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Abstract Quantum trajectory-based descriptions of interference between two coher-
ent stationary waves in a double-slit experiment are presented, as given by the
de Broglie–Bohm (dBB) and modified de Broglie–Bohm (MdBB) formulations of
quantum mechanics. In the dBB trajectory representation, interference between two
spreading wave packets can be shown also as resulting from motion of particles. But a
trajectory explanation for interference between stationary states is so far not available
in this scheme. We show that both the dBB and MdBB trajectories are capable of pro-
ducing the interference pattern for stationary as well as wave packet states. However,
the dBB representation is found to provide the ‘which-way’ information that helps to
identify the hole through which the particle emanates. On the other hand, the MdBB
representation does not provide anywhich-way informationwhile giving a satisfactory
explanation of interference phenomenon in tune with the de Broglie’s wave particle
duality. By counting the trajectories reaching the screen, we have numerically evalu-
ated the intensity distribution of the fringes and found very good agreement with the
standard results.
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1 Introduction

The complementarity principle of Bohr [1] states that a quantum system can behave
either as a system of particles or as a wave, but never simultaneously as both. On the
other hand, de Broglie’s wave-particle duality is less restrictive, since a ‘both-particle-
and-wave’ picture can also be accommodated in it. In 1909, immediately after his
explanation of photoelectric effect, Einstein attempted to describe the motion of the
quanta of radiation (photons) as localised singular points [2,3]. Apparently, he wanted
to keep both the wave and particle pictures and to present the quantum theory of light
asNewton’s corpuscular theory in some new form, thereby continuingwith the age-old
discussion on the nature of light. However, this ‘photon as particle’ concept did not
enjoy much appreciation till recent times, for various reasons [4]. In his epoch-making
work in 1923, de Broglie suggested that if radiation has both wave and particle nature,
matter also has them. Applying this principle of wave-particle duality [5,6], he not
only predicted wave-like behaviour for beams of electrons etc.—his attempt was also
to develop a new mechanics [7] by treating them as matter particles themselves. Thus
we see that in de Broglie’s wave-particle duality perspective, every physical system
has wave and particle nature, so that one can describe it using both wave mechanics
and particle mechanics. In the latter case, the mechanics obeyed by them may be non-
Newtonian and it was for this purpose that he developed the ‘pilot wave theory’ in the
1920’s. But it failed to get acceptance and was abandoned even by de Broglie himself
for a long time. In 1952, the theory was revived by Bohm [8]. Afterwards, Bohm
and his collaborators, along with many others, succeeded in ‘demystifying’ several
quantum phenomena using this trajectory approach. The formalism now provides one
of the most attractive alternative interpretations of quantum mechanics and is called
the de Broglie–Bohm (dBB) quantummechanics. Even Einstein’s ‘photon as particle’
concept has received some renewed attention in recent times. The measurement of
‘weak-valued trajectories’ [9] of single photons, as they undergo two-slit interference,
is reported to be identical to those predicted in the dBB interpretation of quantum
mechanics.

It may be noted that dBB is not the only quantum trajectory formalism available in
the literature. The Floyd, Faraggi andMatone (FFM) [10] and themodified de Broglie-
Bohn (MdBB) [11–15] trajectory representations have also received wide attention in
recent years. The equations of motion used in dBB and MdBB schemes are alike, of
the general formmṙi = ∇i S, where S represents the Hamilton–Jacobi functions in the
respective quantum Hamilton–Jacobi equations in the two schemes. But in the FFM
representation, a different equation of motion, rendered by Jacobi’s theorem, is used.
Another difference is that the dBBandFFMare trajectory representations in real space,
but inMdBB, the trajectories lie in a complex space. InMdBB, the connection with the
real world is established by postulating that the real part of the trajectories correspond
to the physical trajectories [11].With regard to the use of probability, the three schemes
differ in the following way. The dBB and the MdBB approaches use the same Born’s
probability axiom to make all statistical predictions and hence claim equivalence with
standard quantum mechanics in all experimental situations. For instance, Holland [4]
lists the Born probability axiom as a basic postulate of the dBB theory. In MdBB,
the same axiom is followed to evaluate the mean values etc., where the integration
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is performed along the real line only [11]. It is also worth mentioning that Dürr,
Goldstein and Zanghi [16] have provided a justification for Born rule in dBB, such
that it only describes the statistical regularities of systems in quantum equilibrium.
On the other hand, MdBB is capable of providing an expression for |�|2 in terms of
the velocity field along the real line [12,13]. The FFM representation claims not to
involve probability at all.

It was found that in bound state problemswith real wave functions, the dBBvelocity
of the particles turns out to be zero everywhere [17]. This behaviour is counter-intuitive
in a quantum theory ofmotion. But theMdBBquantummechanics, which puts forward
a new dynamics based on a complex action, is found successful in this case [11].
Similarly, in the tunneling of potential barriers, when the incident particle is described
by a stationary energy eigenfunction, the dBB trajectories are always proceeding
towards the potential barrier and there are no reflected trajectories [15]. The usual
practice adopted in the dBB scheme to circumvent these is to take a wave packet as
the initial wave function. Then one draws the trajectories for an ensemble of particles
by integrating the equation of motion proposed by de Broglie. The starting points of
these trajectories are chosen according to the ��� distribution of the initial wave
packet. The family of trajectories thus obtained help us to get the final distribution of
particles and thereby to deduce the evolution of the wave packet. But it may be noted
that the continuity equation for ��� in real space is ‘in-built’ in the dBB scheme
and hence for the wave-packets, it is only natural that the non-crossing trajectories
evolve to a final distribution that coincides with the one predicted in standard quantum
mechanics. On the other hand, in [15,18,19], it was shown that the crossing trajectories
in the MdBB scheme (which also admits a continuity equation for |�|2 along the real
space) can exhibit quantum tunneling through barriers, even for stationary states.

In this paper, we check whether dBB and MdBB trajectory representations can
produce the same interference pattern as that in standard quantum wave mechanics,
for certain suitable wave functions in the double-slit experiment. Of our particular
interest is the case of stationary state wave functions. Recently it was reported that
some experiments with double slits endorse the existence of dBB-like trajectories
[20–23] showing quantum interference. But we may note that in these cases too, all
attempts to draw dBB trajectories have considered only wave packets for describing
the incident particles. We here show that also for a stationary energy eigenstate, such
as a dispherical wave function emerging from two holes on a barrier, both the dBB and
MdBB schemes can give the desired pattern. This success is an important result, for
it takes the schemes closer to the de Broglie’s original idea of wave-particle duality.
In particular, it highlights that in both cases, as the particles move on, trajectories
condense to those regions where the probability density is high, in spite of the fact
that there is no flow of probability in the stationary state, as per the standard quantum
mechanics.

However, in the dBB scheme, while using both the wave packet description and
the stationary dispherical wave function, we can identify the slit through which the
particle has emerged, by knowing the position of particles on the screen (when it
is detected). This ‘which-way’ information is an inescapable conclusion in the dBB
approach and is considered as a success. But this is not compatible with the world-
view of standard quantum mechanics [24]. We have drawn the trajectories also in the
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MdBB representation and found that the MdBB approach gives the desired pattern
without any which-way information.

2 Interference in dBB Quantum Mechanics

The original attempt to explain interference by drawing particle trajectories in a double
slit experiment wasmade by Philippidis et al. [4,25]. For this, these authors considered
the superposition of two waves, both of which propagate as plane waves towards the
screen, but at the same time are spreadingwave packets along a direction perpendicular
to the slits. We make slight modifications to their experimental set-up and in all our
examples consider interference of waves emanating from two holes made on a plane
barrier. The holes act as secondary sources. Let us first reproduce the result in [25] to
set our background and notations. Consider the two holes on the barrier placed in the
yz-plane at x = 0. On the barrier, let the centres of the holes be at z = ±Z0 = ±10.
In the wave packet case, the two holes are assumed to be ‘soft’, such that they generate
waves having identical Gaussian profiles along the y and z-directions at t = 0. The
interference pattern is obtained on a screen placed parallel to the barrier, at x = D =
50. The two waves, emerging from the holes A and B, can therefore be described by
[4]

ψA(x, y, z, t) = CA

(2πσ 2
t )1/4

exp

[
− (z − Z0)

2 − y2

4σ0σt
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respectively. Here Ex = h̄2k2x/(2m). Note that ψA is both a propagating plane wave
in the x-direction and spreading wave packet along the y and z-directions. Similar is
the case for the packet ψB . The packets spread into one another. With σ0 as the initial

value, the width of a wave packet at time t is σt = σ0

(
1 + i

h̄t

2mσ 2
0

)
. However, the

plane wave along the x-direction is unaffected. The total wave function in the region
between the barrier and the screen is given by the superposition

ψ(x, y, z, t) = ψA(x, y, z, t) + ψB(x, y, z, t). (3)

With CA = CB , this wave function is factorisable, for one can write it as
ψ(x, y, z, t) = f1(x, t) f2(y, t) f3(z, t). Let S be its phase such that in the polar form,
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we have ψ = ReiS/h̄ . The trajectories in the dBB scheme are obtained by integrating
the equation of motion [4]

dr
dt

= 1

m
∇S = − i h̄

2m
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ψ∗ψ

)
= Re

(
− i h̄
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ψ
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)
. (4)

Substituting the wave function (3) in (4), with CA = CB , we get [4]
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Here, h̄, kx and m are real constants. Integrating Eq. (5) gives

x(t) = h̄kx
m

t + x0. (8)

One notes that with x0 = 0, a plot of y or z versus x will look the same as a plot of
y or z, respectively, versus t . In the wave packet case, let us take h̄/m = 1, kx = 1,
σ0 = 1, and 0 ≤ t ≤ T , with T = 50 in all calculations. Energy Ex is equal to
h̄2k2x/(2m) = m/2, with the above parameter values. When we choose y0 = 0 as the
y-coordinate of the initial point of a trajectory, according to Eq. (6), that trajectory will
remain confined to the xz-plane.Hencewe can restrict ourselves to drawing trajectories
in the two-dimensional xz-plane by resorting to this condition. In this wave packet
case, all trajectories are drawn from starting points with x-coordinate as x0 = 0. Along
the z-direction, we choose equidistant points in the interval Z0 − δ ≤ z ≤ Z0 + δ and
−Z0 − δ ≤ z ≤ −Z0 + δ. Equation (7) was solved numerically using fourth order
Runge-Kutta method. The step-size for the parameter t used in our calculations was
�t = 0.01.

The plot of dBB trajectories, with Z0 = 10 and δ = 3 is shown in Fig. 1. They are
exactly of the form reported in [25]. The adjacent panel shows the standard probability
density along the z-axis, evaluated as per the ψ�ψ-distribution, at x = 50 and y = 0.
It is now easy to see that the trajectory pattern has the same band width as that in
standard quantum mechanics.

Though this pattern agrees with the interference bands predicted in the standard
wave representation, it exhibits the feature that the respective trajectories emanating
from the slits A and B never meet each other. Those trajectories whose starting points
are near the upper slit (z > 0) cannot go to the region below some point with z = 0
on the screen and vice-versa. Thus there is a kind of fictitious barrier between the two
regions, so that the two families of trajectories appear to repel each other [10,26–30].
Conversely, by knowing the point at which the particle reaches the screen, one can
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Fig. 1 dBB trajectories for two Gaussian wave packets with starting points at x0 = 0, y0 = 0 and z-
coordinate uniformly distributed in the interval Z0 − δ < z0 < Z0 + δ for hole A and −Z0 − δ < z0 <

−Z0 + δ for hole B. The values Z0 = 10 and δ = 3. Adjacent panel on the right side shows standard ψ�ψ

probability density in this case, in the direction of the z-axis, at x = 50 and y = 0 on the screen (Color
figure online)

identify the slit through which it has emanated. This which-way information cannot
be obtained in the standard interpretation of quantum mechanics.

In general, at any given point and at a given time, the velocity of a particle on the
dBB trajectory is definite and single-valued. Such simultaneous, well-defined values
for position and velocity, as can be evaluated using Eq. (4), are itself against the world
view of standard quantum mechanics. One can see that this single-valuedness leads to
the non-crossing property [10,26–29] of dBB trajectories. The consequent which-way
information is an inescapable conclusion in the dBB representation.

3 dBB Trajectories for a Stationary State

Instead of wave packets, let us now consider the superposition of two stationary spheri-
cal wave functions [31]. These waves emanate from two holes made on a plane barrier
placed at x = 0. The holes are a pair of secondary point sources activated coher-
ently by a primary source. These secondary point sources emit spherical waves that
are components of the total dispherical wave function. As in the previous case, we
treat the problem in Cartesian coordinates (x, y, z) and the two holes are located at
(x = 0, y = 0, z = ±Z0 = ±10). With

r1 =
[
x2 + y2 + (z − Z0)

2
]1/2

, (9)

and

r2 =
[
x2 + y2 + (z + Z0)

2
]1/2

, (10)

the dispherical wave function can be written in the form [31]
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ψd = exp(ik1.r1)
r1

+ exp(ik2.r2)
r2

= exp(ikr1)

r1
+ exp(ikr2)

r2
, (11)

where k1.k1 = k2.k2 = k2. For the dispherical wave function, we shall choose
h̄/m = 1, k = 1 in all calculations. The energy of these particles are again E =
h̄2k2/(2m) = m/2.

Substituting for r1 and r2 from Eqs. (9) and (10) respectively in Eq. (11), and using
Eq. (4), one can write the dBB equations of motion in Cartesian coordinates. The
partial derivatives to be used in these equations are, respectively,

∂ψd

∂x
= x(i + kr1) exp (ikr1)

r31
+ x(i + kr2) exp (ikr2)

r32
, (12)

∂ψd

∂y
= y(i + kr1) exp (ikr1)

r31
+ y(i + kr2) exp (ikr2)

r32
, (13)

and

∂ψd

∂z
= (z − Z0)(i + kr1) exp (ikr1)

r31
+ (z + Z0)(i + kr2) exp (ikr2)

r32
, (14)

where one substitutes for r1 and r2 from Eqs. (9) and (10).
As in the previous case, here also one can put y0 = 0 as an initial condition for the

variable y and then effectively treat the problem in the two dimensional xz-plane. That
this is possible can be verified from Eq. (13). Also we note that the trajectories cannot
start from the exact location of the holes, with either r1 = 0 or r2 = 0, because the
wave function itself is infinite at these points. To circumvent this difficulty, we shall
begin the trajectories from equidistant points on a semi-circle of radius a surrounding
the holes and lying in the xz-plane and choose the radius a as small as possible. The
equations of motion are solved using Runge-Kutta fourth order method for 0 < t < 50
and the step-size was �t = 0.01. The resulting trajectories for a = 10−3 are shown
in Fig. 2.

The adjacent panel shows the probability distribution in standard ψ�ψ approach.
There is very good agreement between the band width obtained from the trajectories
and that in the standard approach.

One can see that the non-crossing property of the dBB trajectories leads to which-
way information in the present case of the stationary state also. In the next sections,
we shall see that the MdBB trajectories can exhibit the desired trajectory pattern, even
when they can cross each other and have no which-way information.

4 Interference Pattern in the MdBB Approach—Wave Packets

When we write the quantum wave function in the form ψ = exp (i S/h̄), the
Schrodinger equation becomes

1

2m
(∇S)2 + V + ∂S

∂t
− i h̄

2m

(
∇2S

)
= 0. (15)
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Fig. 2 dBB trajectories for stationary dispherical wave function, starting from initial points obeying y0 = 0
and x20 + z20 = a2, with x0 > 0 and a = 10−3. They start from equidistant points lying on a semicircle

of radius a = 10−3 surrounding the holes, and in the xz-plane. Adjacent panel on the right side shows
standard ψ�ψ probability density in this case, along the z-axis (x = 50 and y = 0) on the screen (Color
figure online)

This is known as quantum Hamilton–Jacobi equation (QHJE). The complex quantum
trajectories are obtained by integrating the MdBB equation of motion [11]

dr
dt

= ∇S = − i h̄

m

1

ψ
∇ψ. (16)

Note that the solution of this equation leads to trajectories in a complex space with
coordinates x = xr + i xi , y = yr + iyi and z = zr + i zi . On the other hand, the
velocity field given by the dBB equation of motion (4) is defined only over the real
space and is just the real part of the above velocity dr/dt .

First, let us draw the complex trajectories corresponding to awavepacket.Assuming
the same experimental set up as described in Sect. 2, we use the wave function (3) in
Eq. (16) to get

dx

dt
= h̄kx

m
, (17)

dy

dt
= i h̄

m

y

2σ0σt
, (18)

and

dz

dt
= i h̄

m

⎡
⎣ z − Z0 tanh

(
zZ0
2σ0σt

)
2σ0σt

⎤
⎦ , (19)

where h̄, kx , m, Z0 and σ0 are assumed to be real constants. Integrating Eq. (17), one
obtains the real and imaginary components of x as

xr (t) = xr0 + h̄kx
m

t, (20)
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Fig. 3 MdBB trajectories for two interfering Gaussian wave packets, with initial points xr0 = 0 and
xi0 = 0, zr0 = +10 for slit A and zr0 = −10 for slit B. Trajectories were plotted for a uniform distribution
of zi0, ranging from −5 to +5 for both slits A and B. Adjacent panel on the right side shows standard ψ�ψ

probability density in this case, along the z-axis ( at x = 50 and y = 0) on the screen (Color figure online)

and
xi (t) = xi0. (21)

Again, we put y0 = 0 as the initial condition for the variable y. Equation (19) was
solved using fourth order Runge-Kutta method to obtain zr (t) and zi (t) from t = 0 to
t = T . First, this equation is separated into real and imaginary parts. The Runge-Kutta
method specific to simultaneous first order differential equations, with zr and zi as the
variables, is used with step-size �t = 0.01. The values for T , h̄/m, σ0, kx , etc. are
given the same values as in the previous examples. The initial conditions at t = 0 were
chosen as xr0 = 0 and xi0 = 0, zr0 = Z0 = 10 for slit A and zr0 = −Z0 = −10 for
slit B. In both cases, trajectories were plotted for various values of zi0, ranging from
−δ to +δ, separated by equal intervals, with the value δ = 5. Figure 3 shows plots of
xr versus zr , which are the projections of the complex trajectories onto the real plane.

An advantage of the present choice of initial conditions is that on the real plane,
trajectories canhave their precise starting points either at slitAor slitB.The trajectories
can cross each other, so that on the screen it is not possible for us to identify the slit
through which a particular particle has emanated. The adjacent panel in Fig. 3 shows
theψ�ψ-distribution. It is easily seen that the bandwidth obtained from the trajectories
are in good agreement with the standard values.

In addition to the crossings of trajectories emanating from holes A and B, we
observe that there are crossings between trajectories starting from the same hole.
Thus we see in Fig. 3 that there are not only red/blue crossings, but also red/red and
blue/blue crossings. To see explicitly what happens in the same-color crossings, we
plotted the endpoints of trajectories on the screen, as it appears in the complex z-plane.
When the position of the screen is changed by changing it xr -coordinate, it is realised
from these patterns that the trajectories lie along spiralling, helical paths. When the
projections of these helical paths to the real xr zr -plane are taken, the red/red, blue/blue
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and red/blue crossings appear to occur, though in the complex xz-space no crossings
take place.We have observed that such same-color crossings are helpful inmaintaining
the interference pattern intact as the screen is moved back and forth.

5 Interference Pattern in the MdBB Approach—Stationary State

Nextwe assume that the stationary disphericalwave function (11) permeates the region
beyond the barrier containing the two holes, which are located at (0, 0,±10). Substi-
tuting for r1 and r2 [(respectively fromEqs. (9) and (10)] in (11) and using Eq. (16), we
calculate the MdBB trajectories in Cartesian coordinates (x, y, z). As in the previous
case, the MdBB equations of motion is given by (16), but with (x, y, z) as complex
variables. The partial derivatives to be used in these equations are, respectively, given
by Eqs. (12)–(14).

In contrast to the dBB trajectories corresponding to the dispherical state discussed
in Sect. 3, the present complex trajectories can have starting points at (xr0 = 0, y = 0,
zr0 = ±Z0 = 10), which are the precise real positions of the holes. However, one
cannot take the imaginary values xi0 and zi0 too to be zero, for the dispherical wave
function itself is infinite at such points. Hence we shall begin plotting the trajectories
from points equidistant on a circle surrounding the holes and lying in the imaginary
xz-plane with radius a, where x2i0 + z2i0 = a2. The real values xr0 and zr0 are as stated
above. The resulting trajectories for a = 15 are shown in Fig. 4.

In the previous sections, we saw that the dBB trajectories are non-crossing and
hence can reveal which-way information even for the stationary states. In contrast, the
trajectories shown in Fig. 4, which are the projection of complex trajectories on the real
xz-plane, can cross each other and hence cannot provide any which-way information.
We see that also the MdBB trajectories exhibit condensation of trajectories to high
probability regions as the particles move on, even when they cross each other and has

Fig. 4 MdBB trajectories for stationary dispherical wave function, starting from initial points with xr0 = 0,
zr0 = ±10. The imaginary values xi0 and zi0 satisfy x2i0 + z2i0 = a2 with a = 15. Adjacent panel on the
right side shows standard ψ�ψ probability density in this case, along the z-axis (at x = 50 and y = 0) on
the screen (Color figure online)
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no which-way information. Interestingly, the same color crossings, as observed for
wave packets in the previous case of MdBB trajectories, can be observed here also.
We see that trajectories from either holes come together and move along helical paths
in the complex space. Again, this helps to maintain the interference pattern as the
screen is moved back and forth.

6 Probability Distribution on the Screen

In all the above cases of plotting the dBB and MdBB trajectories, we find very good
agreement between trajectory formalism and the standard one, with regard to the band
width of the interference pattern. We observe that very few trajectories (either red or
blue) reach the screen, where the probability is expected to be small. Similarly, both
the red and blue trajectories accumulate at regions where the probability ψ�ψ is high.
For theMdBB trajectories in the stationary state, an attempt was also made to evaluate
the probability density on the screen, on the basis of the number density of trajectories
reaching there. Clearly the number of trajectories reaching a certain region on the
screen depends on the initial distributions of starting points. We anticipate that if this
initial distribution is chosen according to a ψ�ψ-distribution, the final distribution
on the screen, obtained by counting the number of trajectories reaching each small
segments on it, agrees with the standard distribution. As in the case of plotting these
trajectories in the above section, the starting points are chosen as the real positions of
the holes and lying on a circle in the imaginary xz-plane with radius x2i0 + z2i0 = a2.
But instead of equidistant points, we now choose the initial distribution of points
along this curve in such a way as to obey ψ�ψ . Even though this is not an exhaustive
distribution of initial points near the holes, we could get very good agreement with
the standard intensity distribution on the screen, as can be seen from Fig. 5. Here, the

Fig. 5 Comparison of standard ψ�ψ distribution (red thick line) and the distribution obtained by counting
theMdBB trajectories (blue dotted line) on the screen, for the dispherical wave function discussed in Sect. 6
(Color figure online)
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normalised distribution obtained by counting the trajectories is plotted, along with the
standard distribution in this case. Thus we see that one can obtain not only the band
width, but also the probability distribution and hence the intensity distribution on the
screen, using the MdBB trajectory representation.

7 Summary

In the quantum folklore, interference in a double slit experiment is the phenomenon
which involves the most important, or perhaps the only, mystery in quantum mechan-
ics [24]. In this paper, we have presented an analysis of this experiment, based on the
dBB and MdBB quantum trajectory representations. Our attempt was to find whether
both the MdBB and dBB formalisms can provide satisfactory explanation of the phe-
nomenon, even for stationary states. Also, we aimed to investigate these trajectories
regarding knowledge of which-way information, that may help one to identify the slit
through which a particle emanates.

In the original viewpoint of de Broglie’s wave-particle duality, physical systems
have wave and particle nature, so that they can be described using a ‘both particle
and wave’ representation such as the ‘pilot wave’. de Broglie strived to show that if
a phenomenon can be explained as due to wave motion, it is possible to explain it as
due to particle motion as well, even if that requires some modification to Newtonian
particle mechanics. In the Young’s double slit experiment, interference is traditionally
demonstrated as resulting from the superposition of two stationary coherent waves
emanating from the slits. In fact, this is the classic example used by generations of
physicists to understand the phenomenon. In the literature, the dBB trajectory formal-
ism has demonstrated interference as arising from particle motion, but so far only for
spreading wave packets. In this paper, first we have demonstrated that interference of
two stationary spherical waves can also result from particle trajectories, in the dBB
formalism. This brings this scheme closer to de Broglie’s principle of wave-particle
duality. However, it was noted that all the dBB trajectory explanations in the double-slit
experiment allow which-way information regarding particle motion.

We have also analysed the problem in the alternative MdBB approach, that gives an
entirely different set of trajectories. Our analysis has shown that theMdBB trajectories
are capable of providing exactly the same interference pattern on the screen as that
obtained in standard quantum mechanics and the dBB approach, for both the wave
packet case and the stationary state case. We also obtained the result that these MdBB
trajectories cross each other and hence can explain quantum interference while not
givng away any which-way information. This happens because the MdBB velocity
field is more general than the dBB velocity. To be specific, the MdBB velocity field
(16) is defined over the entire complex plane and has real and imaginary components,
but the dBB velocity (4) is only the real part of it. In this work, we have also made
a trajectory-based calculation of the probability density on the screen for the MdBB
scheme and found that when the distribution of the starting points of trajectories
are based on the ψ�ψ-probability density, the distribution of their end-points on the
screen also obeys it. This is accomplished even for the case of stationary states with
no probability flow.
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