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Abstract I describe a constructive foundation for quantum mechanics, based on the
discreteness of the degrees of freedom of quantum objects and on the Principle of
Relativity. Taking Einstein’s historical construction of Special Relativity as a model,
the construction is carried out in close contact with a simple quantum mechanical
Gedanken experiment. This leads to the standard axioms of quantum mechanics.
The quantum mechanical description is identified as a mathematical tool that allows
describing objects, whose degree of freedom in space–time has a discrete spectrum,
relative to classical observers in space–time. This description is covariant with respect
to (continuous) coordinate transformations and meets the requirement that the spec-
trum is the same in every inertial system. The construction gives detailed answers to
controversial questions, such as the measurement problem, the informational content
of the wave function, and the completeness of quantum mechanics.

Keywords Quantum foundations · Wave function · Interaction · Self-organisation

1 Introduction

Quantum mechanics (QM) was formulated in the years 1925 and 1926 by Born,
Heisenberg, and Jordan [1–3] as matrix mechanics and in the same years by
Schrödinger [4] as wave mechanics. QM was given its final axiomatic foundation
by Dirac [5] in 1930 and von Neumann [6] in 1932. Presently, in 2016, 90 years
after its first formulation, there is still an ongoing discussion about the meaning of
QM, especially about the interpretation of the wave function, which was introduced
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by Schrödinger in 1926. On the one hand, QM has proven to be a highly effective
theory with a surprisingly large range of applications. On the other hand, it is not
inappropriate to say that its basics are largely not understood.

In a paper of 1996, Rovelli [7] compared the present discussion about the wave
function with the debates about the physics of length contraction and time dilation
at the beginning of the twentieth century. Einstein’s paper of 1905 [8] suddenly clar-
ified the situation by explaining the result of the Michelson–Morley experiment [9]
through the Principle of Relativity [10]. By a simple and comprehensible Gedanken
experiment (the one with the moving train) Einstein constructed a transformation law
that allows transforming the physics in a moving frame of reference into the physics
in a frame at rest, in accordance with the Principle of Relativity, which in this context
means the constancy of the speed of light. This transformation law is now well-known
under the name of the Lorentz transformations. In 1905, the Lorentz transformation
was already known as a coordinate transformation that leaves Maxwell’s equations
invariant. However, only Einstein’s explicit construction unveiled its general validity
and led to the formulation of the theory of Special Relativity (SR). Rovelli suggested
that there might be a similar constructive foundation of QM that could stop the debates
about the correct interpretation of QM.

Following Rovelli’s suggestion, I start from a simple quantum mechanical experi-
ment, which in away plays a similar role for QMas theMichelson–Morley experiment
for the foundation of SR. The experiment reveals a transformation law that, in analogy
to the Lorentz transformation, allows transforming the results of a quantum mechan-
ical measurement from one frame of reference to another, in accordance with the
Principle of Relativity. With this transformation law, the description of the experiment
is not bound to a particular coordinate system: in other words, it allows of a covariant
description. The mathematical formulation of the transformation law leads seamlessly
to the Hilbert space formalism as laid down in the axioms of QM.

The explicit construction of this formalism gives detailed answers to controversial
questions, such as:What kind of information is encoded in the wave function?What is
the role of the observer? Is there a measurement problem? Is the quantum mechanical
description complete? Can QM be reformulated as a deterministic theory?

2 A Gedanken Experiment

In the effort to understand the foundations of QM, it is reasonable to start from themost
simple quantum mechanical object, which is obviously a single spin in 3-dimensional
space.A spinwill be considered as a physical objectwith only twopossible orientations
relative to the coordinate system of a classical observer. In this and the two following
sections, I will ignore the well-known quantum theory of spins and instead concentrate
on those properties that are explicitly exhibited in the Gedanken experiment described
in the following text. In Sect. 3, in a second step, I will set up a suitable mathematical
description of these “phenomenological” properties without the aid of the established
quantum theory of spins. In other words: I will “construct” a theory of this Gedanken
experiment “from scratch”.
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The proposed experiment is an experiment of the Stern–Gerlach type [11], designed
to measure the spin of an electron. Spin is a directed quantity, which means its value
is defined relative to the orientation of a given coordinate system. Such a coordinate
system can practically be realized by a measuring device capable of measuring the
direction of the spin. The result of such an experiment is well known: the spinwill point
in a certain direction relative to the coordinate system of themeasuring device, or in the
opposite direction, forming an angle of 0 or π with a given direction. Now rotate the
measuring device by an angle of φ. By this rotation, the coordinate system attached to
the device is rotated by the angle of φ as well. On the basis of classical mechanics one
would expect now to observe the angles −φ and π −φ. Instead, the measuring device
will again measure 0 or π . This result is in contradiction to Newtonian mechanics, but
in full compliance with the Principle of Relativity, which demands that physics be the
same in every inertial system.

The Gedanken experiment can be modified by adding a second measuring device
B of the same kind and considering three steps.

Step 1: Measure the spin with the first device A and select all spins pointing in the
direction 0.
Step 2: Rotate device B by an angle φ relative to device A.
Step 3: Measure the spins that have passed step 1 with device B.

We have to examine three cases.

Case 1: φ = 0. All spins measured by B will point in the direction 0. This result is
deterministic, insofar as from the result of the first measurement the result of the
second one can uniquely be predicted.
Case 2: φ = π . All spins measured by B will point in the direction π . Again, the
result is deterministic.
Case 3: 0 < φ < π . Now the result is non-deterministic. Device B will measure
unpredictably either 0 or π . However, if the experiment is repeated a sufficient
number of times, well-defined probabilities for the results 0 and π can be derived.
These probabilities depend only on the angle φ and on the spin state selected in
step 1.

From the results of case (3) one can immediately find an empirical transformation
law that determines how the results obtained in the coordinate system of device A
are transformed into the coordinate system of device B. This transformation law is
non-deterministic, because it applies to probabilities rather than to states.

3 The Theory of this Gedanken Experiment

The coordinate transformations under consideration here are continuous and invertible
mappings of space–time coordinates onto themselves. Cases 2 and 3 of the Gedanken
experiment show that an active rotation of device B induces a non-trivial mapping of
the measured spin states. There is a correlation between the coordinate transformation
of a (classical) measuring device and a corresponding transformation of the spin states.
However, whereas coordinate transformations are continuous mappings, the mapping
of spin states is necessarily discontinuous.
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The Principle of Relativity requires that the available spin states are the same in
every coordinate system. Hence, every invertible mapping of discrete spin states is a
mapping onto themselves, and, because of the finite number of states, it is a permuta-
tion. This precludes any deterministic, i.e. one-to-one relation between (continuous)
coordinate transformations and (discontinuous) mappings of a spin.

This simple analysis of the Gedanken experiment shows that indeterminism is a
well-founded phenomenon,whenwe observe objectswith a discrete degree of freedom
in space–time from the position of a classical observer. It is comprehensively under-
standable as a direct consequence of the discrete degree of freedom in combination
with the Principle of Relativity.

Having clarified the reason for the statistical nature of the measurements, casting
the verbal description of the Gedanken experiment into a concise mathematical form
is now a purely technical (mathematical) issue. We need a mathematical tool for
describing:

(a) The initial value: the orientation of the spin measured in the reference frame of
device A.

(b) The operation: the rotation of device B relative to device A. Alternatively
expressed: the rotation of reference frame B relative to reference frame A.

(c) The final result: a statistical distribution determined from the measurements by
device B. The distribution depends only on the initial value and the rotation
of reference frame B relative to A. The final result has to be expressed as the
probability of measuring a specific orientation of the spin.

At first, a description is needed for the rotation of measuring device B relative to the
results obtained by device A, or, equivalently, for the rotation of the results obtained
in reference frame A relative to reference frame B. Since the orientation of a spin
is a directed quantity, it is obvious to encode the result of device A by an abstract
two-component vector that takes on one of the two discrete values

(
1
0

)
or

(
0
1

)
. (1)

The vectors (1) can then be used as basis vectors to generate a 2-dimensional (complex)
vector space. By defining a scalar product, the vector space becomes a Hilbert space.
On this Hilbert space, the well-known Hermitian Pauli matrices

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(2)

generate transformations of the rotation group SO(3). In mathematical term: the Pauli
matrices define a representation of the rotation group SO(3) on a 2-dimensional com-
plex vector space. The Pauli matrices can therefore be used to rotate the vector,
representing the results obtained in reference frame A. There is a one-to-one rela-
tion between rotations of the coordinate system B and rotations in the Hilbert space.
The Hilbert space is, therefore, a suitable bookkeeping device for uniquely encoding
the rotation of reference frame B.
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A vector of this Hilbert space—usually called a state vector, or, in the context of the
Schrödinger equation, a wave function—allows a complete and concise description
of the experimental setup: it encodes (a) the initial value and (b) the rotation of this
initial state along with the rotation of device B relative to device A. Altogether the
vector encodes the initial conditions for the subsequent measurement by device B.

In the language ofQM,Hermitianmatrices represent observables. In the representa-
tion (2) of the Pauli matrices, the basis vectors are eigenvectors of σ3 with eigenvalues
1 and −1.

It is easily verified that in Cases 1 and 2, the transformations in the Hilbert space
correctly map the spin states in accordance with the Gedanken experiment. As regards
Case 3, the Gedanken experiment as well as the mathematical considerations above
clearly indicate that the outcome of the experiment is a probability. Therefore, another
mathematical tool is needed that, from the state vector, derives a number with the
property of a probability. A probability is a number between 0 and 1, and the sum over
all probabilities equals 1. Furthermore, the number depends on the state vector, but
is a scalar under rotations of the whole of the Hilbert space. Gleason [12] has shown
that such a number is uniquely determined, once the Hilbert space is given (Gleason’s
Theorem 1957). The rule that determines this number has become known as the Born
rule [13]. Born’s rule states that given a state vector |ψ〉, the probability of measuring a
certain eigenvalue n is given by the squaredmodulus of the scalar product | 〈φn | ψ〉 |2,
where |φn〉 is the eigenvector corresponding to the eigenvalue n.

Gleason’s theorem defines a probability that interpolates between the pure states.
This probability depends only on the orientation of the state vector relative to a basis
vector. The fact that Born’s rule has been experimentally verified can be considered
as a clear indication that the probabilities are not influenced by hypothetical “hidden
parameters”.

The abstract rotation in the Hilbert space together with Born’s rule describes a
transformation of the information obtained in reference frameA into the corresponding
information that is or will be obtained in reference frame B. This is the transformation
law promised in the Introduction. It has the same mathematical structure as the usual
quantum mechanical description of a spin.

Accordingly, the quantum mechanics of a spin can be understood as a descriptive
tool that is independent of a specific coordinate system: in other words, it is a covariant
description of a spin. Nothing has entered into the setup of this description other than
the empirical fact of the discreteness of spin orientations and the constraints imposed
by the Principle of Relativity.

The same construction can be applied to a classical rigid body in place of the
spin. Since a classical body can take every orientation in space, there is a one-to-one
(i.e. deterministic) relation between the rotation of the frame of reference and the
corresponding orientation of the rigid body. Therefore, the construction reproduces
the usual description of a body by classical coordinates. Being created by the same
construction, a state vector can be understood as a generalized coordinate adapted to
the needs of a quantum object.

The coordinates of a quantum object are by construction not attributes of the quan-
tum object itself, but rather of the combined system of object and observer. It is often
forgotten that the same applies to classical coordinates. The position of a classical
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body in “absolute space” is as meaningless as the idea that the “wave function of an
electron” is an intrinsic part of the electron.

4 Spin in Space–Time

The description of a spin developed in the previous section clearly has the well-
known properties of a quantum mechanical description. However, the description is
not yet completed. Since the behaviour of the spin under rotations in space identifies
the spin as an object in space (and time), the Principle of Relativity demands that the
description be covariant not only with respect to rotations but alsowith respect to boost
operations and translations. Boost operations interact with rotations and vice versa.
Therefore, they cannot be treated independently. Hence, the encoding of the boost
operations must be based on the same Hilbert space formalism as already employed
in encoding rotations. This means extending the spin representation of SO(3) to a spin
representation of the inhomogeneous Lorentz group (Poincaré group) P(3,1) along
with a doubling of the spin components to form a 4-component Dirac spinor. The
doubling of the spin components reflects the two different ways of embedding a 3-
dimensional spin into 4-dimensional space–time, phenomenologically described as
particle and anti-particle.

This extension makes use of the operations of the Poincaré group on the Hilbert
space of a spin representation, as described in many text-books (cf., e.g., [14]). It is
straightforward. By the action of a boost operation U (p) with 3-momentum p on a
given spin eigenstate in the rest frame |ψ(s)〉

U (p) |ψ(s)〉 =: |ψs(p)〉 , (3)

a state |ψs(p)〉 with momentum p is generated. (This state is no longer a spin eigen-
state.) The operator Pμ of 4-momentum is defined by

Pμ |ψs(p)〉 = pμ |ψs(p)〉 , μ = 0, 1, 2, 3, (4)

where p0 can be determined from the relation pμ pμ = m2, once the mass m is given.
Any irreducible representation of P(3,1) is characterized by amass and themodulus

of an angular momentum. In a spin representation, the states are the solutions of the
Dirac equation

(γ μ pμ + m)ψs(p) = 0. (5)

The eigenvalues +1 and −1 of the spin matrix

γ 0 =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ (6)

are responsible for the gap of 2m between positive and negative energies. The eigenval-
ues, therefore, define a natural (dimensionless) scale for energy and mass, analogous
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to the scale of spin quantum numbers—a basic prerequisite for every discrete mass
spectrum. (When measured relative to the international prototype kilogram, a mass is
assigned a dimensioned value. If the particle, described by the Dirac equation (5), is
identified with the electron, this value is 9.1093835610−31 kg [15].)

By exponentiation, the operators Pμ generate translations of the momentum eigen-
states |ψs(p)〉

U (x) |ψs(p)〉 = eix
μPμ |ψs(p)〉 = eix

μ pμ |ψs(p)〉 . (7)

This relation allowswriting Pμ as a differential operator (h̄ = 1 throughout this paper),

Pμ = −i∂/∂xμ, μ = 0, 1, 2, 3. (8)

By superposition of momentum eigenstates with appropriate phases, states can be
formed that are localized at a position x in 3-dimensional space:

|ψs(x)〉 =
∫

d3 p eipi x
i |ψs(p)〉 . (9)

(The integral is not Lorentz covariant; all that matters is that this integral can be formed
in every inertial system.) The corresponding position operators Xi are defined by

Xi |ψs(x)〉 = xi |ψs(x)〉 , i = 1, 2, 3. (10)

FromEqs. (8) and (10) the commutation relations between the position andmomentum
operators

[Xi , Pk] = i δik (11)

can be obtained.
This finishes the provision of the tools that are required for a covariant description of

a spin in momentum space and in configuration space. Somewhat unexpectedly, these
tools give a spin the properties of a massive spin-1/2-particle in space–time. Again,
these properties cannot be attributed to the spin itself: they are properties as perceived
by an observer in space–time. It should be added that O’Hara [16] has presented a
proof, based on Bell’s inequality, that the states |ψs(p)〉 satisfy Fermi–Dirac statistics.

The provided tools are identical to those that are defined by the standard axioms of
QM [17]:

Axiom 1: The properties of a quantum system are completely defined by specifi-
cation of its state vector |ψ〉. The state vector is an element of a complex Hilbert
space H , called the space of states.
Axiom 2: With every physical property A (energy, position, momentum, angular
momentum,…) there exists an associated linear, Hermitian (self-adjoint) operator
A (usually called an observable), which acts on the space of states. The eigenvalues
of this operator are the possible values of its corresponding physical property.
Axiom 3: If |ψ〉 is the vector representing the state of a system and if |φ〉 represents
another physical state, there exists a probability p(ψ, φ) of finding |ψ〉 in state
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|φ〉, which is given by the squared modulus of the scalar product on H : p(ψ, φ) =
| 〈φ | ψ〉 |2.
A fourth axiom of QM states that for a closed system the state vector at time t

is derived from the state vector at time t0 by a unitary evolution operator U (t, t0):
|ψ(t)〉 = U (t, t0) |ψ(t0)〉 = eit P0 |ψ(t0)〉. This axiom follows immediately from
relation (7).

The compliance with the axioms of QM shows that the covariant description of
a spin in space–time is equivalent to the usual quantum mechanical description of
a massive spin-1/2-particle. By this equivalence, QM is traced back to the covariant
description of quantum objects. Hence, the construction of the covariant description,
presented in the previous and present sections, also constitutes a constructive founda-
tion of the quantum mechanics of spin-1/2-particles.

5 Product States, Entanglement and Interaction

A fifth axiom of QM, which I have not yet addressed, posits that the state of two inde-
pendent quantum mechanical systems is a product state, formed from the states of the
individual systems. This axiom can be understood as merely a consequence of Axioms
1–3: it is therefore more a rule than an axiom. Despite its apparent simplicity, this rule
has consequences that are not immediately evident: In [18], I have studied some prop-
erties of irreducible two-particle representations of the Poincaré group. I have shown
that in these representations the individual particle states are momentum entangled,
and therefore exhibit an interaction mediated by the exchange of momentum. The cou-
pling constant of this interaction can be calculated; it identifies the interaction as the
electromagnetic interaction. Hence, within a closed system of two spin-1/2-particles,
the particles behave as if they carry an electric charge. Mathematically, this charge is
not a property of the individual particles but of the specific structure of two-particle
states.

The emergence of the electromagnetic interaction is remarkable, because it is
derived solely from the structure of the Poincaré group under the natural constraints
that in a closed two-particle system, the total momentum and angular momentum
are well defined and conserved. There is nothing here that could be called a law of
nature—the electromagnetic interaction is merely a mathematical consequence of the
quantum mechanical description.

6 Macroscopic Matter in Space–Time

Attractive and repulsive forces, as determined by the electromagnetic interaction,
enable the formation of macroscopic matter, which in turn allows, in principle, the
construction of “classical” measuring devices. In setting up the Gedanken experiment
I have implicitly assumed that such devices exist. Now this assumption is justified by
unveiling the theoretical basis for the construction of these measuring devices. This
underlines the self-contained character of the constructive foundation of QM.
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The electromagnetic interaction allowsmapping the coordinate spaces of individual
particles onto each other in an experimentally verifiable way. This mapping creates a
common configuration space, which we perceive as space–time. In space–time, elec-
tromagnetic forces enable matter to form individual and distinguishable composite
structures (and, finally, ourselves). Such structures can be observed, again using the
electromagnetic interaction, by our visual and tactile senses. This explains the out-
standing significance of configuration space, in contrast to momentum space, for our
perception and description of Nature.

The constructive foundation of QM treats a state in Hilbert space as a generalized
coordinate of a quantum object in a classical background space–time continuum.
Such “quantized” coordinates form quantized space–time structures, similar to the
quantization of space–time in various failed efforts to set up a theory of quantum
gravity. Note, however, that in the present context, quantized structures do not result
from a “quantization” of the background continuum, but rather from the quantum
properties of matter embedded in the background continuum. Similar to classical
coordinates, the coordinates of quantum objects are affected by geometric boundary
conditions, e.g., by pinholes, double slits, apertures in scattering experiments, or,
generally, by the geometry of mass distributions. In the classical limit, due to the
inherent interaction property of two-particle states, these quantized coordinates should
lead naturally to trajectories that are not straight but curved lines in the background
continuum. This may open up a path to quantum gravity that does not require the
problematic quantization of space–time.

7 Controversial Questions of Quantum Mechanics

From the perspective of the Gedanken experiment, the questions posed in the Intro-
duction can be answered as follows:

What kind of information is encoded in the wave function?
Firstly, the initial value of the quantum mechanical object, as obtained from a first
measurement with a device A; secondly, an operation, e.g. the rotation of a second
measuring device B relative to device A. From this information, the probability of a
specific result is determined by applying the Born rule.

What is an observer?
An observer is a (classical) measuring device used to measure the state of a quantum
object. A measuring device is defined operationally as a “device that measures”, e.g.,
the direction of a spin. Compare this with SR, where a clock is defined as a “device
that measures time”. It is certainly not practical to incorporate the internal mechanism
of a certain clock or of a spin-measuring device into a formalism that is intended for
general use.

Is there a measurement problem?
The wave function encodes the initial conditions of an experiment, but neither the
process of measurement, nor the result of the measurement. The probability of a
specific result is obtained by applying Born’s rule to the wave function. Although the
result of the measurement may be used to set up a new wave function, there is neither
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an indication nor a need for a physical process that lets the wave function “collapse”
to the new wave function.

Is the quantum mechanical description complete?
QM is complete in the sense that the state vector (wave function) encodes all relevant
information about the initial conditions of an experiment. There are no “hidden para-
meters” that might might influence the experimental results, because the probability
of a specific result is determined completely by the information contained in the state
vector.

Can QM be reformulated as a deterministic theory?
The non-deterministic character of QM results directly from the discreteness of the
states of quantum objects and the Principle of Relativity. Therefore, any deterministic
reformulation of QM is likely to violate the Principle of Relativity. The indeterminism
of QM is not an indication of missing information, but merely a consequence of the
discrete number of degrees of freedom of quantum objects.

8 Concluding Remarks

The objective of this paper was to demystify the mathematical tools that govern QM.
I have constructed the tools of QM along with a simple and transparent Gedanken
experiment. The construction is based on two pillars: (1) The Principle of Relativity,
and (2) the very property of a quantum object that gives it its name, ‘quantum’: the
discreteness of its degrees of freedom. As a welcome by-product of this construction,
the cause of the non-deterministic nature of QM has been clarified.

The construction leads to a description of quantum objects by state vectors, which
can be understood as generalized coordinates. Such a description is, in principle, not
different from the description of a classical body by classical coordinates in space–
time. The quantum mechanical coordinates are adapted to the reduced number of
degrees of freedom of the objects that they are intended to describe. This makes them
mathematically different, but by no means mysterious.

Both types of coordinates are initially no more than simple mathematical tools.
It is therefore remarkable that from the quantum mechanical description a realistic
theory of interaction can be derived without additional laws or principles, simply by
applying the quantum mechanical description to a two-particle configuration. This
example suggests that at the “core of physics” we may not find any physical law, but
only the seeds, possibly in the form of spins, for a process of self-organization that lets
physical laws and physical constants emerge as properties of specific configurations of
the seeds. Some similarities to Wheeler’s visionary ideas, as epitomized by the phrase
“It from bit” [19], are undeniable.
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