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Abstract In this paper we study a classical and theoretical system which consists of
an elastic medium carrying transverse waves and one point-like high elastic medium
density, called concretion. We compute the equation of motion for the concretion as
well as the wave equation of this system. Afterwards we always consider the case
where the concretion is not the wave source any longer. Then the concretion obeys a
general and covariant guidance formula, which leads in low-velocity approximation
to an equivalent de Broglie-Bohm guidance formula. The concretion moves then as if
exists an equivalent quantum potential. A strictly equivalent free Schrödinger equation
is retrieved, as well as the quantum stationary states in a linear or spherical cavity.
We compute the energy (and momentum) of the concretion, naturally defined from
the energy (and momentum) density of the vibrating elastic medium. Provided one
condition about the amplitude of oscillation is fulfilled, it strikingly appears that the
energy and momentum of the concretion not only are written in the same form as in
quantum mechanics, but also encapsulate equivalent relativistic formulas.

Keywords Classical system · Wave-particle duality · Guidance formula · Equivalent
quantum equations · Quantum and relativistic energy

1 Introduction

Quantum-like phenomena were observed for the first time within the last decade in
classical and macroscopic experiments, in which droplets bounce and ‘walk’ on a
vibrating liquid substrate (initiated in [1] and see [2] for a review). Experiments in
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which a droplet, called a walker, is guided by the wave that it has generated remind
us of the pilot wave suggested by de Broglie [3] (see [2,4,5] for a discussion in
this context). Nevertheless, it seems tricky to formalise mathematically the bouncing
droplet problems in order to obtain equations close to the ones of corresponding
quantum systems. To deal with more convenient systems, from the mathematical point
of view, we have recently suggested a classical and macroscopic system [6]—also
inspired by a sliding bead on a vibrating string experiment [7]. The system consisted
of a bead oscillator free to slide on an elastic medium, whose transverse wave obeys a
Klein-Gordon-like equation. This approachwas encouraging, for instancewe retrieved
a strictly equivalent free Schrödinger equation. At this step there were still problems,
the system for example restrained all the possible stationary solutions (obtained in an
equivalent quantum system) to only one.

To overcome these limitations we just modify the previous system as follows: a
very high elastic medium density—called in this paper a concretion—replaces the
previous bead oscillator. This small change strengthens the wave-particle duality of
the system and provides major improvements. It is moreover interesting to note that
the classical toy system studied in this paper also exhibits indirect resemblances to the
more quantum ones: [8–10] where an inhomogeneity interacts with a quantum wave;
and [11,12]—also inspired by the bouncing droplets experiments—in which peaked
quantum solitons are studied. These quantum models are specifically reminiscent of
the double solution theory suggested by de Broglie [13,14].

The paper is organised as follows. In the first section, we establish the equation of
motion for the concretion and thewave equation.We then focus on conditions forwhich
the concretion is not thewave source any longer.We evaluate energy andmomentumof
the concretion, derived from the corresponding densities of the system. In the second
section, we are looking for equivalent quantum equations of the system,more precisely
the free Schrödinger equation and equations about energy and momentum. Then we
study equivalent systems, without external potential in this study, which are commonly
considered in quantum mechanics handbooks.

2 The Theoretical System Proposed and Its Dynamics

The system studied in this paper is no more than the one in [6], apart from a very
little change: the bead oscillator of mass m0 becomes, here, a very high density of the
elastic medium itself. This high elastic medium density, of mass m0, is called in this
paper a concretion. As will be seen later, this small change provides very interesting
and major improvements.

The main goal of the devised system in [6] was to deal with the main characteris-
tics of the bouncing droplets experiments (see [2] for a review), while maintaining a
convenient formalism to identify quantum analogies (and differences). These experi-
ments with macroscopic and classical systems, in which droplets/walkers are piloted
and guided by the wave that they have previously generated at each bounce, exhibit
behaviours related to the wave-particle duality and some quantum-like phenomena.
These experiments remind us the pilot-wave suggested by de Broglie. It is impor-
tant to note that quantum-like behaviours are associated with a specific property of
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the system: (since the system is near the Faraday instability threshold) each trans-
verse perturbation at the surface of the bath tends to generate a harmonic oscillation
at the Faraday pulsation at the location of the perturbation. The more this tendency
(also related to the memory of the system) appears, the more can occur quantum-
like phenomena [15,16]. This property was mimicked in our suggested system in the
following manner: any element of the elastic medium had the tendency to support
transverse harmonic oscillations at pulsation�m , resulting from a quadratic/harmonic
potential. Hence, the vibrating liquid bath in the bouncing droplets experiments has
two properties: to carry propagative (transverse) capillary waves and memory effect.
This vibrating liquid bath was simplified and has become in our theoretical system
an elastic medium which supports transverse waves, obeying to a Klein–Gordon-like
equation. Indeed this kind of medium has two tendencies: to carry propagative waves
àla d’Alembert and to support standingwave, here at pulsation�m . Moreover, in order
to deal with a simple mathematical formalisation, the suggested system was inspired
by another experiment, in which a bead is free to slide on a vibrating string [7]. In the
end, the macroscopic and classical system involved in bouncing droplets experiments
has been transformed in [6] into a bead oscillator free to slide on an elastic medium
which supports transverse waves obeying to a Klein–Gordon-like equation.

2.1 Framework and Formalisation

Even ifmain justifications and explanations about the suggested systemare given in [6],
let us again shortly describe this system—which we would like to be implementable
in practice. The system (see Fig. 1 for a schematic representation) is constituted as
follows:

– An homogeneous, isotropic, elastic medium of three dimensions (where r denotes
its coordinates). (The spatial dimension is a free parameter for this system.) This
elasticmedium is subjected to a tensionT andhas amass per element of volumeμ0.
The medium carries transverse waves. T = μ0 c2m , where cm is the propagation
speed of the wave – whose specific value is not important in this article. The
transverse displacement at point r and time t is ϕ(r, t). (It is worth noting that
the transverse displacement is a real number—and in consequence ϕ constitutes
a scalar field—as for example the interface height of the liquid bath in bouncing
droplets experiments.) The elastic medium tends to support transverse standing
vibrations at pulsation �m . In the end, ϕ(r, t) is thus a scalar field which obeys
a Klein–Gordon-like equation—when there is neither any source nor external
excitation.

– The elastic medium contains an exceed mass heterogeneity, m0, constant in time.
It is important to notice that this exceed mass does not comes from an external
mass, like a bead in [6], but comes from the elastic medium itself. We assume that
the medium, which normally has a mass per element of volume μ0, carries a very
concentrated heterogeneity of the medium itself: the concretion. We assume this
heterogeneity as a point, at the location ξ at time t . The exceed mass density is
written in the reference frame R0 proper to the concretion as:
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Fig. 1 (Colour online) Schematisation of the theoretical system, here in a 1D elastic medium and in the
proper reference frame of the concretion. The harmonic potential of the medium (which mimicmemory and
Faraday pulsation in bouncing droplets experiments) is depicted by springs, whose stiffness per element of
length are indicated. Features of the homogeneous elastic medium are represented in black, features of the
concretion are in blue.

ρ0(r0, t0) = m0 δ(r0 − ξ0), (1)

where δ denotes theDirac delta function. Lastly we assume that this exceed of elas-
tic medium shares the same properties as the elastic medium itself. In other words
the heterogeneity has the same properties as the homogeneous elastic medium
times ρ0

μ0
.

– The space is separated between the three-dimensional space of the elastic medium
(which is called, for short, perceivable space) and an axis which is specific to the
transverse vibrations. (In bouncing droplets experiments the horizontal surface
bath denotes the perceivable space—onwhich a droplet ‘walks’—while the vertical
axis is the transverse axis of oscillations; in the sliding bead on a vibrating string
experiment [7] the perceivable space—along which the bead slides—is the axis
of the string at rest while the axis of transverse oscillation is the vertical axis.)
In this paper, this distinction of space is due to the fact that an observer looking
at the dynamics of a point mass along a vibrating medium pays usually more
attention to the sliding motion of the point mass than its transversal vibration—as
for example in bouncing droplets systems. Nevertheless, it could be of interest to
mention that de Broglie has studied the possibility of an existing wave mechanics
in presence of a fifth dimension hidden to our senses [17]. However we must keep
in mind, that in our suggested classical system, the transverse oscillation velocity
of the concretion and transverse displacements are measurable—as the vertical
velocity of a bouncing droplet and surface heights of the liquid bath. Anyway,
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recall that r specifies a point of the elastic medium at rest (i.e., the perceivable
space) while ϕ indicates a transverse displacement of the elastic medium. The
perceivable velocity of the concretion, v = dξ(t)

dt , the slope of the transverse wave,
∇ϕ, etc. are expressed in the perceivable space. (In the same manner, a walking
velocity of a droplet is written in the 2D horizontal surface of the bath.) In the
following, we do not use the term perceivable when referring to the location, the
velocity, etc. of the concretion if it is not necessary.

– The elastic medium is thus not dissipative. Moreover, gravity, friction, non-
linearities and other dissipative effects are neglected—in theory...

– We only consider the interaction of the concretion with the elastic medium, as if
nothing else was interacting with it. Since a Klein–Gordon-like equation governs
the wave dynamics in the elastic medium and this equation is invariant by the
Lorentz-Poincaré transformation (with cm), the study is covariant with respect to
the elastic medium (in particular the propagation speed of the wave cm).

– Apart from the study of a linear cavity (cf. Sect. 3.3), calculations are made in a 3D
elasticmedium in the following. Indeed, the introduction of three spatial degrees of
freedom for the (perceivable) space is necessary for developing a quantum analogy,
but this spatial dimension is a free parameter, rather irrelevant, for this study. On
the other hand, from an experiment point of view, a 1D or 2D (as for bouncing
droplets experiments) elastic medium would suffice for the implementation of this
theoretical system.

The system has only one Lagrangian density, the one of the wave. It contains a part
due to the d’Alembert equation (∝ [( 1

cm
∂ϕ
∂t )

2 − (∇ϕ)2] = ∂μϕ ∂μϕ), and another part
due to the tendency of the medium (coming from a quadratic potential) to support
standing waves at pulsation �m . Including the concretion, the Lagrangian density of
the system is thus written as

L = 1

2
T

(
1 + ρ0(r, t)

μ0

)[
∂μϕ ∂μϕ − �2

m

c2m
ϕ2

]
. (2)

(See Appendix for a basic comparison between this Lagrangian density and the one
with the bead oscillator presented in [6].) As expected and discussed above, we notice
that (i) this Lagrangian density is Lorentz-Poincaré invariant with respect to the con-
sidered elastic medium (i.e., the propagation speed of the wave, cm) and (ii) the system
is wave monistic (since the ‘particle’ concretion is described by the transverse wave,
ϕ, at the location of the high elastic medium density).

We also notice that the toy system suggested in this paper considers the concretion
as a stable particle. In other words, the stability of the high elastic medium density
(the concretion) is out of the scope of this paper – as well as the stability of particles
in non-relativistic quantum mechanics. Similarly, neither the question of bouncing
droplets’ stability nor very complex phenomena concerning interaction between a
droplet and the liquid bath (see e.g., [18,19]) are usually taken into accountwhenwalk-
ers’ dynamics is studied. Nevertheless let us evoke another very interesting approach
(indirectly connected with our paper), also inspired by bouncing droplets experiments,
in which dynamics of peaked quantum solitons – due to a non-linear self-focusing
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potential of gravitational nature – are studied [11,12]. According to this viewpoint,
the concretion could be seen, for instance, as a simplification of more complicated
phenomena.

Finally, let us discuss the toy system presented here in the light of the de Broglie
double solution program [13,14] (see [20,21] for current andwell-thought overviews).
Very briefly and in the scope of our study, the double solution program – which is
also a wave monistic theory – distinguishes two waves: (i) the u wave, which has a
very high amplitude around a point, accounts for the particle and (ii) the ψ wave,
which is continuous, pilots the particle. In contrast to the double solution theory, the
‘particle’ concretion is depicted by a very high elastic medium density rather than a
very high amplitude of the wave. (This becomes possible in our theoretical system
because the elastic medium is a material medium, which has a mass per element
of volume.) The transverse wave, ϕ, associated to the elastic medium can thus be
everywhere continuous. Furthermore, as seen below (cf. Sect. 2.3), the transverse
wave, ϕ, plays also the role of the “pilot wave”—devoted to ψ in de Broglie-Bohm
mechanics.We note nevertheless that our paper will not study another complicated and
subtle behaviour, a possible very rapid motion of the concretion around its average
location (cf. Sect. 2.3). In the end, as this paper does not take into account neither
the very precise behaviour of the concretion nor the stability of the concretion, this
study could also be interpreted as a simplification (with the modification concerning
the description of the particle) of the de Broglie double solution theory in a classical
system.

2.2 The Equation of Motion for the Concretion and the Wave Equation

The wave equation and the equation of motion for the concretion stem from the prin-
ciple of least action (see Appendix for more details). The equation of motion for the
concretion is written as

d

dτ

[
m0

2

(
∂μϕ∂μϕ − �2

m

c2m
ϕ2

)
Uα

]
= −m0 c

2
m ∂αϕ

(
�mϕ + �2

m

c2m
ϕ

)
, (3)

where �m denotes the d’Alembert operator (specific to the elastic medium), τ the
proper time of the concretion and Uα a covariant component of the 4-velocity of the
concretion; and the wave equation as

�mϕ + �2
m

c2m
ϕ = − ρ0

μ0

(
�mϕ + �2

m

c2m
ϕ

)
− 1

μ0

[
∂μ(ρ0) ∂μϕ

]
. (4)

The equation ofmotion shows that the concretion should be deflected by the transverse
wave ϕ, in particular by its slope at the location of the concretion. Note that the term

in brackets before the 4-velocity, m0
2 (∂μϕ∂μϕ − �2

m
c2m

ϕ2), can be seen as a kind of

effective mass which could oscillate in time. The wave equation can be interpreted
as an inhomogeneous Klein–Gordon-like equation in presence of a wave source. The
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source is localised at the position of the concretion and depends moreover on its
vibration.

2.3 The Concretion Guidance Formula

It is now interesting to investigate the special case in which the concretion is not
the wave source any longer. In a mathematical point of view, this case is particularly
significant since it allows us to establish an equivalent Schrödinger equation for the
system (cf. Sect. 3.1 and [6]). Inspired by bouncing droplets experiments, e.g., [16,
22,23], where stable orbits of walkers (which present some analogies with quantum
states) result from self-organised phenomena between walkers and the wave at the
surface of the bath, we assume that the concretion could not be the wave source any
longer after a kind of self-adaptive phenomenon between the transverse wave ϕ and
the concretion. In this case, there is a strong relationship, or an intimate harmony,
between the wave and the concretion. In particular, there is no longer back-reaction
of the concretion on the wave ϕ. We have called this state symbiosis in [6]. Hence,
once this state is reached, an observer who focuses on the waves would be blind to the
concretion. The concretion is in the wave and yet behaves as if it was not.

According to the wave equation (4), the concretion does not generate waves: (i)
when the wave is governed by the Klein–Gordon-like equation and (ii) when

∂μ(ρ0) ∂μϕ = 0. (5)

(We call this equation, which has very interesting consequences in this toy system, the
symbiosis equation.) According to the mass conservation, this equation means in the
proper reference frame of the concretion that the slope of the transverse displacement,
ϕ, is zero at the location of the concretion (i.e., ∇ϕ(ξ , t) = 0 inR0). The concretion
is thus located in its proper reference frame at a local extremum of the transverse
displacement wave ϕ. Moreover, we see later (cf. Eq. (10)) that this relation, in the
low-velocity approximation, leads to an equivalent equation to the de Broglie-Bohm
guidance formula—which played a great role in his investigations [13,14] and also in
Bohmian mechanics [24,25].

In the reference frame R where the concretion has a velocity v, the proper mass
density is written as ρ = γm ρ0, in which the Lorentz factor, γm = 1/

√
1 − v2/c2m , is

specific to the elastic medium. According to the mass continuity equation (i.e. here,
∂ρ
∂t + v · ∇ρ = 0), Eq. (5) (where ρ0 = ρ

γm
) leads to:

ρ

c2m

∂( 1
γm

)

∂t

∂ϕ

∂t
(ξ , t) − 1

γm

[
v
c2m

∂ϕ

∂t
(ξ , t) + ∇ϕ(ξ , t)

]
· ∇ρ = 0. (6)

(This equation can be directly established using Eq. (5), ρ0(r, t) = m0
γm

δ(r − ξ(t)),

m0 is constant in time and ∂δ(r−ξ(t))
∂t = −v · ∇δ(r − ξ(t)).) To make clearer the

reasoning, we use a representation of Dirac delta function as a limit of a derivable
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function.1 When ∇ρ = 0 (i.e. at the maximum of ρ), the above relation (6) yields γm
constant in time. Hence, the relation (6) implies the two following results: (i) γm and
then the speed v of the concretion are constant in time (which is in agreement with
the conservation of the energy a particle in the absence of external potential) and (i i)

v
c2m

∂ϕ

∂t
(ξ , t) + ∇ϕ(ξ , t) = 0. (7)

This relation, called in the following ϕ-guidance formula (recall ϕ is a real number
and denotes throughout this paper a transverse displacement and not a phase), plays
a crucial role in this paper. It is worth noting that this relation is very general and
is not restricted to the low-velocity approximation. Moreover Eq. (7) has a covariant
form and (again) expresses that ∇ϕ(ξ , t) = 0 in R0 (i.e., the gradient vector of the
transversewaveϕ is zero at the location of the concretion in its proper reference frame).

Let us nowwrite theϕ-guidance formula (11) in the low-velocity approximation and
in a more usual form (i.e., using a phase). It is convenient to introduce the modulating
wave, ψ , which modulates the ‘natural’ wave of the medium. As was described in [6],
ψ is specifically associated with the presence of the concretion in the elastic medium.
Using the complex notation:

ϕ(r, t) = Re
[
ψ(r, t) e−i�m t

]
, (8)

where Re[· · · ] denotes the real part. (According to this expression,ψ naturally appears
as a complexwave.) In the low-velocity approximationwe get | ∂ψ

∂t | � �m |ψ | (cf. [6]).
In addition, it is convenient to write the modulating wave as

ψ = F ei�, (9)

where the magnitude F and the phase � are two real functions. In the low-velocity
approximation, the imaginary part from the ϕ-guidance formula (7) leads to

v = c2m
�m

∇�(ξ , t). (10)

This equation is an equivalent of the formule de guidage established by de Broglie
(Eq. (26’) in [3]) and differently obtained later by Bohm [26]. (See [4] for an acute
discussion between the two different viewpoints, the de Broglie double solution and
the bohmianmechanics, in the context of walkers. In addition, it is interesting to notice
that walkers do not follow an equivalent de Broglie-Bohm guidance formula, notably
due to the presence of dissipative phenomena.)

1 Let, for instance, the mass density expressed by a 3D Gaussian function, ρ(r, t) = m0
(σ

√
2π)3

exp

[
− (r−ξ)2

2 σ2

]
, whereσ → 0.Hence, Eq. (6) becomes

(
γm
c2m

∂ 1
γm
∂t

∂ϕ
∂t +

[
v
c2m

∂ϕ
∂t (ξ , t) + ∇ϕ(ξ , t)

]
· r−ξ

σ2

)

ρ(r, t) = 0. This leads, when r = ξ , to ∂
∂t (

1
γm

) = 0.
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When the velocity of the concretion obeys the guidance formula, the amplitude of
the transverse wave at the location of the concretion is such that: ∇F(ξ , t) = 0 and
∂F
∂t (ξ , t) = 0.2 Hence, the amplitude of transverse oscillation of the concretion, called
Fc in the following, remains constant in time. Moreover the concretion is located at a
local extremum of the vibration amplitude field, F(r, t). To give an image, apart from
transverse oscillations, the concretion moves as if it surfs on the wave.

We have now to take into account the equation of motion for the concretion. When
the concretion is not the source of the wave, the wave obeys the Klein–Gordon-like
equation. The second term of (3) is thus zero. This implies two possible behaviours
when the ϕ-guidance formula is also satisfied. (i) The vector velocity of the concretion
is constant. In other words, the concretion has in the reference frameR a uniform and
linear motion. The velocity is thus given by the relation (7). (ii) The second possible
behaviour can have a vector velocity of the concretion not constant in time. This

solution occurs when the term m0
2 (∂μϕ∂μϕ − �2

m
c2m

ϕ2) before the 4-velocity in the

equation of motion is zero. Nevertheless this condition seems to be too demanding.
In addition to the low-velocity approximation, we assume in this article that the time
period of transverse oscillations is much shorter to the characteristic evolution time
of the (perceivable) motion of the concretion. (This assumption is experimentally
realised for bouncing droplets experiments and also for the bead sliding on a vibrating
string [7].) We verify with an example later (cf. Sect. 3.4) that the time period of a
circularmotion for the concretion in a spherical cavity (i.e., the characteristic evolution
time of its velocity) is much longer than the time period of a transverse oscillation
(whose order of magnitude is 1/�m). Hence, when

〈 (
∂μϕ∂μϕ − �2

m

c2m
ϕ2

)
ξ(t)

〉
= 0, (11)

where 〈(· · · )ξ(t)〉 denotes the time-averaged value at the location of the concretion, the
motion of the concretion (in symbiosis with thewave) is only guided by thewave equa-
tion, more precisely by Eq. (7). The equation of motion for the concretion (3) does not
play any role on its movement (averaged during one oscillation). Note that, contrarily
to the systemproposed in this paper, the bead oscillator in [6] cannot realise the ‘cancel-
lation’ of its equation of motion; this is a major difference between these two systems.
The possible cancellation of the equation ofmotion in the symbiosis state explainswhy
the velocity of the concretion is directly proportional to the gradient of thewave (due to
the ϕ-guidance formula). This drastically contrasts with a movement derived from an
equation of motion, in which the external influence is proportional to the acceleration.

When v satisfies theϕ-guidance formula, ∂μϕ∂μϕ becomes 1
γ 2
m c2m

(
∂ϕ
∂t )

2 = 1
c2m

(
dϕ
dτ )2,

where dϕ
dτ denotes the particle velocity of the concretion expressed in its proper time.3

2 Eq. (7) becomes in the low-velocity approximation, vψ(ξ , t) = c2m
i�m

∇ψ(ξ , t), whose real part yields

∇F(ξ , t) = 0. Put into the real part of Eq (7), we get ∂F
∂t (ξ , t) = 0.

3 In any reference frame where the concretion has the velocity v, the particle derivative is written as
d
dt = ∂

∂t + v · ∇.
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Then, Eq. (11) becomes 〈( dϕdτ )2 〉 = 〈�2
m ϕ2(ξ , t)〉. This means that the concretion

harmonically oscillates in its proper reference frame at the pulsation �m . (This also
implies, as seen in the low-velocity approximation, that the amplitude of transverse
oscillation of the concretion, Fc, remains constant in time.) Finally andmore generally,
when the concretion is in symbiosis and Eq. (11) is satisfied, we call this state in the
following as a reference state for the concretion.

To sum up, we have analysed the special case where the concretion is not the source
of the wave (and where there is no external potential). This state, called symbiosis,
means that there is a strong relationship between the wave and the concretion. In par-
ticular, there is no longer feedback of the concretion on the transverse wave ϕ. When
the symbiosis state is reached, the system is such that: (i) the wave ϕ obeys a (homoge-
neous) Klein–Gordon-like equation and (ii) the symbiosis equation (5) is satisfied. The
latter relation (in addition to the mass conservation of the concretion) implies that the
speed of the concretion is constant in time and the concretion is governed by a general
and covariant guidance formula (7), which leads in the low-velocity approximation to
Eq. (10): an equivalent of the de Broglie guidance formula. The velocity of the con-
cretion is thus directly proportional to the slope of the transverse wave at the location
of the concretion. The equation of motion for the concretion (3), whose right-hand
side is zero in the symbiosis state, should not play any role. This occurs when that (i)
the concretion has a linear and uniform movement or (ii) the concretion—piloted by
the guidance formula—has a transverse oscillation at the pulsation �m in its proper
reference frame (i.e., the relation (11) is satisfied).

Therefore, the guidance formula for the concretion results from a situation in which
the concretion is not the wave source any longer, i.e., there is in this state no feedback
of the concretion on the wave. This means in our suggested system that the concretion
is located at a local extremum of the transverse wave in its proper reference frame
(i.e., ∇ϕ(ξ , t) = 0 in R0). It is worth noting in a quantum viewpoint (cf. [8–10])
that the de Broglie guidance formula is also derived when there is no back-reaction of
the particle on the wave. We also note that the interaction between the wave and the
peaked quantum soliton [12] leads the latter to follow a very close equation to the de
Broglie guidance one.

Before investigating questions about energy, let us now mention the following
point—which is out of the scope of this article. The ‘cancellation’ of the equation
of motion mentioned above is only true in average, during one oscillation. It is thus
conceivable that the concretion has a very rapid motion around its average location.

2.4 Energetic Considerations

When the concretions satisfies the guidance formula, it moves as if exists a wave
potential, Q: an equivalent to theQuantumPotential established by deBroglie (cf. [13]
§X) and Bohm [26]. In other words, the concretion moves under the influence of the
potential Q (i.e. m0

dv
dt = −∇Q), such that

Q = − m0

2

(
c2m
�m

)2
�F

F
, (12)
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where � denotes the Laplace operator. This relation comes from the guidance for-
mula (10) and the homogeneous wave equation (4) (see Appendix for more details).

Now, we come back to the concretion defined as a high mass density of elastic
medium in order evaluate its energy, Wconc, and its linear momentum, pconc. They
are defined from the time-averaged value of their corresponding density in the elastic
medium. Note that energy and momentum densities derive from the Lagrangian den-
sity (2), by means of the stress-energy tensor. This calculation is performed when the
velocity of the concretion is governed by the ϕ-guidance formula (7). Calculations are
made in a reference frame,R, where the velocity of the concretion is v. (See Appendix
for details of calculation throughout this section.)

First, in addition to the ϕ-guidance formula, we assume that the condition (11) is
also satisfied; the concretion is then in its reference state. (Recall in this case that the
concretion harmonically oscillates in its proper reference frame at the pulsation �m

with an amplitude Fc, and its motion, in symbiosis, can be non-rectilinear.) In this
case, the energy and momentum of the concretion are written as

Wconc = γm m0

[
1

2
�2

m F2
c

]

pconc = γm m0

[ 1
2 �2

m F2
c

]
c2m

v, (13)

in which 1
2 F

2
c = 〈ϕ2(ξ , t)〉. We could be very tempted to set the experimental values

in such a way that:

1

2
�2

m F2
c = c2m . (14)

By using this relation we retrieve, naturally, the usual equivalent formulas in relativity
for the energy and momentum of a free mass m0, namely Wconc = γm m0 c2m and
pconc = γm m0 v. We assume in the following that this condition is always fulfilled in
the thought-experiment presented in this paper. (We can thus interpret in this system,
for example, 1

2 m0 v2 as a common kinetic energy of a mass m0 in the low-velocity
approximation.) But it could also be interesting to notice that the condition (14),
expressed inR0, corresponds to: (i) an average quadratic transverse oscillation velocity

of the concretion equal to c2m (i.e.,
〈 ( dϕ

dτ

)2 〉 = c2m) and (ii) an energy density, in the

very close neighbourhood to the concretion, equal to T . (An experimenter could take
advantage of these properties, maybe by means of a kind of self-adaptation.)

Second, we consider the general case where the wave ϕ oscillates in R at the
pulsation� = �m +ω, and the velocity of the concretion again obeys the ϕ-guidance
formula. In the low-velocity approximation we get:

Wconc = m0 c
2
m + m0 c2m

�m
ω, (15)

pconc = m0 v. (16)
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The momentum of the concretion has the same expression as in classical mechanics.
The expression about energy is particularly nice. This expression is maybe the most
beautiful one in this article and perhaps brings the most novelties. The energy of
the concretion encapsulates two terms: in one hand, the equivalent rest mass energy
(like in relativity) and, on the other hand, an additional energy equal to a coefficient
times the additive pulsation ω. We call in the following Econc this additional energy,

i.e., Econc = m0 c2m
�m

ω. (We notice that the coefficient m0 c2m
�m

, denoted later as h̄exp,
naturally appears from this calculation and is also derived from the condition (14)
concerning the transverse oscillation amplitude of the concretion.) Econc looks like
the energy of the system in quantum mechanics. Lastly, it is interesting to notice that
the expression (15)—which comes from the density energy of the elastic medium—is
not common in the relativity point of view. For example, the additional energy can
exist even if the concretion has no velocity, i.e., no kinetic energy in the reference
frame.

Let us now shortly evoke that energy and momentum are also investigated in the
quantum system [10], but they have the same expressions as in common quantum
mechanics, without including relativistic-like expressions. More interesting for our
study, the peaked quantum soliton in [11,12] has an energy of the order −mc2, i.e.,
an energy mc2 would be required to destabilise it. (This should enable to connect the
Durt’s approach with the toy system presented in this paper, but it is not our scope to
study this connection in depth here.)

What precedes, in particular the guidance formula, the wave potential Q and the
additional energy of the concretion, encourages us to go deeper into analogies between
our toy model and quantum systems.

3 Quantum Similarities

In this section we first write general equations of the wave and of the concretion,
in which quantum equivalences are more evident. Then we study equivalent systems
which are commonly considered in quantum mechanics handbooks, where the system
is in a stationary state and there is no external potential acting on the concretion and/or
the wave.

Along this section we consider that (i) the velocity of the concretion is much
lower than cm and (ii) the wave and the concretion are in symbiosis. In other words,
calculations are made under the low-velocity approximation, the wave ϕ obeys the
(homogeneous) Klein–Gordon-like equation (4) and the velocity of the concretion is
given by a guidance formula (7) or (10).

3.1 Equivalent Quantum Equations

As was shown in [6], in the low-velocity approximation the Klein–Gordon-like equa-
tion without source leads to

i
∂ψ

∂t
= − c2m

2�m
�ψ. (17)
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(Appendix gives a sketch of this derivation; and recall in this paper that there is no
external potential acting on the concretion and/or the wave.) It is important to note
that the Klein–Gordon-like equation (4) deals with the (real-valued) transverse wave,
ϕ, while Eq. (17) deals with the (complex-valued) modulating wave, ψ .

A proportional coefficient between wave characteristics and particle characteristics
was introduced in [6], namely:

h̄exp = m0 c2m
�m

. (18)

Note that this coefficient is not proper to the elastic medium, since it depends not only
on characteristics of the medium but also on the massm0 of the concretion used in our
thought-experiment. Nevertheless the coefficient h̄exp, specific to the studied system, is
very convenient to make a correspondence between wave and particle characteristics.
Moreover this allows us to write some relations in our suggested system with the same
form as the ones in equivalent quantum systems. For examples, using h̄exp: Eq. (17)
becomes strictly equivalent to the free Schrödinger equation, Eq. (10) to the de Broglie
guidance formula and Eq. (12) to the quantum potential.

Let ω the additional pulsation (on �m) of the wave ϕ. The additional pulsation ω

is contained in the modulating wave ψ , such that ∂�
∂t = −ω (cf. Eqs. (8) and (9)).

Hence, using Eq. (30), the wave potential (12), the guidance formula (10) and h̄exp
yield:

h̄exp ω = 1

2
m0 v2 + Q(ξ , t). (19)

An equivalent of this equation provides a way to evaluate the energy of a quantum
system from a particle point of view (see it e.g., [24] §3.5).

It is particularly interesting to discuss the energy and momentum of the concretion
written with ψ in the light of quantum mechanics. From Eqs. (15), (16), the guidance
formula (10) and h̄exp, we get:

Econc = h̄exp ω, (20)

pconc = h̄exp ∇�(ξ , t). (21)

These relations have very close similarities with the ones in quantum mechanics, for
a system without external potential. It is moreover interesting to notice that Econc and
pconc derive only from the phase � – at the location of the concretion. But before
to discuss them, let us write another usual form encountered in quantum mechanics.
Since at the location of the concretion, the amplitude of vibration F is constant in time
and has a local extremum (i.e., ∂F

∂t (ξ , t) = 0 and ∇F(ξ , t) = 0), it follows:

i h̄exp
∂ψ

∂t
(ξ , t) = Econc ψ(ξ , t)

h̄exp
i

∇ψ(ξ , t) = pconc ψ(ξ , t). (22)
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One more time these equations have a direct counterpart in quantum mechanics; apart
from they specifically concern themodulatingwaveψ at the location of the concretion.
There is another difference: in quantum mechanics these equations deal with energy
and momentum of the system, while here they concern a more concrete object, the
concretion.

It thus appears that Econc andpconc are (also) the energy andmomentumof an equiv-
alent quantum system.4 In other words, the additional energy and themomentum of the
concretion encapsulate (i.e., are in exact agreement with) the energy andmomentum of
an equivalent quantum system. This point confirms in our system what de Broglie had
suggested, here restricted to energy and momentum: the particle accounts for quanti-
ties commonly attributed to the wave-like nature of the system in quantum mechanics
(see e.g., [13], §XI). Lastly, it seems to us that the energy and momentum of the con-
cretion – which derive from the energy and momentum density in the elastic medium
– are more concrete, and very probably more easily measurable by an experimenter,
than for example the (convenient) wave potential Q, the effective kinetic energy [6] –
and even more the “wave energy” in bouncing droplets experiments [27].

3.2 Free Concretion

In this sectionwe studyplanewave solutions for the concretion.According to the equiv-
alent Schrödinger equation (17), the modulating wave is written as: ψ = A ei(k x−ω t),

where ω = k2 c2m
2�m

and A denotes an amplitude of vibration.
The concretion is located at a local extremum of the vibration amplitude field.

In the plane wave case, the concretion can be located anywhere. The amplitude of
oscillation A = Fc should be given by Eq. (14). The velocity of the concretion, given
from the guidance formula, is v = c2

�m
k ex , where ex denotes the unit vector along

the (Ox) axis. Since v is constant in time, the equation of motion for the concretion is
also satisfied. The moment of the concretion (21) is pconc = h̄exp k ex . The additional
energy of the concretion is thus equal to the expected value for a free massm0, namely
its kinetic energy.

Let us shortly generalise the previous results for higher velocities. Let a concre-
tion in symbiosis with a plane wave ϕ = A cos(k x − � t). The Klein–Gordon-like
equation (4) leads to c2m k2 = �2 −�2

m and the ϕ-guidance formula (7) (not restricted

to the low-velocity limit) v = c2m k
�

ex ; thus � = γm �m . The concretion is then in
its reference state. Since the concretion oscillates at �m in its proper reference frame
and provided the condition (14) is fulfilled, Eqs. (13) lead to: Econc = γm m0 c2m
and pconc = γm m0 v, as expected for a free mass satisfying equivalent relativistic
equations.

It is maybe interesting to notice that the wave ϕ, with a progressive and plane
phase and with a travelling and localised amplitude, given in [6] (cf. Eq. (18)), does
probably not correspond to a true solution – even if ϕ obeys the Klein–Gordon-like
(or the equivalent Schrödinger equation in the low-velocity approximation). Energy

4 The rest mass energy has no importance in quantum mechanics à la Schrödinger.
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and momentum of the concretion are then different from the expected ones of a free
mass. (This difference results from the fact that the concretion oscillates in its proper
reference frame at a pulsation different from �m .)

3.3 Concretion in a Linear Cavity

We are looking for the behaviour of the concretion put into a linear cavity of length
L , when the wave is standing in the laboratory reference frame. We consider the case
of boundary conditions such that the wave amplitude is zero in x = 0 and x = L . The
aim of this section is to illustrate the general results seen in Sect. 3.1, to discuss the
energy of the concretion and the superposition of eigenstates with a simple example.
Calculations for a 3D rectangular box are straightforward and not made here.

From the equivalent Schrödinger equation and taking into account boundary con-
ditions, the modulating wave is written as: ψ(x, t) = A0 sin(Kn x) e−iωn t , where

Kn = n π
L (n being a natural number), ωn = K 2

n c
2
m

2�m
and A0 denotes the maximum

amplitude of ψ . The concretion is located at a local extremum of the vibration ampli-
tude field, F(x) = sin(Kn x). According to the guidance formula, the velocity of
the concretion is zero – which directly implies that the equation of motion for the
concretion is also satisfied. The maximum amplitude of vibration, A0, is thus equal
to the oscillation amplitude of the concretion, Fc, given by Eq. (14). Econc is equal

to the wave potential Q (12), here m0
2

c4m
�2
m
K 2
n , in agreement with equivalent quantum

systems. It is interesting to notice that, contrarily to the system with a bead oscilla-
tor [6], all the stationary solutions written above can here exist. Compared to the bead
oscillator system, this is a major difference – and also a substantial improvement.

The linear cavity example sheds light on the peculiar form of the additional energy
of the concretion and, more precisely, its distinctive feature with regard to the one in
relativistic and classical mechanics. To begin, it is worth noting that the concretion
is not in its reference state (as it oscillates at �m + ωn in its reference frame). The
momentum pconc of the concretion is here zero. Consequently, the kinetic energy
in relativistic and classical mechanics of a mass m0 should also be zero. But here,
for the concretion, its additional energy, Econc, is exactly equal to h̄exp ω – like in
equivalent quantum systems. We can interpret this result as follows: The concretion is
‘more’ than an usual point mass m0 as in macroscopic systems. The concretion is not
only a mass m0, but has also specific properties due to its elastic-medium nature (see
also Appendix). Since the elastic medium has a transverse vibration with an additional
pulsationω, the concretion also oscillates with this additional pulsation. Consequently
increases Econc. In addition, it is interesting to notice that the increased energy of the
concretion does not, in turn, imply that the concretion becomes a source of the wave.
(This should be falsewith the bead oscillator [6].) The concretion remains in symbiosis
with the wave. This point exemplifies the dual wave-particle nature of the concretion.
The concretion, a high elastic medium density of mass m0, behaves as the vibrating
elastic medium around it.

Appendix deals with the superposition of eigenstates in the linear cavity. The
total energy of the concretion seems to differ from the one expected from quantum
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mechanics. To overcome this problem, additional consideration would be required, in
particular taking into account that the concretion could be a simplified representation
of a soliton.

3.4 Concretion in a Spherical Cavity

We are looking for the behaviour of the concretion put into a spherical cavity of radius
R, such that the wave is zero at the boundaries. Note the wave ϕ is not necessary
standing in the laboratory reference frame—contrarily to the one in [6]—but stationary
in the sense of quantum mechanics.

Taking into account boundary conditions and using the equivalent Schrödinger
equation, the modulating wave with spherical coordinates is written as: ψ =
F(r, θ) ei(m φ −ωn,� t), where F(r, θ) = A j�(Kn,� r) Pm

� (cos θ), ωn,� = K 2
n,� c

2
m

2�m
, j�

denotes the spherical Bessel function of the first kind and order �, Pm
� the associated

Legendre polynomial (where � and m are two natural numbers such that |m| ≤ �) and
A an amplitude of vibration. Boundary conditions are satisfied by the fact that Kn,�R
is equal to the n-th zero of j�(X). (Note that ψ can also be expressed with spherical
harmonics Ym

� (θ, φ) ∝ Pm
� (cos θ) eimφ and, moreover, the above expression of ψ is

commonly established in other branches of physics, as in acoustics for example. The
above expression is equivalent to the one for a quantum particle in a spherical cavity
(see e.g., [28] §33). (Calculations for a 2D circular cavity are straightforward and
solutions use Bessel functions of the first kind.) Lastly, the solution can be degenerate
since it allows the existence or the superposition of several solutions with different
m for the same ωn,�; for instance the superposition of two solutions, one with m and
the other one with −m, leads to a standing wave ϕ. Nevertheless, in the following we
study the system when ϕ has only one of the solution written above.

The concretion is located at a local extremum of the vibration amplitude field, F ,
which provides possible values of rc and θc. The index c denotes the location of the
concretion. The velocity of the concretion, derived from the guidance formula (10),

is written as v = m c2m
�m rc sin θc

eφ . Thus, the momentum of the concretion (16) is

pconc = m h̄exp
rc sin θc

eφ . Thewave potential Q (12) is here equal to m0
2

c4m
�2
m
(K 2

n,�− m2

r2c sin2 θc
),

in agreementwithEq. (19). Lastly, as evoked for Eq. (11),we verify that the time period
of a circular motion for the concretion is much longer greater than the time period of
its transverse oscillation (equal to 2π

�m+ωn,�
, whose order of magnitude is 1/�m in the

low-velocity approximation).5

Similarly to the energy andmomentum of the concretion, the angular momentum of
the concretion, Lconc, is defined from its corresponding density in the elastic medium.

5 Let ωcirc,v = v
rc sin θc

the angular velocity of the concretion. The velocity of the concretion derived

from the guidance formula yields ωcirc,v = v2

c2m

�m
m . This leads in the low-velocity approximation (note

v = ωcirc,v = 0 when m = 0) to ωcirc,v � �m .
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The angularmomentumdensity derives from the stress-energy tensor of the system.6 In
the low-velocity approximation: Lconc = rc ×pconc, where pconc is given by Eq. (16).
According to the expression of v given above, the projection of the angular momentum
of the concretion along the (Oz) axis is: Lconc, z = m h̄exp. This value is equal to the one
commonly allocated to the system or the wave in the equivalent quantum system—as
for energy and linear momentum values. (At this step we cannot evaluate the quadratic
angular momentum of the concretion from the corresponding density value in the
elastic medium. But let us just evoke that the value of L2 in quantum mechanics, with
a particle point of view, necessitates to add something else to (m0 r × v)2, like the
quantum potential Q to 1

2 m0 v2 for the energy (see e.g., [24] §3.5). Lastly, let us recall
that by using the effective velocity [6] of the concretion we very easily retrieve the
value of L2.)

We take advantage of this study to investigate the influence of the equation ofmotion
on the movement of the concretion (derived from the guidance formula). The term in
brackets in the left hand side of Eq. (3), in the low-velocity approximation and averaged
during one oscillation time, has the following form, very general and not restricted

to the spherical cavity system: d
dt

[
Q
c2m

v
]
.7 When the concretion is in symbiosis with

the wave, the right hand side of the equation of motion is zero, hence d
dt [ Q

c2m
v] = 0.

Recall that the guidance formula is also written as d
dt [m0 v] = −∇Q. The equation of

motion is not in agreement with the guidance formula for the concretion in a cavity,
but its influence is very small. Indeed, | Q

c2m
| � m0, since Q—which has the same

order of magnitude as the additional energy of the concretion—is much lower than its
rest mass energy in the low-velocity approximation. (When the effective mass in the
equation of motion, Q

c2m
, is zero, i.e., the concretion oscillates in its proper reference

frame at the pulsation �m , the equation of motion has, in average, no influence.) A
very small perturbation on the right side of the equation of motion could allow it to
be in agreement with the velocity given by the guidance formula. In other words, the
velocity of the concretion is mainly given by the guidance formula, and the equation
of motion perturbs very weakly this velocity. This might imply an instability (which
are out the scope of this paper) of the motion given by the guidance formula.

4 Conclusion

In this paper we have studied a theoretical and classical system mostly inspired by the
bouncing droplets experiments (see [2] for a review)—anddesired to be implementable
in practice. It consists of (i) an elastic medium, which carries transverse waves, ϕ,
governed by a Klein–Gordon-like equation, and (ii) one high elastic medium density,

6 The angular momentum density derives from the stress-energy tensor. Spatial integration around the
location of the concretion and using time-averaged values (in the same manner as for Wconc and pconc)
lead to Lconc.

7 〈∂μϕ∂μϕ〉 =
(

(�m+ω)2

c2m
− v2

c4m
(�m + ω)2

)
〈ϕ2〉, by using the guidance formula (7) and ∂F

∂t = 0 at

the location of the concretion. Next, the low-velocity approximation (related to ω � �m ), Eq. (19) and the
condition (14) are used.
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considered as a point of mass m0 and called concretion. The system is wave monistic.
The nature of the concretion strengthens the dual wave-particle nature of the system
in comparison to an (external) bead oscillator [6]. The system is described by the
Lagrangian density (2), which is covariant with respect to the elastic medium having
a propagation speed of the wave cm . The Lagrangian density allows us to establish
the equation of motion for the concretion (3) and the wave equation (4). We have
studied the special case in which the concretion is such that the wave source cancels.
The concretion and the wave are in intimate harmony, called symbiosis, without back-
reaction of the concretion on the wave. (In this case, an observer focusing on the wave
would be blind to the concretion.) In this state in which the system is subsequently
studied: (i) the wave obeys a (homogeneous) Klein–Gordon-like equation, leading
to an equivalent free Schrödinger equation (17) for the modulation wave, ψ (8), in
the low velocity approximation and (ii) the symbiosis equation (5). According to the
conservation of the mass of the concretion, the latter equation implies that the speed of
the concretion is constant (which is in agreement with the conservation of the energy a
particle in the absence of external potential) and, in addition, the concretion is located
at an extremum of the transverse wave ϕ in its proper reference frame. (Apart from
the transverse oscillation, the concretion moves as if it surfs on a wave.) This leads
to the general and covariant guidance formula (7)—expressed with the transverse
displacement wave ϕ—and, in the low velocity approximation, to an equivalent de
Broglie-Bohm guidance formula (10). Under this approximation the concretionmoves
also as if an equivalent quantum potential (12) exists. Lastly, the concretion is studied
in a linear and a spherical cavity. Equivalent quantum stationary states are obtained.

The suggested system studied in this paper shows a transverse wave carried by
an elastic medium which interacts with a peaked concentration of mass and energy
(the high elastic medium density, called concretion). Thus it is reminiscent of the de
Broglie double solution theory [13,14]; but in our paper it is presented in a simplified
version and in a classical system.We note that the proposed system retrieves equivalent
quantum stationary states (without external potential8) when the concretion and the
wave are in symbiosis. Moreover we note that the suggested system could also allow
us to investigate phenomena out of the scope of quantum mechanics. For instance,
when there is no longer symbiosis (in this case the guidance formula is not satisfied
and ψ does not obey the equivalent Schrödinger equation) and by mean of numerical
simulations: transitions between two stationary states.

Let us shortly mention two points. (i) At this step, the mass m0 of the concretion
is arbitrary. In this paper there is no relation to assign its value from, for instance, the
pulsation�m or the tension T proper to the elastic medium. Additional considerations
than the ones presented in this paper would be required. (For instance, considering the
concretion as a soliton [11,12].) (ii) This system exhibits one more kind of equation
than in quantum mechanics: the equation of motion for the concretion. (All results
described above derive from the wave equation.) When the concretion has a transverse
oscillation in its proper reference frame at the pulsation �m (the one in the Klein–
Gordon-like equation), the equation of motion is ‘cancelled’ in average, during one

8 A paper including an external potential is in preparation.
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oscillation.When this condition is not satisfied and in the low-velocity approximation,
the equation ofmotion should veryweakly perturb, andmaybe destabilise, the velocity
and trajectory of the concretion given by the guidance formula.

However the more interesting seems to concern energy, Wconc, and momentum,
pconc, of the concretion. They naturally result from their corresponding densities in the
oscillating elasticmedium—i.e., from the stress-energy tensor of the system.When the
concretion is in its reference state (i.e., it is in symbiosis and has a transverse oscillation
in its proper reference frame at the pulsation �m) and provided a condition about the
oscillation amplitude of the concretion (14) is fulfilled, Wconc and pconc are written
as the ones of a free mass m0 in relativity—with regard to the specific propagation
speed of the wave, cm , of the elastic medium—,more preciselyWconc = γm m0 c2m and
pconc = γm m0 v. This seems not very surprising, since the Lagrangian density of the
system is covariant—with respect to cm . (This is due to the fact that a Klein–Gordon-
like equation governs the wave dynamics in the elastic medium and this equation is
invariant by the Lorentz-Poincaré transformation.) But more strikingly is the energy
of the concretion when it is not necessarily in its reference state. When the wave
ϕ oscillates at the pulsation �m + ω in the laboratory reference frame and in the
low-velocity approximation, we get:

Wconc = m0 c
2
m + h̄exp ω, (23)

where naturally the proportional coefficient h̄exp appears (18). (This coefficient was
previously introduced in this kind of system for a convenient reason, in order to
ensure proportionality between wave characteristics and particle characteristics [6].)
For us it seems particularly interesting to notice, in our suggested system, that both
the equivalent rest mass energy (m0 c2m) and the coefficient h̄exp come naturally from
the same condition of the transverse oscillation amplitude of the concretion (14), i.e.,
〈�2

m ϕ2(ξ , t)〉 = c2m . This condition, assumed here to be experimentally performed,
does not seem too surrealistic, since this means in the proper reference frame of the
concretion and when it is in its reference state that the average quadratic transverse
oscillation velocity of the concretion is equal to c2m and/or the energy density in the
very close neighbourhood to the concretion is equal to the ‘tension’ T proper to the
elastic medium. Anyway, in our system the energy of the concretion encapsulates
two kinds of energies, which have a counterpart in two different branches of physics:
relativity (with the equivalent rest mass energy, m0 c2m) and quantum mechanics (with
the equivalent energy of the system, h̄exp ω, in the low-velocity approximation).

In the toy and classical system presented in this paper, it appears that the common
(equivalent) relativistic expressions for energy could be naturally and easily extended,
in particularwhen the concretion is not in its reference state, in theway that they include
typically (equivalent) quantumenergy.This extension for this suggested system, rooted
in the dynamics of a high density of elastic medium embedded in the same elastic
medium, does not seem particularly surprising in the end: this is also reminiscent of
the original approach of Henri Poincaré about the theory of relativity [29,30]. If the toy
system suggested in this paper would capture some features of the physical world, we
expect that the theory of special relativity (at least for energetic considerations) as this
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is nowadays commonly used, will be naturally improved—probably, and ironically,
according to a viewpoint more in agreement with the Poincaré’s one.

Now the focus is on equivalent quantum equations. The additional energy Econc (to
the equivalent mass energy m0 c2m) of the concretion and pconc were expressed with
the modulating wave ψ . It appears (cf. Eqs. (20) (21) and (22)) that the equivalent
additional energy and momentum of the concretion are in exact agreement with the
equivalent quantumvalues. These latter are commonly assigned in quantummechanics
to the wave or to the system. Since Econc and pconc concern a concrete and localised
object (the concretion) and very probably seem easy to measure by an experimenter,
we can suggest: measures of energy and momentum assigned to the system only
concern the ones of the concretion. In other words, what precedes allows us to suppose
(when this system will be experimentally performed, if possible) about energy and
momentum: not only the concretion reflects the values assigned to the wave, but also
measures are only related to the concretion.
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Appendix

Lagrangian Density of a System with a Bead Versus One with an Elastic Medium
Concretion and Some Consequences

The system presented in [6] consists of (i) a bead oscillator, i.e., a punctual mass
with an “internal clock”, by which the mass tends to oscillate at a proper pulsation
�0 through a quadratic potential, and (ii) the same (homogeneous) elastic medium as
here. The Lagrangian density of this system is thus written as

Lsyst.with bead = 1

2
ρ0

[(
dϕ

dτ

)2

− �2
0 ϕ2

]
+ 1

2
T

[
∂μϕ ∂μϕ − �2

m

c2m
ϕ2

]
, (24)

where d
dτ is the particle derivative (cf. Footnote 3) expressed with τ the natural time

of the bead, τ , and ρ0 denotes its natural mass density. ρ0 of a bead of mass m0 is
again written as in Eq. (1) in the proper reference frame, R0, of the bead.

The difference between the Lagrangian density of a system with a bead oscilla-
tor (24) and the one with a point-like high density medium (2) naturally lies in the
part dedicated to the ‘particle’—i.e., the bead or the concretion. A basic comparison
between the two Lagrangian densities emphasises the following points.

– The system with a bead has a wave-particle duality nature, which is de facto
imposed from the beginning—from the density Lagrangian. In contrast, the system
with a concretion is wave monistic.

– The systemwith a bead has two reference pulsations, the one of the elastic medium
or wave (�m) and the one proper to the bead oscillator (�0). Of course, the latter
one does not exist in the monistic system with the concretion—and only remains
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the reference pulsation of the wave, �m , which also describes the pulsation of the
quadratic potential acting on the ‘particle’ concretion.

– The bead involves in the Lagrangian density
(
dϕ
dτ

)2
, while the concretion

c2m ∂μϕ ∂μϕ (recall in the Lagrangian density (2) that T = μ0 c2m). For the sake of
simplicityweplace ourself in the proper reference frameR0 of the ‘particle’,where

the subscript 0 means this reference frame. In one side
(
dϕ
dτ

)2 =
(

∂ϕ
∂t0

)2
, while on

the other side c2m ∂μϕ ∂μϕ =
(

∂ϕ
∂t0

)2 − c2m (∇0ϕ)2. The concretion behaves thus

as the bead, but with one important difference: on the contrary to the bead, the
concretion takes into account the wave slope (at its location).9 This means that the
concretion, due to its elastic medium nature, is ‘more’ than a macroscopic point
mass as the bead.

The concretion is admittedly ‘more’ than an usual pointmass as inmacroscopic sys-
tems, but it is associated for all practical purposes to a material point. The concretion,
as a macroscopic point mass, has indeed well characterised location, velocity, energy
and linear momentum (cf. Sect. 2.4) and angular momentum (cf. Sect. 3.4). However,
in comparison to the bead, the elastic-medium nature of the concretion provides some
specificities as follows.

– The concretion can only be piloted by the wave. On the contrary to the bead,
the usual equation of motion of the concretion can be ‘cancelled’ (under certain
conditions), which leads to the concretion to be only piloted by the wave (cf.
Section 2.3).

– Conditions for which the ‘particle’ is no longer a wave source are less drastic
for the concretion than for the bead (cf. Sect. 2.3). (It suffice for the concretion
to be located at a local extremum of the transverse wave in its reference frame,
whereas the bead must oscillate in its reference frame at its proper pulsation.) On
the contrary to a system with a bead, a system with a concretion can have several
stationary states as in equivalent quantum mechanics.

Calculation of theWave Equation and the Equation ofMotion for the Concretion

The equation of motion for the concretion comes from a principle of least action, when
the four-position of the concretion is subjected to a small change, ξα → ξα + δξα ,
while the wave field ϕ is fixed. This is applied to the Lagrangian of the concretion
Lc. From the Lagrangian density (2) and the mass density of the concretion (1), the
Lagrangian of the concretion expressed in a reference frame where the concretion has
a velocity v is written as

Lc = m0 c2m
2 γm

(
∂μϕ∂μϕ − �2

m

c2m
ϕ2

)
, (25)

9 Note that this difference vanishes when the concretion is in symbiosis with the wave (cf. Section 2.3).
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where γm = 1√
1−v2/c2m

. Lc is here the only Lagrangian which depends on the location

of the concretion.
ξα → ξα + δξα leads at first order to ϕ(ξα) → ϕ(ξα) + ∂αϕ(ξα) δξα , ∂μϕ →

∂μϕ +∂μ (∂αϕ δξα) and dτ = √
dξμdξμ/c → dτ + δ(dτ)where δ(dτ) = Uα

c2m
d(δξα)

andUα = dξα

dτ . Recall that τ is the proper time of the concretion (so dt = γm dτ ). Thus,
the conditions for which the small change δξα implies at the first order δ(

∫
Lc dt) = 0,

where boundary values are fixed, are such that

∫
m0 c

2
m ∂μ

(
∂αϕ δξα

)
∂μϕ dτ −

∫
m0 �2

m ϕ ∂αϕ δξα dτ

+
∫

m0

2

(
∂μϕ ∂μϕ − �2

m

c2m
ϕ2

)
Uα

d(δξα)

dτ
dτ = 0.

(26)

Integrating by parts the first and the third integrals, with fixed end points, and since
the small change δξα is arbitrary, lead to the equation of motion (3).

The wave equation comes from a principle of least action, when the wave field is
subjected to a small change, ϕ → ϕ + δϕ, while the four-position of the concretion is
fixed.

ϕ → ϕ + δϕ leads to δ(ϕ2) = 2ϕ δϕ and δ(∂μϕ ∂μϕ) = 2∂μ(δϕ) ∂μϕ. Accord-
ing to Eq. (2) the conditions for which the small change δϕ implies at first order
δ(

∫
L dt d3r) = 0, where boundary values are fixed, are written as

∫
T

(
1 + ρ0(r, t)

μ0

) [
∂μ(δϕ) ∂μϕ − �2

m

c2m
ϕ δϕ

]
dt d3r = 0. (27)

Integrating by parts the term with ∂μ(δϕ), with fixed end points, and since the small
change δϕ is arbitrary, provide the wave equation (4). (Note that the generalised Euler-
Lagrange equation leads to the same result, as expected.)

Calculation of the Wave Potential

Calculations in this Appendix are near for example to the ones in [25]. The particle
derivative of the guidance formula (10) is written as

dv
dt

= c2m
�m

(
∂ ∇�

∂t
+ (v · ∇)∇�

)
. (28)

Using Eq. (10) for the velocity and some basic vector calculus identities yield:

dv
dt

= c2m
�m

∇
(

∂ �

∂t
+ c2m

2 �m
(∇�)2

)
. (29)

The term in brackets in the right side is evaluated from the wave equation (4) without
any source wave – since the concretion and the wave are assumed in these calculations

123



Found Phys (2017) 47:933–958 955

to be in symbiosis. By using the complex notation of ϕ (8) with ψ = F ei�, the real
part of Eq. (4) leads to:

2�m

c2m

∂ �

∂t
F − �F + (∇�)2 F = 0, (30)

in which terms with ( ∂ �
∂t )2 and ∂2 F

∂t2
are neglected in the low-velocity approximation.

Put into Eq. (29) it appears that the concretion moves under the influence of the
potential Q given in Eq. (12).

From the Klein–Gordon-like Equation Without Source to the Equivalent Free
Schrödinger Equation

The derivation of the free Schrödinger from the Klein–Gordon equation (without
source) in the low-velocity approximation is mentioned by de Broglie (see e.g. [13]
§II.7) and is well-known in the literature (see e.g., [31] §III.5). Here, by using the
modulating wave ψ contained in ϕ (8), the Klein–Gordon-like equation (4) without
source yields

Re

[(
1

c2m

[
−�2

m ψ − 2 i�m
∂ψ

∂t
+ ∂2ψ

∂t2

]
− �ψ + �2

m

c2m
ψ

)
e−i�mt

]
= 0. (31)

Since this equation holds for any t , we get:

− 1

c2m

∂2ψ

∂t2
− 2 i

�m

c2m

∂ψ

∂t
− �ψ = 0. (32)

In the low-velocity approximation, the term ∂2ψ

∂t2
is negligible with respect to the other

terms.
To convince ourselves of the validity of this approximation, we consider a free

concretion in symbiosis with a plane wave ϕ (cf. also Sect. 3.2). By using ϕ =
A cos(k · r − � t), the Klein–Gordon-like equation (4) leads to c2m k2 = �2 − �2

m ;

and theϕ-guidance formula (7) leads to v = c2m k
�

. Thus� = 1√
1−v2/c2m

�m . According

to Eq. (8), the modulating wave is written as ψ = A ei(k·r−ω t), where ω = � − �m .

This leads to ω = 1
2

v2

c2m
�m in the low-velocity approximation. Then, the term 1

c2m

∂2ψ

∂t2

is proportional to �2
m

c2m
v4

c4m
ψ , while the two other terms in Eq. (32) are proportional to

�2
m

c2m
v2

c2m
ψ .

In the low-velocity approximation, the modulating wave ψ is thus governed by the
equivalent free Schrödinger equation (17).
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Energy and Linear Momentum of the Concretion

As usual, the energy density, ρe, and the momentum density, g, are evaluated from
the stress–energy tensor T of the system (Tμν = ∂ L

∂(∂μϕ)
∂νϕ − ημν L, where ημν

denotes the Minkowski metric, with the signature (+,−,−,−) adopted throughout
this article). The Lagrangian density (2), where T = μ0 c2m , leads to

ρe = μ0

2
(1 + ρ0

μ0
)

[(
∂ϕ

∂t

)2

+ (cm ∇ϕ)2 + �2
m ϕ2

]

g = −μ0 (1 + ρ0

μ0
)
∂ϕ

∂t
∇ϕ. (33)

In the following we use their time-averaged values during one oscillation (written as
〈· · · 〉). Spatial integration around the location of the concretion provides the energy,
Wconc, and the momentum, pconc, of the concretion. The following expressions are
given in a reference frame, R, where the concretion has the velocity v.

We evaluate first the case for which the condition (11) is satisfied, in addition to
the ϕ-guidance formula. Eqs. (1), (7), (11) and a little bit of algebra yield:

Wconc = γm m0 �2
m

〈
ϕ2(ξ , t)

〉

pconc = γm m0
�2

m

c2m

〈
ϕ2(ξ , t)

〉
v. (34)

We have notably used 〈 1
γ 2
m
(
∂ϕ
∂t (ξ , t))2 〉 = �2

m 〈ϕ2(ξ , t)〉. Since the amplitude of oscil-

lation of the concretion, Fc, remains constant in time, it follows equations (13).
Now we consider that the concretion has just its velocity given by the ϕ-guidance

formula (7). Let � (where � = �m + ω) the pulsation of the wave ϕ in R. In the
same manner as above, Eq. (33) leads to

Wconc = 1

2

m0

γm

[(
1 + v2

c2m

) 〈 (
∂ϕ(ξ , t)

∂t

)2
〉

+ �2
m 〈ϕ2(ξ , t) 〉

]

pconc = m0

γm c2m

〈(
∂ϕ(ξ , t)

∂t

)2
〉
v. (35)

In the low-velocity approximation, v2

c2m
and ω

�m
have the same order of magnitude.

(To convince us, consider how a pulsation �m in R0 becomes in R, for example by
using Lorentz-Poincaré transformation.) Moreover 〈 (

∂ϕ
∂t (ξ , t))2 〉 = �2 〈ϕ2(ξ , t) 〉 –

because the magnitude F at the location of the concretion is Fc, constant in time.
Taking into account the condition (14), equations (35) become Eqs. (15) and (16) at
first-order approximation in v2

c2m
and ω

�m
.
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Superposition of Eigenstates in the Linear Cavity

We study the superposition of eigenstates for the concretion in the linear cavity
(cf. Sect. 3.3). To have a deeper meaning, we deal with the transverse wave, ϕ,
rather than the modulating wave, ψ . According to the Klein–Gordon-like equa-
tion (4) without source and the boundary conditions, an eigenstate is written as
ϕn(x, t) = An sin(Kn x) cos(�n t − θn), where Kn = n π

L , c2m K 2
n = �2

n − �2
m ,

An denotes an amplitude of transverse oscillations and θn a phase shift, irrelevant
in this study. (This expression is in agreement with the one of ψ written in Sect. 3.3
whenωn(= �n−�m) � �m .) For the sake of simplicity we consider two eigenstates,
n = 1 and 3 (two odd numbers), such that the superposition is written as

ϕ(x, t) = A√
2
[sin(K1 x) cos(�1 t) + sin(K3 x) cos(�3 t)] , (36)

where A is an amplitude of transverse oscillations.
In x = L/2, the wave slope ∇ϕ(x = L/2, t) = 0 for any t . According to the

ϕ-guidance formula (7), the concretion can be thus located at this point and remain
here—as for any eigenstate with an odd number n.

Let us now study the energy of the concretion remaining at x = L/2. According
to Eq. (35), after averaging over a transverse oscillation period and when ωn � �m ,
the energy of the concretion is

Wconc = 1

2
m0 A

2 �2
m

[
(1 + cos(�ω t))

(
1 + ω1 + ω3

2�m

)]
, (37)

where �ω = ω3 − ω1. Rather than calculating the average value of Wconc over time,
it appears that the total energy of the concretion, Wconc, is periodically equal to zero.
The analogy with quantum mechanics seems no longer to hold. Furthermore a total
energy of the concretion equal to zero does not seem to be realistic, in particular if the
‘particle’ concretion is a simplified representation of a soliton. Then, the toy model
suggested in this paper should not be suitable for dealing with the superposition of
eigenstates. If more complex considerations demand that the kind of concretion has
a total energy near to m0 c2m , we could expect that same phenomena as for walkers
appear: the system could exhibit very short transitions between eigenstates [32].
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