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Abstract The rigid recoil of a crystal is the accepted mechanism for the Mössbauer
effect. It’s at odds with the special theory of relativity which does not allow perfectly
rigid bodies. The standard model of particle physics which includes QED should not
allow any signals to be transmitted faster than the speed of light. If perturbation theory
can be used, then the X-ray emitted in a Mössbauer decay must come from a single
nuclear decay vertex at which the 4-momentum is exactly conserved in a Feynman
diagram. Then the 4-momentum of the final state Mössbauer nucleus must be slightly
off the mass shell. This off-shell behavior would be followed by subsequent diffusion
of momentum throughout the crystal to bring the nucleus back onto the mass shell and
the crystal to a final relaxed state in which it moves rigidly with the appropriate recoil
velocity. This mechanism explains the Mössbauer effect at the microscopic level and
reconciles itwith relativity.Because off-mass-shell quantummechanics is required, the
on-mass-shell theories developed originally for the Mössbauer effect are inadequate.
Another possibility is that that the recoil response involves a non-perturbative effect
in the standard model which could allow for a non-local instantaneous momentum
transfer between the crystal and the decay (or absorption), as proposed for example by
Preparata and others in super-radiance theory. The recoil time of the crystal is probably
not instantaneous, and if it could be measured, one could distinguish between various
theories. An experiment is proposed in this paper to measure this time. The idea is to
measure the total energy radiated due to bremsstrahlung from a charged Mössbauer
crystalwhich has experienced a recoil. UsingLarmor’s formula, alongwith corrections
to it, allows one to design an experiment. The favored idea is to use many small nano-
spheres of Mössbauer-active metals, whose outer surfaces are charged. The energy
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radiated then varies as the charge squared divided by the recoil time. This can then be
measured with the extreme sensitivity available in Mössbauer experiments. If it turns
out that experiments prove the need for off-mass-shell theory, then this would have
profound implications for all of condensed matter physics. It would mean that an off-
mass-shell theory like those considered by Stueckelberg, Horwitz, Piron, Greenberger,
and many others are required to describe nature. The inclusion of these would be a
major shift in the foundations. It would mean that there are new dynamic variables—
the rest masses of particles. The ability to measure the diffusion relaxation time should
prove useful also in chemical analysis, and provide a new class of analytical methods
for material science. This problem is also interesting because the Mössbauer effect
is a phenomenon where the solid-state environment dramatically and indisputably
influences the probability of a nuclear process.

Keywords Mössbauer · Relativity · Stueckelberg · Variable mass

1 Introduction

In the Mössbauer effect, a nucleus emits or absorbs gamma rays without the expected
loss of energy due to the recoil of the decaying or the absorbing nucleus [9,24,28]. It
is extraordinarily sensitive and has found many uses in chemistry, condensed matter
physics, and tests of relativity [3,9–11,17,26,27,34]. The conventional explanation is
that in the right circumstances a volume of a crystal in which the decaying nucleus is
embedded can act effectively like a rigid body in response to the nuclear decay, and
since the crystal’s mass is much larger than that of one nucleus alone, it can absorb the
recoilmomentumof a gamma raywithout absorbing any appreciable amount of energy
[2,9,24]. The same can happen on both emission and absorption. The probability of
recoilless decay and resonant absorption depends on the temperature, on the phonon
density of states, and on the detailed crystal structure [3,9,22,24]. In classical relativity
theory, it is generally conceded that a perfectly rigid body cannot exist because it would
allow superluminal messages to be sent from one end of the body to another. There
is some acknowledgement in the theoretical literature that the recoil may not, and
perhaps cannot be instantaneous throughout a volume of the crystal. For example,
Victor Weisskopf argued that the diffusion velocity of energy in a solid is limited by
the sound velocity in that solid, and that consequently the effective radius of a rigid
crystal would be given by the speed of sound times the lifetime of the excited isomer
undergoing decay [38]. Fruaenfelder acquiesces to this viewpoint in his theoretical
discussion in chapter 2 of [9]. Another viewpoint comes from particle physics. In the
standard model, the energy–momentum density Tμν(x) is locally conserved in any
Lorentz covariant classical field theory. Thus the maximum propagation is taken to be
the speed of light, and therefore there is no reason why energy transport cannot occur
up to this speed in a solid. Quantum electrodynamics is considered to be a local theory
because the commutator of any two Bosonic fields separated by spacelike separation
vanishes, although the precise statement of locality is somewhat problematical in this
case since the Feynman propagators (for the photon for example) do not vanish outside
of the light cone. The application of the standard model to a solid is not easy, and this
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issue of locality is not completely settled. In general,most theoretical physicists believe
the rigid recoil picture to be incompatiblewith the perturbative picture of local quantum
field theory and thus with the standard model, but non-perturbative rigid behaviour
might be possible, as was argued by Preparata in his superradiance theory [2,31]. The
standard model, which includes QED, is believed to be the best fundamental theory
of all matter at this time. So we have three possibilities in the theoretical literature

1. The recoil momentum is absorbed locally, and the added momentum diffuses
throughout the crystal at the speed of sound

2. The recoil momentum is absorbed locally, and the momentum diffuses at the speed
of light

3. The recoil momentum is absorbed non-locally and the whole crystal recoils instan-
taneously

So which case does nature choose? Or does this question evenmake any sense? Can an
experiment be devised to answer it? Why does this matter even if it can be measured?

When a Mössbauer crystal recoils rigidly, it accelerates for a short time. In the
rigid body picture, the acceleration is very large, but in a local field theory model the
expected acceleration is much smaller, as the momentum injected into the crystal at
the precise position of the decaying nucleus would need time to diffuse throughout the
rest of the crystal. If the crystal has a net charge, then it will radiate electromagnetic
radiation due to this acceleration. If the crystal is metallic, then the charge will reside
on the outside surface. To a first approximation, Larmor’s radiation formula can be
considered. This leads to a different radiation loss between instantaneous acceleration
models and slower acceleration models, because the radiated power is proportional to
the acceleration squared. Standard Mössbauer spectroscopy can be used then to try
and measure the radiation loss with exquisite precision, and thus to determine which
model for acceleration fits the data best.

The purpose of this paper is to examine this apparent contradiction between the
three viewpoints regarding locality and diffusion rates after Mössbauer events, and
to propose an experiment that might help to clarify the issue, and which might also
provide new laboratory methods of practical use. We consider metallic nano-particles
with an electromagnetic charge on their surface as either the source or the absorber
in a Mössbauer experiment. When the nucleus either emits or absorbs a gamma ray,
the crystal will recoil. It will experience acceleration for a short time, and there will
be energy loss due to electromagnetic radiation. Using Larmor’s formula to estimate
this radiation, we show that the amount of energy radiated depends on the charge
squared, and also on how abruptly the crystal recoils. A perfectly rigid crystal which
accelerated instantaneously would have a very large energy loss, and a slow diffusive
recoilmediated by soundwaveswould have amuch lower loss. If the diffusion occurred
at near to the speed of light, the loss would be somewhere in between. The energy loss
can be measured in the Mössbauer setup, and thus an experimental measurement can
in principal be made of the recoil dynamics.

The Mössbauer effect is interesting for two fundamental reasons, aside from its
many practical uses. First, it raises these fundamental question about locality, and
second because it illustrates a system in which the chemical environment indisputably
has a very large effect on the reaction rate of a nuclear process. There is another
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reason why this topic is important. In the perturbative standard model picture for the
rigid recoil, all of the recoil momentum is absorbed by a single nucleus, and not by
the whole crystal. But this nucleus must be off the mass shell, which is allowed in
relativistic quantum field theory. This local explanation of the effect has not appeared
in the literature prior to this paper, and it seems to me likely to be the true explanation
for the effect. The instantaneous rigid recoil picture is thus very probably simply
wrong. Solid state and condensed matter theory are entirely built upon on-mass-shell
theories of quantummechanics. Thus, they are incapable of describing themicroscopic
local interactions in the Mössbauer effect. What is needed is a covering theory of
conventionalmany-body theorywhich allows for states ofmatterwhere the restmasses
of particles in a solid are different from their usual values, ie. off the mass shell. This
means that the Hilbert space of states must be enlarged to include off mass shell states
as well. We discuss below theories which have this feature.

2 Textbook Theories of the Mössbauer Effect from Condensed Matter
Physics

There are a number of theoretical approaches to describing theMössbauer effect in the
literature. Many historical papers can be found in Hans Frauenfelder’s excellent book
[9]. The basic physical picture is that a region of a crystal recoils as a rigid body in
response to a nuclear decay. The solid is typically approximated by the Debye model
which treats it as a set of coupled oscillators. Quantization of these oscillators leads to
a phonon spectrum with a non-zero energy gap between the ground state and the next
excited state. When the recoil energy of the Mössbauer is comparable to this energy
gap, then the probability for recoilless decay can become appreciable, depending
on the Debye–Waller factor. Frauenfelder acknowledges the possible existence of a
relaxation process of non-zero time duration after the nuclear decay but before the
final state of the rigidly moving crystal is realized, but he does not go into details
(see chapter 2 of [9]) of this transient possibility. His discussion of transient effects
is influenced by a paper by Weisskopf [38]. Many papers simply treat the recoil as if
it were an instaneous rigid recoil, and they judiciously avoid discussing any transient
response of the system. The subject of rigid bodies and special relativity is discussed
in some detail in [8], and the possibility of a rigid recoil of the whole crystal does
not seem to be automatically ruled out. All of the early theories for the Mössbauer
effect were developed before the standard model was known. An attempt was made
to reconcile instantaneous recoil with the standard model in [2,31] where the authors
argued that the possibility of superradiant coherent oscillation of a group of nuclei at
the plasma frequency might explain the rigidity of the crystal. I want to concentrate
here on the rigid-recoil aspect of these theories, and so a simplified treatment is in
order. The treatment by Lipkin [22,23] is a good starting point to examine the locality
of this process without getting into unnecessary complications. First of all, as in
almost all theoretical models in solid state physics, the treatment is always done with
non-relativistic quantum mechanics, the argument being that since the velocities of
the nuclei remain non-relativistic after the decay, this is justified. This allows us to
have a nice many-body Schrödinger picture with a local Hamiltonian description and
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a well defined Hilbert space of states. Most quantum mechanical discussions of the
Mössbauer effect start by considering an isolated and free nucleus experiencing decay.
The discussion typically proceeds something like this. Let |in〉 and |out〉 denote the
nuclei’s wave function before and after the decay emission of a gamma ray, and we
know that both that the total kinetic energy and momentum are conserved in the decay
process. Furthermore, let us assume that the initial state is an eigenstate of momentum
|in〉 = |pin〉. If we denote the momentum of the decay gamma ray as pγ , then we
have |out〉 = ∣

∣pin − pγ

〉

. The rest mass of the decaying nucleus must change to the
mass of the nuclear ground state that it decays into. Call these masses Min and Mout .
These are known fixed values which can be found in standard nuclear databases. The
kinetic energy of the nucleus before decay is Ein = p2in/2Min , and the kinetic energy

after the decay is Eout = (

pin − pγ

)2
/2Mout . Conservation of total energy requires

that (c=1 here)

Ein + Min = p2in/2Min + Min = Eout + Mout + Eγ

= (

pin − pγ

)2
/2Mout + Mout + ∣

∣pγ

∣
∣ , (1)

where we have used the non-relativistic energy formula for the nuclei energies. This
can be rewritten as

p2γ
2Mout

+
(

1 − k̂ · pin
Mout

)

∣
∣pγ

∣
∣ + (Mout − Min) + p2in

2

(
1

Mout
− 1

Min

)

= 0, (2)

where I have used the substitution pγ = k̂
∣
∣pγ

∣
∣. The last term in this equation is

usually extremely small and can be ignored. Solving for
∣
∣pγ

∣
∣ then yields

∣
∣pγ

∣
∣ =

∣
∣
∣
∣
∣
∣
∣
∣

−
(

1 − k̂·pin
Mout

)

+
√

(

1 − k̂·pin
Mout

)2 − 2 (Mout − Min) /Mout

1/Mout

∣
∣
∣
∣
∣
∣
∣
∣

. (3)

In the case where pin = 0 we get

∣
∣pγ

∣
∣ =

∣
∣
∣−Mout + Mout

√

1 − 2 (Mout − Min) /Mout

∣
∣
∣ , (4)

which, on expanding the square root in a Taylor series, yields

∣
∣pγ

∣
∣ = Min − Mout − ER, (5)

where the recoil energy is ER = (Min − Mout )
2 /2Mout . Because the mass of the

nucleus changes in the decay, the kinetic energy term changes to reflect this, and so
does the Hamiltonian operator. So, in a strict sense, the |pin〉 and |pout 〉 are states in
two different Hilbert spaces such that for free particles we have
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p2in
2Min

|pin〉 = Ein |pin〉 ; p2out
2Mout

|pout 〉 = Eout |pout 〉 . (6)

So, we must take the Hilbert space direct sum to construct one for the entire system.
In systems where the Mössbauer effect is observed, the recoil energy is considerably
larger than the decay width of the nuclear decay. Thus a gamma ray emitted from a free
nucleus cannot be resonantly re-absorbed by a similar free nucleus in its ground state.
But Mössbauer noticed that the measured resonant absorption in some circumstances
where both source and absorber were in a solid crystal was in contradiction with the
free particle model of nuclear decay, and in particular increased with temperature
rather than decreased as one would expect in the free particle model, because the
Doppler broadening of the gamma rays should tend to increase the likelihood that
a gamma particle has the energy to be resonantly absorbed [23](see chapter 2.2).
The idea that explained this was that the recoil momentum must be taken up by a
crystal volume containing many atoms surrounding the decaying nucleus, and with a
significant probability that no energy is lost to the lattice due to creation of phonons
in this process.

For a boundnucleus decaying in a crystal, the dynamics of the crystal come into play.
The mass change in the decaying nucleus is typically ignored because Min − Mout �
Min . The standardLippmann-Schwinger scattering theory is typically used [25],where
the S matrix satisfies the equation

S = U (∞,−∞) = 1 − (i/h̄)

∫ ∞

−∞
H1(t)U (t,−∞)dt, (7)

where H1 is the interaction Hamiltonian, and U the time evolution operator in the
interaction picture. When considering the decay of a radioactive particle, it is more
appropriate to consider an approximate S operator for a finite time interval T which is
small compared to the lifetime of the particle (9.8×10−8 s for the 14.4keV excitation
of iron-57 for example) but nevertheless assumed large compared to the relaxation
time of the crystal holding the excited nucleus.

S(T ) = U (T/2,−T/2). (8)

Considering just the crystal state vector, one can expand the initial state in terms of
a complete set of momentum eigenstates for the decaying nucleus, denoted by index
L. The Hilbert space of the whole crystal is a product space spanned by products of
eigenstates for each particle in the solid. We concentrate on the momentum of the
decaying nucleus and write

|in〉 =
∑

pL ′
|pL′〉 〈pL ′| in〉 , (9)

The out state is obtained by acting with the S matrix operator

|out〉 = S |in〉 =
∑

pL ′,pL ′′
|pL′′〉 〈pL′′| S |pL′〉 〈pL′| in〉 . (10)
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The |in〉 state denotes the state of the crystal at t = −∞, and the |out〉 state denotes
the state of the crystal at t = +∞. This S matrix formalism does not address the issue
of how long it takes for the solid to relax into the final state after the decay photon
is detected. If we concern ourselves with the case that a single decay occurs, then
momentum conservation requires

pL ′′ = pL ′ − pγ , (11)

|out〉 =
∑

pL ′

∣
∣pL′ − pγ

〉 〈

pL′ − pγ

∣
∣ S |pL′〉 〈pL′| in〉 , (12)

but we can substitute the replacement
∣
∣pL′ − pγ

〉 = exp(−i p̂γ · x̂L) |pL′〉 so that

|out〉 =
∑

pL ′

∣
∣pL′ − pγ

〉 =
∑

pL ′
exp(−i p̂γ · x̂L) |pL′〉 〈

pL′ − pγ

∣
∣ S |pL′〉 〈pL′| in〉 .

(13)
Now if we assume that the initial state is such that ‖pL′‖ � ∥

∥pγ

∥
∥, so that

〈

pL′ − pγ

∣
∣ S |pL′〉 ≈

〈

−pγ

∣
∣
∣S

∣
∣
∣0

〉

, then we have

|out〉 =
〈

−pγ

∣
∣
∣S

∣
∣
∣0

〉

exp(−i p̂γ · x̂L)
∑

pL ′
|pL′〉 〈pL′| in〉

=
〈

−pγ

∣
∣
∣S

∣
∣
∣0

〉

exp(−i p̂γ · x̂L)

∣
∣
∣
∣
in

〉

. (14)

The main effect on the crystal is an increase in the momentum due to the recoil of the
decayed nucleus (see [23] equation 3.1 and following for a more complete discussion).
Note that the recoil momentum is applied initially to the decaying nucleus only, but
then over time it must be spread around the rest of the crystal.

3 A Non-perturbative Approach Based on Super-Radiance Theory in
QED

In an effort to clarify the physical mechanisms which enable the Mössbauer effect to
occur, Preparata together with others applied his “super-radiance” theory of coherent
oscillation to the problem of the rigid recoil [2,31]. They argued first off that a better
explanation is required for theMössbauer effect than theonephysicists havedeveloped.
In fact the field was given over to chemists long ago, and not much attention has been
paid to it by physicists for some time. They argued that in conventional solid state
physics models, at very short distances, the presence of the solid can not have very
much effect on the Mössbauer decay. They used the term “asymptotic freedom” for
this expected decoupling, although this term is a bit confusing in this context since it
has little to do with the asymptotic freedom of non-abelian guage theories. What they
mean by “asymptotic freedom” is thatwhen a systemdominated by longer range forces
is perturbed by a short range disturbance, it behaves as if it were free. Think of a bullet
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fired into a pendulum in equilibrium. At the instant of impact, the harmonic restoring
force on the pendulum plays no role. He argues that the Mössbauer effect is just such a
case, and that we should expect the recoil of the emitted (or absorbed) X-ray should be
taken up entirely by the emitting nucleus if the conventional picture of a solid is correct.
The rigid stiffness model of a volume of nuclei employed to explain the observed
effect is clearly in contradiction to this intuitively expected asymptotic freedom. So
they argued that conventional solid state physics really suggests that the Mössbauer
effect is simply impossible, and something fundamentally different must be employed.
They accuse mainstream physics of ignoring this logical conundrum by accepting the
rigid theory, which does explain the experimental data, without questioning its logical
consistency. Personally I think they were correct in this assessment. They argue that
what is different is that the nuclei in a solid can undergo a collective and coherent
low amplitude collective oscillation about their respective mean lattice sites, and that
this collective motion gives a small volume of a solid the rigidity that is required to
explain the recoil phenomenon. So Preparata et al. treat the set of nuclei in a metal as
if it were a plasma, and they consider it quantummechanically by introducing a wave-
field for the nuclei �(

−→x ,
−→
ξ ), where −→x denotes the mean position of a nucleus, and−→

ξ its deviation from this mean. These nuclei can oscillate collectively at the plasma
frequency wp = Ze√

MN

√
n, where Z , MN , and n are the atomic number, nuclear

mass, and number density for the nuclei in the solid. This oscillation is not a phonon
effect, but is a plasmon effect, and Preparata et al. argue that the quantization of this
collective motion can lead to the rigidity observed in the Mössbauer phenomenon.
They do not specifically calculate the time that it takes for the recoil to occur. As the
region of the solid is perfectly rigid though, one might expect that this picture leads
to an intantaneous recoil of a collective group of nuclei.

4 A Standard Model Picture Based on Perturbation Theory and
Feynman Diagrams

The standard model of particle physics is considered at this time to be the best and
only all-encompassing fundamental description of nuclear physics, atomic physics,
and condensed matter physics known [29]. In condensed matter physics, it is for
the most part equivalent to quantum electrodynamics because the electromagnetic
interaction (via virtual photons) dominates the interactions. Since the primary tool for
solving problems in QED is perturbation theory and Feynman diagrams, let’s assume
to start off that such a description is suitable in this case, except that the nuclear
decay dynamics themselves involve the weak and strong forces too. Let us therefore
assume first that a perturbative approach, based on Feynman diagrams, can be used
to describe the Mössbauer process. In any nuclear decay of an isomer which emits
a photon, including a Mössbauer decay, the basic Feynman diagram for the decay is
shown in in Fig. 1 on page 7. The effects of the weak and strong forces are summarized
in vertex function for this diagram.

In this elementary depiction of any nuclear decay by single photon emission, the
4-momentum is conserved, and the three legs of the vertex can in general be off the
mass shell.
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Fig. 1 A zoom-in on the core Feynman diagram for the Mössbauer process

Pμ
in = Pμ

out + kμ
γ . (15)

The symbol Pμ
in is the 4-momentum of the initial nuclear isomer which is decaying,

and Pμ
out is the 4-momentum of the final state. Now, if perturbation theory can be used,

the ongoing interaction cannot influence the conservation of 4-momentum at the core
decay vertex as shown in Fig. 1 on page 7. In Fig. 2 on page 7 we show an example
of some of the other interactions which will occur between the decaying nucleus and
the rest of the solid.

We must sum over all conceivable Feynman diagrams of this type to calculate
the probability amplitude for arriving at any given final state. In these more complex
diagrams, let’s assume that the X-ray photon with momentum kγ is on-shell (kμ

γ kγμ =
0) since otherwise it could not travel very far out of the solid, and that it passes through
the solidwithout scattering.Now the incoming and outgoingmomenta for the decaying
nucleus long before and long after the decay event can be changed by the interaction
with the solid, and therefore

P̃μ
in �= Pμ

in and P̃μ
out �= Pμ

out . (16)

It is plausible to assume, however, that at least P̃μ
in will be very close to the mass

shell, and that the deviation in the kinetic energy will be on the order of the expected
thermal fluctuations which are proportional to kT , where K is Boltzmann’s constant
and T is temperature of the solid in Kelvin degrees. Let us define two rest masses for
the two nuclear isomers. I use units such that c = h̄ = 1 and the metric signature is
(+,−,−,−). Let us define the following masses of the two nuclear states in a vacuum.
These are just the standard mass values you find in a nuclear database.

Min = rest mass of the unstable isomer of nucleus, (17)

123



336 Found Phys (2017) 47:327–354

Fig. 2 Feynman diagram for the Mössbauer process showing multiple photon interactions that can diffuse
the recoil momentum throughout the solid. The solid vertical lines represent charged particles in the solid
including electrons and nuclei

Mout = rest mass of the ground state nucleus. (18)

In order for the Mössbauer photon to be resonantly absorbed, its energy must satisfy
the following equality with high accuracy.

k0γ = Min − Mout . (19)

Let us consider Feynman diagrams such that the photon has this value, and working
in the rest frame of the solid, let’s suppose that to a good approximation, especially at
low temperatures, that we have the incoming mass on the mass shell so that

Pμ
in Pinμ = P̃μ

in P̃inμ = M2
in, (20)

where I use the standard Einstein convention here, and repeated Greek indices are to be
summed over the values (0, 1, 2, 3) where the zero index represents the time dimension.
Therefore, if we ignore the thermal and zero-point agitation of the decaying nucleus
in the solid for the time being, we can write

Pμ
in = (Min, 0, 0, 0); kμ

γ = (

(Min − Mout ) , (Min − Mout )n̂
)

, (21)
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where n̂ denotes the unit 3-vector direction of the Mössbauer photon. Now we can
calculate Pμ

out from 4-momentum conservation.

Pμ
out = Pμ

in − kμ
γ = (

Mout ,−(Min − Mout )n̂
)

. (22)

Now we can calculate the mass of the nucleus that has resulted from the decay and
emission of aMössbauer photon (we use lower casemout for this mass because it turns
out to be off shell and therefore different from Mout )

mout =
√

Pμ
out Poutμ =

√

M2
out − (Min − Mout )2 < Mout . (23)

For all examples of the Mössbauer effect the following is a good approximation
Mout � Min − Mout and consequently

mout = Mout

√

1 − (Min − Mout )2

(Mout )
2 ≈ Mout

(

1 − (Min − Mout )
2

2 (Mout )
2

)

= Mout − 1

2

(Min − Mout )
2

Mout
, (24)

and the amount that the nucleus is off-mass-shell is

�mout = mout − Mout = −1

2

(Min − Mout )
2

Mout
= −1

2

−→
kγ

2

Mout
. (25)

So the nuclear rest mass is off-mass-shell in the negative direction. We get the same
formula for the absorption case. The mass of the final state isomer is slightly below
the mass shell for that isomer when a Mössbauer photon is absorbed. For the case of
57Fe we have (Min − Mout ) ≈ 14.4keV, and mout ≈ −0.002eV.

This off mass shell behavior is impossible to describe correctly within the
framework of conventional solid state theorywhich is based almost exclusively on non-
relativistic quantum mechanics, and on-mass-shell Schrödinger equations. It offers
another explanation for the logical basis of the Mössbauer effect, but unlike the super-
radiance theory, it uses a known property of conventional relativistic quantum field
theory, namely the off shell behavior of virtual particles in a Feynman diagram. It’s
surprising that this fact has not been pointed out before in the literature, which to my
knowledge it hasn’t. Perhaps it is because the offmass shell behavior of virtual particles
in Feynman diagrams has been considered a mathematical enigma since the on-mass-
shell particle states are considered to be a complete set of states in the conventional
picture of a solid.

At first, just after the decay, the recoil momentum is fully absorbed by a single
nucleus, but then a transitory period of diffusion must occur. This momentum density
that is concentrated at a single nucleusmust be spread throughout the entire lattice, and
result in a state corresponding to the common understanding of the Mössbauer effect
- that of a rigid crystal moving with a small recoil velocity. After this diffusion occurs,
the recoil momentum is described by this rigid motion of the crystal, and presumably
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all of the nuclei return to the mass shell (ie. their rest masses are the usual values).
The excited isomer will eventually decay back to the ground state too. The mechanism
for this diffusion presumably does not include any phonons since the solid is excited
with an energy that is below the threshold for producing even one phonon. But it may
include electromagnetic transport mediated by response of the electron gas in the solid
to the motion of the recoil nucleus.

I think that this view of the Mössbauer effect would be preferred by particle physi-
cists, but not by solid state physicists. Since there are manymore solid state physicists,
it is probably the case that the majority of physicists would reject the above descrip-
tion. In my view it is needed to reconcile locality and causality with the conventional
interpretation of the Mössbauer effect. Since particle physics is the parent field for
nuclear physics, I think that the standard model picture of the Mössbauer effect must
be taken seriously. Of course, nature may not work this way, and the more non-local
interpretation of solid state physicists could prevail if experiments could be devised
to rule out the above standard model picture. I would personally bet on the standard
model though.

We must sum over all the possible final states of the solid, where by final states
I mean here states that have been reached some time after the decay has occurred,
so that the crystal has had time to reach statistical equilibrium. I’m thinking in terms
of just ordinary QED here, so the Mossbauer photon can be taken on the mass shell
(ie. zero mass). Since the various configurations for the solid are not measured, or
even measurable, I would sum over amplitudes, following Feynman’s dictum for
indistinguishable outcomes, and therefore interference can occur. This is similar to
the technique of summing over amplitudes for emssion of infra-red photons in order
to deal the infrared divergences of QED. I think it will turn out if you do this that
the final states which are very near to the whole solid moving with fixed velocity
rigidly and with the proper recoil momentum will tend to be in phase and construc-
tively interfere if the energy of the crystal is below the phonon gap for the crystal.
Other final states would, I expect, interfere with random phases, and so tend to can-
cel out. Thus the Feynman paths in a path integral which resulted in the whole solid
moving rigidly with the required recoil momentum would be singled out and have
an enhanced amplitude, and this would enable one to calculate the decay proba-
bility and width for them. This is how the phonon density of states can enter the
problem.

Obviously, if this argument is correct, then transient off-mass-shell behavior plays
a critical role. Conventional solid state physics theory has difficulty with describing
this phenomenon. The only course of action that I can see to remedy this situation is to
modify solid state physics to incorporate off-mass-shell states into the Hilbert space
of states. Such a possibility was long ago proposed by Greenberger [13–16]. One way
to do this in a manifestly covariant way is to use the extensive machinery of the Fock–
Steuckelberg–Horwitz–Piron covariant quantum mechanics [6,7,18,20,36,37]. This
theory is quite well developed, and seems well suited to study this phenomenon. So
in summary, the perturbative picture of the standard model says the following about
the Mössbauer effect:
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• All of the momentum of the emitted (absorbed) Mössbauer photon is accounted
for by the recoil of a single decayed (or excited) nucleus immediately after the
decay (absorption) has occurred.

• If the initial nuclear state is on its mass shell, then the final nuclear state that results
from and immediately after the Mössbauer decay/absorption is off the mass shell.

• The subsequent diffusion following a decay or absorption can in theory propagate
much faster than the speed of sound, up to the speed of light, and result in a rigidly
recoiled final state.

4.1 Digression Into Off-Mass-Shell Covariant Relativistic Quantum Mechanics

The Feynman perturbation picture requires that either the final state of the nucleus
(or possibly even the initial state) must be off the mass shell for a Mössbauer
X-ray to be either emitted or absorbed as in 1. Thus, to handle this effect rigorously,
some sort of off-mass-shell version of quantum mechanics must be used in which the
on-mass-shell quantum states no longer form a complete set of states. The most well-
developed set of such theories are of the Fock–Stueckelberg–Horwitz–Piron category.
The recent very fine book by Horwitz [20] gives a detailed account of most of the
current status of this field. Sometimes also referred to as the proper time formulation,
the basic idea is to add a second Lorentz invariant time variable. All particles then
move along trajectories in 4DMinkowski space which are parametrized by a common
universal time which is both a Lorentz invariant and a common affine parameter for
all trajectories, thus making the geometric arena for physics 5 dimensional. A point
particle in this space is given a new name, and it’s called an event. The new time plays
much the same role as Newtonian time in non-relativistic mechanics. The theory was
extended to interacting many-body systems in a landmark paper by Horwitz and Piron
in 1973 [18], and this theory introduced new and interesting possibilities for quan-
tum mechanics. It’s basically a Schrödinger type of theory, the equation being first
order in the new time but second order in the Minkowski time variable. The particle
coordinates, functions of the universal time τ , are 4 dimensional vectors. It led to
a generalization of electrodynamics called pre-Maxwell theory. The bibliography is
extensive, and can largely be found in [20]. Methods for adding arbitrary spin have
been worked out, and mechanisms for the mass to return the the standard rest mass
have been partially explored. A recent paper by Land [21] has introduced a modifica-
tion to pre-Maxwell theory that introduces a new constant into the theory that controls
how close it is to conventional QED. These types of theories seem well suited for
studying the relaxation of a crystal back to equilibrium after a Mössbauer decay or
absorption has resulted in an off-mass-shell nucleus at a particular lattice site in the
solid. I won’t attempt to give a thorough accounting of this subject here, but simply
include the basic Horwitz–Piron wave equation for consideration:

N
∑

i=1

[
h̄2

2Mi

(

pμ
i − qi A

μ
) (

pi,μ − qi Aμ

) + V (x1, x2, . . . , xN )

]

�(x1, . . . , xN , τ )

= i h̄
d�(x1, . . . , xN , τ )

dτ
(26)

123



340 Found Phys (2017) 47:327–354

where each xi is a 4-vector in Minkowski space, and pμ
i = −i h̄∂/∂xi,μ, Mi the

standard rest mass of each particle, qi their charge, Aμ an external electromagnetic
potential, and V an arbitrary potential function. In general in this theory, even in a
region of space time where Aμ = 0, and V = 0, the particles can be off the mass shell
so that pμ

i pi,μ �= M2
i .

In a recent papers , Horwitz [19] and Land [21] have addressed the important issue
of mass stability in these theories. Horwitz uses a statistical mechanics approach. His
conclusion is that a second temperature controlling the mass, and different from the
traditional temperature, is required. Land has developed a modification the the pre-
Maxwell theory which contains a new parameter, he calls it C5, which controls how
closely the theory agrees with standard QED, and also how quickly the masses of the
particles return to their standard rest mass values, once all interactions have been off-
mass-shell behavior. These two approaches might be related to one another. In a solid,
one can imagine that Land’sC5 parameter might depend on the materials properties of
the solid, in the way that the index of refraction does in conventional electromagnetic
theory. The response of the crystal to a Mössbauer decay or absorption would then be
controlled by this phenomenological parameter. These off-mass-shell theories, perhaps
in combination, would seem to be superior to the standard Schrödinger equation for
the many-body description of the solid in this circumstance.

5 Radiation from a Charged Metal Sphere Due to Recoil from the
Emission of a Mössbauer X-ray—A Mechanism to Measure Response
Time of Mössbauer Recoil

Rather than try to settle the theoretical debate about the rigidity of the Mössbauer
crystal, I would like to propose an experiment for consideration which might shed
light on the subject. Consider a small conducting sphere which consists of a material
which is either undergoing Mössbauer decays or is resonantly absorbing Mössbauer
X-rays. Let the sphere be charged with a total charge q. The charge will typically
reside on the surface, but this is not fundamentally necessary for the effect. The effect
that we will discuss is the same for either sign of the charge, however a positivelly
charged sphere may be more stable to field emission than a negatively charged one,
because of the much higher probability of electron tunneling than ion tunneling from
a surface. If the entire sphere acts as a rigid body, as in the usual (and perhaps naive)
solid state physics picture of the Mössbauer decay, then the conducting spherical shell
of charge on the outer surface of the sphere will experience a pulse of acceleration.
Consequently it will radiate electromagnetic energy away. The amount of radiated
energy will depend on how large the acceleration is. A stiff crystal will lead to a short
pulse of large acceleration, a diffusing crystal will lead to a longer pulse of smaller
acceleration. The stiffer the acceleration, the more radiation is to be expected, because
for the lower frequencies (υ � R/c) we expect Larmor’s formula to hold, and this
states that the radiated energy is proportional to the acceleration squared. The radiated
power also varies as the square of the charge, and so the signal can be enhanced by
increasing the charge up to the electrostatic breakdown limit. Whatever the amount of
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Fig. 3 Radiation emitted or absorbed by a charged sphere containing a decaying nucleus embedded in a
metal crystal

energy lost to radiation is, this energy must be subtracted from the energy available
for either emission or absorption of of a Mössbauer photon Fig. 3.

Let’s treat the recoiling crystal classically as a first approximation. Let its acceler-
ation along the recoil direction be be a(t). Then the change in its velocity is

v f − vi =
∫ +∞

−∞
a(t)dt. (27)

If the direction and energy of the emitted or absorbed X-ray is known, then the change
in the velocity of the recoiling crystal is determined by momentum conservation. As a
first approximation to the energy radiated, we can use Larmor’s formula (in Gaussian
cgs units)

PLarmor (t) = 2

3
q2a(t)2/c3. (28)

We see that in the limit of an infinite acceleration, we must have a(t) tending to a delta
function in time, and so the radiated energy given by
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Erad =
∫ +∞

−∞
PLarmor (t)dt = 2

3c3
q2

∫ +∞

−∞
a(t)2dt, (29)

will become infinite. Sowemust limit the recoil time to a nonzero value. For simplicity,
let’s assume that the acceleration is constant for a time T, and zero before and after
this time, so that the aceleration is a simple step function.

a(t) = a0, −T/2 < t < T/2, and 0 otherwise, (30)

or, in terms of the unit pulse function 
,

a(t) = a0

(

t

T/2

)

. (31)

We must require that the integral of the acceleration pulse over all time gives the
change in the velocity of the crystal caused by the recoil of the Mössbauer event (here
Mχ is the mass of the stiff crystal, and kγ is the wave number of the X-ray, either
emitted or absorbed). Assuming that the initial momentum of the crystal is zero, the
magnitude of its final recoil momentum is ±h̄kγ , an so its final velocity after recoil is
given by

VMx = a0T = ±h̄kγ /Mx (32)

where the + sign if for absorption of a photon, and the − sign is for emission. Inte-
grating over time we find the total energy radiated

Erad = ELarmor =
∫ T/2

−T/2
P(t)dt = 2

3
q2Ta20/c

3 = 2q2

3c3
V 2
Mx

T
= 2q2h̄2k2γ /M2

x

3c3T

= 2h̄2k2γ
3c3T

(
q

Mχ

)2

. (33)

This energy must come from somewhere, implying that the energy of the Mössbauer
eventmust be reduced by this amount. The linewidth of theMössbauer decay in iron-57
is about 1.0× 10−8 eV, and this determines the sensitivity of energy measurements. If
the radiative loss Erad is comparable or larger than this linewidth, then the Mössbauer
apparatus can in principle measure it. Let us calculate the energy radiated if T is the
time it takes light to travel the diameter of the particle.

5.1 Calculation of the Energy Radiated for Speed of Light Recoil Response
Using I-57 as the Mössbauer-Active Material with T = 2R/c

To be specific, suppose the crystal consists of iron-57, the most common crystal used
in theMössbauer effect.We approximate themass density iron-57 at room temperature
by the corresponding value of natural iron, including all stable isotopes, which is about
7.2 gm/cm3, and kγ = 14.4keV for 57Fe. The linewidth of the Mössbauer decay in
iron-57 is about

δE = 1.0 × 10−8 eV, (34)
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and this determines the sensitivity of energymeasurements. If the radiative loss Erad is
comparable or larger than this linewidth, then theMössbauer apparatus can in principle
measure it. If R is the radius of the sphere, we assume here that T = 2R/c, the time
that it takes light to move the diameter of the crystal.

Then we obtain

Erad = 2

3

(
h̄kγ

cMx

)2 q2

cT

∣
∣
∣
∣
T=2R/c

= 2

3

(
h̄kγ

cMx

)2 q2

2R
, (35)

but, the electrostatic energy of the charged sphere is just (in electrostatic cgs units)

Ees = q2

2R
, (36)

and therefore

Erad = 2

3

(
h̄kγ

cMx

)2

Ees . (37)

Now the kinetic energy of the recoiling crystal must be less than δE in order for the
Mössbauer effect to work. So, assuming this, we can write

(

h̄kγ

)2
/2Mx < δE, (38)

Erad <
4

3
δE

Ees

Mxc2
. (39)

We can’t make R arbitrarily small, because we must statisfy the constraint (38). The
crystal mass must therefore satisfy the condition:

Mx >
(

h̄kγ

)2
/2δE (40)

For Iron-57 we find

Mx > (14.4 keV)2 /
(

2 × 10−8eV
)

= 1.0368× 1016eV = 1.113× 107AMU (41)

Each iron atom has a mass of about 56.9amu, so the crystal must contain at least
1.9 × 105 iron atoms for the Mössbauer effect to work. We can calculate the radius
from the formula

Mx = 4

3
πR3

(

7.2 gm/cm3
)

, (42)

Rmax ≈ 84.9Å. (43)

The question then is, what is the maximum amount of (positive) charge that can be
placed on an iron sphere of radius R before spontaneous emission of iron ions occurs?
In order to estimate this, we make some crude assumptions. The threshold energy for
sputtering of most metals is usually in the range of 10–30eV. Let Eth be this energy
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for iron-57. We assume that the maximum electric field strength in the radial direction
at the surface that can be withstood without iron-57 ions being spontaneously emitted
is approximately determined by the condition

2e |Emax | ax = Eth, (44)

where ax is the lattice spacing of the crystal (∼ 2.87Å f or iron). We give the iron
ion a charge of +2 because each iron atom contributes two electrons to the conduction
band. So the maximum field strength is, taking 10eV for the sputtering threshold:

|Emax | = Eth

2eax
. (45)

Since we have spherical geometry, we have the relation just outside the surface of the
sphere

Ees = 1

2
QR |E| . (46)

the maximum value for Q is determined by

|Emax | = Qmax

4πε0R2
max

, (47)

and the voltage of the charged sphere is

Vmzx = Rmax Emax , (48)

and therefore, the energy radiated is obtained from (39). The results are:

Rmax = 85 Å; Eth = 10 eV; |Emax| = 34.8GV/m (49)

Vmax = 296V ; Qmax = 2.8 × 10−16C, (50)

Ees = 258 keV; Mxc
2 = 1.04 × 107 GeV, (51)

and from these results we have the maximum radiation energy loss

Erad ≈ 4

3
δE

Ees

Mxc2
= 3.3 × 10−19 eV, (52)

and therefore
Erad << δE, (53)

which implies that the effect is too small to measure. So the only way that this effect
could be measured is if the recoil is essentially instantaneous. There are two options
available to increases the sensitivity. We can consider longer lifetime crystal materials
which have smaller values of δE , and we can consider using a volume of crystal which
is below the mass needed for the Mössbauer effect, but which can still be resonant if
moving with a precise velocity because of Doppler shifting. Both of these methods
are discussed below.
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5.2 Calculation of the Energy Radiated for Speed of Light Recoil Response
Using Rhodium-103 as the Mössbauer-Active Material with T=2R/c

Rhodium-103 has a very long-lived isomer 103m Rh which is a candidate for precision
Mössbauer research [4,5]. Its linewidth is 1.35× 10−19 eV, which is eleven orders of
magnitude narrower than the 57Fe isomer. The energy of the emitted photon is 39.8keV,
and the mass of 103m Rh is 102.9amu. The density is 12.45 gm/cm3. The lattice type is
FCC, and the lattice spacing is 3.8Å.The calculation is otherwise the same as for 57Fe.
In order for the Mössbauer effect to work, the mass of the crystal in this case must be
quite a bit larger then for iron-57, becauseof themuchnarrower linewidth forRhodium-
103. This larger mass then translates into a smaller radiation loss for a charged crystal
due to acceleration. Consequently, if we go through the calculation done above for
iron-57, but substituting the appropriate parameters for Rhodium-103, we find that the
radiated power is actually smaller, so the reduced linewidth did not help. However,
we shall now propose a way to utilize the full advantage a longer lived Mössbauer
element such as Rhodium-103. We will consider an undersized Mössbauer crystal
for the absorber, so that the kinetic energy is too large to allow for any Mössbauer
absorption to occur. We propose to compensate for this energy loss by a Doppler shift
applied to the absorber or source which would cancel the deficit in energy as far as
the absorbed gamma ray energy was concerned. The reduced crystal mass makes the
acceleration larger than it would be if the full Mössbauer crystal mass were used, and
thus the energy loss due to radiation and Larmor’s formula will be greater. Let us
consider a crystal consisting of N atoms of a Mössbauer active material, and let m
denote the mass of a single nucleus, and q = Nee .

Mx = Nm. (54)

R is determined by the condition

Nm = ρμ

4

3
πR3 → R =

(
3mN

4π�μ

)1/3

, (55)

where ρμ is the mass density. So we have

Erad(N , Ne) = 2

3

(
h̄kγ

cNm

)2 N 2
e e

2

2

(
4π�μ

3mN

)1/3

= N 2
e e

2

N 7/3

1

3

(
h̄kγ

cm

)2 (
4π�μ

3m

)1/3

.

(56)
Plugging in numbers for rhodium-103 we obtain the following formula

Erad(N , Ne) = N 2
e

N 7/3

(

5.5680 × 10−13eV
)

. (57)

As an exmple, suppose that N = 104, and Ne = 103, we calculate

Erad(10000, 1000) = 2.584 × 10−16 eV, R = 32Å,

V = 450V, vDoppler = 6.22mm/s (58)
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where R is the radius of the sphere, V is the voltage at the outside of the spherical
nanoparticle, and vDoppler is the velocity required so that the Doppler shift com-
pensates for the energy lost to kinetic energy of the recoil crystal, since we have
intentionally considered and udersized Mössbauer crystal. This energy shift is over
3 orders of magnitude larger than the decay linewidth, and so it should be resolv-
able. Many other values of N and Ne give resolvable radiation results. There are
some possible problems with this estimate though. One is that due to the small
size of the crystal, the surface effects might be important. On the surface there
may be isomer shifts on the energy levels of the rhodium-103 and rhodium-103m
caused by the modified lattice at the surface of the sphere. Also at the surface,
the outer several layers of atoms may experience a non-zero electric field due to
the net charge on the sphere. This field could cause energy shifts in rhodium-103
and rhodium-103m because the electric quadrupole moment for these nucleii may
not be zero, and such quadrupole moments are common among nucleii and cause
energy shifts due to electric fields [35]. Other long-lived Mössbauer active isotopes
which might be considered as alternatives to rhodium are 45Sc, 107Ag, and 109Ag [4].
Although none of these have as narrow a linewidth, they are all more studied in the
literature.

In this section we assumed that T = 2R/c, so that if the measured value of Erad

is greater than the estimated value here, the diffusion rate is faster than the speed of
light, and if it is lower, then the diffusion rate is on average slower than the speed of
light.

5.3 Gedanken Experiment for Testing These Ideas

I am a poor experimentalist, but I can never forego the temptation to design a thought
experiment. Imagine a flat insulating disk, it could be a plastic, a glass, or a metal on
which is deposited on one or both sides a layer of nano-particles of a controlled size
of rhodium-103, or some other Mössbauer active element. Place this disk inside of a
conducting tube which is held at some potential V above ground. The nano-particles
are electromagnetically floating. Now shine a light source whose wavelength is short
enough to allow electrons to leave theMössbauer active nanoparticles and move to the
concucting cylinder bymeans of the photoelectric effect. Eventually,when equilibrium
is reached, the nano-particles will approach the voltage of the surrounding tube, and
will then have a net positive charge on them.Multiple disks can be used to increase the
absorption. Working in a non-ionizing atmosphere like helium might be simpler than
working in a vacuum, provided the ionization levels could be kept to a low enough
level. See Fig. 4. In order to have variable rates of Doppler shift, I would propose a
precision linear 1 axis motorized stage. These are available with speeds up to about
300mm/swith high repeatability and accuracy if cost is not an issue. They are routinely
controlled by software. By varying the voltage on the outer cylinder, the charge on
the nano-particles can be adjusted, and the energy shift caused by charging the nano-
particles can be measured by adjusting the velocity of the stage to match the voltage
on the cylinder.
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Fig. 4 Gedanken experiment for measuring the energy loss due to acceleration of charged micro-spheres
undergoingMössbauer recoil, and thereby gaining information about the rapidity of diffusion of momentum
throughout the crystal

6 Radiation from an Arbitrary Shaped Rigid Charged Body in
Acceleration

The Larmor formula is for a point charge. There are corrections to it for an extended
charge distributionwhich doesn’t change shape (ie. it moves rigidly) as itmoves slowly
along an arbitrary timelike trajectory. To analyze this, let the charge density be

ρ(x, t) = ρ0(x − ξ(t)), (59)

∫

ρ(x, t)d3x = 1, (60)

and where the current density is consequently

j(x, t) = ξ̇(t)ρ(x, t). (61)

The retarded electromagnetic potentials are (in vacuum, in the Lorentz gauge, using
Gaussian CGS units, and with c=1)

ϕ(x, t) =
∫

ρ(x′ − ξ(tr ))

|x − x′| d3x ′, (62)

A(x, t) =
∫

j(x′, tr )
|x − x′|d

3x ′, (63)

123



348 Found Phys (2017) 47:327–354

where the retarded time is given by tr = t − |x − x′| /c. We assume that the charge
distribution is localized so that for large R = |x − ξ(t − |x| /c)| we have

ϕ(x, t) = 1

R

∫

ρ(x′ − ξ(tr ))d
3x ′ + O

(
1

R2

)

= q

R
+ O

(
1

R2

)

, (64)

A(x, t) = 1

R

∫

ξ̇(tr )ρ(x′ − ξ(tr ))d
3x ′ + O

(
1

R2

)

, (65)

Note that tr depends on x′, and so in general it cannot be taken outside the integral.
The radiation E and B fields fall off as 1/R for large R. To calculate them we first can
calculate the E field, and then deduce the B field from it. We see that ∇ϕ ∝ 1/R2,
and so it cannot contribute to the radiation field. Since E = −∇ϕ − ∂A/∂t , we can
approximate E = −∂A/∂t + O(1/R2).

E = −∂/∂t

(
1

R

∫

ξ̇(tr )ρ(x′ − ξ(tr ))d
3x ′

)

+ O(1/R2), (66)

E = − 1

R

∫ [

ξ̈ (tr )ρ(x′ − ξ(tr )) − ξ̇(tr )
(

ξ̇(tr ) · ∇x′ρ(x′ − ξ(tr ))
)]

d3x ′+O(1/R2).

(67)
Next we use the step function form for the acceleration which we assume for the

rigid Mössbauer acceleration (31). We can take ξ̇ to be a constant inside the integrand
since the recoil velocity of a Mössbauer crystal is very small. But in this case the
second term vanishes, and so we have simply

E(x, t) = −a0
R

∫



( tr
T/2

)

ρ(x′ − ξ(tr ))d
3x ′ + O(1/R2). (68)

The magnetic field may be calculated from this by using B = ∇ × A (R̂ is a unit
vector pointing from the charge to the field point x)

B = R̂ × E. (69)

The Poynting vector in cgs units with c=1 is

S = 1

4π
E × B = 1

4π
E ×

(

R̂ × E
)

= 1

4π

[

(E · E) R̂ −
(

R̂ · E
)

E
]

, (70)

and the power radiated per solid angle is

dPrad =
(

R̂ · S
)

R2dΩ =
[

E2 −
(

R̂ · E
)2

]

R2 dΩ
4π

=
[

a02 −
(

R̂ · a0
)2

] (∫


( tr
T/2 )ρ(x′ − ξ(tr ))d3x ′

)2
dΩ
4π + O(1/R2).

(71)
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Notice that this expression is never negative, so that the radiation into any solid
angle is greater than or equal to zero, as causality requires. If we set the z axis to be
parallel to a0, we obtain

dPrad = a02sin2(θ)

(∫


(
tr
T/2

)ρ(x′ − ξ(tr ))d
3x ′

)2 dΩ

4π
. (72)

If we let D be the maximum extent of the charge distribution, and then consider the
limit cT»D, we can replace Π by 1, and the integral just yields the total charge so in
this case

dPrad = a02sin2(θ)q2
dΩ

4π
, (73)

which on integration over the solid angle yields simply Larmor’s formula , with
c=1. This result is independent of the shape of the charge distribution. We see that in
general the radiation rate is a fraction of the Larmor rate, so that in general

dPrad = F(�)a02sin2(θ)q2
dΩ

4π
, (74)

where

F(�) =
(∫


( tr
T/2 )ρ(x′ − ξ(tr ))d3x ′

)2

q2
, (75)

if ρ(x) has the same sign for all positions, then F(�) takes on values between 0
and 1. The total power radiated is then a fraction of the Larmor total power

Prad(t) =
∫

F(�)a02sin2(θ)q2
dΩ

4π
= f PLarmor (t), 0 ≤ f ≤ 1. (76)

We note that rigid non-radiating accelerations are possible for certain special clas-
sical systems as shown by multiple authors [1,12,30,33].

We next consider the case of a spherical charged shell.

6.1 Radiation from a Rigid Thin Charged Spherical Shell

For the case of a chargedmetal nanosphere, the charge distribution is on the surface, and
this can be approximated by a charged spherical shell. The calculation of the radiation
from a charged hollow spherical shell has been studied extensively, as in [1,32,39,40]
and in references therein. The shell moves rigidly, and the charge density is radially
symmetric in its rest frame. The vector coordinate for its center is ξ(t). We need be
concerned here with only non-relativistic velocities. The charge density and current
for a general radial density, not necessarily a shell, are then given by

ρ(x, t) = q f (|x − ξ(t)|),
∫

d3x f (|x|) = 1. (77)
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For a shell we have

f (x) = δ(|x| − R)

4πR2 , (78)

j (x, t) = q ξ̇ (t) f (|x − ξ(t)|). (79)

An approximate formula for the electromagnetic self force on the shell in the rest
frame is given by Yaghjian [39,40](see appendix A). His result is (in SI units)

Fsel f (t) = −q2

6πε0Rc2
u̇ + q2

6πε0c3
ü + O(R), u = 0. (80)

He also calculates the power done on the shell by this self force to be

Pel = −5q2

24πε0Rc2
u · u̇ + q2

6πε0c3
u · ü + O(R),

u2

c2
� 1, (81)

where u = dξ(t)/dt . Notice that Pel(t) �= u · Fsel f (t). This discrepancy is explained
carefully in [39,40]. One needs to include Poincare stresses to eliminate it. If one does
this, then the power equation is modified to (see [39], equation (5.5b), and taken to
the small velocity limit)

Pel(t) = −q2

6πε0Rc2
u · u̇ + q2

6πε0c3
u · ü + O(R), and for

u2

c2
� 1. (82)

If we integrate the second term in this expression, and assume that the acceleration
vanishes in the distant future and distant past, then we find

∫ ∞

−∞
u · üdt = −

∫ ∞

−∞
u̇2dt, (83)

so the second term just gives us the Larmor formula result for the energy radiated. The
first term is a correction term which can be interpreted as a mass renormalization. It
can bbe rewritten as

−q2

6πε0Rc2
u · u̇ = −q2

6πε0Rc2
1

2

d

dt

(

u2
)

= − d

dt

(
1

2

(
4

3
mes

)

u2
)

, (84)

mes = q2

8πε0Rc2
in SI units, and mes = q2

2Rc2
in cgs Gaussian units, (85)

This correction term to the Larmor formula varies as the charge squared, just as the
radiation term does. This term cannot generally be ignored, since it can be larger than
the Mössbauer linewidth. But in principle, the charge and the radius of the nanosphere
can be known, and so it is straightforward to calculated the magnitude of this term and
take its effect into account.

Of course the interior of the charged sphere is not empty in our case, and depending
on the materials involved, there would be additional corrections which would require
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a numerical method to solve and are beyond the scope of the current paper. Moreover,
there are higher terms in powers of R that might play a role.

The methods of Bohm and Weinstein [1] allow one to estimate higher order (in
powers of R) corrections to the self force. Denote the kth Fourier component of a
function g(x, t) as

g(k, t) = 1

(2π)3/2

∫

g(x, t)exp(−ik · x)d3x, k = |k| , (86)

and Defining f (k, t) by

f (k, t) = 1

(2π)3/2

∫

f (|x| , t)exp(−ik · x)d3x, k = |k| . (87)

The self force for small velocities but arbitrarily large acceleration is found in [1] (in
Gaussian units) to be

Fsel f (t) = q2
∫ ∞

0
dτG(τ )ξ̈(t − τ), (88)

where

G(τ ) = −32π

3c

∫ ∞

0
dkk | f (k)|2 sin(ckτ). (89)

For a spherical shell of radius R (from equation (17) and following in [1])

f (x) = δ(|x| − R)

4πR2 , f (k) = 1

(2π)3/2
sin(kR)

kR
(90)

and it follows that

G(τ ) =
{−1/(3R2c), τ < 2R/c
0, τ > 2R/c.

(91)

Using (31)

Fsel f (t) = q2G(0)
∫ 2R/c

0
dτ ξ̈(t − τ) = q2G(0)

∫ t

t−2R/c
dt ′ξ̈(t ′), (92)

Fsel f (t) = −q2
(

ξ̇ (t) − ξ̇ (t − 2R/c)
)

/(3R2c), (93)

one can calculate higher order powers of R corrections to the radiated power. Once
again, it is wrong in general to equate the radiated power to the integrated work done
by this self force. The power equation will have corrections as well, and these might
have to be examined if a serious program to study this effect experimentally, but we
leave this to future work.
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7 Conclusion

This paper clearly shows the inadequacy of the current understanding of the Möss-
bauer effect at the microscopic level. The standard model of particle physics, which
has been established as the basis for all of nuclear and condensed mattter phenom-
ena, strongly suggests that a complete description of it must involve off-mass-shell
particles–particles whose rest mass is not the standard value for that particle for a
transient period of time after a Mössbauer event. Condensed matter theory currently
does not have any way to incorporate this behavior convincingly and rigorously, since
it is an effect of relativistic quantum field theory and the virtual off-mass-shell par-
ticles which appear in Feynman diagrams. What is needed is a covering theory for
conventional quantum mechanics and associated many-body theory which allows off
mass shell behavior. Themost well-developed candidate for this is the proper-time for-
malism [20]. Off-mass-shell behavior is a relativistic effect which nonetheless cannot
be ignored even though the velocities of all particles are moving non-relativistically.
In the Mössbauer effect, all the particles are moving non-relativistically, but if the
perturbation picture is correct, then off-mass-shell behavior is required to conserve
energy and momentum, and this is the most plausible reconciliation of the effect with
relativity theory. The problem or at least the mystery of crystal rigidity in the Möss-
bauer phenomenon has never been sufficiently clarified in the physics literature for
this reason. The subject touches on fundamental questions for relativity and quantum
mechanics. Part of the reason for the lack of resolution has been the absence of a direct
experiment that could measure the intricacies of the diffusion of momentum inside
the crystal immediately after a Mössbauer event (either decay or absorption). In order
to address this, an experimental arrangement that utilizes the extreme precision of the
Mössbauer effect itself has been proposed here to measure the time duration of the
impulse given to a small Mössbauer crystal. This is achieved bymeasuring the amount
of energy that is radiated away by bremsstrahlung of a charged particle undergoing a
Mössbauer event. Besides helping to resolve the rigidity question, this experimental
technique might prove useful for measuring some chemical or material properties, and
thereby result in new analytical tools for chemistry and material science. The predic-
tion is that the radiated energy, and consequently the associated Mössbauer energy
shift, should vary in proportion to the charge squared divided by the diffusion time as
in (33). If such an experimental effect can be observed, then subsequent more detailed
theoretical and experimental analysis can zero in on the diffusion dynamics of aMöss-
bauer event, and hopefully clarify the underlying physical mechanism. The treatment
of bremsstrahlung radiation here is strictly classical. There are undoubtedly quantum
corrections to this, and if experiments reveal that the effect is indeed measurable, then
it would justify plunging more deeply into a full quantum-mechanical description of
the radiation.

The introduction of an off-mass-shell covering theory such as proper time, or SHP
(for Stueckelberg, Horwitz, Piron) theory [20] into condensed matter physics, as is
shown to be desirable if not necessary in this paper, would impact the foundations of
all of condensed matter physics, not just the Mössbauer effect. The Hilbert space for
condensed matter would need to include off-mass-shell states for completeness. Such
a change could have far-reaching and unexpected consequences.
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