

and

B1(b, λ) ≡ sign(oB(λ, t1)),
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where we carried the subscript 1 to distinguish these functions from the ones defined
by F(λ, t2). Now:

F(λ, t2) = (oA(λ, t2), oB(λ, t2)) = (±a,±c),

so we can simultaneously define:

A2(a, λ) ≡ sign(oA(λ, t2))

and

B2(c, λ) ≡ sign(oB(λ, t2)).

And finally:

A3(b, λ) ≡ sign(oA(λ, t3))

and

B3(c, λ) ≡ sign(oB(λ, t3)).

Now, of course functions Ai and Bi defined this way are not necessarily iden-
tical to those defined by the first path, just because oA(λ, t3) is not necessarily
the same as oA3(λ, t1), etc. The thing is that, once one defines a set of functions
{A1, B1, A2, B2, A3, B3}, function A1(a, λ) can be different from A2(a, λ) (and so
forth) and this is the argument we use in the rest of our development.

Appendix B

Bell parts from Eq. (4),

|E(a,b) − E(a, c)| =
∣∣∣∣

∫

Λ

[A1(a, λ)B1(b, λ) − A2(a, λ)B2(c, λ)]ρ(λ)dλ

∣∣∣∣

and makes his first assumption,

A1(a, λ) = A2(a, λ) ;

then Eq. (4) turns to:

|E(a,b) − E(a, c)| =
∣∣∣∣

∫

Λ

A1(a, λ)B1(b, λ) [1 − B1(b, λ)B2(c, λ)] ρ(λ)dλ

∣∣∣∣ ,
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where he uses the fact that B1B1 = 1. Now, taking the absolute value function into
the integral and using the fact that |A1B1| = 1 his last equation turns to:

|E(a,b) − E(a, c)| ≤
∫

Λ

|[1 − B1(b, λ)B2(c, λ)] ρ(λ)| dλ, (7)

but what is inside the absolute value function is always positive, so he just discards
the bars. Next comes his second assumption,

B1(b, λ) = −A3(b, λ),

so Eq. (7) becomes:

|E(a,b) − E(a, c)| ≤
∫

Λ

[1 + A3(b, λ)B2(c, λ)] ρ(λ)dλ. (8)

And finally, he takes a third assumption,

B2(c, λ) = B3(c, λ),

then Eq. (8) turns to:

|E(a,b) − E(a, c)| ≤
∫

Λ

[1 + A3(b, λ)B3(c, λ)] ρ(λ)dλ,

which takes him to his final step,

∫

Λ

[1 + A3(b, λ)B3(c, λ)] ρ(λ)dλ = 1 + E(b, c),

concluding,

|E(a,b) − E(a, c)| ≤ 1 + E(b, c).

Appendix C

We begin by building a table of probabilities for the first scenario (detector settings
a and b), under the following knowledge: the probability of getting either +1 or
−1 when measuring the spin projection of particle A is 1

2 , but once one of those is
guaranteed, say +1, the probability of getting +1 when measuring the spin projection
of particle B is sin2 θab

2 and the probability of getting −1 is cos2 θab
2 . So we have the

joint probabilities shown in Table 2.
Now, the assumption A1(a, λ) = A2(a, λ) invites us to substitute A1 for A2 and

the assumption B1(b, λ) = −A3(b, λ) allows us to substitute B1 for −A3, turning
Table 2 into Table 3.
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Table 2 Joint probabilities for experiment 1

A1(a, λ)

B1(b, λ)
1 -1

1 1
2 sin2 θab

2
1
2 cos2 θab

2

-1 1
2 cos2 θab

2
1
2 sin2 θab

2

Table 3 Joint probabilities under the assumptions A1(a, λ) = A2(a, λ) and B1(b, λ) = −A3(b, λ)

A2(a, λ)

−A3(b, λ)
1 -1

1 1
2 sin2 θab

2
1
2 cos2 θab

2

-1 1
2 cos2 θab

2
1
2 sin2 θab

2

The joint probabilities for experiment 2 are built accordingly and result in the top of
Table 4. Taking into account the assumption B2(c, λ) = B3(c, λ) one gets the bottom
of Table 4.

Table 5 just brings together Table 3 and the bottom of Table 4. We will use this to
compute the joint probabilities of A3(b, λ) and B3(c, λ).
The procedure is as follows:

A2(a, λ) = +1 for λ in a certain set, say Λ+, and from Table 5 if λ ∈ Λ+, then the
probability that A3(b, λ) = 1 is cos2(θab/2) and the probability that A3(b, λ) = −1 is
sin2(θab/2), while the probability that B3(b, λ) = 1 is sin2(θac/2) and the probability
that B3(b, λ) = −1 is cos2(θac/2). So, for λ ∈ Λ+ the probability of getting the same
sign in both functions A3 and B3 is:

P(A3 · B3 = 1) = cos2
θab

2
sin2

θac

2
+ sin2

θab

2
cos2

θac

2
,
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Table 4 Top: joint probabilities for experiment 2 and Bottom: same, under the assumption B2(c, λ) =
B3(c, λ)

A2(a, λ)

B2(c, λ)
1 -1

1 1
2 sin2 θac

2
1
2 cos2 θac

2

-1 1
2 cos2 θac

2
1
2 sin2 θac

2

A2(a, λ)

B3(c, λ)
1 -1

1 1
2 sin2 θac

2
1
2 cos2 θac

2

-1 1
2 cos2 θac

2
1
2 sin2 θac

2

and the probability of getting opposite signs is:

P(A3 · B3 = −1) = cos2
θab

2
cos2

θac

2
+ sin2

θab

2
sin2

θac

2
.

Similarly, if λ ∈ Λ−,

P(A3 · B3 = 1) = sin2
θab

2
cos2

θac

2
+ cos2

θab

2
sin2

θac

2

and

P(A3 · B3 = −1) = sin2
θab

2
sin2

θac

2
+ cos2

θab

2
cos2

θac

2
.

But at the same time, the probability that λ ∈ Λ+ is 1/2 as is the probability that
λ ∈ Λ−, so we must multiply all the four last equations by 1/2 and then add them to
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Table 5 Joint probabilities of A3(b, λ) and B3(c, λ)

A2(a, λ)

−A3(b, λ)
1 -1

1 1
2 sin2 θab

2
1
2 cos2 θab

2

-1 1
2 cos2 θab

2
1
2 sin2 θab

2

A2(a, λ)

B3(c, λ)
1 -1

1 1
2 sin2 θac

2
1
2 cos2 θac

2

-1 1
2 cos2 θac

2
1
2 sin2 θac

2

obtain:

P(A3 · B3 = 1) = cos2
θab

2
sin2

θac

2
+ sin2

θab

2
cos2

θac

2
(9)

and

P(A3 · B3 = −1) = sin2
θab

2
sin2

θac

2
+ cos2

θab

2
cos2

θac

2
. (10)

Functions with the probability distributions given by Eqs. (9) and (10) describe
an experiment in which the expectation value of the correlation between these two
functions would be:

E(b, c) = P(A3 · B3 = 1) − P(A3 · B3 = −1)

= cos2
θab

2
sin2

θac

2
+ sin2

θab

2
cos2

θac

2

− sin2
θab

2
sin2

θac

2
− cos2

θab

2
cos2

θac

2

=
(
cos2

θab

2
− sin2

θab

2

) (
sin2

θac

2
− cos2

θac

2

)
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= − cos θab cos θac.

Appendix D

The inequality to be analysed is:

| − cos θab + cos θac| ≤ 1 − cos θab cos θac,

which turns to

cos θab cos θac − 1 ≤ − cos θab + cos θac ≤ 1 − cos θab cos θac.

The inequality on the left is satisfied iff

cos θab cos θac + cos θab ≤ cos θac + 1,

or, equivalently,
cos θab(cos θac + 1) ≤ cos θac + 1, (11)

and the inequality on the right is satisfied iff

cos θac + cos θab cos θac ≤ 1 + cos θab,

or, equivalently,
cos θac(1 + cos θab) ≤ 1 + cos θab. (12)

Finally, Eqs. (11) and (12) are both true iff

cos θab ≤ 1 and cos θac ≤ 1,

which always holds. So inequality (5) is always satisfied.
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