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Abstract A generalized Schrödinger equation containing correction terms to classi-
cal kinetic energy, has been derived in the complex vector space by considering an
extended particle structure in stochastic electrodynamics with spin. The correction
terms are obtained by considering the internal complex structure of the particle which
is a consequence of stochastic average of particle oscillations in the zeropoint field.
Hence, the generalised Schrödinger equation may be called stochastic Schrödinger
equation. It is found that the second order correction terms are similar to correspond-
ing relativistic corrections. When higher order correction terms are neglected, the
stochastic Schrödinger equation reduces to normal Schrödinger equation. It is found
that the Schrödinger equation contains an internal structure in disguise and that can
be revealed in the form of internal kinetic energy. The internal kinetic energy is found
to be equal to the quantum potential obtained in the Madelung fluid theory or Bohm
statistical theory. In the rest frame of the particle, the stochastic Schrödinger equa-
tion reduces to a Dirac type equation and its Lorentz boost gives the Dirac equation.
Finally, the relativistic Klein–Gordon equation is derived by squaring the stochas-
tic Schrödinger equation. The theory elucidates a logical understanding of classical
approach to quantum mechanical foundations.
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1 Introduction

In classical electrodynamics, the incoming radiation field is normally chosen as zero
and it is considered that all the radiation comes from somewhere at a finite time and
the universe in the remote past contains only radiation. However, the presence of
a ubiquitous zeropoint field changes the situation and the classical electrodynamics
combined with the zeropoint radiation field is known by the name stochastic electro-
dynamics [1]. The main aim in developing stochastic electrodynamics was to find a
reasonable classical approach to the foundations of quantum mechanics and to certain
extent quantum electrodynamics. A complete account of stochastic studies has been
considered in several reviews [2–4]. The prime effort of all stochastic electrodynam-
ics theories is to find a classical approach to quantum mechanics and hence deriving
the fundamental Schrödinger equation in the treatment of stochastic electrodynamics
solves the desired goal to a certain extent.

The wave equation of a quantum system was derived by Schrödinger [5] from the
classicalHamilton–Jacobi equation. The stochastic interpretation of quantummechan-
ics in theMarkov process was initially done by Fenyes [6] and it was further developed
by Nelson [7,8]. Nelson’s approach was based on the assumption that every particle
of mass m moves in a random environment due to Brownian motion. Similar stud-
ies were also reported in the independent research work of Della Riccia and Wiener
[9], and Favella [10]. However, Nelson’s theory was criticised on the grounds that
the formulation merely recapitulated the results of quantum theory. However, a valid
quantum theory from the stochastic process was derived by de la Peña and Cetto [11]
by introducing zeropoint field into stochastic theory. The theory of stochastic process
as a generalization of Newtonian mechanics was formulated by de la Peña and the
Schrödinger equation had been derived for specific values of certain parameters [12].
In this formalism, the usual quantum mechanical operators and commutator relations
emerge in a naturalway.The stochastic theorywas further extended to the particleswith
spin by considering the particle as a spinning rigid body [13–15] and in the presence
of external electromagnetic field, Pauli–Schrödinger equation, the Feynman–Gellman
type and Dirac equations were derived. In the non-Markovian stochastic interpreta-
tion, Cavalleri et al. [16–18] extended the density gradient expansion and derived the
Schrödinger equation along with higher order correction terms resembling quantum
electrodynamics radiative correction terms due to vacuum fluctuations. In this inter-
pretation, the quantum formalism turns out to be a classical motion with superimposed
zitterbewegung motion.

In 1932, Wigner [19] showed that the phase space evolution of an ensemble of par-
ticles can be described by probability distribution function and it satisfied the classical
Liouville equation. Thus the Wigner distribution function provided the formulation
of quantum mechanics and revealed the similarity between Schrödinger equation and
classical Liouville equation. In the presence of zeropoint fields, Dechoum et al. [20]
derived the Liouvillian form of time evolution of particles and showed that the classical
probability amplitude is related to the Wigner distribution function. Using the Fourier
transform of Wigner distribution function in the classical Liouville equation Faria et
al. [21] arrived at the Schrödinger equation. Further, based on classical trajectories and
continuous spin orientation the classical aspects of Pauli–Schrödinger equation were
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discussed [22]. Considering theWigner–Moyal infinitesimal transformation, and using
the conserved probability density function of a statistical equilibrium system contain-
ing fluctuations in momentum and position, Olavo [23,24] derived the Schrödinger
equation and gave a new approach to quantum formalism. Hall and Reginatto [25]
showed that the strength of momentum fluctuations is inversely correlated with uncer-
tainty in position, from which they formulated the exact uncertainly principle and
derived Schrödinger equation from classical equations of motion. Recent studies on
Schrödinger equation by Schleich et al. [26,27] reveal the fact that the linearity of
quantummechanics is intimately connected to the strong coupling between amplitude
and phase of quantum wave.

Merging the non-equilibrium thermodynamics with classical wave mechanics,
Grössing [28–30] derived the Schrödinger equation. A unified treatment of arbitrary
large fluctuations in small systems has been achieved by the formulation of so called
fluctuation theorems. A particle is treated as a fluctuating quantity in the vacuum
dominated by the thermal fluctuations. These fluctuations of a quantum system lead
to kinetic energy equal to the quantum potential of the system. The gradient of such
quantum potential has been described by thermalized fluctuating force field, where the
origin of such fluctuations are identical to the zeropoint fluctuations. The theoretical
considerations show that the employment of non-equilibrium thermodynamics gives
a deeper understanding of quantum mechanics.

In all these aforesaid studies, the fundamental equation of quantum mechanics has
been derived mainly considering fluctuations of the system under consideration. The
quantum potential in the Schrödinger equation reveals the fact that particles must have
some internal structure. The above theoretical considerations suggest that the quantum
behaviour of particles or quantum systems has an underlying classical fluctuation
mechanism which may be formulated as a physical theory.

In the zitterbewegungmodel of Dirac electron, Schrödinger showed that the motion
of electron contains internal oscillations with amplitude of the order of Compton
wavelength [31,32]. The theoretical formulation leads to particle internal structure
described by separated center of mass and center of charge. The center of charge
rotates around the center of mass point in a helical fashion. The frequency of rotation
is equal to ω0 = mc2/h̄ and the radius of rotation is equal to the Compton wave-
length of the particle of mass m, where c is the velocity of light and h̄ is the reduced
Planck’s constant. A classical relativistic theory of spinning particles interacting with
electromagnetic fields was developed by Bhabha and Corben [33]. In this theory, a
free particle describes a helix and the rotational motion gives the particle magnetic
moment. This internal helical motion is analogous to the zitterbewegung of Dirac
electron [34,35]. In the classical spinning electron model of Mathisson [36], the elec-
tron motion is separated into free motion of center of mass and the internal rotational
motion due to zitterbewegung. The internal motion has the characteristic radius of the
order of Comptonwave length. In the approach of geometric algebra usingmultivector
valued Lagrangian, Barut and Zanghi [37] studied the classical analogue of zitterbe-
wegung. The invariant proper time is connected with the center of mass and not with
the center of charge and the electron spin appears as the orbital angular momentum
associated with the internal motion and the rest mass energy appears as the internal
energy.
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In theMadelung fluid theories [38–40], the spinning particle appears as an extended
object while the quantum potential is tentatively related to internal motion. The quan-
tum potential, the non-classical energy term in the Hamiltonian, is simply related to
the non-classical energy term to the zitterbewegung and spin. In the absence of spin
the quantum potential term vanishes and the motion becomes classical or Newto-
nian. Therefore, the particle spin ensures the presence of quantum potential in the
Schrödinger equation. The proper time is connected with the center of mass and not
with the center of charge because the orbital motion of charge is expected to be light-
like. All this carries further evidence that quantum mechanics of micro-systems may
be a direct consequence of spin [41,42]. These considerations elucidate the fact that an
elementary particle (like electron or quark) contains a sub-structure described by point
charge rotating in circular motion with spin angular momentum and the frequency of
rotation is equal to the zitterbewegung frequency. Such internal circular motion of
center of charge is mainly responsible for the deviations in the average path of the
particle, spin angular momentum of the particle and observed magnetic moment of the
charged particle. The zitterbewegungmotion or oscillation of the particle is considered
to be a manifestation of the presence of fluctuating zeropoint fields.

Recently, the role of spin and the internal structure of the particle in complex
vector formalism were studied by the author [43]. The oscillations of the particle in
the presence of zeropoint field are considered as complex rotations characteristic of
internal spin angular momentum in complex vector space. Considering the complex
null vectors in the particle rest frame, the energy of particle oscillator is derived and
it has been shown that the existence of spin converts classical oscillator into quantum
oscillator. The mass of the particle may be interpreted as local complex rotation in
the rest frame. It has been found that the complex vector formalism has an added
advantage of separating scalar, vector and bivector parts of a multivector expansion in
such a way it gives a better classical approach to the quantum mechanical phenomena
[44].

The present article mainly deals with the derivation of a generalized stochastic
Schrödinger equation from the consideration of extended particle structure in the
complex vector space. The total derivative is expressed as a sum of convective deriva-
tive and stochastic derivatives in complex vector space. A short account of extended
structure of a charged particle in the complex vector space and its connection with
spin are discussed in Sect. 2. The wave function of a particle and its meaning in the
complex vector space are explored in Sect. 3. The convective and stochastic deriva-
tives are considered in Sect. 4. The correspondence between quantum potential and
internal structure of the particle is revealed in Sect. 5. The derivation of stochastic
Schrödinger equation and the consequences of higher order correction terms are pre-
sented in Sect. 6. Derivations of Dirac and Klein–Gordon equations from stochastic
Schrödinger equation are given in Sects. 7 and 8 respectively. Finally, conclusions are
given in Sect. 9. The mathematical language required for understanding the article,
the algebra of complex vectors is given in the Appendix . Throughout this article, a
charged particle means a particle like electron.
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2 Particle Structure and Bivector Spin in Complex Vector Space

A charged particle immersed in the fluctuating zeropoint field oscillates from its mean
position and such particle oscillator absorbs energy from the zeropoint field at a single
frequencywhich is the characteristic frequency of oscillation. Let us consider a particle
of mass m and charge e in a fluctuating zeropoint field and also consider it as an
oscillator with angular frequency ω0. The particle deviates from its mean position
due to oscillations induced by the zeropoint field. A stochastic average of all such
deviations leads to a mean deviation of the particle from its path. In other words, at
the particle level, the mean position of oscillations may be considered as the center
of mass of the particle. The average separation of center of mass and center of charge
appears as mean deviation in the path of the particle. Such deviations are described
by local complex rotations in complex vector space. The average deviation from the
path of the particle corresponds to the radius of complex internal rotation. Considering
the average complex rotations in a plane normal to the mean path of the particle and
denoting the center of mass position by a vector x and the average radius of rotation by
a vector ξ , the extended particle system can be expressed by a complex vector [43,44].

X = x + iξ , (1)

where i is a pseudoscalar and it commutes with all vectors in three dimensional
Euclidean space. The bivector iξ represents an oriented plane. The average mag-
nitude of radius of rotation is equal to half the Compton wave length and ξ = h̄/2mc.
Differentiating X with respect to time gives velocity complex vector.

U = v + iu, (2)

where v = dx/dt is the velocity of center of mass and u = dξ/dt is the instantaneous
velocity of internal rotation of the center of charge and the corresponding internal
momentumπ = mu.When the particle system is observed froman arbitrary frame, the
trajectory of center of charge traces a helical path resembling zitterbewegung motion.
The angular momentum of internal complex rotation is represented by a bivector S
which corresponds to particle spin [45,46].

S = ξ ∧ π (3)

If we choose a unit vector σ s normal to the spin plane, then the bivector particle spin
angular momentum can be expressed as S = h̄

2 iσ s , where iσ s is a unit bivector in the
spin plane. Since, the geometric structure of a bivector contains two possible opposite
orientations, the orientation of S can be either positive or negative in the bivector
spin plane. The above description of spin univocally suggests that the spin is not a
fundamental notion of quantum mechanics but at a deeper level it corresponds to the
angular momentum of zeropoint oscillations of the particle.
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3 The Wave Function

In the complex vector formalism, the mass of the particle has been interpreted as local
complex rotation in the rest frame of the particle [43]. The spatial rotation in the rest
frame of an extended particle can be represented by a general rotor

R0 = exp

(
mc2t

2S

)
. (4)

The rotor R0 is a consequence of complex rotation in a local space and actually repre-
sents an average rotation on a complex plane obtained from many number of entities
of stochastic rotation. Because of the bivector nature of spin angular momentum, the
rotor R0 satisfies the relation R0 R̄0 = 1, where an over bar represents reversion oper-
ation. If the particle center of mass moves with velocity v, say along the direction
of x, then the rotor R0 will be subjected to a Lorenz boost. The Lorentz boost is in
general expressed in terms of rapidity factor η and a unit vector v̂ along the direction
of velocity of the particle.

L = exp

(−v̂η

2

)
(5)

The Lorentz boost on the rotor R0 is then expressed as

R = LR0L
−1 = exp

(
Et − p·x

2S

)
, (6)

where E = γmc2, p = γmv and γ is the Lorentz factor. This rotor represents the state
of the particle. In quantummechanics, the state of a particle is represented by the wave
function. According to the conventional explanation, the wave function represents the
probability of finding the particle in an ensemble of particles. Because the rotor satisfies
the relation RR̄ = 1, any addition of a phase factor does not change the action of R.
In other words, the rotor is said to be gauge invariant. In view of these properties of
the rotor, the wave function of the particle may be expressed as

ψ(x, t) = ρ1/2R. (7)

The product ψψ̄ = ρ. The above analysis reveals that the meaning of wave function
is intricately connected to the average internal complex rotations. Thus the wave func-
tion with its probability interpretation gives the most complete possible specification
of an individual system in quantum mechanics. The epistemological feature of this
interpretation is possible only from the consideration of zeropoint field. To endorse
particle and antiparticle correspondence, a phase factor eiε/2 is introduced in (7) and
the final wave function is represented by [47]

ψ(x, t) = eiε/2ρ1/2R. (8)

The particle and antiparticle states correspond to ε = 0 and ε = π respectively.
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4 Convective and Stochastic Derivatives in Complex Vector Space

Consider the position of an extended particle system that is denoted by the complex
vector X . The convective or total derivative is normally expressed as

d

dt
= ∂

∂t
+ ẋ∇, (9)

where ∇ = ∂
∂x . To induce stochastic nature of the particle, the vector x may be

replaced by the complex vector X in the above equation.

d

dt
= ∂

∂t
+ Ẋ

∂

∂X
(10)

The partial derivative ∂
∂X can be expanded in the following manner.

∂

∂(x + iξ)
= �

�x + iξ�
= �

�x

(
1 + iξ

�

�x

)−1

= ∂

∂x

(
1 + iξ

∂

∂x

)−1

(11)

In the above equation, the magnitude of ξ is very small when compared to x and the
vector ξ is not a function of x. Now using a simple binomial expansion, the partial
derivative ∂

∂X can be expressed as

∂

∂(x + iξ)
= ∇ − iξ∇2 − ξ2∇2∇ + iξξ2∇4 − (ξ2∇2)2∇ + · · · . (12)

Substituting the above expansion in (10) gives the total derivative in the following
form.

d

dt
= ∂

∂t
+ (v + iu)[∇ − iξ∇2 − ξ2∇2∇ + iξξ2∇4 − (ξ2∇2)2∇ + · · · ] (13)

Using the relation S = m(ξ ∧ u), the total derivative can be written as a sum of five
terms.

d

dt
= ∂

∂t
+ v·∇� + iu ∧ ∇� − v ∧ iξ∇2� − S

m
∇2�, (14)

where � = ∑∞
k=0(−ξ2∇2)k . In the above expression, it is clear that the term v·∇� is

a scalar quantity, the terms iu ∧ ∇� and v ∧ iξ∇2� are vectors and the last term is a
bivector. Thus one can call the expansion of total derivative as amultivector expansion.

In the point particle limit, the total derivative reduces to the convective derivative. In
the stochastic derivation of Schrödinger equation, the convective derivative is called as
systematic derivative and the velocity connected to the convective derivative is known
as systematic velocity. When v = 0, the total derivative is written as follows.

d

dt
= ∂

∂t
+ iu ∧ ∇� − S

m
∇2� (15)
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Neglecting the higher order correction terms in the above equation, we have

d

dt
= ∂

∂t
+ iu ∧ ∇ − S

m
∇2. (16)

This derivative is quite similar to the stochastic derivative when the diffusion tensor
D is identified with |S|/m . The corresponding velocity u of this derivative is called
stochastic velocity in the stochastic approach developed by de la Peña et al. [14].
However, the approach adopted here is quite different from the analysis of stochastic
approach using Brownian motion. In this approach, the diffusion tensor is absent and
it may be noted that the velocity u is not the diffusive or the osmotic velocity but it is
the internal rotational velocity whose magnitude is equal to the velocity of light.

5 Internal Structure Connection to Quantum Potential and Operators

In the point particle limit, the total derivative reduces to the normal convective deriva-
tive and multiplying (9) from right by the probability density ρ gives the continuity
equation.

∂ρ

∂t
+ ∇(vρ) = 0 (17)

Multiplying (16) from right with probability density ρ gives

∂ρ

∂t
+ i∇

(
uρ − |S|

m
∇ρ

)
= 0. (18)

The first term in the above equation is equal to zero when v = 0 substituted in the
continuity equation (17), and then the term in brackets is like current.

C = uρ − |S|
m

∇ρ (19)

The average value of this currentmust be zero in the rest frame of the particle. Squaring
the above expression and equating the scalar quantities to zero gives

u2 = −
( |S|
m

)2 (∇ρ

ρ

)2

. (20)

Now, the square of internal momentum can be written as follows.

π2 = −|S|2(∇ ln ρ)2 (21)

Since the magnitude of spin |S| = ξπ , from the above equation, the square of the
radius of rotation can be expressed in terms of probability density.

ξ2 = −(∇ ln ρ)−2 (22)
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In most of the fluctuation theories [25,26], the average fluctuations in momentum and
position are similar to (21) and (22) respectively and thus, these equations are the most
fundamental equations connected with the uncertainty in quantum mechanics. Now,
the internal kinetic energy of the extended particle can be obtained from (21).

π2

2m
= −|S|2

2m
(∇ ln ρ)2 (23)

We have seen in the complex vector approach that the internal velocity u is not a
function of themeanposition vectorx and therefore, the scalar product∇.u = ∇u = 0.
The square root of (20) gives the magnitude of internal velocity and differentiating
with respect to x gives

∇u = −i

( |S|
m

)
∇

(∇ρ

ρ

)
= −i

( |S|
m

) [
∇2ρ

ρ
−

(∇ρ

ρ

)2
]

= 0 (24)

and
∇2ρ

ρ
=

(∇ρ

ρ

)2

. (25)

In Bohm’s hidden variable approach, the quantum potential is given by [48,49]

Q = h̄2

2m

[
1

2

∇2ρ

ρ
− 1

4

(∇ρ

ρ

)2
]

. (26)

With the magnitude of spin |S| = h̄/2 and using (25), the internal kinetic energy in
(23) is equal to the quantum potential obtained in Bohm’s hidden variable approach to
quantummechanics or in the theories of Madelung fluid [39–41]. It is quite interesting
to observe that, Bohm considered a fluctuating ψ-field that can act on the particle
to produce fluctuations. The nature of ψ-field had been considered analogous (not
identical) to the electromagnetic field. In the present context, such fluctuating field is
analogous to the fluctuating electromagnetic zeropoint field. From (21) and (22), the
internal momentum and radius of rotation can be expressed as follows.

π = iσ ξ |S|∇ ln ρ(x), (27)

ξ = iσ u(∇ ln ρ(x))−1, (28)

where σ ξ and σ u are unit vectors along the directions of ξ and π respectively. Writing
the probability density ρ(x) = ψψ̄ , the internal momentum can be expressed in the
following form.

πψψ̄ = iσ ξ |S|∇ψψ̄ (29)

This equation shows that the internal momentum corresponds to the momentum oper-
ator.

π → −i h̄∇ = p̂ (30)
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Similarly, from the commutation relation one can expect a correspondence between
internal radius of rotation and position operator.

ξ → x̂ (31)

The correspondence between internal momentum and radius of rotation to themomen-
tum and position operators has been studied recently [50]. The above correspondence
shows that the necessity of introducing operators into quantummechanics is to account
for the influence of zeropoint field on the charged particle. Thus in quantum mechan-
ics, even though the particles are treated as point particles, the operator approach takes
care of the internal structure of the particle in disguise. In other words, considering
the internal particle complex structure leads to the quantum results of the system. This
will be clarified in the next section with the derivation of generalized Schrödinger
equation.

6 Stochastic Schrödinger Equation

In the point particle limit, the total derivative is equal to the normal convective deriva-
tive and multiplying (9) from right by p = mv, we have

dp
dt

= v∇mv = ∇
(
1

2
p·v

)
= ∇Ek, (32)

where Ek is the kinetic energy. The force in the above equation is like a convective
force and it can be generically expressed as a gradient of an external potential V ′. Then
from the above equation we have, Ek = V ′. In the non-relativistic limit, let the wave
function of the particle is defined by ψ = ρ1/2R , where the momentum p = mv and
energy E = Ek . Now, multiplying (14) from right by ψ gives

dψ

dt
= ∂ψ

∂t
+ v·∇�ψ + iu ∧ ∇�ψ − v ∧ iξ∇2�ψ − S

m
∇2�ψ. (33)

In the rest frame of the particle, the wave function ψ = ρ1/2R0 and the first term in
(33) becomes

dψ

dt
= mc2

2S
ψ. (34)

However, when the particle is in motion the term dψ
dt represents the total energy which

is a sum of kintetic energy and rest mass energy.

dψ

dt
= Ek + mc2

2S
ψ (35)
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Now, the term v·∇�ψ can be written as follows.

v·∇�ψ = v·∇(1 − ξ2∇2 + ξ4∇4 + · · · )ψ
= −p·v

2S

(
1 − ξ2 p2

(2S)2
+ ξ4 p4

(2S)4
+ · · ·

)
ψ, (36)

where the probability density ρ is taken as a constant and its functional dependence
on position will be considered later in this section. Using the values ξ = h̄/2mc,
(2S)2 = −h̄2 and p·v = 2V ′, we have

v·∇�ψ2S =
[
−V ′ − V ′

(
1 + β2

2
+ β4

8
+ · · ·

)]
ψ = −V ′′ψ, (37)

where β = v/c, the additional correction factors are merged into V ′ and the resulting
potential is denoted by V ′′. The above calculation shows that the term v·∇�ψ2S
corresponds to a potential. Now, from (35) and (37) we have

dψ

dt
− v·∇�ψ = mc2 + V

2S
ψ. (38)

In the above equation, we have chosen V = V ′ + V ′′. The third and fourth terms on
right of (33) are vectors. Now, substituting (38) in (33) and equating bivector terms
gives

mc2 + V

2S
ψ = ∂ψ

∂t
− S

m
∇2�ψ. (39)

Multiplying throughout by 2S and rearranging the above equation finally gives the
generalized Schrödinger equation.

∂

∂t
ψ2S = (2S)2

2m
∇2�ψ + mc2ψ + Vψ (40)

If the higher order terms and mass term are suppressed in (40), it reduces to the normal
time-dependent Schrödinger equation in quantum mechanics.

∂

∂t
ψ2S = (2S)2

2m
∇2ψ + Vψ (41)

For a wide variety of applications, the solution of this equation with different potential
functions contains only solving second order differential equation with certain bound-
ary conditions. Notice that, the particle spin is present in the Schrödinger equation. In
normal quantum mechanics, energy and momentum operators contain unit imaginary
and it has no meaning. However, in (41) the bivector 2S replaces i h̄ and the presence
of spin gives a geometric meaning to unit imaginary that it represents a unit bivector.
The connection between unit imaginary and spin was initially studied by Hestenes
[51].
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Now, consider ρ = ρ(x) and expand the first term on right of (41) and equating the
scalar parts gives

(2S)2

2m
∇2ψ = p2

2m
ψ + h̄2

8m

(∇ρ

ρ

)2

ψ. (42)

The first term on the right side of this equation is the kinetic energy and the second
term is known as quantum potential and it is equal to the internal kinetic energy of the
particle. Thus the Schrödinger equation contains internal structure of the particle in
disguise and it can be revealed in the form of quantum potential which was obtained in
theMadelung fluid theory or Bohm statistical theory. The quantum potential is usually
merged with the external potential term and the Schrödinger equation is solved in the
point particle limit that represents the center of mass motion.

6.1 Higher Order Correction Terms

The higher order terms in the expansion � represent correction terms to the classical
kinetic energy and also to the quantum potential. The first correction term can be
estimated as follows.

− (2S)2

2m
ξ2∇4ψ = − (2S)2

2m
ξ2

[
ρ1/2∇4R + 1

16

(∇ρ

ρ

)4

ψ + 5

4

(∇ρ

ρ

)4

ρ1/2∇2R

]
,

(43)
where the terms proportional to ∇ρ∇R = ∇ρp/2S and ∇ρ∇3R ∝ ∇ρp/2S are
bivectors and the above equation is obtained by equating the scalar terms. Using the
values ξ = h̄/2mc and (2S)2 = −h̄2 in (43) gives

− (2S)2

2m
ξ2∇4ψ = p4

8m3c2
ψ + h̄4

128m3c2

(∇ρ

ρ

)4

ψ − 5h̄2

32m3c2

(∇ρ

ρ

)4

p2ψ. (44)

In this equation, the second and third terms on right are the correction terms to the
quantum potential and the first term on right turns out to be the relativistic energy
correction normally obtained in the Foldy–Wouthuysen transformation of Dirac equa-
tion. Since, such correction terms are obtained by considering the internal complex
structure of the particle which is a consequence of stochastic average of particle oscil-
lations in the zeropoint field, the generalized Schrödinger equation may be called as
stochastic Schrödinger equation.

Further correction terms of the order ξ4 and above can be estimated in a similar
manner as calculated in (44) and to look into it in more detail, (40) can be rewritten as

∂

∂t
ψ2S = (2S)2

2m
∇2ψ

[
ρ−1ψ̄�ψ

]
+ mc2ψ + Vψ. (45)

Now, considering only the kinetic energy correction terms and solving the term in
square brackets gives a series

[
ρ−1ψ̄�ψ

]
= 1 + a2 p2 + a4 p4 + a6 p6 + · · · , (46)
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where a = ξ/h̄. Using the value of ξ = h̄/2mc, this series can be expressed in terms
of β = v/c.

[
ρ−1ψ̄�ψ

]
= 1 +

(
β2

2

)
+

(
β2

2

)2

+
(

β2

2

)3

+ · · · =
[
1 − β2

2

]−1

(47)

Thus, one can conclude that all higher order correction terms to a certain extent cor-
respond to relativistic effects of the charged particle in motion. Now, the stochastic
Schrödinger equation is written as

∂

∂t
ψ2S = (2S)2

2m
∇2ψ

[
1 − β2

2

]−1

+ mc2ψ + Vψ. (48)

In the present calculation, as the particle position is represented by the complex vector
X , the potential is not simply a function of center of position x but the complex vector
X . Therefore, the potential V (X) after expansion contains higher order correction
terms.

V (X) = V (x) + iξ∇V (x) + 1

2
ξ2∇2V (x) + · · · (49)

The third term on right of the above expression is similar to the Darwin term in
relativistic quantum theory.

6.2 Modified Position and Momentum Commutation Relation

In quantummechanics,we consider the point particleswithout any size or substructure.
When we consider the extended particles, modification to the commutation relation
is expected. The procedure considered above allows us to reconsider the quantum
commutation relation between position and momentum operators. Now, a modified
momentum operator p̂ can be written from (48).

p̂ = −2S∇
[
1 −

(
β

2

)2
]−1/2

. (50)

Using this equation, the modified commutation relation can be expressed as

[x̂, p̂] = 2S

[
1 −

(
β

2

)2
]−1/2

. (51)

Thus, the commutation relation also contains additional correction terms and to the
first order of ξ2, it is expressed as

[x̂, p̂] = 2S
(
1 + κ2 p2

)
, (52)
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where κ2 = a2/2. A similar modified commutation relation was derived long back
by Snyder [52] and showed that the spacetime is not continuous but discrete. Such
relations also lead to minimal length uncertainty relations [53]. The modification in
the commutation relation actually related to sub-quantum phenomena.

6.3 The Pauli Equation

It is well known that the presence of particle spin was first considered in the Pauli
equation and its presence can be simply obtained by replacing momentum with the
canonical momentum p− e

cA in theminimal interaction approximation of electromag-
netic potentialA. Now, replacing (2S)2∇2 in (43) by (2S∇− e

cA)2 gives a generalized
Pauli equation.

∂

∂t
ψ2S = (2S)2

2m
∇2�ψ + ge

2mc
iB.S�ψ + e2A2

2mc2
�ψ + Vψ (53)

Neglecting higher order terms and mass term in (53) gives the Pauli equation with
additional energy term containing magnetic field.

∂

∂t
ψ2S = (2S)2

2m
∇2ψ + ge

2mc
iB.Sψ + Vψ (54)

where the gyromagnetic ratio g=2. With the discovery of Lamb shift, it has been
expected that the value of gyromagnetic ratio g for electron is slightly more than 2
and such discrepancy from both Pauli and Dirac theories of electron was addressed in
the theory of interaction of radiation with matter, the quantum electrodynamics.

7 The Dirac Equation

In the rest frame of the particle, the first term on right of (40) vanishes and in the
absence of external potential, the stochastic Schrödinger equation reduces to

∂

∂t
R02S = mc2R0. (55)

This equation is Dirac like equation in the rest frame of the particle. In the above
equation the spin orientation is taken as positive and the wave function represents
a particle state. If the spin orientation is taken as negative, then the wave function
represents an antiparticle state. When the particle moves with velocity v, applying
Lorentz boost to (55) yields the Dirac equation of the extended particle. Detailed
derivation of obtaining the Dirac equation from (55) is given in [43]. Multiplying (55)
from left by a unit vector γ0 which is along the direction of future light cone and taking
the Lorentz boost of the equation gives

Lγ0∂0L
−1LR02S − mcLγ0R0 = 0. (56)
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The set {γμ;μ = 0, 1, 2, 3} are unit vectors in spacetime algebra [54]. The unit vector
γ0 is invariant under spatial rotation, R̄0γ0R0 = γ0 and Lγ0∂0L−1 = γ μ∂μ = ∂ .
Denoting � = LR0, Eq. (56) is now expressed as

∂�2S − mc�γ0 = 0. (57)

Since the spinor � satisfies the relation ��̄ = 1, a general spinor can be expressed
in the form ψ = ρ1/2eiε/2�. Now, (57) can be written in the following form.

∂ψ2S − mcψγ0 = 0 (58)

In the presence of external electromagnetic potential the above equation becomes

c∂ψ2S − eAψ − mc2ψγ0 = 0. (59)

where e is the particle charge. This equation is the well-known Hestenes–Dirac equa-
tion and its geometrical properties were discussed elaborately by Hestenes [47].

8 The Klein–Gordon Equation

The relativistic extension of Schrödinger equation is normally considered as the
Klein–Gordon equation. To find Klein–Gordon equation from stochastic Schrödinger
equation, let us consider V = 0 in (40) and multiply it from left by

2S
∂

∂t
=

[
(2S)2

2m
∇2� + mc2

]
(60)

and 2ψ from right. This is equivalent to squaring the stochastic Schrödinger equation
in the absence of external potential.

(2S)2∂2t ϕ = m2c4
[

(2S)2

2m2c2
∇2� + 1

]2
ϕ ≈ [(2S)2c2∇2� + m2c4]ϕ (61)

where ϕ = 2ψ2. Using the plane wave form of ψ , ϕ can be written in the form

ϕ = (ρ′)1/2 exp[(Et − p·x)/S] (62)

where (ρ′)1/2 = 2ρ and ϕ̄ϕ = ρ′ . It may be noted that the transformation ψ → ϕ

does not change the form of wave function but the wave function ϕ does not represent
the state of spin half particles any more. Now, the higher order terms in (61) can be
calculated using the wave function in (62) and all these terms converge to give the
Lorentz factor. (

1

ρ′2

)
ϕ̄�ϕ = (1 − β2)−1 = γ 2 (63)
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Substituting this result in (61) gives

∂20ϕ = (γ 2∇2 + μ2). (64)

where μ2 = (mc/2S)2 and x0 = ct . Now, (64) can be expressed in the form

(∂2 − μ2)ϕ = 0. (65)

In the above equation the Lorentz factor is absorbed into the wave function and it is
expressed as

ϕ = ϕ0 exp(p.x/S), (66)

where p = (E/c, γ p), x = (x0, x) and S = iσ s h̄ . Since, the adjoint ϕ̄ is also a
solution of (65), the wave function may be written as a superposition of ϕ and ϕ̄,
φ = ϕ + ϕ̄. Now, the function φ is equal to its self adjoint, φ = φ̄.

(∂2 − μ2)φ = 0 (67)

Thus, the Klein–Gordon equation represents a relativistic equation for particles of
integer spin and additionally it is also a field equation. Thus, squaring the stochas-
tic Schrödinger equation gives classical approach to the relativistic Klein–Gordon
equation.

9 Conclusions

A charged particle placed in a random fluctuating zeropoint electromagnetic field,
may be treated as an oscillator oscillating at very high frequency. Such high frequency
oscillations of the particle are in general known as zitterbewegung motion in quantum
mechanics. The average of all such oscillations leads to the deviations in the path of the
particle. However, such average oscillations may be represented by complex rotations
in complex vector space. In the complex structure of the oscillating particle, the center
of mass and center of charge are considered as separate and the center of charge is
considered to rotate around the center of mass with a radius of rotation of the order of
Compton wavelength of the particle. The position of such complex system has been
denoted by a complex vector X . Expanding the convective derivative of this complex
vector, we find a multivector expansion of total derivative which contains the velocity
derivatives of both center of mass and center of charge. It has been shown that the
internal velocity of the particle is similar to the stochastic velocity normally obtained
in stochastic theories. The internal structure of the particle is found to be intricately
connected to the quantum potential and operators of quantum mechanics. It shows
that the necessity of introducing operators into quantum mechanics is to account for
the influence of zeropoint field on the charged particle.

Considering the multivector expansion of the total derivative, a generalized
Schrödinger equation is derived and it is called as stochastic Schrödinger equation. In
this equation, the kinetic energy operator contains a series of higher order correction
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terms which correspond to correction terms to the classical kinetic energy of the par-
ticle. When higher order correction terms are neglected, the stochastic Schrödinger
equation reduces to normal Schrödinger equation. It is found that the Schrödinger
equation contains internal structure in disguise and it can be revealed in the form of
internal kinetic energy. The internal kinetic energy is found to be equal to the quantum
potential which was obtained in the Madelung fluid theory or Bohm statistical theory.
The second order correction terms are found to be similar to the relativistic correc-
tions obtained in quantum mechanics. It may be concluded that the consideration of
internal structure of the particle leads to relativistic correction terms to certain extent
in quantum mechanics. Consideration of correction terms in the momentum opera-
tor of stochastic Schrödinger equation leads to a modified commutation relation. In
the rest frame of the particle, the stochastic Schrödinger equation reduces to a Dirac
type equation and its Lorentz boost gives the Dirac equation. Finally, the relativistic
Klein–Gordon equation is derived by squaring the stochastic Schrödinger equation.
The analysis presented here gives an insight into the fundamental aspects of classical
formulation of quantum mechanics.

Appendix: Algebra of Complex Vectors

The geometric algebra or Clifford algebra is found to be a superior algebra than
the vector algebra and it is being used by a growing number of mathematicians and
physicists today [54,55]. A detailed account of geometric algebra and its applications
to physics is given in thebookbyDoran andLasenby [56].An introduction togeometric
algebra and the algebra of complex vectors are considered in this appendix.

The geometric product of two vectors a and b is defined as

ab = a·b + a ∧ b, (68)

where the scalar product or symmetric product is defined as

a·b = 1

2
(ab + ba), (69)

and the wedge product or outer product is defined as

a ∧ b = 1

2
(ab − ba). (70)

Changing the order of vectors is called reversion operation and it is denoted by an
over bar.

ab = ba = a·b − a ∧ b, (71)

A set of unit right handed basis vectors {σ k; k = 1, 2, 3} is considered to span the
three dimensional space. A pseudoscalar in three dimensional space is defined as
i = σ 1σ 2σ 3 and it represents a unit oriented volume. Multiplying vectors σ k by
pseudoscalar form unit bivectors, Bk = iσ k = σ iσ j . Each unit bivector represents an
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oriented plane. The set of elements {1, σ k, Bk, i; k = 1, 2, 3} form geometric algebra
of Euclidean space. A general element in geometric algebra is called a multivector
and it is a sum of a scalar, vector, bivector and trivector.

M = α + a + ib + iδ, (72)

where α and δ are scalars, a and b are vectors and iδ is a trivector. A complex vector
is defined as a sum of a vector and a bivector.

Z = a + ib (73)

The advantage of this definition of complex vector gives an additional geometric
understanding of orientation and rotation in space. A reversion operation on a complex
vector changes the sign of bivector.

Z̄ = a − ib (74)

The complex vector Z̄ is known as complex conjugate of Z . Two complex vectors
are equal when their vector and bivector parts are equal. The inner product of two
complex vectors Z = a + ib and Y = c + id can be expressed as

Z .Y = (a·c − b·d) + i(b·c + a·d) = α + iβ. (75)

Thus the scalar product of two complex vectors is a complex scalar. The outer product
of complex vectors Z and Y is

Z ∧ Y = (a ∧ c − b ∧ d) + i(b ∧ c + a ∧ d). (76)

The term (a∧c−b∧d) is a bivector and the term i(b∧c+a∧d) is vector. Thus, the outer
product of two complex vectors is a complex vector. From the above two products one
can see that the geometric product of two complex vectors is a combination of a scalar,
vector, bivector and trivector parts. Thus the geometric product of two complex vectors
is a multivector. The inner and outer products of complex vectors are in general known
as symmetric and asymmetric products respectively. Two complex vectors Z = a+ ib
and Y = c+ id are said to be perpendicular when the condition a·c = 0 is satisfied and
they are parallel when the condition a ∧ c = 0 is satisfied. The square of a complex
vector is a complex scalar.

Z2 = (a + ib)(a + ib) = a2 + b2 + 2i(a·b) (77)

Consider that the vectors a and b are orthogonal to each other. Then the scalar product
a·b = 0. In this case, the complex vector represents an oriented directional ellipse.
The bivector ib represents an oriented plane and the vector a lies in the plane of ib. The
rotation in the plane ib is counterclockwise for the complex vector Z and clockwise
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for Z̄ . The product of a complex vector with its conjugate contains scalar and vector
parts. The products Z Z̄ and Z̄ Z are written in the following form.

Z̄ Z = a2 + b2 + 2i(a ∧ b) (78)

Z Z̄ = a2 + b2 − 2i(a ∧ b) (79)

Since, i is a pseudoscalar which commutes with all vectors in three dimensional space,
the quantity 2i(a ∧ b) is a vector and it is normal to the orientation of the bivector
a ∧ b. The scalar part of (78) is equal to the scalar product of Z̄ and Z .

Z̄ .Z = 1

2
(Z̄ Z + Z Z̄) = a2 + b2 (80)

The vector part of (78) is equal to the outer product of Z̄ and Z .

Z̄ ∧ Z = 1

2
(Z̄ Z − Z Z̄) = 2i(a ∧ b) (81)

In the case when the magnitudes of vectors a and b are equal, the complex vector
represents an oriented directional circle. Then the square of complex vector Z2 =
Z̄2 = 0 and therefore in this case the complex vector may be called complex null
vector.

When the third direction is chosen normal to the bivector plane a ∧ b, the com-
plex vector Z and its conjugate Z̄ represent a physical space. If we choose a set of
orthonormal right handed unit vectors {σ k; k = 1, 2, 3} along the direction of vectors
a, b and 2i(a ∧ b), the unit vectors σ k can be expressed in terms of complex vectors
Z and Z̄ .

σ 1 = Z + Z̄

2a
; σ 2 = Z − Z̄

2a
; σ 3 = Z Z̄ − Z̄ Z

4ab
; 1 = Z Z̄ + Z̄ Z

4ab
(82)

The basis elements {1, σ k} form a closed complex four dimensional linear space. A
complete version of complex vector algebra is elaborated in [44].
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