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Abstract Despite its age, quantum theory still suffers from serious conceptual diffi-
culties. To create clarity, mathematical physicists have been attempting to formulate
quantum theory geometrically and to find a rigorous method of quantization, but this
has not resolved the problem. In this article we argue that a quantum theory recurs-
ing to quantization algorithms is necessarily incomplete. To provide an alternative
approach, we show that the Schrödinger equation is a consequence of three partial dif-
ferential equations governing the time evolution of a given probability density. These
equations, discovered by Madelung, naturally ground the Schrödinger theory in New-
tonian mechanics and Kolmogorovian probability theory. A variety of far-reaching
consequences for the projection postulate, the correspondence principle, the measure-
ment problem, the uncertainty principle, and the modeling of particle creation and
annihilation are immediate. We also give a speculative interpretation of the equations
following Bohm, Vigier and Tsekov, by claiming that quantum mechanical behavior
is possibly caused by gravitational background noise.
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1 Introductory Discussion

1.1 Critique of Quantization and a New Methodology

The idea of quantization was first put forward by Dirac [1] in 1925 in an attempt to
extend Heisenberg’s theory of matrix mechanics [2]. He based the concept on a formal
analogy between theHamilton and theHeisenberg equation and on the principle of cor-
respondence, namely that a quantum theoretical model should yield a “classical” one
in some limit. This analogy motivated Dirac to develop a scheme that constructs one
or more quantum analogues of a given “classical system” formulated in the language
of Hamiltonian mechanics.1 When it was discovered that Dirac’s scheme, nowadays
known as canonical quantization, was ill-defined (see [3,4] for the original works by
Groenewold and van Hove, also [5, §5.4], in particular [5, Theorem 5.4.9]), physicists
and mathematicians attempted to develop a more sophisticated machinery rather than
questioning the ansatz. The result has been a variety of quantization algorithms, one
of which is particularly noteworthy: Geometric quantization (cf. [6,7] for an introduc-
tion).

In his seminal paper, Segal [8] expressed the need to employ the language of dif-
ferential geometry in quantum theory. He understood that determining the relevant
differential-geometric structures, spaces and their relation to the fundamental equa-
tions of quantum theory creates the mathematical coherence necessary to adequately
address foundational issues in the subject. Bymerging this ansatz with Kirillov’s work
in representation theory [9], Segal, Kostant [10] and Souriau [11] were able to con-
struct the algorithm of geometric quantization. However, rather than elaborating on the
relation between quantum and classical mechanics, geometric quantization unearthed
a large amount of geometric structures [12, §23.2], introduced in an ad hoc manner.

It is tempting to blame this state of affairs on the inadequacy of the geometric ansatz
or the theory, but instead we invite the reader to take a step back. What is the reason
for the construction of a quantization algorithm? Why do we quantize? Certainly,
quantum mechanics should agree with Newtonian mechanics in some approximation,
where the latter is known to accord with experiment, but is it reasonable to assume
the existence of an algorithm that constructs the new theory out of the old one?

These questions are of philosophical nature and it is useful to address them
within the historical context. Clearly, the step from Newtonian mechanics to quantum
mechanics was a scientific revolution, which is why we find the work of the philoso-
pher and physicist Thomas Kuhn [13] of relevance to our discussion. Kuhn is known
for his book “The Structure of Scientific Revolutions” [13], in which he analyzed the
steps of scientific progress in the natural sciences. For a summary see [14].

Kuhn argues that, as a field of science develops, a paradigm is eventually formed
through which all empirical data is interpreted. As, however, the empirical evidence
becomes increasingly incompatible with the paradigm, it is modified in an ad hoc
manner in order to allow for progress in the field. Ultimately, this creates a crisis, as

1 “In a recent paper Heisenberg puts forward a new theory, which suggests that it is not the equations of
classical mechanics that are in any way at fault, but that the mathematical operations by which physical
results are deduced from them require modification.” [1]
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attempts to account for the evidence become increasingly ad hoc, unmanageably elab-
orate and ultimately contradictory. Unless a new paradigm is presented and withstands
experimental and theoretical scrutiny, the crisis persists and deepens, because of the
internal and external inconsistencies of the current paradigm.

This process can be directly observed in the history of quantum theory. When New-
tonian mechanics was faced with the problem of describing the atomic spectra and the
stability of the atom in the beginning of the twentieth century [15], it was ad hoc modi-
fied by adding theBohr–Sommerfeld quantization condition [15,16], despite its known
inconsistency with then accepted principles of physics [17,18]. This ad hoc modifi-
cation of Newtonian mechanics continued with Werner Heisenberg’s [2] and Erwin
Schrödinger’s [19] postulation of their fundamental equations of quantum mechanics,
two descriptions later shown to be formally equivalent by von Neumann in his consti-
tutive work [20]. Schrödinger’s and Heisenberg’s description can be viewed as an ad
hoc modification, because their equations are formulated on a Newtonian spacetime
and intended to replace Newton’s second law without being based on postulated prin-
ciples of nature. With his quantization algorithm [1], Dirac supplied a convenient way
to pass from the mathematical description of a physical system in Newtonian mechan-
ics to the then incomplete, new theory. In accordance with Kuhn’s description, it was
a pragmatic, ad hoc step, not one rooted in deep philosophical reflection. Nonetheless,
the concept of quantization is ingrained in quantum theory as of today [21], while
the as of now futile search for unity in physics has become increasingly ad hoc and
elaborate [22, §19].

We are thus reminded of our historical position and the original intention behind
quantization: We would like to be able to mathematically describe microscopic
phenomena, having at hand neither the fundamental equations describing those phe-
nomena nor a proper understanding of the physical principles involved allowing us
to derive such equations. That is, what we lack with respect to our knowledge of
microscopic phenomena is, in Kuhn’s words, a paradigm. Rather than having a set
of principles of nature, which we use to intuitively understand and derive the funda-
mental laws of quantum theory, we physicists assume the validity of the old theory,
namelyNewtonianmechanics or special relativity in its Hamiltonian formulation, only
to apply an ad hoc algorithm to obtain laws we have inadequately understood. This is
why the concept of quantization itself is objectionable.

Indeed, even if a mathematically well defined quantization scheme existed, it would
remain an ad hoc procedure and one would still need additional knowledge which
quantized systems are physical (cf. [23, §5.1.2] for a discussion of this in German).
From a theory builder’s perspective, it would then be more favorable to simply use the
quantized, physically correct models as a theoretical basis and deduce the classical
models out of these, rather than formulating the theory in the reverse way. Hence
quantization can be viewed as a procedure invented to systematically guess quantum-
theoreticalmodels. This is donewith the implicit expectation of shedding some light on
the conceptual andmathematical problems of quantum theory, so that one day a theory
can be deduced from first principles. Thus a quantum theory which is constructed from
a quantization scheme must necessarily be incomplete. More precisely, it has not been
formulated as a closed entity, since for its formulation it requires the theory it attempts
to replace and which it potentially contradicts.

123



1320 Found Phys (2017) 47:1317–1367

As a result of this development, quantum mechanics and thus quantum theory as
a whole has not been able to pass beyond its status as an ad hoc modification of
Newtonian mechanics and relativity to date. For a recapitulation of the history of
quantum theory illustrating this point, see e.g. the article by Heisenberg [18].

Fortunately, our criticism does not apply to the theory of relativity, which, to our
knowledge, provides an accurate description of phenomena [24], at least in the macro-
scopic realm. As the principles of relativity theory are known cf. [25, p. XVII]), the
ridiculousness of “relativizing”Newtonianmechanics is obvious. Indeed, in the theory
of relativity physics still finds a working paradigm.

Rejecting quantization neither leads to a rejection of quantum theory itself, nor does
it imply that previous attempts to put quantum theory into a geometric language were
futile. If we reject quantization, we are forced to view quantum theory as incomplete
and phenomenological, which raises the question ofwhat the underlying physical prin-
ciples and observables are. Considering that the theory of relativity is mainly a theory
of spacetime geometry, asking, as Segal did, for the primary geometric and physical
quantities in quantum theory offers a promising and natural approach to this question.

Therefore, we reason that we theorists should look at the equations of quantum
theory with strong empirical support and use these to construct a mathematically
consistent, probabilistic, geometric theory, tied to fundamental physical principles as
closely as possible. But how is this to be approached?

1.2 The Madelung Equations as a Geometric Ansatz

In the year 1926, the same year Schrödinger published his famous articles [19,26,27],
the German physicist Erwin Madelung reformulated the Schrödinger equation into
a set of real, non-linear partial differential equations [28] with strong resemblance
to the Euler equations [29, §1.1] found in hydrodynamics. The so-called Madelung
equations are2

m �̇X = �F + h̄2

2m
∇ �

√
ρ√

ρ
, (1.1)

∇ × �X = 0 , (1.2)
∂ρ

∂t
+ ∇ ·

(
ρ �X

)
= 0, (1.3)

where m is the mass of the particle, X = ∂/∂t + �X is a real vector field, called the
drift (velocity) field, ρ is the probability density (by an abuse of terminology), �F the

external force and �̇X denotes the so-called material derivative (cf. [29, p. 4]) of X
along itself. Madelung already believed3 that these equations could serve as a foun-
dation of quantum theory. He reached this conclusion, because the equations exhibit a

2 Here we use the usual notation for vector calculus on R
3 with standard metric δ.

3 “Es besteht somit Aussicht auf dieser Basis die Quantentheorie der Atome zu erledigen.” [28, p. 326];
translation by author: “There is hence a prospect to complete the quantum theory of atoms on this basis.”

123



Found Phys (2017) 47:1317–1367 1321

strong link between quantum mechanics and Newtonian continuum mechanics [28].
Thus Madelung used these equations to interpret quantum behavior by exploiting the
analogy to the Euler equations. At this point in history, it was not clear how to interpret
the wave function, as the Born rule and the ensemble interpretation had just recently
emerged [30]. Madelung’s misinterpretation of quantum mechanics may perhaps be
the reasonwhy it took almost 25 years for his approach to become popular again, when
Bohm employed the Madelung equations to develop what is now known as Bohmian
mechanics [31,32]. Nonetheless a clear distinction should be drawn [33] between
the Madelung equations and the Bohmian theory [31,32]. Despite the popularity of
Bohm’s approach, a discussion of theMadelung equations on their own [34–39] seems
less common.

Today, the importance of the Madelung equations lies in the fact that they naturally
generalize the Schrödinger equation and in doing so expose the sought-after geometric
structures of quantum theory and its classical limit. As a byproduct, one obtains a nat-
ural answer to the question why complex numbers arise in quantum mechanics. The
Madelung equations, by their virtue of being formulated in the language of Newtonian
mechanics, make it possible to construct a wide class of quantum theories by making
the same coordinate-independent modifications found in Newtonian mechanics, with-
out any need to construct a quantization algorithm as, for example, in geometric [6,7]
and deformation quantization [23]. This greatly simplifies the construction of new
quantum theories and therefore makes the Madelung equations the natural foundation
of quantummechanics and the natural ansatz for any attempts of interpreting quantum
mechanics.

For some of these modifications it is not possible to construct a Schrödinger equa-
tion and for others the Schrödinger equation becomes non-linear, which suggests that
there exist quantum-mechanical models that cannot be formulated in the language of
linear operators acting on a vector space of functions. From a conceptual point of
view, this might prove to be a necessity to remove the mathematical and conceptual
problems that plague relativistic quantum theory today, or at least expose the origins
of these problems. In fact, the Madelung equations admit a straight-forward (general-
)relativistic generalization leading to the Klein–Gordon equation, which is, however,
not discussed here and arguably unphysical.4 The Madelung equations and their mod-
ifications are henceforth particularly suited for studying quantum theory, from the
differential-geometric perspective. We thus believe that they will take a central role
both in the future construction of an internally consistent, geometric quantum theory
as well as the realist understanding of microscopic phenomena.

1.3 Outline and Conventions

In this article we formalize the Madelung picture of quantum mechanics and thus
provide a rigorous framework for further development. A first step is made by postu-
lating a modification intended to model particle creation and annihilation. In addition,

4 We believe that the lack of physicality is a consequence of neglecting spin in the Schrödinger theory. We
refer to [40,41] for an elaboration on this point of view.
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we give a possible interpretation of quantum mechanics that is an extension of the
stochastic interpretation developed by Tsekov [42], which in turn originated in ideas
from Bohm and Vigier [43] in the 1950s.

Our article is organized as follows: We first construct a spacetime model on which
to formulate the Madelung equations using relativistic considerations. In Sect. 3, we
further motivate the need for the Madelung equations in the formulation of quantum
mechanics and then give a theorem stating the equivalence of the Madelung equations
and the Schrödinger equation, if the force is irrotational and a certain topological
condition is satisfied. We also address concerns raised in the literature regarding this
point (cf. [38, §3.2.2] and [39,44,45]). We introduce some terminology and proceed
with a basic, mathematical discussion. In Sect. 4, we discuss the operator formalism
in the Schrödinger picture and its relation to the Madelung equations. We proceed
by giving a formal interpretation of the Madelung equations in Sect. 5.1 and then
speculate in Sect. 5.2 that quantummechanical behavior originates in noise created by
random irregularities in spacetime curvature, that is random, small-amplitude gravita-
tional waves. How the violation of Bell’s inequality can be achieved in this stochastic
interpretation is also discussed. In Sect. 6, we propose a modification of the Madelung
equations, intended to model particle creation and annihilation, and show how this in
general leads to a non-linearity in the Schrödinger equation. We conclude this article
with a brief review of our results including a table and an overview of some open
problems.

Some prior remarks: To fully understand this article, an elementary knowledge of
Riemannian geometry, relativity and quantum mechanics is required. We refer to [46,
Chap. 1–4] and [47–49], respectively. The mathematical formalism of the article is,
however, not intended to deter anyone from reading it and should not be a hindrance to
understanding the physicswediscuss,which is notmerely of relevance tomathematical
physicists. For the sake of clarification, we have attempted to provide some intuitive
insight along the lines of the argument. Less mathematically versed readers should
skip the proofs and the more technical arguments while being aware that precise
mathematical arguments are required, as intuition fails easily in a subject this far away
from everyday experience. Moreover, we stress that Sect. 5.2 should be considered
fully separate from the rest of the article. At this point the stochastic interpretation,
however well motivated, is speculation, but this does not invalidate the rest of the
argument.

On a technical note, we usually assume that all mappings andmanifolds are smooth.
This assumption can be considerably relaxed in most cases, but this would lead to
additional, currently unnecessary technicalities. Our notation mostly originates from
[46], but is quite standard in physics or differential geometry. For example, ϕ∗ is the
pushforward and ϕ∗ the pullback of the smooth map ϕ, · is tensor contraction of
adjacent entries or the Euclidean inner product, d the Cartan derivative, ε the Levi–
Civita symbol, [., .] the Lie bracket (of vector fields), X (Q) denotes the space of
smooth vector fields and �k (Q) the space of smooth k-forms on the smooth manifold
Q, respectively. We use the Einstein summation convention and, where relativistic
arguments are used, the metric signature is (+−−−), which gives tangent vectors of
observers positive “norm”. Definitions are indicated by italics.
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2 Construction of Newtonian Spacetime

In order to be able to construct a rigorous proof of the equivalence of the Schrödinger
and Madelung equations, we first construct a spacetime model suitable for our pur-
poses. For a discussion on prerelativistic spacetimes see e.g. [25, §1.1 to §1.3] and
[50, Chap. 1].

To describe the motion of a point mass of mass m ∈ R+ = (0,∞) in Newtonian
physics, we consider an open subset Q of R4, which has a canonical topology and
smooth structure. The need to restrict oneself to open subsets ofR4 arises, for instance,
from the fact that it is common for forces in Newtonian physics to diverge at the point
where the source is located. We exclude such points from the manifold. For similar
reasons we also allow non-connected subsets.

To be able to measure spatial distances within the Newtonian ontology, one intu-
itively needs a degenerate, Euclidean metric. However, this construction should obey
the principle of Galilean relativity (cf. [25, Postulate 1.3.1]).

Principle 1 (Galilean Relativity) For any two non-accelerating observers that move
relative to each other with constant velocity all mechanical processes are the same.

Therefore, if we formulate physical laws coordinate-independently with some
(degenerate) metric δ and attribute to it a physical reality, then all observers should
measure the same distances. However, in physical terms, whether one travels some
distance at constant velocity or is standing still, fully depends on the observer, hence
the coordinate system chosen to describe the system. This is a deep problem within
the conceptual framework of Newtonian mechanics. One way to circumvent this, is
to prevent the measurement of distances for different times. For a mathematical treat-
ment of suchNeo-Newtonian or, better to say, Galilean spacetimes see [50, Chap. 1]. A
less complicated and physically more satisfying approach is to consider a Newtonian
spacetime as a limiting case of a special-relativistic one. More precisely, a Newtonian
spacetime is an approximative spacetime model appropriate for mechanical systems
involving only small velocities relative to an inertial frame of reference and relative
to the speed of light, not involving the modeling of light itself and with negligible
spacetime curvature. In this relativistic ontology, the above conceptual problem does
not occur, as the notion of spatial and temporal distance is made observer-dependent,
which is necessary due to the phenomenon of time dilation and length contraction.

As quantum mechanics is formulated in a Newtonian/Galilean spacetime, it is con-
sequently necessary to view it as a theory in the so-calledNewtonian limit. This limit is

naively defined by neglecting terms of the order O
(
(|�v|/c)2

)
in equations involving

only physically measurable quantities, where |�v| is the speed corresponding to the
velocity �v of any mass point relative to the inertial frame and c is the speed of light (in
vacuum). Obviously, this is not a rigorous definition, but this naive approach suffices
for our purposes here. We will give a more thorough discussion of the Newtonian limit
in a future work [51]. Also note that |�v|/c is dimensionless and hence the Newtonian
limit is independent of the chosen system of units.

Our reasoning directly leads us to the definition of Newtonian spacetime.
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Definition 2.1 (NewtonianSpacetime)ANewtonian spacetime is a tuple (Q, dτ, δ,O),
where

(i) Q is an open subset of R4 equipped with the standard topology and smooth
structure,

(ii) the time form dτ is an exact, non-vanishing 1-form and the spatial metric δ is a
symmetric, non-vanishing, covariant 2-tensor field, such that there exist coordi-
nates x = (

t, x1, x2, x3
) ≡ (t, �x) on Q with

dτ = dt, δ = δi j dx
i ⊗ dx j =

⎛
⎜⎜⎝
0
1
1
1

⎞
⎟⎟⎠ (2.1a)

for i, j ∈ {1, 2, 3}.
(iii) the Newtonian orientation O is a (smooth) GL+ (

R
3
)
-reduction of the frame

bundle Fr (TQ) defined as follows (see e.g. [46, Definition 9.6] and [52, §6.1]
for definitions). Consider the Lie group

GL+ (
R
3
)

:=
{
A ∈ End

(
R
3
) ∣∣∣∣det A > 0

}
, (2.1b)

the vector field B, defined by

δ (B, B) = 0, (2.1c)

dτ · B = 1, (2.1d)

and the GL+ (
R
3
)
-right action

(ζ, A) → ζ ·
(
1 0
0 A

)
=

(
ζ0, A

i
1 ζi , A

i
2 ζi , A

i
3 ζi

)
(2.1e)

for ζ = (ζ0, ζ1, ζ2, ζ3) ∈ Fr (TQ) and A ∈ GL+ (
R
3
)
. Then O is a GL+ (

R
3
)
-

reduction of the frame bundle Fr (TQ)with the property that there exists a global
framefield ξ : Q → Fr (TQ) satisfying ξ0 = B anddτ ·ξi = 0 for all i ∈ {1, 2, 3},
such that

O =
{
ζ ∈ Fr (TQ)

∣∣∣∣∃q ∈ Q ∃A ∈ GL+ (
R
3
)

: ζ = ξq ·
(
1 0
0 A

)}
. (2.1f)

(iv) The tangent bundle TQ is equipped with a covariant derivative, called the New-
tonian derivative ∇, which is

(a) compatible with the temporal metric dτ 2 := dτ ⊗ dτ :

∇dτ 2 = 0, (2.1g)
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(b) compatible with the spatial metric:

∇δ = 0, (2.1h)

(c) torsion-free, i.e. ∀X,Y ∈ X (Q):

∇XY = ∇Y X + [X,Y ] . (2.1i)

The vector field B is called the intrinsic observer (vector) field. An (ordered) triple of
tangent vectors (Y1, Y2,Y3) at someq ∈ Q is called right-handed, if (Bq ,Y1,Y2,Y3) ∈
O. Analogously we define right-handedness of a triple of vector fields. Coordinates
satisfying (2.1a) are calledEulerian coordinates, if in addition (∂/∂x1, ∂/∂x2, ∂/∂x3)
is right-handed.

For convenience, we identify the points q ∈ Q ⊆ R
4 with their Eulerian coordinate

values, s.t. q = (t, �x). Condition (ii) can be read as an integrability condition, i.e.
the coordinates are chosen in accordance with the geometric structures and not vice
versa. Thus the definition is coordinate-independent. TheNewtonian orientation (iii) is
necessary in the definition to be able to mathematically distinguish a physical system
modeled on a Newtonian spacetime from its mirror image. It is easy to check that
(2.1c) and (2.1d) uniquely determine B to be

B = ∂

∂t
=: ∂

∂τ
, (2.2)

so our definition of O is sensible. As it is the case for ordinary orientations on mani-
folds, there are precisely two possible Newtonian orientations O on Q.

Clearly, the intrinsic observer field B plays a special role. Condition (2.1d) means
that the time form dτ determines the parametrization of the integral curves of the
intrinsic observer field, including its “time orientation”, and condition (2.1c) means
that the integral curves of the observer field have no spatial length, or, equivalently,
they describe mass points at rest. Therefore, due to the existence of a “preferred rest
frame”, Principle 1 is actually violated is actually violated in Definition 2.1, if one
does not consider a Newtonian spacetime as the limiting case of a special relativistic
model for a particular observer. Mathematically this is captured by the fact that Galilei
boosts are not spatial isometries of a Newtonian spacetime, i.e. isometries with respect
to the degenerate spatial metric. Within the special relativistic ontology, however, the
Lorentz boosts are isometries of the physical spacetime and we can find a Newtonian
spacetime corresponding to the boost by taking the Newtonian limit. This procedure
yields two different spatial metrics, one for each observer. Therefore, Principle 1 is
indeed satisfied on an ontological level.

Excluding point (iv), Newtonian spacetimes trivially exist. The following lemma
shows that the Newtonian connection is also well-defined.

Lemma 2.2 (Existence&Uniqueness of theNewtonianConnection)Let (Q, dτ, δ,O)

be a Newtonian spacetime. Then the Newtonian connection ∇ is unique and trivial in
Eulerian coordinates, i.e. all connection coefficients vanish.
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Proof Consider g := dτ 2 + δ. (2.1g) and (2.1h) in Definition 2.1 imply

∇g = ∇
(
dτ 2 + δ

)
= ∇dτ 2 + ∇δ = 0. (2.3)

Now ∇ is just the Levi–Civita connection with respect to the standard Riemannian
metric g in the global chart (Q, x) and the result follows. ��

Weconclude that our construction is both physically andmathematically consistent.
Yet before we can set up physical models on a Newtonian spacetime (Q, dτ, δ,O),
we need to consider the relevant dynamical quantities as obtained from the theory of
relativity. These considerations will yield two subclasses of tangent vectors.

Recall that in relativity theory the spacetime model is a time-oriented5 Lorentzian
4-manifold (Q, g), equipped with the Levi–Civita connection ∇. If a curve

γ : I → Q : τ → γ (τ) , (2.4)

defined on an open interval I ⊆ R is assumed to describe physical motion, we
require its tangent vector field γ̇ := γ∗(∂/∂τ) to be timelike, future directed and
to be parametrized with respect to proper time τ . For the latter

g (γ̇ , γ̇ ) = c2 (2.5)

is a necessary and sufficient condition. Such curves γ are known as observers and if
for a tangent vector X ∈ TQ an observer γ exists with X = γ̇τ for some τ ∈ I ,
then X is called an observer vector. Vector fields X ∈ X (Q) whose values Xq ∈ TqQ
are observer vectors at every q ∈ Q are accordingly called observer (vector) fields.
Since a region of physical spacetime with negligible curvature can be approximately
described by special relativity, we may restrict ourselves to the case where Q ⊆ R

4

is open and g = η is the Minkowski metric. In standard coordinates (t, �x) on Q, we
write the tangent vector of an observer γ as

γ̇ = ṫ ∂t + ẋ i ∂i , (2.6)

where the dot denotes differentiation with respect to τ . On the other hand, condition
(2.5) requires

ṫ = 1√
1 −

(
1
c
d�x
dt

)2 , (2.7)

where we used the notation

(
d�x
dt

)2

:= δ

(
d

dt
,
d

dt

)
= δi j

dxi

dt

dx j

dt
. (2.8)

5 For the same reason as in the case of Newtonian spacetimes, it is sensible to assume spacetimes to be
also space-oriented.
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A first order Taylor expansion of (2.7) in

1

c
|d�x
dt

| := 1

c

√(
d�x
dt

)2

(2.9)

around 0 yields
ṫ ≈ 1, (2.10)

which is the expression for ṫ in the Newtonian limit. This implies

�̇x ≡ d�x
dτ

= ṫ
d�x
dt

≈ d�x
dt

. (2.11)

Plugging (2.10) and (2.11) back into (2.6) we get

γ̇ ≈ ∂

∂t
+ dxi

dt

∂

∂xi
. (2.12)

If we carry this reasoning over to observer vectors X ∈ TqQ at any q ∈ Q, then we
get in the Newtonian limit

X ≈ ∂t |q + �X (2.13)

with �X = Xi∂i |q . This is the reason for naming B = ∂t in Definition 2.1 the ‘intrinsic
observer vector field’.

To obtain the other important class of tangent vectors, we have a look at the dynam-
ics. Hence we consider a test particle,6 which is described by an observer γ and has
mass m ∈ R+. The force on the particle is defined by

F := m
∇γ̇

dτ
, (2.14)

which is just the generalization of Newton’s second law to general relativity. Note
that gravity is not a force, but a pseudo-force. Due to metricity of the connection and
condition (2.5) we obtain

g

(
γ̇ ,

∇γ̇

dτ

)
= 0, (2.15)

which roughly means that the (relativistic) velocity is orthogonal to the (relativistic)
acceleration. Applying this on (2.14), we get

g (γ̇ , F) = 0, (2.16)

hence F is spacelike [53, Chap. 5, 26. Lemma]. In the Newtonian limit, the force field
F must stay “spacelike”. This is indeed the case, which we see by using the definition

6 Physically, a test particle is an almost point-like mass (relatively speaking), whose influence on the
spacetime geometry can be neglected in the physical model of consideration.
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(2.14) of F together with the approximation (2.12) for γ̇ :

F

m
= ∇γ̇

dτ
≈ ∇

dt

(
∂

∂t
+ dxi

dt

∂

∂xi

)
= d2xi

dt2
∂

∂xi
≡ d2 �x

dt2
. (2.17)

This directly shows that F0 has to vanish in the Newtonian limit.
We have thus obtained the two types of tangent vectors (and hence curves and

vector fields) of relevance in any physical model set in a Newtonian spacetime, i.e.
tangent vectors Y ∈ TQ with either Y t = 0 or Y t = 1. Our discussion motivates the
following definition.

Definition 2.3 (Newtonian Vectors) Let (Q, dτ, δ,O) be a Newtonian spacetime. A
tangent vector Y ∈ TQ at q ∈ Q is called Newtonian spacelike, if dτ · Y = 0 or,
equivalently, in Eulerian coordinates

Y = �Y := Y i ∂

∂xi
|q . (2.18a)

Y ∈ TqQ is called a Newtonian observer vector, if dτ · Y = 1 or, equivalently,

Y = ∂

∂t
|q + Y i ∂

∂xi
|q = ∂

∂t
|q + �Y . (2.18b)

A tangent vector Y is called Newtonian, if Y is either a Newtonian observer vector or
Newtonian spacelike. For a Newtonian vector Y , we call �Y the spacelike component
of Y .

It follows that a tangent vector X , describing the velocity vector of a point mass in the
Newtonian limit at some instant, is aNewtonian observer vector, and a vector F , giving
the force acting on such a particle according to (2.14) at that instant, is Newtonian
spacelike (i.e. F = �F).
Remark 2.4 The above terminology carries over to vector fields, e.g. a Newtonian
observer (vector) field Y is one whose values Yq ∈ TqQ are Newtonian observer
vectors for every q ∈ Q. We denote the space of (smooth) Newtonian vector fields by
XN (Q), the space of (smooth) Newtonian spacelike vector fields by XNs (Q) and the
space of (smooth) Newtonian observer vector fields by XNt (Q).

Note that there are not any “Newtonian lightlike” vectors. Indeed, for physical
consistency we require | �X | < c.

The space of Newtonian spacelike vector fields forms a real vector space, the space
of Newtonian observer vector fields does not. However, if we add a Newtonian space-
like vector field to a Newtonian observer vector field, we still have a Newtonian
observer vector field. The intrinsic observer field is then the trivial Newtonian observer
field, its integral curves physically correspond to observers at rest with respect to some
inertial observer γ in Minkowski spacetime

(
R
4, η

)
.

Instead of considering a single observer γ in Minkowski spacetime, let us now
assume that it is the integral curve of an observer field X . If each integral curve of X
describes the trajectory of a test particle of equal mass m, then (2.14) adapted to this
case yields

F = m∇X X. (2.20)
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In the Newtonian limit, we obtain the Newtonian spacelike vector field F ≈ �F and
the Newtonian observer vector field X ≈ ∂t + �X , hence (2.20) is approximated by

�F ≈ m∇
∂t+ �X

(
∂t + �X

)
= m

(
∂Xi

∂t
+ X j ∂Xi

∂x j

)
∂

∂xi
≡ m

(
∂ �X
∂t

+ ∇ �X �X
)

. (2.21)

We thus see that the Newtonian limit naturally gives rise to what is known as the
material derivative in the fluid mechanics literature [29, p. 4]. Intuitively, the material
derivative of a Newtonian observer vector field X along itself gives the acceleration of
a point �x in space moving along the flow lines of X at some time t [54, §1.2]. However,
as we have obtained this from the Levi–Civita connection in the Newtonian limit and
not in the context of fluids, we do not use this terminology here. Nonetheless we shall
adapt our notation. So if X ∈ XNt (Q) is a Newtonian observer field and Y ∈ XN (Q)

a Newtonian vector field then, according to Lemma 2.2, the Newtonian derivative ∇
of Y along X can be written as

∇XY = ∂ �Y
∂t

+ ∇ �X �Y =: ∂ �Y
∂t

+
( �X · ∇

) �Y (2.22)

in full compliance with (2.21). If X ∈ XNs (Q) is Newtonian spacelike instead, then

∇XY = ∇ �X �Y =
( �X · ∇

) �Y . (2.23)

This also shows that for Newtonian vector fields X , Y the expression ∇XY is always
Newtonian spacelike.

For the special case of a Newtonian observer field X , we use the notation

Ẋ := ∇X X = ∇X �X = �̇X = ∂ �X
∂t

+
( �X · ∇

) �X , (2.24)

which has the natural interpretation of acceleration.
We still have to mathematically construct the relevant vector calculus operators on

Newtonian spacetimes without the need to refer to the Newtonian limit.
So let (Q, dτ, δ,O) be a Newtonian spacetime, define

�t :=
{
�x ∈ R

3
∣∣∣∣(t, �x) ∈ Q

}
, I :=

{
t ∈ R

∣∣∣∣�t �= ∅
}

(2.25)

and let ιt : �t → Q be the natural inclusion. By the regular value theorem, there is a
unique topology and smooth structure on�t such that it becomes an embedded, smooth
submanifold ofQ and it can then be naturally equippedwith the flat Riemannianmetric
ι∗t δ. It also inherits a natural orientation from the Newtonian orientationO onQ. Thus
�t is an oriented Riemannian 3-manifold and hence the vector calculus operators grad,
div and curl are well defined (cf. [46, Ex. 4.5.8] for definitions). These can be naturally
extended to operators on Q by considering T�x�t as a linear subspace of T(t,�x)Q for
each (t, �x) ∈ Q.
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Definition 2.5 (Vector Calculus on Newtonian Spacetimes) Let (Q, dτ, δ,O) be a
Newtonian spacetime, X ∈ XN (Q) be a smooth Newtonian vector field, f ∈
C∞ (Q,R) and let ιt : �t → Q be defined as above for each t ∈ R such that �t �= ∅.
We then define for every (t, �x) ∈ Q
(i) the gradient of f , denoted by ∇ f ∈ XNs (Q), via

(∇ f )(t,�x) := (
grad ι∗t f

)
�x , (2.26a)

(ii) the divergence of X , denoted by ∇ · X ∈ C∞ (Q,R), via

(∇ · X) (t, �x) :=
(
div

( �X ιt (. )

))
(�x) , (2.26b)

(iii) the curl of X , denoted by ∇ × X ∈ XNs (Q), via

(∇ × X)(t,�x) :=
(
curl

( �X ιt (. )

))
�x , (2.26c)

(iv) and the Laplacian of f as

� f := ∇ · (∇ f ) . (2.26d)

Note that this definition just yields the ordinary vector calculus operators on R
3,

naturally adapted to the setting of Newtonian spacetimes. Similarly, the cross product
× can be extended from T�t to TQ. Moreover, the definitions naturally extend to
complex valued functions and vector fields.

With this, we have finished our construction of a spacetime model, the associated
(differential) operators and the elementary concepts needed for any physical model
constructed upon it.

3 Local Equivalence of the Schrödinger and Madelung Equations

We now employ the construction of the previous section to set up a model of a non-
relativistic quantum system with one Schrödinger particle.

In the Schrödinger picture of quantum mechanics [47, §4.1 to §4.3] such a system
under the influence of an external force

�F = −∇V (3.1)

with potential V ∈ C∞ (Q,R) is described by a so called wave function � ∈
C∞ (Q,C), satisfying the Schrödinger equation [19,26,27]

ıh̄
∂

∂t
� = − h̄2

2m
�� + V� (3.2)
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together with the rule that ρ := �∗� ≡ |�|2 gives the probability density for the
particle’s position at fixed time.7 This description has a number of disadvantages:

(i) The function � is complex and it is not apparent how and why this is the case.
This in turn prevents a direct physical interpretation.

(ii) The equation is already integrated, in the sense that it is formulated in terms of
the potential V and that the phase of � is only specified up to an arbitrary real
summand. This in turn suggests that the equation is not fundamental, i.e. it is
not formulated in terms of directly measurable physical quantities.

(iii) It is not apparent how to generalize the Schrödinger equation to the case where
no potential exists for a given force �F .

(iv) It is not entirely apparent how to generalize the Schrödinger equation to more
general geometries, i.e. what happens in the presence of constraints, and what
the underlying topological assumptions are.

(v) Related to this is the fact that, due to the ∂�/∂t term, there is no obvious
relativistic generalization. This in turn reintroduces the conceptual problems
with Principle 1.

(iv) Let t ∈ I and letμt be the canonical volume form on�t (cf. (2.25)) with respect
to the metric ι∗t δ, i.e. μt = dx1 ∧ dx2 ∧ dx3 ≡ d3x . The statement that for any
Borel measurable N ⊆ �t ⊆ R

3 the expression

∫

N
ι∗t ρ μt ∈ [0, 1] (3.3)

gives the probability for the particle to be found within the region N at time t is
inherently non-relativistic. Again this leads to problems with Principle 1.

In this section we will observe that these problems are strongly related to each other
and find their natural resolution in the Madelung picture.

Before we state and prove the main theorem of this section, that is Theorem 3.2, we
would like to remind the reader of theWeber identity [55] known from fluid dynamics,
since it is essential for passingbetween theNewtonian and theHamiltoniandescription.

Lemma 3.1 (Weber Identity) Let (Q, dτ, δ,O) be a Newtonian spacetime and let
�X ∈ XNs (Q) be a smooth Newtonian spacelike vector field.
Then ( �X · ∇

) �X = ∇
( �X2

2

)
− �X ×

(
∇ × �X

)
. (3.4)

Proof Let t ∈ I , as defined in (2.25). For the vector fields �Xt := �X ιt (. ),
�Y t := �Yιt (. ) ∈

X (�t ) and the induced (standard) connection∇ on�t ⊆ R
3, we have, using standard

notation, as a standard result in vector calculus in R
3 (cf. [29, p. 165, Eq. 7]) that

∇
((

ι∗t δ
) ( �Xt , �Y t

))
= �Xt×

(
∇ × �Y t

)
+
( �Xt · ∇

) �Y t+ �Y t×
(
∇ × �Xt

)
+
( �Y t · ∇

) �Xt .

7 For a discussion on this interpretation and why alternative ones should be excluded, see e.g. [47, §4.2].
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To obtain (3.4), we set �Xt = �Y t and let t vary. ��

We named Theorem 3.2 in the honor of Erwin Madelung, as it is mainly based on
his article [28] and we merely formalized it to meet the standards of mathematical
physics. Note that the choice of sign of ϕ is pure convention. We choose it such that
for ∂/∂t future directed in Minkowski spacetime

(
R
4, η

)
(cf. [25, Definition 3.1.3])

and ∂ϕ/∂t > 0, the vector field

X = h̄

m
grad ϕ ≡ h̄

m
η−1 · dϕ (3.5)

is future directed.

Theorem 3.2 (Madelung’s Theorem) Let (Q, dτ, δ,O) be a Newtonian spacetime,
m, h̄ ∈ R+ and let I ⊆ R, �t ⊆ R

3 be defined as in (2.25).
If X ∈ XNt (Q) is a Newtonian observer vector field, �F ∈ XNs (Q) a Newtonian

spacelike vector field, ρ ∈ C∞ (Q,R+) a strictly positive, real function and the first
Betti number b1 (�t ) of �t vanishes for all t ∈ I , then

m Ẋ = �F + h̄2

2m
∇ �

√
ρ√

ρ
, (3.6a)

∂ρ

∂t
+ ∇ ·

(
ρ �X

)
= 0, (3.6b)

∇ × �X = 0, (3.6c)

∇ × �F = 0, (3.6d)

imply that there exist ϕ, V ∈ C∞ (Q,R) such that

X = ∂

∂t
− h̄

m
∇ϕ, (3.6e)

�F = −∇V, (3.6f)

H := m

2
�X2 + V − h̄

∂ϕ

∂t
− h̄2

2m

�
√

ρ√
ρ

= 0. (3.6g)

Moreover, if one defines

� := √
ρ e−ıϕ, (3.6h)

then it satisfies

ıh̄
∂

∂t
� = − h̄2

2m
�� + V�. (3.6i)
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Conversely, if � ∈ C∞ (Q,C \ {0}) and V ∈ C∞ (Q,R) satisfy (3.6i), define ρ :=
|�|2 ∈ C∞ (Q,R+), �F via (3.6f) and

�X := h̄

m
�
(∇�

�

)
≡ h̄

2ım

(∇�

�
− ∇�∗

�∗

)
(3.6j)

such that X := ∂/∂t + �X is a Newtonian observer vector field. Then (3.6a), (3.6b),
(3.6c) and (3.6d) hold.

Proof “ �⇒ ” By the definition of curl (2.26c), we have for any fixed t ∈ I

d
((

ι∗t δ
) · �X ιt (. )

)
= 0, d

((
ι∗t δ

) · �Fιt (. )

)
= 0. (3.7a)

Since b1 (�t ) = 0, all closed 1-forms are exact and hence ∃ϕ̃t , Ṽ t ∈ C∞ (�t ,R):

(
ι∗t δ

) · �X ιt (. ) = dϕ̃t ,
(
ι∗t δ

) · �Fιt (. ) = dṼ t . (3.7b)

If we now let t vary and observe that Q = ⊔
t∈I �t , the left hand sides yield smooth

1-forms on Q and so do the right hand sides. In other words, the function

ϕ̃ : Q → R : (t, �x) → ϕ̃t (�x) =: ϕ̃ (t, x) (3.7c)

has smooth partial derivatives ∂ϕ̃/∂xi onQ for i ∈ {1, 2, 3}, but ∂ϕ̃/∂t need not exist.
However, if we integrate ∂ϕ̃/∂x1 with respect to x1, we obtain a smooth function
on Q, i.e. by choosing the integration constants appropriately we may assume ϕ̃ ∈
C∞ (Q,R). We then repeat this argument to obtain Ṽ ∈ C∞ (Q,R).

Choosing ϕ := −mϕ̃/h̄ and V := −Ṽ , we get via (3.7b) and (2.26a), that (3.6e)
and (3.6f) hold.

Define now

U := − h̄2

2m

�
√

ρ√
ρ

, (3.7d)

and Ũ := V+U . Using theWeber identity (Lemma 3.1) together with (3.6c), equation
(3.6a) reads

− h̄
∂

∂t
(∇ϕ) + ∇

(m
2

�X2
)

= −∇Ũ . (3.7e)

Due to smoothness of ϕ and the Schwarz’ theorem, we have

∂

∂t
∇ϕ = ∇ ∂ϕ

∂t
, (3.7f)

and hence

∇H ≡ ∇
(
m

2
�X2 + Ũ − h̄

∂ϕ

∂t

)
= 0. (3.7g)

Thus H , as defined by the left side of (3.6g), depends only on t . If H �= 0, we can
redefine V via V − H → V as then �F = −∇ (V − H) = −∇V remains true. Hence
(3.6g) follows.
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We now define � via (3.6h), R := √
ρ and calculate in accordance with (2.26d):

�� = ∇ · (∇ (
R e−ıϕ))

= ∇ · (∇R e−ıϕ − ıR∇ϕ e−ıϕ)

= e−ıϕ
(
�R − 2ı∇R · ∇ϕ − ıR�ϕ − R (∇ϕ)2

)

= e−ıϕ
(
�R − R (∇ϕ)2 − ı (2∇R · ∇ϕ + R�ϕ)

)
. (3.7h)

Plugging ρ = R2 and (3.6e) into (3.6b) yields

2R
∂R

∂t
− h̄

m

(
2R ∇R · ∇ϕ + R2 �ϕ

)
= 0. (3.7i)

Since R vanishes nowhere, we can multiply with m/(h̄ R), compare with (3.7h) and
arrive at

− � (
eıϕ��

) = 2m

h̄

∂R

∂t
. (3.7j)

On the other hand, (3.6g) can also be reformulated in terms of ϕ and R to yield

− h̄2

2m

(
�R − R (∇ϕ)2

)
− h̄ R

∂ϕ

∂t
+ V R = 0. (3.7k)

By comparing this with (3.7h), we see that we can construct a �� by adding ı times
the imaginary part of eıϕ�� for which we have the expression (3.7j). This gives

− h̄2

2m
�� eıϕ + V R = − h̄2

2m
ı

(
2m

h̄

∂R

∂t

)
+ h̄ R

∂ϕ

∂t
= ıh̄

∂R

∂t
+ h̄ R

∂ϕ

∂t
. (3.7l)

To take care of the right hand side, we notice

ıh̄eıϕ
∂�

∂t
= ıh̄

∂R

∂t
+ h̄ R

∂ϕ

∂t
. (3.7m)

Thus, by multiplying (3.7l) by e−ıϕ , we finally arrive at the Schrödinger equation
(3.6i).

“ ⇐� ” The reverse construction amounts to Madelung’s discovery [28]. We may
define the real function R := |�| =: √

ρ, yet, unfortunately, we cannot write � as
in (3.6h), since the complex exponential is not (globally) invertible. Instead we define
Q := �/|�| and observe that by (3.6j)

�X = h̄

m
�
(∇ (RQ)

RQ

)
= h̄

m
�
(∇Q

Q

)
. (3.7n)
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We now do the calculation backwards with Q instead of e−ıϕ . So in analogy to (3.7h)
we consider

�� = ∇ · (∇ (RQ)) = ∇ ·
(
∇R Q + R

∇Q

Q
Q

)

= �R Q + 2∇R ·
(∇Q

Q

)
Q + R ∇ ·

(∇Q

Q

)
Q + R

(∇Q

Q

)2

Q

= Q

(
�R + R

(∇Q

Q

)2

+ 2∇R ·
(∇Q

Q

)
+ R ∇ ·

(∇Q

Q

))
(3.7o)

and in analogy to (3.7m) we obtain

ıh̄
∂ (RQ)

∂t
= ıh̄

∂R

∂t
Q + ıh̄ R

(
∂Q
∂t

Q

)
Q. (3.7p)

Dividing the Schrödinger equation (3.6i) by Q and inserting (3.7o) as well as (3.7p),
we can take the imaginary part � as well as the real part�. This is done by employing
the facts that both commute with derivatives, derivatives of Q divided by Q are purely
imaginary and that for any complex number A ∈ C, we have � (ıA) = −�A and
� (ıA) = �A. Then after some further algebraic manipulation and using (3.7n), the
imaginary part yields the continuity equation (3.6b) and the real part gives (3.6g) with
h̄ � ((∂Q/∂t)/Q) instead of−h̄ ∂ϕ/∂t . For the latter, we again use theWeber identity
from Lemma 3.1 and note

∇
(

∂Q
∂t

Q

)
=

∂
∂t ∇Q

Q
−

∂Q
∂t ∇Q

Q2 = ∂

∂t

(∇Q

Q

)
. (3.7q)

Recalling the definition (3.6f) of �F we indeed obtain (3.6a). Finally, (3.6d) and (3.6c)
are obtained by seeing that �F is a gradient vector field and by calculating

∇ ×
(∇Q

Q

)
= ∇ × ∇Q

Q
− ∇Q × ∇Q

Q2 = 0. (3.7r)

This completes the proof. ��
Since for every (t, �x) ∈ Q the open ball centered at the point is canonically a

Newtonian spacetime as well, the theorem shows that the Madelung equations for
irrotational force fields and the Schrödinger equation are locally equivalent.

Remark 3.3 (On the ‘Quantization Condition’) In the literature one finds the claim
that a quantization condition needs to be added for the Schrödinger and the Madelung
equations to be equivalent [45, §3.2.2]; [39]; [38, §6]; [44], namely

m

2π h̄

∮

γ

ι∗t (δ · X) ∈ Z (3.8a)
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for all t ∈ I and all smooth loops γ : [0, 2π ] → �t . Note that, as observed by Holland
[44, §3.2.2], equation (3.8a) is astonishingly similar, yet inequivalent to the Bohr–
Sommerfeld quantization condition in the old quantum theory [16]. Recalling Stoke’s
theorem [46, Theorem 4.2.14] and that the irrotationality (3.6c) of X is equivalent to
closedness of ι∗t (δ · X) for all t ∈ I , we see that expression (3.8a) vanishes for t ∈ I
and all γ if and only if b1 (�t ) ≡ 0. (3.8a) can therefore only be relevant for the case
b1 (�t ) �= 0 for some t ∈ I . Condition (3.8a) originates from the simplest quantum
mechanical model of the Hydrogen atom and indeed excludes apparently unphysical
bound states, but, as we will show in detail, is itself of topological origin.

We consider the Madelung equations for a particle with charge −q ∈ (−∞, 0)
being attracted via the Coulomb force by a particle with charge q fixed at position
0 ∈ R

3. The maximal domain where �F is smooth is R × (
R
3 \ {0}), and we have

b1
(
R
3 \ {0}) = 0.Togetherwith irrotationality (3.6d) of �F ,we can thusfind apotential

V : R × (
R
3 \ {0}) → R. Moreover, in spherical coordinates

(t, r, θ, φ) : R4 \
{

(t, �x) ∈ R
4
∣∣∣∣x1 ≥ 0, x2 = 0

}
→

R × R+ × (0, π) × (0, 2π) (3.8b)

we can write the values of V as V (r), since �F is time-independent.
If we now look for stationary (i.e. t-independent) solutions of the Madelung equa-

tions, we find the natural domains dom ρ = dom X to be of the form R × � =: Q
with open � ⊆ R

3 \ {0}, but in general we cannot assume b1 (�) = 0. That is, to
be able to write down the Schrödinger equation by application of Theorem 3.2, we
have to formally restrict ourselves to a (maximal, non-unique) subset �′ ⊆ � with
b1

(
�′) = 0. The set I ×�′ is the natural domain of ϕ and �, but first we have to find

the solution and then we may fix �′. Due to the rotational symmetry of the problem,
we may already assume

�′ ⊆ W := R
3 \

{
�x ∈ R

3
∣∣∣∣x1 ≥ 0, x2 = 0

}
⊆ � (3.8c)

such that R × W = dom (t, r, θ, φ). Note that the assumption of stationarity implies
∇(∂ϕ/∂t) = 0, but ϕ may be time dependent. If we now proceed, as usual, by sep-
aration of variables in spherical coordinates, we obtain a splitting ϕ (t, r, θ, φ) =
ϕ0 (t) + ϕ1 (r) + ϕ2 (θ) + ϕ3 (φ) with E ∈ R and ϕ0 (t) = t E/h̄, a radial equation
and a spherical one. The latter leads to ϕ3 (φ) = −m̃φ with m̃ ∈ R and the associated
Legendre equation for ξ : (−1, 1) → C : y = cos θ → ξ (y) given by

(
1 − y2

) d2ξ

dy2
(y) − 2y

dξ

dy
(y) +

(
l(l + 1) − m̃2

1 − y2

)
ξ (y) = 0. (3.8d)

Now one usually asks for the condition

� (t, r, θ, φ) = � (t, r, θ, φ + 2πk) (3.8e)
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to be satisfied for some x ∈ Q and for all k ∈ Z, which constrains m̃ (and ultimately
the other quantum numbers l and n) to be integer. If � were a global function, (3.8e)
would follow from the continuity of � on Q = R × � and the property of �, that
there exists an �x ∈ � such that the curve γ�x : R → �, given by

γ�x (s) :=
(√(

x1
)2 + (

x2
)2 cos s,

√(
x1

)2 + (
x2

)2 sin s, x3
)

, (3.8f)

lies entirely in �. However, assumption (3.8e) cannot be made if we only ask for � to
be continuous on R × �′ ⊆ R × W . As Eq. (3.8d) also admits solutions for l, m̃ not
integer [56, p. 288ff]; [57, p. 180f], we may continue to solve the other equation8 and
ultimately find that there are solutions � with m̃ /∈ Z and X ∈ X

(
R × �′), given by

X(t,r,θ,φ) = ∂

∂t
|(t,r,θ,φ) + h̄ m̃

mr2 sin2 θ

∂

∂φ
|(t,r,θ,φ) (3.8g)

in spherical coordinates. Keep in mind that �′ also depends on |�|, in particular we
have to exclude all zeros of the wave function. Yet the field X , as given by (3.8g), can
be smoothly extended to R × W ′ with

�′ ⊂ W ′ := R
3 \

{
�x ∈ R

3
∣∣∣∣x1 = x2 = 0

}
⊆ � (3.8h)

and b1
(
W ′) = 1. For this X equation (3.8a) does not hold. (3.8a) would indeed hold

for all stationary solutions, had we ad hoc assumed that � is a global function, i.e.
�′ = �. Conversely, had we ad hoc assumed condition (3.8a), then � would be a
global function.

We conclude that the Madelung equations in general admit more solutions than
the Schrödinger equation, if the latter is assumed to be globally valid. However, since
any point in Q ⊆ R

4 admits a contractible neighborhood, Theorem 3.2 shows that
the claim that “theories based on the Madelung equations simply do not reproduce
the Schrödinger equation” [39, §IV] is incorrect. While the existence of apparently
unphysical additional solutions in this model of the hydrogen atom does indicate a
potential defect of the model, it does not imply that the Madelung equations yield
an incorrect description of quantum phenomena: This model of the hydrogen atom
neglects the motion of the nucleus, the dynamics of the electromagnetic fields, as well
as relativistic effects. It is thus plausible that the problemexpressed in [45, §3.2.2]; [39];
[38, §6]; [44] stems from an oversimplification of the physical situation. Moreover,
Wallstrom raised the interesting question of stability of stationary solutions in this
model [39, §IV]. Since unstable solutions are in a sense ‘unphysical’, it might be
possible to exclude the additional ones on that ground.

We now fix some terminology, that is partially derived from [39] and partially our
own. The Madelung picture consists of the Madelung equations, that is

8 Note that only the (E < 0)-solutions are admissible, as the other ones are not L2-integrable (c.f. [58,
§36]).
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(i) the Newton–Madelung equation (3.6a),
(ii) the continuity equation (3.6b),
(iii) the vanishing vorticity/irrotationality of the drift (velocity) field X (3.6c),

the topological condition b1 (�t ) = 0 for all t ∈ I and the irrotationality of the
(external) force (3.6d). Obviously, the Madelung equations are a system of partial
differential equations of third order in the probability density ρ and of first order in
the drift field X . That means in particular, that ρ and X are the primary quantities of
interest in the Madelung picture, as opposed to e.g. (time-dependent) wave functions
in the Schrödinger picture or (time-dependent) operators in the Heisenberg picture. It
is therefore justified to call a solution of the Madelung equations (ρ, X) a state (of

the system) and
(
ρt , �Xt

)
with ρt ∈ C∞ (�t ,R+), �Xt ∈ X (�t ) a state (of the system)

at time t ∈ I . The flow of the drift field is called the drift flow or probability flow
and the mass of the particle times the drift field is called the drift momentum field, for
reasons explained in Sect. 5. The drift field X is a Newtonian observer vector field
and, in accordance with Definition 2.3, �X is the spacelike component of the drift field.
In reminiscence of the hydrodynamic analogue (unsteady potential flow) [29, §2.1],
we call (3.6g) the Bernoulli-Madelung equation. The operator U : C∞ (Q,R+) →
C∞ (Q,R), as defined by

U (ρ) := − h̄2

2m

�
√

ρ√
ρ

, (3.9)

is known as the quantum potential or Bohm potential. Analogously, we call the oper-
ator �FB := −∇U : C∞ (Q,R+) → XNs (Q) (with (∇U ) (ρ) := ∇ (U (ρ))) the
quantum force or Bohm force. This terminology is primarily historically motivated,
we emphasize that the interpretation of−∇U as an actual force is deeply problematic.
Again, we refer to Sect. 5.

A priori, there are four real-valued functions constituting a solution of the Newton–
Madelung equation: ρ and three components of �X . If X is irrotational and b1 (�t ) ≡ 0,
it is enough to know the two functions ρ and ϕ (or the wave function �) to fully
determine the physical model. If a solution � of the Schrödinger equation is known,
the simplest way to recover ρ and X is by calculating

ρ = �∗� (3.10)

and the spacelike component �X of X via (3.6j). So by using Madelung’s theorem
(Theorem 3.2), we can move freely between the Schrödinger and Madelung picture,
at least locally.

Remark 3.4 (On Time Dependence) In correspondence with the arguments outlined in
Sect. 2, the irrotationality of X is a consequence of the (special-)relativistic condition

d (η · X) = 0, (3.11a)

where X is an observer vector field on an open subset of Minkowski spacetime(Q ⊆ R
4, η

)
. As noted before, in the Newtonian limit X0 ≈ c and we thus obtain

the conditions
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1

c

∂ �X
∂t

≈ 0, ∇ × �X = 0 (3.11b)

instead of mere irrotationality onQ to stay consistent within the relativistic ontology.
That is, if X is irrotational, it must also be approximately time-independent in the
above sense or the (naive) Newtonian limit breaks down.

There is a mathematical problem that deserves to be mentioned.

Question 1 (Existence and Uniqueness of Solutions) Assuming that the probability
densityρ and the drift field X are given and smooth on� ≡ �0, underwhich conditions
does there exist a smooth solution to theMadelung equations? Is it unique? Is the vector
field X complete?

Apparently the question has been partially resolved by Jüngel et al. [59], who showed
local existence and uniqueness of weak solutions in the special case of X being a
gradient vector field.

Returning to our original discussion in the beginning of this section, how do the
Madelung equations offer a resolution of the problems associatedwith the Schrödinger
equation?

We see that the use of the complex function � makes it possible to rewrite the
Newton–Madelung equation and the continuity equation into one complex, second
order, linear partial differential equation, which is arguably simpler to solve. Thus one
can view the Schrödinger equation as an intermediate step in solving the Madelung
equations, as has already been noted by Zak [60]. The Madelung equations are for-
mulated in terms of quantities that do not have a “gauge freedom”, that means all the
quantities in the Madelung equation are in principle uniquely defined and physically
measurable. This argument alone is sufficient to consider theMadelung equationsmore
fundamental than the Schrödinger equation. For example, the actual physical quantity
corresponding to the phase ϕ must be a coordinate-independent derivative thereof, as
the physically measurable predictions in the Schrödinger picture are invariant under
the transformation ϕ → ϕ + ϕ0 with ϕ0 ∈ R and, of course, coordinate transforma-
tions. A similar argument can be made for the potential V of the force �F . Thus, if
one wishes to generalize the description of quantum systems with one Schrödinger
particle to the relativistic and/or constrained case, starting with the Madelung equa-
tions rather than the Schrödinger equation is the natural choice. Indeed, the Madelung
equations offer a straight-forward (though unphysical, cf. footnote 4) generalization
of the Schrödinger equation to the (general)-relativistic case, but we will not discuss
this here. For this reason, the resolution of (v) and (vi) will be postponed. The treat-
ment of constrained non-relativistic systems can be approached by either solving the
Madelung equations together with these constraints directly (cf. Sect. 5.1 for the inter-
pretation of ρ and X ) or by passing over to a Hamiltonian formalism with the use of
the Bernoulli-Madelung equation (3.6g). A generalization of the Madelung equations
for non-conservative forces is immediate and the generalization to dissipative systems
has been pursued in [42]. Note that for some generalizations it might not be possible
to construct a Schrödinger equation, notably for rotational drift fields and forces.

Remark 3.5 (Geometric Constraints) If the constraint is geometric, i.e. if the particles
are constrained to an embedded submanifold M of R3, like the surface of a sphere
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or a finite Möbius band, the adaption of the Madelung equations follows the same
procedure as for any other Newtonian continuum theory:

(i) We first assume thatQ is an open subset ofR×M ⊆ R
4 instead ofR4 = R×R

3

and pull back the structures dτ, δ,∇ on R4 via the inclusion map ξ : R× M →
R × R

3. Defining I,�t , ιt as in (2.25) and taking again the pullback of the
spatial metric to get ht for each t ∈ I , this yields the vector calculus operators
divergence, gradient and Laplacian on Q, in full analogy to Definition 2.5.

(ii) Then we write down the continuity equation for these new vector calculus oper-
ators, ρ ∈ C∞ (Q,R) and X = ∂/∂t + �X ∈ X (Q) such that �X ιt is tangent to
�t for every t ∈ I (defined in full analogy to (2.25)).

(iii) Restrict the force to Q ⊆ R × M and take only the tangential parts, then write
down the Newton–Madelung equations for the new force �F and vector calculus
operators.

(iv) We replace the irrotationality of �X by the condition

d
(
ht · �X ιt

)
= 0 ∀t ∈ I. (3.12)

(v) To construct a Schrödinger equation, we require that the new �F also satisfies
the above condition and, of course, the topological condition b1 (�t ) = 0 for all
t ∈ I needs to hold. Then proceed as in the proof of Theorem 3.2.

We conjecture that this procedure just yields the ordinary Schrödinger equation on M
with Laplacian induced by h (considered as Riemannian for fixed t).

Madelung’s theorem also gives an explicit condition for the global equivalence of
the equations, which is, of course, topological. However, in practice we do not know
the natural domain Q of ρ and X in advance, but we are given (sufficiently smooth)
initial values of ρ and X on {0} × � with � = �0 ⊆ R

3 and would then like to
know whether we can apply Theorem 3.2 globally. There is a convenient answer to
this question by noting that, on the grounds of Theorem 5.2, we may identifyQ ⊆ R

4

to be the image of {0} × � under the flow of X . Since we would like to have a global
dynamical evolution of the system, we may assume that there exists an open interval
I ⊆ R such that the flow �t of X is defined for all t ∈ I . The next proposition states
the topological consequences of this situation.

Proposition 3.6 (Topology of�t andQ)Let (Q, dτ, δ,O) be aNewtonian spacetime,

I ⊆ R be an open interval with 0 ∈ I and let � := �0 =
{
�x ∈ R

3

∣∣∣∣(0, �x) ∈ Q
}
.

Further, let X be a Newtonian observer vector field with flow �, such that Q is the
image �I ({0} × �).

Then �t :=
{
�x ∈ R

3

∣∣∣∣(t, �x) ∈ Q
}
is diffeomorphic to � andQ is diffeomorphic to

I × �. In particular, the Betti numbers bi (�), bi (�t ) and bi (Q) coincide for every
i ∈ N0 := N ∪ {0} and t ∈ I .

Proof Defineφ := ��I×({0}×�)
. Hence dom φ = I×� andφ is surjective ontoQ. Since

X is a Newtonian observer vector field, we find that there exists a smooth function
�� : I × � → Q such that for all t ∈ I, �x ∈ �:
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φ (t, �x) = �t (0, �x) = (
t, ��t (�x)

)
. (3.14a)

Since �t is injective for any t ∈ I , so is ��t : � → �t and also φ. As φ (t, . ) =
�t (0, . ) =

(
t, ��t (. )

)
for all t ∈ I , the differential (∂ ��t/∂ �x) of ��t has full rank (cf.

[46, Proposition 3.2.10/1]) and thus

φ∗ =
(

1 0
∂ ��
∂t

∂ ��
∂ �x

)
(3.14b)

has full rank. Since a smooth bijection whose differential has full rank everywhere is
a diffeomorphism, φ is a diffeomorphism. ThereforeQ is diffeomorphic to I ×� and
since �t is an embedded submanifold of Q, it is diffeomorphic to {t} × � under φ

and hence diffeomorphic to � itself.
Since diffeomorphic manifolds are (smoothly) homotopy equivalent, Q is homo-

topy equivalent to I × � and all �t s are homotopy equivalent to �. One can directly
proof from the definition of (smooth) homotopy equivalence (see e.g. [46, Definition
4.3.5]) that for any smooth manifold � and an open interval I , the product I × � is
homotopy equivalent to �. Thus Q is also homotopy equivalent to �. Since homo-
topy equivalent manifolds have isomorphic de Rham cohomology groups (cf. [46,
Corollary 4.3.10]), their Betti numbers coincide. ��

This means that under physically reasonable assumptions, the global applicability
of Theorem 3.2 is determined by the topology of the initial value hypersurface �. If
one works in the relativistic ontology, this condition b1 (�t ) = 0 for all t ∈ I should
be replaced by b1 (Q) = 0. In the (naive) Newtonian limit, Proposition 3.6 then states
that the latter condition implies the former one. We also wish to note that, if � is not
connected, (3.6) prevents the components from ‘merging’—in the sense that a solution
cannot be extended to later times. Physically, this means that a two-particle model is
more appropriate in this situation.

If the condition b1 (�t ) ≡ 0 is not satisfied (as in Remark 3.3), a global ϕ need not
exist and as a consequence a global wave function cannot be constructed. Apart from
stationary solutions on Q = R × � with b1 (�) �= 0, this can happen, for example,
when attempting to describe the Aharonov-Bohm effect [61], or when a connected
component of the domain of the initial probability density ρ0 := ρ (0, ) is not simply
connected. It is unknown to us whether topological problems, as expressed in Remark
3.3, also occur in other quantum mechanical models. If not, it is possible to argue
that the Madelung equations are the global version of the Schrödinger equation. This
might yield additional physical solutions.

4 Relation to the Linear Operator Formalism

The Schrödinger picture of quantum mechanics is not limited to the Schrödinger
equation, but also gives a set of rules how to determine expectation values, standard
deviations and other probabilistic quantities for physical observables like position,
momentum, energy, et cetera. In this section we examine how the Schrödinger picture
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and the Madelung picture relate to each other. We will observe that the Madelung pic-
ture suggestsmodifications of the current axiomatic framework of quantummechanics,
namely the replacement of the von Neumann axioms with the axioms of standard
probability theory by Kolmogorov. Again, we will restrict ourselves to the 1-particle
Schrödinger theory, but our treatment has consequences for the general axiomatic
framework of quantum mechanics.

The general, mathematically naive formalism of quantum mechanics states [12,
§3.6]; [47, §2.1], that for every “classical observable” A there is a linear mapping9

Â : H → H of some Hilbert space H with inner product 〈.,.〉, that is assumed to be
hermitian/self-adjoint, in the sense that ∀�,� ∈ H the operator Â satisfies:

〈
�, Â�

〉
=

〈
Â�,�

〉
. (4.1)

The self-adjointness (4.1) assures that the eigenvalues of Â, if they exist, are real. This
is necessary, because the eigenvalues are taken to be the values of the observable A and
these have to be real, physical quantities. Note that the time t is treated as a parameter
in this formalism and both Â and � may depend on it.

In the Schrödinger theory,H is assumed to be a vector space consisting of functions
� from some open subset � of R3 to C. Moreover, it should be equipped with the
L2-inner product [62, §B]

〈.,.〉 : H × H → C : (�,�) → 〈�,�〉 :=
∫

�

d3x �∗ (�x)� (�x) . (4.2)

Hence H ought to be a linear subspace of L2 (�,C) and, to assure completeness, it
ought to be closed. The fact, that this formalism does not allow for the domain of � to
change over time, can be remedied by allowing � and henceH to be time-dependent,
but then one does not just have one Hilbert space, but a collection

{
Ht

∣∣∣∣ t ∈ I ⊆ R

}
with Ht ⊆ L2 (�t ,C) for all t ∈ I. (4.3)

So the formalism of Newtonian spacetimes is also implicitly used in this approach.
The most common operators in the Schrödinger theory are the position operators

x̂ i = xi , the momentum operators p̂i = ıh̄ ∂/∂xi , the energy operator10 Ê = ıh̄∂t and
the angular momentum operators L̂i = εi j

k x̂ j p̂k . With the exception of the position
operator, these are all related to spacetime symmetries (cf. [47, §3.3]), and they are the
operators that are used to heuristically construct more general ones by consideration
of the “classical analogue”. The question, which other observables are admissible, is
in general not answered by the formalism itself—a problem which was used to justify
more sophisticated quantization algorithms [6, §8.1]; [23, §5.1.2].We leave the Galilei

9 Note that this can already not be the case for the momentum operator �̂p, but can only hold true for its
“components” p̂i .
10 Usually this is called the Hamiltonian operator, but we take the Hamiltonian to be (3.6g). Considering
ıh̄ ∂/∂t as the energy operator is more natural from the relativistic point of view.
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operators and spin operators aside in this article, as the former are better treated in the
context of approximate Lorentz boosts and spin is not covered here.

The knowledge of the operators x̂ i and p̂ j is enough to show the naiveté of the
Hilbert space formalism: Assuming a sufficient degree of differentiability of functions
inH, we obtain the canonical commutation relation

[
x̂ i , p̂ j

]
= ıh̄ δij . (4.4)

It is common knowledge among mathematical physicists that this is in direct conflict
with the self-adjointness of x̂ i and p̂ j . For the sake of coherence, we state and prove
the relevant assertion.

Proposition 4.1 There does not exist any Hilbert space (H, 〈.,.〉) with linear maps
x̂, p̂ : H → H such that the following hold:

(i) x̂, p̂ are self-adjoint.
(ii) x̂, p̂ satisfy the commutation relation

[
x̂, p̂

] = ıh̄. (4.5)

Proof Since both x̂ and p̂ are self-adjoint, they are bounded (cf. [12, Corollary 9.9]).
From (4.5), we find that x̂, p̂ are non-zero and thus have non-zero (operator) norms

‖x̂‖, ‖ p̂‖. Since x̂ is self-adjoint, it is normal and thus ‖x̂2‖ = ‖x̂‖2. Now one proves
by induction that for all n ∈ N we have

[
x̂n, p̂

] = ınh̄ x̂n−1. (4.6a)

Taking norms and applying the triangle inequality, we get

nh̄ ≤ 2‖x̂‖‖ p̂‖, (4.6b)

thus x̂ , p̂ or both, are unbounded. This is a contradiction. ��
Therefore, even within the application of the 1-particle Schrödinger theory, the

Hilbert space formalism is inadequate.We refer to the book byHall [12] for alternative
descriptions.

Still, we would like to have a closer look at the expectation values of x̂ i , p̂ j , L̂k

and Ê in the context of the Madelung picture. Indeed, we will find that the Madelung
picture gives a natural explanation for why the operators yield the physically correct
expectation values—within Kolmogorovian probability theory (cf. [63,64]). In addi-
tion, the Madelung picture offers a natural, more intuitive formalism and, by making
the analogy to Newtonian mechanics explicit, shows directly which observables are
‘physical’.

In order to show this, we need to make some assumptions on the ‘regularity’ of
the involved functions and spaces: So given a Newtonian spacetime (Q, dτ, δ,O), we
would like the operators x̂ i , p̂ j , L̂k and Ê to be well-defined and satisfy
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〈
�t , Â�t

〉
=

〈
Â�t ,�t

〉
(4.7)

for each t ∈ I and all ‘wave functions’

� : Q → C : (t, �x) → �t (�x) . (4.8)

Observe that (4.7) only makes sense for Â = Ê , if we choose a potential V : Q → R

and, for given t , interpret Ê as the Schrödinger operator

− h̄2

2m
� + V (t, .) . (4.9)

Hence, from the Cauchy–Schwarz inequality and integration by parts, we conclude
that � needs to be an element of11

W (Q,C) :=
{
� ∈ C2 (Q,C)

∣∣∣∣ ∀ i ∈ {1, 2, 3} ∀t ∈ I : �t , xi�t ,
∂�t
∂xi

, ∂�t
∂t

lie in L2 (�t ,C) and�t vanishes on the boundary ∂�t in R
3
}
,

(4.10)
needs to satisfy the Schrödinger equation and that �t needs to split into a product
of three open intervals (up to a set of measure zero). The necessity of this unnatural
assumption on �t may be considered another indicator that the standard formulation
of quantum mechanics is problematic. Commonly, one makes the implicit, stronger
assumptions that each �t is R3 (up to a set of measure zero), that � is a smooth
solution of the Schrödinger equation with ∂�t

∂t ∈ L2 (�t ,C), and that for each t ∈ I
the function �t is an element of the space of (C-valued) Schwartz functions

S (�t ,C) := {
�t : �t → C

∣∣ ∀multi-indicesα, β : (
xα ∂β �t

) ∈ L2 (�t ,C)
}

(4.11)
on�t (cf. [62]; [65, §5.1.3 & §6.2]). For convenience, we choose the stronger assump-
tions on � and its domain in the following.

In order to relate everything to the Madelung picture, assume we are also given
functions ϕ ∈ C∞ (Q,R) and R ∈ C∞ (Q, [0,∞)) such that � = Re−ıϕ . Since
�t is L2-integrable for every t , we may normalize it to have unit L2-norm. Then
ρ := R2, pulled back to�t , satisfies the mathematical axioms of a probability density
(with respect to d3x).

In the first instance, we may consider the position operators:

〈
�t ,x̂

i�t

〉
=

∫

�t

�∗
t (�x)

(
x̂ i�t

)
(�x) d3x =

∫

�t

x i ρ (t, �x) d3x = E

(
t, xi

)
.

(4.12)

11 ‘�t vanishes on ∂�t ’ means that for any sequence (�xn)n∈N in �t converging to �x ∈ ∂�t ⊂ R
3, we

have lim
n→∞ �t (�xn) = 0.

123



Found Phys (2017) 47:1317–1367 1345

So we get the expectation value E (t, .) of the i th coordinate function with respect to
the probability density ρ(t, .) on �t . Then

E (t, �x) :=
(
E

(
t, x1

)
,E

(
t, x2

)
,E

(
t, x3

))
∈ R

3 (4.13)

gives the mean position of the particle at time t in �t . Moreover, in Kolmogorvian
probability theory, we can ask for the expectation value of the position E (t, �x,Ut ) on
any other Borel setUt ∈ B (�t ), its standard deviation et cetera. This can also be done
in the ‘von Neumann philosophy’ by multiplication with the indicator function

χUt : �t → C : �x → χUt (�x) :=
{
1 , �x ∈ Ut

0 , else
, (4.14)

but the product χUt �t is usually not differentiable.
Second, consider the momentum operators: By (4.7) for Â = p̂i , we have

〈
�t , p̂i�t

〉 = � 〈
�t , p̂i�t

〉
(4.15)

and thus

〈
�t , p̂i�t

〉 = −ıh̄
∫

�t

�∗
t (�x) ∂�t

∂xi
(�x) d3x (4.16)

= −ıh̄
∫

�t

�∗
t (�x)

(
∂R

∂xi
(t, �x) e−ıϕ(t,�x) − ı

∂ϕ

∂xi
(t, �x) �t (�x)

)
d3x

(4.17)

=
∫

�t

−h̄
∂ϕ

∂xi
(t, �x) ρ (t, �x) d3x (4.18)

= E

(
t,mXi

)
, (4.19)

using (3.6e). Therefore, if we are willing to interpret mXi as the random variable
for the i th component of the momentum,

〈
�t , p̂i�t

〉
yields its expectation value. This

interpretation is indeed a result of the correspondence principle (see Sect. 5). In the
linear operator formalism, however, we cannot simply replace the domain of the inte-
gral by some Ut ∈ B (�t ), since p̂i will no longer be interpretable as a momentum
operator: The quantity ∫

Ut

d3x �∗
t (�x) (

p̂i �t
)
(�x) (4.20)

is usually not real. Hence the expectation value of the i th momentum in the regionUt

is not clearly defined in the ‘von Neumann philosophy’. Contrarily, in Kolmogorovian
probability theory we only need to compute

E

(
t,mXi ,Ut

)
:=

∫

Ut

mXi (t, �x) ρ (t, �x) d3x (4.21)
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to get the expectation value.
Concerning the energy operator, we need to exclude the zeros of� fromQ to define

the energy E via

E := m

2
�X2 + V − h̄2

2m

�
√

ρ√
ρ

. (4.22)

Note that L2 (�t ,C \ {0}) is not a vector space, so ‘superposition’ of wave functions
requires a formal change of domain. By (4.7) for Â = Ê and the Bernoulli-Madelung
equation (3.6g), an argument analogous to the one for the momentum operators indeed
yields

〈
�t ,Ê�t

〉
= ıh̄

∫

�t

�∗
t (�x) ∂�t

∂t
(�x) d3x (4.23)

=
∫

�t

h̄
∂ϕ

∂t
(t, �x) ρ (t, �x) d3x (4.24)

=
∫

�t

E (t, �x) ρ (t, �x) d3x (4.25)

= E (t, E) . (4.26)

For the angular momentum operators the previous arguments can be repeated and
one also finds the correct expectation value (cf. [44, §3.8.2]).

Therefore, our treatment not only suggests the inadequacy of the von Neumann
approach, but also leads us to the following postulate.

Postulate 1 Quantum theory is correctly axiomatized by Kolmogorovian probability
theory.

Clearly, the statement is in potential conflict with von Neumann’s projection postu-
late. Historically, vonNeumann laid themathematical foundations ofmodern quantum
mechanics in 1932 [20], while Kolmogorov’s axiomatization of modern probability
theory [63] was published in 1933. Therefore von Neumann did not know of Kol-
mogorov’s work at the time and that certain formulations of the Born rule [30] were
in potential conflict with it. The view commonly taken today with respect to this issue
[66,67] is that quantum theory employs a more general notion of probability: There
is a non-commutative probability theory and the Kolmogorovian approach is the par-
ticular, commutative case. However, apart from quantum theory, we are not aware
of any applications of said generalization. Taking the historical context into account,
it appears plausible that the projection postulate is wrong. In fact, the current view
implicitly suggests that Kolmogorov has failed in axiomatizing probability theory in
its most general framework, a statement we find troublesome.

Let us consider a specific example to make the potential conflict between the two
approaches more explicit: If we ask for the probability of the particle in the state
(ρ, X) to have an energy E (t, .) in the range J ∈ B (R) at time t ∈ I , then, following
Kolmogorov, this is given by

∫

Ut

ι∗t ρ d3x, Ut := (E (t, .))−1 (J ) ⊆ �t . (4.27)
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In contrast, if Ê , considered as a linear map from a linear subspace of S (�t ,C) to

L2 (�t ,C), has a point spectrum

{
En ∈ R

∣∣n ∈ N

}
(cf. [12, §9.4]) with mutually

orthonormal eigenvectors
(
�n,t

)
n∈N, then, following von Neumann, the same proba-

bility is given by ∑
n∈N,En∈J

|〈�n,t ,�t
〉|2. (4.28)

It is clear that for �t = �n,t both expressions yield either 1 or 0 for En ∈ J or
En /∈ J , respectively. For more general states the two do not appear to coincide,
but this statement requires a proof (in terms of a counterexample) and maybe there
exists an approximation. If the expressions (4.27) and (4.28) differ, it is an empirical
questionwhich one of the two, if any, is correct. As a difference can only arise for time-
dependent states, one should postpone this question until the corresponding relativistic
theory has been laid out (see Remark 3.4).

5 Interpreting the Madelung Equations

As claimed previously, the Madelung equations are easier to interpret than the
Schrödinger equation and it is the aim of this section to convince the reader of the truth
of this statement. We first give a probabilistic, mathematical interpretation in Sect. 5.1
and then proceed with a more speculative discussion in Sect. 5.2.

5.1 Mathematical Interpretation

Contrary toMadelung’s interpretation of ρ as amass density [28], quantummechanics
is now widely acknowledged to be a probabilistic theory with ρ being the probability
density for finding the particle within a certain region of space. This is referred to as
the Born interpretation or ensemble interpretation, named after Max Born [30]. For
a discussion on why other interpretations are not admissible, we refer to [47, §4.2]
and, of course, Born’s original article [30]. Taking this point of view, it is potentially
fallacious to assume that X describes the actual velocity of the particle, as this appears
to oppose the probabilistic nature of the theory. However, we can interpret �j := ρ �X
as the probability current density, since then the continuity equation (3.6b) reads

0 = ∂ρ

∂t
+ ∇ · �j . (5.1)

The physical meaning of this equation becomes more apparent when it is formulated
in the language of integrals: Let N = N0 ⊆ �0 be an open set, � be the flow of X
and assume Nt := ��t (N ) ⊆ �t exists for each t ∈ I . This is for instance the case, if
we have the situation of Proposition 3.6. Then the Reynold’s transport theorem [54,
§6.3] implies that for such an N moving along the flow

∂

∂t

∫

Nt

ι∗t ρ d3x = 0 (5.2)
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for all times t ∈ I—provided ι∗t ρ is integrable on �t for all t ∈ I .12 Integrability is
assured by the fact that ι∗t ρ is a probability density for all t ∈ I and, following the
discussion in Sect. 4, one may even assume that it is Schwartz, i.e.

ι∗t ρ ∈ S (�t ,R+) ∀t ∈ I. (5.3)

By Gauß’ divergence theorem we have

∫

∂Nt

�jιt · d �At = −
∫

Nt

ι∗t
∂ρ

∂t
d3x . (5.4)

Equation (5.2) states that the probability that the particle is found within N stays
conserved if N moves along the flow of X . (5.4) states that the probability flux leaving
Nt is the probability current through its surface obtained from �j .

We conclude that the primary importance of the drift field lies in the fact that its
flow describes the probabilistic propagation of the system. If, for example, we take
N to be a “small” region with 95% chance of finding the particle and we let this
region “propagate” along the drift flow, then this probability will not change over
time. However, it might happen that the volume of N increases or decreases. Under
appropriate assumptions on convergence, the change of volume of N is given by

∂

∂t

∫

Nt

d3x =
∫

Nt

(∇ · �X)
ιt
d3x, (5.5)

again by the Reynold’s transport theorem. Therefore, the divergence of the spacelike
component of the drift field is a measure of how N spreads or shrinks with time.
Moreover, “holes” in �, appearing for instance due to the vanishing of ρ, can also be
viewed as propagating with time (see Proposition 3.6 and [34, p. 11]), due to the fact
that the ‘spacelike part’ of the drift flow ��t is a diffeomorphism for each time t . The
situation is schematically depicted in figure 1.

Remark 5.1 (Particle Structure) In the Madelung picture particles are treated as
(approximately) point-like, since the support of ι∗t ρ can be made arbitrarily small.
In this context, we would also like to remark that, if the initial probability density is
given by a Gaußian with standard deviation σ ∈ R+ and the initial drift field is con-
stant, then solving the Madelung equations and taking the limit σ → 0 might make it
possible to assign trajectories, energies, etc. to individual particles.

Yet this discussion does not fully answer the question how the drift field itself is to be
interpreted and practically determined. The following result, central to the resolution

12 On a technical note, to assure convergence of (5.2), we also require that the function

N → R : �x → sup
t∈I

|
(

∂ρ

∂t

(
t, ��t (�x)) +

(
∇ ·

(
ρ �X

)) (
t, ��t (�x))

)
det

((
∂ ��t

∂ �x
)

(�x)
)
|

is bounded and integrable over N . This is trivially true if the continuity equation holds.
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Fig. 1 The region N , where the
particle is located with initial
probability
P (0, N ) = ∫

N ι∗0ρ d3x ,

propagates along the flow �� in
space. After time t > 0, the
region has been transformed to
Nt = ��t (N ). The probability to
find the particle, as well as the
type and number of holes within
the region, stays conserved, but
the region may be distorted,
shrunk or expanded

of this question, was conjectured by Christof Tinnes (TU Berlin) and a weaker version
had already been discovered by Ehrenfest [68].

Theorem 5.2 (Expectation Value of the Drift Field) Let (Q, dτ, δ,O) be a Newtonian
spacetime, let �t , I be defined as in (2.25), X ∈ XNt (Q) be a Newtonian observer
vector field with flow�, ρ ∈ C∞ (Q,R+ ∪ {0}) a positive, real function such that ι∗t ρ
is Schwartz and a probability density for all t ∈ I , and assume the continuity equation
(3.6b) holds. Define for all t ∈ I , Ut ∈ B (�t ) and f ∈ C∞ (Q,R) the expectation
value of f at time t over Ut :

E (t, f,Ut ) :=
∫

Ut

ι∗t f ι∗t ρ d3x . (5.6a)

Then for every N ∈ B (�0), such that the functions

N → R : �x → sup
t∈I

∣∣∣∣∣X
i (�t (0, �x)) ρ (�t (0, �x)) det

((
∂ ��t

∂ �x
)

(�x)
)∣∣∣∣∣ (5.6b)

are bounded and integrable for each i ∈ {1, 2, 3}, and every t ∈ I s.t. Nt := ��t (N )

exists, we have

E

(
t, �X , Nt

)
= d

dt
E (t, �x, Nt ) . (5.6c)

Here we defined

E

(
t, �X ,U

)
:=

(
E

(
t, X1,U

)
,E

(
t, X2,U

)
,E

(
t, X3,U

))
∈ R

3. (5.6d)

Proof The theorem is a corollary of the Reynold’s transport theorem, formulated as
in [29, p. 10]. Since ��t , if defined, is a homeomorphism onto its image, the respective
topologies coincide, and hence N is a Borel set if and only if Nt is a Borel set. We
now note that for f ∈ C∞ (Q,R) with
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N → R : �x → sup
t∈I

∣∣∣∣∣X�t (0,�x) ( f ) ρ (�t (0, �x)) det
((

∂ ��t

∂ �x
)

(�x)
)∣∣∣∣∣ (5.7a)

bounded and integrable, and assuming convergence of the respective integrals, the
continuity equation (3.6b) implies

d

dt

∫

Nt

ι∗t ( fρ) d3x =
∫

Nt

(
∂ ( fρ)

∂t
+ ∇ ·

(
fρ �X

))

ιt

d3x (5.7b)

=
∫

Nt

(
∂ f

∂t
+ ∇ f · �X

)

ιt

ι∗t ρ d3x (5.7c)

=
∫

Nt

X ιt ( f ) ι∗t ρ d3x . (5.7d)

Now set f = xi with i ∈ {1, 2, 3}, observe that ι∗t
(
xiρ

)
is integrable and due to

X
(
xi
) = Xi the result follows. ��

Equation (5.6c) roughly means that the expectation value of the drift field in some
region N moving along its flow is given by the velocity of the expectation value of
the position in Nt . Moreover, Theorem 5.2 can be used to find an even more direct
interpretation of the drift field.

Corollary 5.3 (Interpretation of the Drift Field) Let (Q, dτ, δ,O) be a Newtonian
spacetime, let �t , I be defined as in (2.25), X ∈ XNt (Q) be a Newtonian observer
vector field with flow �, ρ ∈ C∞ (Q,R+}) a strictly positive, real function such that
ι∗t ρ is Schwartz and a probability density for all t ∈ I , and assume the continuity
equation (3.6b) holds.

Define E as in Theorem 5.2 and for t ∈ I , Ut ∈ B (�t ) let P (t,Ut ) := E (t, 1,Ut )

be the probability of Ut . Further, for ε ∈ R+, �y ∈ � := �0 define

N ε (�y) :=
{
�x ∈ �

∣∣∣∣dist (�x, �y) < ε

}
(5.8a)

with dist denoting the Riemannian distance on
(
�, ι∗0δ

)
.

Then for every ε ∈ R+, �y ∈ � and every t ∈ R such that N ε
t (�y) := ��t (N ε (�y)) ⊆

�t exists and the functions (5.6b) for N = N ε (�y), i ∈ {1, 2, 3} are bounded and
integrable, we have

�X�t (0,�y) = lim
ε→0

d
dtE

(
t, �x, N ε

t (�y))

P
(
t, N ε

t (�y)) . (5.8b)

Proof By assumption N ε
t (�y) is defined, thus the restriction �ξt of ��t to the open

submanifold N ε (�y) and its image is also defined. Since N ε (�y) is open in�, it is Borel-
measurable. As N ε

t (�y) is also open, non-empty and ρ > 0, it follows P
(
t, N ε

t (�y)) >

0. By Theorem 5.2 we have
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d
dtE

(
t, �x, N ε

t (�y))

P
(
t, N ε

t (�y)) =
E

(
t, �X , N ε

t (�y)
)

P
(
t, N ε

t (�y)) =
∫
N ε
t (�y) ι∗t

(
Xi ρ

)
d3x

∫
N ε
t (�y) ι∗t ρ d3x

ei , (5.9a)

where ei is the coordinate basis vector for i ∈ {1, 2, 3}. For every ε′ ∈ R with
0 < ε′ ≤ ε the point ��t (�y) is in N ε′

t (�y) by definition. Moreover, the diameter of
N ε′
t (�y) tends to zero as ε′ → 0 due to continuity of �ξt . Considering ι∗t ρ d3x as a

volume form and applying [69, §8.4, Lemma 1] yields

Xi ◦ �t (0, �y) ei = lim
ε→0

∫
N ε
t (�y) ι∗t

(
Xi ρ

)
d3x

∫
N ε
t (�y) ι∗t ρ d3x

ei . (5.9b)

Identifying ei with ∂i , such that we may write �X = Xiei , completes the proof. ��
Corollary 5.3 yields a direct interpretation of the drift field in terms of probabilistic

quantities. Since P
(
t, N ε

t (�y)) is the probability of the particle to be found in the set
N ε
t (�y), equation (5.9b) states that the drift field gives the infinitesimal velocity of the

expectation value of the particle’s position per unit probability of finding the particle
in this region. That is, if the particle is certain to be found in a small enough region
of space, the (approximately constant) drift field gives the velocity of the expectation
value of the particle’s position in this region. To be able to make practical use of this
statement, we postulate the following.

Postulate 2 (Interpretation of the Drift Field) The velocity of the expectation value
of the position for an ensemble of particles in a small region of space is equal to the
average velocity of the ensemble of particles in that region.

Postulate 2 states that one can determine the drift field at each point by determining
the average velocity of the particles hitting the point. Within a stochastic analogue of
the theory, it should be possible to assign a precisemathematicalmeaning to Postulate 2
and determine its truth value, but for our purposes here we shall assume the truth of the
statement without proof.13 In this context, it is useful to observe that, by construction,
the domains dom ρ and dom X are equal and hence the drift field only needs to be
given where particles can actually be found. This compatibility of the interpretation of
the drift field with the ensemble/Born interpretation of quantum mechanics is also the
pointwhere theMadelungpicture differs [42] from theBohmian interpretation [31,32].
Indeed, our discussion shows how the ensemble interpretation naturally coheres with
the mathematical formalism of the Madelung picture, once the Born rule is assumed.

We are now in a position to practically apply the formalism. This is implicitly
related to the question whether the wave function is “objective” or “an element of
physical reality” [71]. We translate this as being measurable in the physical sense. In
the Madelung picture, this amounts to the question whether the probability density
and the drift field are measurable, both of which are probabilistic quantities.

13 It should be noted that there have already been attempts to find a stochastic formulation of the Madelung
equations within the so-called theory of ’stochastic mechanics’, developed mainly by Nelson. See e.g. [70]
for a review.
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Consider now, for example, a particle gun that is used in the set-up of an arbitrary
quantummechanical experiment, in principle describable via theMadelung equations.
Before we run the experiment, we need to collect initial data to solve the Madelung
equations. According to the Born interpretation, we do this by placing a suitable
detector in front of the particle gun and measuring the 3-dimensional (!) distribution
of positions (where the particle hits) and, following Corollary 5.3 and Postulate 2,
the average momenta (how hard the particle hits) at each point. If we run the experi-
ment infinitely often, which is of course an idealization, we expect to obtain a smooth
probability density ρ and a smooth drift momentum field P = mX in space at time
t = 0.We can then run the actual experiment (ideally) infinitely often and measure the
distribution of positions and the average momenta at each position. If the Madelung
equations provide a correct description of the physical process and the detectors are
ideal, this data will coincide with the one predicted by the Madelung equations for the
given initial data. Therefore, both ρ and �X are measurable and thus objective as prob-
abilistic quantities. No measurement problem appears in this case: The time evolution
of the probability density is deterministic and the theorymakes only probabilistic state-
ments on individual measurements. Furthermore, the mathematical formalism makes
no statement on the process of measurement itself.

Remark 5.4 (Ideal Detectors & the Heisenberg Relation) Within the Copenhagen
interpretation of the Schrödinger theory, it is possible to deny the existence of ideal
detectors on the basis of the (here one-dimensional) Heisenberg inequality

�x �p ≥ h̄

2
. (5.10)

However, if one employs the ensemble interpretation and observes that (5.10) is deriv-
able within the Schrödinger picture, one is forced to conclude that (5.10) is not a
statement on individual particles, but one of statistical nature. That is, within the
ensemble interpretation, (5.10) does not support the interpretation it is given within
the Copenhagen point of view, which itself has been subject to criticism for a long
time [71]. In fact, the Heisenberg inequality is a general statement on Fourier trans-
forms [65, Theorem 4.1] and�p is not the standard deviation for the momentum given
by the Madelung picture in conjunction with the Kolmogorovian probability theory
(see Sect. 4 and [44, §6.7.3 & §8.5]). Hence, if Postulate 1 is adapted and �p stands
for the standard deviation in momentum, the Heisenberg inequality is incorrect. We
conclude that the Heisenberg inequality does not put any restrictions on the precision
of individual measurements and it does not appear to bear any physical significance
within the Madelung picture.

For further discussion on the interpretation of quantummechanical states, we again
refer to [47, §9.3].

Having concluded our discussion on the continuity equation (3.6b), we now inter-
pret the irrotationality of the drift field (3.6c). Equation (3.6c) has a direct interpretation
using the fluid dynamics analogue, namely that it has vanishing vorticity

�σ := ∇ × �X . (5.11)
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Following [54, §1.4], half of the vorticity “represents the average angular velocity of
two short fluid line elements that happen, at that instant, to bemutually perpendicular”.
This statement derives itself from [29, Eq. 2.1]. Returning to the situation as depicted
in Fig. 1, we therefore find that the irrotationality of X means that N does not shear or
rotate when propagating along the flow of X . Thus any distortion of the region N over
time is due to shrinkage or expansion, not shear or rotation. Moreover, the vorticity of
the velocity field of a fluid gives the infinitesimal circulation density, which is derived
from the integral definition of the curl operator [72]. In particular, if the vorticity
of X vanishes, then for all curves γ in some �t joining any two points in a simply
connected, open subset U ⊆ �t , the value of

∫

γ

ι∗t (δ · X) (5.12)

depends only on the endpoints. Several researchers [73–75] have already suggested
that quantummechanical spin is related, or even equivalent, to the vorticity of the drift
field. Indeed, the factor of 1/2 is very suggestive and there exists already works in the
literature concerning this question [76, §9 & §10]; [37,41,44,73,75,77], but as this
article is only concerned with single-Schrödinger particle systems, we do not discuss
this relation here. Moreover, we are not in a position to pass judgment or elaborate
on this relation yet. For a mathematical introduction to vorticity, see [29, §1.2] and
for a very illustrative, freely accessible, graphical exposition of the curl operator, see
[78]. We also highly recommend watching the movie on vorticity [79] from the point
of view advocated here.

It remains to interpret the Newton–Madelung equation (3.6a). Due to the fact that
the Newton–Madelung equation (3.6a) reduces to Newton’s second law (2.14) for
masses that are “large” (as compared, e.g. to the Planck mass), the classical limit of
the entire model is quite easily obtained by looking at the large mass approximation
of the Madelung equations:

mẊ = �F, (5.13a)

∇ × �X = 0, (5.13b)

∂ρ

∂t
+ ∇ ·

(
ρ �X

)
= 0. (5.13c)

As the prior discussion also applies here, these equations yield a probabilistic version
of Newtonian mechanics.14

This makes them compatible with the ensemble interpretation and the requirement
that Newtonian mechanics must hold in some limit, as stated in the introductory
discussion. Note again that ρ should not vanish on its specified domain and that
dom ρ = dom X . Hence, following Theorem 3.2, we observe that the first ad hoc
modification of Newtonian mechanics in quantum mechanics, i.e. the replacement of
Newton’s 2nd lawwith theSchrödinger equation, amounted to implicitly goingover to a

14 This is another instance where the von Neumann approach to probability (see Sect. 4) leads to question-
able results: Why should one change the probability theory in the large mass-approximation?
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probabilistic formalism and adding the Bohm force.We are thusmotivated to postulate
a new “principle of classical correspondence”, which was originally postulated by
Niels Bohr in terms of quantum numbers [17].

Postulate 3 (Non-quantum Limit) For large masses, non-relativistic quantum theory,
that is quantummechanics, reduces to a probabilistic version ofNewtonianMechanics.

Experimentally, this limit can be made quantitative by sending particles of different
mass through a double slit and finding the value mq at which equations (5.14) cease
to be a good description. The so-called classical limit is then m/mq % 1, which
is independent of units. On a theoretical level, one could non-dimensionalize the
Madelung equations and look at the magnitude of the perturbation introduced by the
Bohm force, but we abstain from doing this here.

A generalized version of the Newtonian limit is also immediate.

Postulate 4 (Generalized Newtonian Limit) For large masses, small velocities and
negligible spacetime curvature, relativistic quantum theory reduces to a probabilistic
version of Newtonian Mechanics.

Clearly, it is only theNewton–Madelung equation that changes under the non-quantum
limit and our previous discussion on the other two Madelung equations remains valid
in this case. An interpretation of the Newton–Madelung equation thus has to focus on
the Bohm force

�FB (ρ) = h̄2

2m
∇ �

√
ρ√

ρ
. (5.14)

A peculiar feature of this term, as well as the Madelung equations as a whole, is the
invariance under the scaling transformation ρ → λρ with λ ∈ R \ {0}. Hence the
Madelung equations do not change, if ρ is not normalized, a fact that could be useful
for the generalization to multi-particle systems (see Sect. 6). For the interpretation
of (5.14), this means that the value of the term is not influenced by the value of the
probability density, but only by its shape.

This property is to be expected a priori by the principle of locality: If we have two
isolated ensembles specified by the states (ρ1, X1) , (ρ2, X2), respectively, satisfying
dom ρ1∩dom ρ2 = ∅, then describing them separately from another via theMadelung
equations or together should not make any difference in terms of dynamics. More
precisely, for A ⊆ Q := dom ρ1 ∪ dom ρ2 we again define the indicator function

χA : Q → R : x → χA (x) :=
{
1 , x ∈ A

0 , else
(5.15)

of A, χ1 := χdom ρ1 , χ2 := χdom ρ2 , and we set ρ := χ1 ρ1/2 + χ2 ρ2/2, as well as
X := χ1 X1 + χ2 X2. As for dom ρ1 ∩ dom ρ2 = ∅ both ρ and X are smooth, we can
now check whether they are a solution to the Madelung equations. We indeed have

�
√

ρ√
ρ

= �
√

ρ1√
ρ1

χ1 + �
√

ρ2√
ρ2

χ2, (5.16)
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and the other two equations also separate, as required by this consistency condition.
Interestingly, if the domains overlap and ρ and X are sufficiently smooth, then (5.16)
does not hold and thus (ρ, X), as defined, is in general not a solution of the Madelung
equations. This can be explained by the fact that one gets an entirely new ensemble in
that case and hence the non-linearity of (5.14) in ρ is not necessarily a defect of the the-
ory. Non-linearity here means that �FB is not linear (and not even defined), if extended
to the vector space C∞ (Q,R) via (5.14). This point of view potentially explains the
results of the double slit experiment, but the statement remains of speculative nature
unless a careful mathematical treatment is given.

As compared to the respective Newtonian theory, the term (5.14) also causes an
additional coupling between the drift field and the probability density, that goes beyond
the requirement that the flow of the drift field is probability preserving in the sense
of the continuity equation (5.2). Thus how the probability density changes in space
determines how the drift field behaves and vice versa in a nonlinear manner. Conse-
quently, perhaps quite surprisingly to some, it is a nonlinearity that causes much of
quantum-mechanical behavior.

Intuitively, (5.14) represents a kind of noise that disappears for large masses, which
leads us propose an alternative terminology for the term (5.14): Quantum noise or
Bohm noise.

5.2 Speculative Interpretation

At this point, we can only speculate on the origin of the (quantum) noise term, but
there is a particular interpretation that suggests itself given our current knowledge
of physics and considering that the term is only relevant for small masses. Before
we proceed, we would like to stress that what follows is speculative and should be
considered as standing fully separate from the rest of the article. We understand the
controversial nature of various attempts of interpreting quantum mechanics [80], but
we consider the need to find a coherent interpretation of the equations as vital for the
progress in the field. Needless to say, any interpretation of a theory of nature has to
exhibit a strong link between the applied theory and the mathematical formalism and
may not contradict either. In the following, we will speak about quantum mechanics
in general and not limit ourselves to the 1-particle Schrödinger theory.

In 2005 Couder et al. [81] discovered that a silicon droplet on the surface of a
vertically oscillating silicon bath remains stationary in a certain frequency regime,
in which coalescence is prevented. When the sinusoidal, vertical force on the bath
reaches a critical amplitude, the droplet begins to accelerate and can be made to
“walk” on the surface of the bath [82]. Surprisingly, this basic setup is a macroscopic
quantum analogue and can be used to buildmore complicated ones. For amathematical
model see [83], and for a brief summary we refer to [84]. If two droplets approach
each other, they either scatter, coalesce or lock into orbit. In the latter case, Couder
et al. observed that the distances between the averaged orbits is approximately one
Faraday wavelength [82], which means that they are “quantized”, in the sense of
being discrete. Moreover, when Couder and Fort studied the statistical behavior of
such a droplet passing a double-slit wall, it resembled the one found in the quantum-
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mechanical analogue [85]. The fact that Eddi et al. were in addition able to establish
the occurrence of tunneling for the droplet [86], suggests that a qualitatively similar
behavior occurs in the microscopic realm. How is this to be explained?

A physicist in the beginning of the twentieth century might have justified this
analogy via a vibration of the ether: If the particle is massive enough, the influence of
the ether’s motion on the particle is negligible and it behaves according to Newton’s
laws. Yet when the mass of the particle is small, the more or less random vibrations of
the ether cannot be neglected any more and a statistical description, that models the
noise caused by the ether’s vibration via (5.14), becomes necessary.

Of course, this explanation is flawed.
The Michelson–Morley experiment famously ruled out any influence of the ether’s

motionon light [87] and an influenceonmatter hadnot beenobserved,whichultimately
led to the creation of the theory of special relativity [88]. In addition, the existence of
the ether would have established the existence of a preferred ‘rest frame’, being the
one in which the ether is stationary, which in turn, if the above interpretation were
correct, would suggest a natural tendency of particles to move along with the ether.
This would cause an additional drift caused by the overall “ether wind”, that is not
present in the Newton–Madelung equation (3.6a).

However, according to the current state of knowledge, by which we mean the point
of view imposed by the Einstein equivalence principle and the related non-Euclidean
geometry of spacetime (see [48,49] for an introduction to general relativity, [25,89]
for a more mathematical treatment), a similar argument can be made explaining the
noise term (5.14). That is, if we assume the existence of gravitational waves that are
too weak to have a directly observable influence on macroscopic objects, yet strong
enough to have an influence on microscopic particles such as electrons.

Consider the following, purely relativistic Gedanken experiment: Say we have
a physical, inertial observer Alice who perceives her surroundings as having, for
instance, a flat geometry15 and who, by some miraculous power, is able to sense the
position of an otherwise freely moving particle without disturbing it. Note that this is
not a contradiction to the Heisenberg inequality, as explained in Remark 5.4. If the
sufficiently weak gravitational waves are more or less random and there is no grav-
itational recoil, the particle will move geodesically in the actual geometry, but this
will not be a straight line according to Alice’s perceived, macroscopic geometry. If
there is gravitational recoil, the particle might not move geodesically and could in
principle loose or gain mass, depending highly on the relation between the spacetime
geometry and the mass of the particle. Either way, Alice would describe the motion
of the particle as random and she would have to resort to a statistical description,
possibly taking the shape of the Madelung equations. Just as in the case of the droplet,
the apparently random behavior would be caused by a highly complicated, non-linear
underlying dynamics, very susceptible to initial conditions, yet would also be deter-
ministic. Alice, being aware of the underlying physics,would have to construct amodel
for geometric noise, that is noise caused by seemingly random small-scale curvature
irregularities in spacetime.

15 This means that Alice does not observe any gravitational lensing or deviation from straight-line motion
of macroscopic, unaccelerated objects.
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While we are aware of the radicality of this ansatz, it appears plausible to us that
the Madelung equations and thus also the Schrödinger equation could be a model
of geometric noise. The fact that a droplet on a vibrating fluid bath is a quantum-
mechanical analogue appears to be more than mere coincidence, considering that
space and time cannot be assumed to be adequately described by special relativity
on the scale of the Bohr radius without severe extrapolation. Even though we do
not expect general relativity to be valid at the quantum scale, the thought experiment
shows how someone only trained in relativity theorymight interpret quantumbehavior.
Moreover, this conceptual approach can potentially resolve the old question why the
electron surrounding a hydrogen nucleus does not radiate, whichwould cause the atom
to be instable [15], and why a description employing the Coulomb force works well,
despite it only being valid in electrostatics:

The electron is standing almost still with respect to the nucleus, but the local space-
time around the nucleus is non-static. In the hydrodynamic analogy, it is like a ball
caught in a vortex of a vibrating fluid, which in this case is spacetime itself. The ball
does not move much with respect to the fluid, but the fluid does move with respect to
an outside observer at rest.

A geometric origin of the noise term (5.14) has already been proposed by
Delphenich [90], but, to our knowledge, no satisfactory derivation has been proposed
yet. The proposal that quantum behavior is caused by random fluctuations of some
microscopic ‘fluid’ goes back to Bohm and Vigier [43]. In his model of stochas-
tic mechanics, Nelson gave a similar interpretation [91]. Tsekov has formulated his
stochastic interpretation of the Madelung equations as follows: “[. . . ] the vacuum
fluctuates permanently and for this reason the trajectory of a particle in vacuum is
random. If the particle is, however, too heavy the vacuum fluctuations generate neg-
ligible forces and this particle obeys the laws of classical mechanics.” [42] Note that
the word ’forces’ is better replaced by ’deviations from the macroscopic metric’ in
the interpretation we propose. Ultimately this interpretation should be supported by
a mathematical derivation of the Madelung equations from a relativistic model of
random irregularities in spacetime curvature.

Question 2 If quantum behavior is caused by random small-scale curvature irregu-
larities in spacetime, how is the noise term to be derived?

We do not believe that such a derivation, if it exists, is currently within reach and
thus caution against any attempts to find it. Even if the hypothesis of quantum behavior
being caused by gravitational waves is correct, it appears doubtful that the Einstein
equation holds on the quantum scale and thus one lacks the basic equations to model
the gravitational waves. Even if they are known, one will most likely be faced with
a system of non-linear partial differential equations for which no general solution
can be found and then one would still have to find a way to model the randomness.
Clearly superposition of waves is only applicable if the differential equation is linear,
which makes modeling the randomness a non-trivial task already for Ricci-flat plane
waves. Moreover, if one works in the linear approximation, in general one encounters
arguably unphysical singularities in the metric [92].

Ultimately, a deep question that needs to be addressed in this interpretation of
quantum mechanics is how the violation of Bell’s inequality is achieved. Ballentine
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traces the violation of Bell’s inequality in quantum mechanics back to the locality
postulate used in the derivation of the inequality [47, §20.7].

Postulate 5 (Bell-Locality) If two spatially separated measurement devices A and B
respectively measure the observables a and b of an ensemble of two distinct, possibly
indistinguishable particles, then the result of b obtained by B does not change as a
different observable a′ is measured by A and vice versa.

If we assume that the stochastic interpretation is correct, then it appears to us that there
are two possible resolutions to prevent actual so-called “actions at a distance”.

The first one is that, as in the case of the droplets, the particle itself creates gravi-
tational waves and this in turn influences the motion of other particles, which might
appear like a non-local interaction. This approach appears slightly implausible to us,
since this could lead to a fluctuation in the mass of the particle, which is not observed.
In addition wewould naively expect suchwaves to travel approximately at the speed of
light with respect to the macroscopic metric, but Theorem 5 and thus Bell’s argument
also includes spacelike separated measurements [47, §20.4].

The second, to our mind more plausible resolution is to drop an assumption that is
implicit in most modern physical theories, namely that a region of space (relative to
a physical observer) containing particles is topologically simple on mesoscopic and
microscopic scales. The suggestion that there is a connection between topology and
entanglement has recently been made by van Raamsdonk [93], but, to our knowl-
edge, goes back to Wheeler [94,95]. In that case, we would not only have to renounce
the statement that spacetime is flat at the quantum scale, but also that it can be ade-
quately modeled by an open subset of R4. So the idea is that handles in spacetime are
observed as entangled particles and the system satisfies both the principle of causality
and locality as implemented in the theory of relativity. This necessitates the view of
fundamental particles as geometric and topological spacetime solitons, as inWheeler’s
“geometrodynamics” [94,95]. Then Theorem 5 is not applicable as the particles are
not distinct and thus Bell’s inequality can be violated even if Theorem 5 is true. The
non-locality observed for entangled particles is then not real, but only apparent, caused
by interactions of the particles with the measurement apparatus and a naive conception
of space and time.

However, in order to overcome the speculative nature of this discussion, we suggest
that the proper implementation of spin and the treatment of multi-particle systems in
theMadelung picture is carried out first. Following the discussion in Sect. 2, this might
require a detour through the relativistic theory and the Newtonian limit.

6 Modification: Particle Creation and Annihilation

As stated in the introduction, the Madelung equations can be naturally modified to
study a wider class of possible quantum systems. For instance, one can consider
rotational forces and ‘higher order quantum effects’ by viewing the noise term (5.14)
as the first order in a Taylor approximation in 1/m around 0 of a non-linear operator
in ρ and its derivatives. The modification we propose here is of conceptual nature
and intended to be applied in the generalization of the formalism to many particle
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systems. Though we do not wish to fully address this generalization here, we remark
that, due to the symmetrization postulate [47, §17.3], the concept of spin needs to
be properly implemented in the Madelung picture first, to be able to study systems
with multiple mutually indistinguishable particles. The results obtained in the linear
operator formalismcan serve as a guide (see [47, §18.4]), but should also bequestioned.

The phenomenon of particle creation and annihilation is not one that requires a
relativistic treatment per se [47, §17.4], despite the fact that it is most commonly
considered within relativistic quantum theory. Besides, the treatment in quantum field
theory is also not free of problems (see e.g. [96, §9.5]). This raises the question how this
phenomenon should be modeled in the Madelung picture. Following our discussion
in the previous section, it becomes obvious that the continuity equation

∂ρ

∂t
+ ∇ ·

(
ρ �X

)
= 0, (6.1)

needs to be modified, as, once normalized, it leads to the conservation of probability
∫

�t

ι∗t ρ d3x = 1 ∀t ∈ R. (6.2)

In fluid mechanics (6.1) is the conservation of mass [29, §1.1]. To model a change in
mass of the fluid, e.g. due to chemical reactions, one includes a source term

ũ = ∂ρ

∂t
+ ∇ ·

(
ρ �X

)
, (6.3)

which implies that

∂

∂t

∫

�t

ι∗t ρ d3x =
∫

�t

ι∗t ũ d3x, (6.4)

by the Reynold’s transport theorem (modulo questions of convergence). In quantum
mechanics, Eq. (6.4) can be interpreted as stating that the probability of finding the
particle anywhere changes with time, which is the desired modification to the con-
tinuity equation. More precisely, ũ should be replaced by a smooth, possibly trivial
operator u applied to ρ and X , in the sense that

u (ρ, X) : Q → R (6.5)

is smooth for all smooth ρ and X . That the domain of u (ρ, X) is Q, rather than,
e.g. Q × Q, is required by the principle of locality. Moreover, since probabilities are
nonnegative and not greater than 1, we also have to demand

∫

�t

ι∗t ρ d3x ∈ [0, 1] ⊂ R ∀t ∈ I. (6.6)

Thus the Madelung equations for one Schrödinger particle that can be created and
annihilated (e.g. by formation from or disintegration into gravitational waves, see
Sect. 5) consist of the Newton–Madelung equation (3.6a), the irrotationality of the
drift field (3.6c) and the modified continuity equation
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∂ρ

∂t
+ ∇ ·

(
ρ �X

)
= u (ρ, X) , (6.7)

where the precise form of u is still unknown. Due to the scaling invariance of the
Newton–Madelung equation, thismodification does not change the underlying dynam-
ics. We also remark that the requirement for the equations to separate for isolated
ensembles puts restrictions on u (see page 40sqq.).

Proposition 6.1 Let (Q, dτ, δ,O) be a Newtonian spacetime with b1 (�t ) = 0 for
all t ∈ I , as defined in (2.25), let X ∈ XNt (Q) be a Newtonian observer vector
field, �F ∈ XNs (Q) be a Newtonian spacelike vector field, ρ ∈ C∞ (Q,R+) a strictly
positive, real function,

u : C∞ (Q,R+) × XNt (Q) → C∞ (Q,R) : (ρ, X) → u (ρ, X) (6.8a)

an operator and m, h̄ ∈ R+.
Then the irrotationality of X (3.6c) and F (3.6d) imply that ∃ϕ, V ∈ C∞ (Q,R)

such that equations (3.6e), (3.6f) hold and by setting � := √
ρ e−ıϕ ,

ξ (�) := h̄

2|�|2 u

(
|�|2, ∂

∂t
+ h̄

2ım

(∇�

�
− ∇�∗

�∗

))
, (6.8b)

the Newton–Madelung equation (3.6a) together with equation (6.7) imply

ıh̄
∂�

∂t
= − h̄2

2m
�� + V� + ıξ (�) �. (6.8c)

Conversely, for � ∈ C∞ (Q,C \ {0}), V ∈ C∞ (Q,R) and

ξ : C∞ (Q,C \ {0}) → C∞ (Q,R) : � → ξ (�) (6.8d)

satisfying (6.8c), define ρ := |�|2, �F via (3.6f), u via (6.8a) as well as (6.8b) and �X
via (3.6j) such that X := ∂/∂t + �X ∈ XNt (Q). Then (3.6a), (6.7), (3.6c) and (3.6d)
hold.

Proof The proof is entirely analogous to the one of Theorem 3.2. Instead of (3.7i),
we get

2R
∂R

∂t
− h̄

m

(
2R∇R · ∇ϕ + R2�ϕ

)
= u

(
R2,

∂

∂t
− h̄

m
∇ϕ

)
. (6.9a)

Using (3.6j), Definition (6.8b) above and Formula (3.7h) for ��, we obtain

h̄
∂R

∂t
= − h̄2

2m
� (

eıϕ��
) + Rξ (�) . (6.9b)

Together with the real part of eıϕ�� (3.7k) we indeed get (6.8c). The reverse impli-
cation is also proven in full analogy to Theorem 3.2. ��

123



Found Phys (2017) 47:1317–1367 1361

If we now define an operator �̂ acting on S (
R
3,C \ {0}) via

�̂�t :=
(
− h̄2

2m
� + V + ıξ (�t )

)
�t (6.10)

for �t ∈ S (
R
3,C \ {0}), then �̂ is usually non-linear and need not even be defined

on S (
R
3,C

)
. The Schrödinger equation modeling particle creation and annihilation

Ê�t = �̂�t (6.11)

can then not be recast into an eigenvalue equation for �̂, as the separation ansatz
will not work. We have thus proposed a physically reasonable model in which the
current axiomatic framework of quantum mechanics breaks down (see Sect. 4 and
[47, §2.1]).

7 Conclusion

In the introductory discussion we have argued that the use of a quantization algorithm
in the formulation of quantum mechanics is a strong indication that quantum mechan-
ics and thus quantum theory as a whole is, as of today, an incomplete theory. We also
suggested that the identification of fundamental geometric quantities is a promising
path to overcome this somewhat unsettling feature, as these quantities will inevitably
be part of a new axiomatic framework for the theory. We then proceeded in Sect. 2
by constructing a Newtonian spacetime on which we then formulated the Madelung
equations in Sect. 3. This construction enabled us to proof a local equivalence of the
Madelung equations and the Schrödinger equation for irrotational forces. By relating
the Madelung equations to the linear operator formalism thereafter, we showed that
the Madelung equations naturally explain why the position, momentum, energy and
angular momentum operators take the shape commonly found in quantum mechanics
textbooks. These results strongly indicate that the Madelung equations formulated on
aNewtonian spacetime provide the natural mathematical basis for quantummechanics
and that this basis should include the relevant aspects of Kolmogorovian probability
theory. In Sect. 5.1 we gave a formal discussion of the Madelung equations that can
be used for practically interpreting and applying the formalism, as well as extending
the mathematical model. We then proceeded in Sect. 5.2 by speculating that quan-
tum mechanics provides a statistical model for spacetime geometric noise, which is
a variant of the stochastic interpretation developed by Bohm, Vigier and Tsekov. To
give an example how to naturally extend the Madelung equations, we proposed an
unfinished model for particle creation and annihilation for single-Schrödinger par-
ticle systems in Sect. 6. We observed that this can lead to a non-linearity in the
resulting Schrödinger equation and thus makes the linear operator formalism inap-
plicable.

Some of our results have been summarized in the table. The abbreviations QM and
GQT stand for quantum mechanics and geometric quantum theory, respectively.

123



1362 Found Phys (2017) 47:1317–1367

Subject Textbook/Copenhagen QM GQT in Newtonian
limit for Schrödinger
particles

cf.

Spacetime
model

Newtonian spacetime
(Q, dτ, δ,O) with
�t = R

3 (modulo sets of
measure zero) ∀t ∈ I , but
implicit

Newtonian spacetime
(Q, dτ, δ,O)

Section 4 &
Section 2

Single particle
state

(Spinor) wave function � Probability density ρ and
drift field X

Section 3 &
Section 5.1

Probability
theory used

von Neumann with projection
postulate

Kolmogorov with measure∫
d3x ι∗t ρ applied on Borel

sets or Lebesque sets of
�t ⊆ R

3

§4 & Post. 1

Observables Inner products of wave
functions, elements in the
spectrum of (linear)
endomorphisms of a Hilbert
space H

Probabilities and expectation
values of real-valued
functions onQ (possibly
depending on states)

As above

Measurement
problem

Unresolved; in Copenhagen
interpretation measurement
causes ‘wave function
collapse’

Not an issue; wave function is
a mathematical tool
encoding information on
ensembles of particles;
measurement itself is not
modeled

Section 5.1 &
Remark 5.4

Wave-particle
duality

Particle identified with wave
function �; interpreted as
actual wave in Copenhagen
interpretation

Makes no statement on
internal structure of
particles; treats them as
effectively point-like

Remark 5.1

Superposition Fundamental principle of
QM; implemented via
linear operator formalism
on some Hilbert space

Not a principle; only sensible,
if � exists and dynamical
evolution equation in � is
linear

Sections 4, 5.1 &
6

Classical cor-
respondence

QM supposedly yields
Newtonian mechanics in
the limit h̄ → 0

A Newtonian probability
theory is obtained in large
mass approximation

Eq. (5.14) & Post.
3

Canonical
quantization

Ill-defined scheme to obtain
dynamical equations from
Newtonian mechanics

Rejected; instead dynamical
equations are postulated,
justified by arguments and
empirical evidence

Sections 1 & 3

Uncertainty
relation

Interpreted as fundamental
uncertainty in measurable
position and momentum

Relation formally derivable,
but interpretation not
supported; no restriction on
maximal precision of
measurement on theoretical
level

Remark 5.4 &
Section 5.1

Particle
creation &
Annihilation

Not possible; in QFT via
second quantization
formalism

Possible in principle via
modification of continuity
equation

Section 6

Fundamental
theory?

Yes, in Newtonian limit No, phenomenological Sections 1 & 5.2

Despite all of these remarkable successes of the Madelung picture, there are still
many open problems that need to be addressed to complete it and put quantum
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theory on a new foundation. From a mathematical point of view, the most impor-
tant one is formulated by Theorem 1. We are currently working on the proper
generalization of the Madelung equations to the relativistic setting, which is of
conceptual importance due to the principle of relativity as discussed in the begin-
ning of Sect. 2. However, there are many potentially fruitful paths of extending the
Madelung equations in the non-relativistic setting already. How is spin to be geomet-
rically implemented? How does the generalization to many particle systems work?
How exactly do we model particle creation and annihilation? Finally, there remains
the question of interpreting the Madelung equations: How does the hydrodynamical
quantum analogue discovered by Couder et al [81–83,85,86,97] relate to the actual
behavior of quanta? How is matter related to spacetime geometry on the quantum
scale?

To answer these questions, the non-quantum limit, the existing literature onquantum
theory formulated in the linear operator formalism (e.g. [21,41,47,98]), as well as
already existent results obtained in Bohmian mechanics (e.g. [31,32,43,44,76,77,99,
100]) will be of use.
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