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Abstract It has been suggested in the literature that spatial coherence of the wave
function can be dynamically suppressed by fluctuations in the spacetime geometry.
These fluctuations represent the minimal uncertainty that is present when one probes
spacetime geometry with a quantum probe. Two similar models have been proposed,
one byDiósi (D-model) and one byKarolyhazy and collaborators (K-model), based on
apparently unrelated minimal spacetime bounds. The two models arrive at somewhat
different expressions for the dependence of the localization coherence length on the
mass and size of the quantum object. In the present article we compare and contrast the
twomodels from three aspects: (i) comparison of the spacetime bounds, (ii) method of
calculating decoherence time, (iii) comparisonof noise correlation.We show that under
certain conditions the minimal spacetime bounds in the two models can be derived
one from the other. We argue that the methods of calculating the decoherence time
are equivalent. We re-derive the two-point correlation for the fluctuation potential
in the K-model, and confirm the earlier result of Diósi and Lukács that it is non-
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white noise, unlike in the D-model, where the corresponding correlation is white
noise in time. This seems to be the origin of the different results in the two models.
We derive the non-Markovian master equation for the K-model. We argue that the
minimal spacetime bound cannot predict the noise correlation uniquely, and additional
criteria are necessary to accurately determine the effects of gravitationally induced
decoherence.

Keywords Decoherence · Gravity · Quantum theory

1 Introduction

What happens when a quantum system interacts with a classical measuring apparatus?
Why is it that the wave function collapses from being in a superposition of the eigen-
states of the measured observable, to being in just one of those states, in violation of
the linear superposition principle obeyed by the deterministic Schrödinger equation?
And what is the origin of the Born probability rule? This set of questions is what
is commonly known as the quantum measurement problem [1–7]. Broadly, there are
three classes of explanations which have been investigated in detail.

The first explanation is to say that collapse never takes place, and to explain the
experimental result as a consequence of interactionwith the environment,which causes
decoherence [8–16]. This is supplemented with the many-worlds interpretation [17–
26] so that an observer sees only one of the various elements of the diagonalized density
matrix. This explanation requires no change to standard quantum theory, except a
reinterpretation (many worlds).

The second explanation is Bohmian mechanics [27–33] which is a mathematical
reformulation of quantum theory, according to which particles move along definite
trajectories, but there is a probability distribution in the initial conditions, which in
turn reflects in different outcomes in successive repetitions of a quantummeasurement.
Bohmian mechanics makes the same experimental predictions as standard quantum
theory, as far as both theories are understood.

The third explanation is that standard quantum theory is an approximation to a
stochastic nonlinear quantum theory [34–47]. There is nothing special about quantum
measurement; spontaneous collapse of the wave function is an inherent property of
the nonlinear theory, but in microscopic systems the collapse occurs so rarely that the
theory is effectively indistinguishable from the standard linear Schrödinger equation.
However, for mesoscopic systems (such as a metal cluster of mass 109 amu) and
for macroscopic systems (such as the quantum system + measuring apparatus, or
classical objects such as a table or a cat), collapse happens so frequently that any
superposition breaks down very rapidly and the system gets well localized in position.
The experimental predictions of this nonlinear theory are very close to the standard
theory in themicroworld, but differ from the standard theory in themeso and themacro
world. A decisive experiment which chooses between standard quantum theory and
stochastic nonlinear theories has not yet been performed, although an extraordinary
worldwide effort in this direction is currently in progress [48]. The main reason is
that, even if for meso and macro systems the nonlinear effects may be relevant, in this
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regime the interaction with the environment plays also an important role, which masks
the nonlinear effects.

This is equivalent to saying, and very important to emphasize, that for objects
larger than 105 amu, quantum theory has not been tested. From 1018 amu (roughly the
scale above which classical mechanics holds), down to 105 amu, is an experimentally
untested desert which spans some 13 orders of magnitude!

Thus, theway things stand today, decoherence plusmanyworlds, Bohmianmechan-
ics, and nonlinear quantum theory, are all valid explanations of observed quantum
phenomena and the quantum measurement process. Only future investigations can
decide as to which (if any) of these explanations is the correct one; and such investi-
gations are of tremendous importance in helping decide the domain of validity of the
standard theory [49].

One successful formulation1 of stochastic nonlinear quantum theory, known as
Continuous Spontaneous Localization (CSL), was proposed in the 1980s [50], and
has been studied very extensively since then. Simply put, CSL is a modification of
the Schrödinger equation, to which a stochastic nonlinear part is added, and two new
fundamental constants of nature are introduced, a collapse rate λ, and a localization
length scale rc. CSL explains the collapse of the wave function during a measurement,
and it explains the Born probability rule.

The CSL model is being subjected to stringent experimental tests, and various con-
straints have also been imposed on its parameters from astrophysical and cosmological
observations [49]. It is hoped that in the coming decades tests will either verify or rule
out this model. Nonetheless, even if CSL were to be experimentally verified, it would
still remain a phenomenological model, having been specifically designed to explain
collapse of the wave function, and the Born probability rule. Furthermore, the funda-
mental constants λ and rc, as well as their numerical values, have been proposed in an
ad hocmanner, so as to be consistent with experimental data. Moreover, the relativistic
generalization of CSL is also sought for natural reasons. Significant progress would
be made if one could understand why CSL is required in the first place, without taking
recourse to the measurement problem, and the Born rule.

Considerable effort has been invested in this direction, and someencouraging results
have been obtained.One possibility is to consider CSL as amodelwhich can be derived
from a more fundamental underlying theory. A noteworthy effort has been due to
Adler and collaborators, where quantum theory, and then CSLmodel (subject to some
specific assumptions) are seen as emerging in the statistical limit from a deterministic
theory known as Trace Dynamics [51].

Another possibility is to look for some physical mechanism which could be effec-
tively responsible for a significant modification of quantum theory, on macroscopic
scales. One mechanism worth considering, and which has been explored in some
detail, is the universally present force of gravity. All objects produce a gravitational
field, including quantum objects, although todaywe do not know exactly how the grav-
itational field of a quantum object is related to its properties such as mass. Since the

1 by successful we mean the model provides a solution for the quantum measurement problem without
violating causality, which is a typical problem of deterministic nonlinear modifications to the Schrödinger
equation.
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quantum object does not move on a definite trajectory, the gravitational field produced
by it presumably has quantumfluctuations too. The evolution of the object’swave func-
tion in such afluctuating geometry can in principle suffer decoherence and localization,
as parts of the wave function that are sufficiently separated in space can lose phase
coherence. This principle, or some variation of it, has actually been implemented by a
few groups of researchers to show that this effect can cause loss of spatial coherence in
macroscopic objects, while having negligible effect on microscopic physics. This phe-
nomenon is commonly referred to as gravity induceddecoherence of thewave function.

The first work in this direction was carried out by Karolyhazy and collaborators
(we will call this the K-model) [52–61]. Subsequently, gravity induced decoherence
modelswere also developed byDiósi (wewill call this theD-model) [62–64].Whilewe
do not discuss a third development here, mention must be made of the important work
of Penrose [65] on the effect of self-gravity on quantum evolution, and the subsequent
investigations by various researchers on the Schrödinger–Newton equation, reviewed
for instance in [49,66,67].

It is important to stress that in the K-model as well as in the first version of the D-
model [62,63] the evolutionof the state vector is givenby a randomunitarySchrödinger
equation i.e. a Schrödinger equation where a stochastic potential describes the fluctua-
tions in the geometry of the spacetime. Therefore, in contrast to the CSL model, these
two models do not describe any real collapse of the wave function: they only explain
an appearance of decoherence effects due to the presence of the stochastic potential.
However, there is an important connection between random unitary Schrödinger equa-
tions and nonlinear stochastic equations like the one of collapse models. As shown in
[68], given a random unitary Schrödinger equation, there is always a corresponding
nonlinear equation (which has exactly the form as in the collapse models equation),
which leads to the same master equation. Therefore, even though the dynamics for
the state vectors in these models are very different, as far as we are concerned with
averaged quantities, (derivable from the master equation), the two dynamics lead to
exactly same predictions. As an example, in the case of the D-model, the correspond-
ing collapse equation was proposed in [64]. Therefore, even though the K-model and
D-model we consider here do not describe any real collapse of the wave function,
they can still be used to get information about some relevant quantity, like the typical
length and time scale over which coherence effects are suppressed, which would be
the same also for the corresponding gravity induced collapse equations.

While both the models study gravity induced decoherence, and have some common
features, they arrive at results which are quantitatively different at times. The purpose
of the present paper is to compare and contrast the K-model and the D-model, and to
understand why their results differ quantitatively.

The K-model begins by asking to what precision a length s = cT in flat space-
time can be measured using a quantum probe which obeys the uncertainty principle.
Karolyhazy shows that there will be a minimum uncertainty �s in the inferred length
which is given by the relation

�s3 ∼ l2p s, (1)

where l p = √
h̄G/c3 is the Planck length. This uncertainty is accounted for by hypoth-

esizing that there coexist in spacetime a family of curvedmetrics (gμν)β , each ofwhich
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yields a corresponding value sβ for the measured length. The family of metrics is cho-
sen in such a way that they average to s = cT with a variance

�s2 = 〈(s − sβ)2〉 (2)

(here 〈...〉 denotes the average over the metrics) which yields a �s which matches
with the uncertainty given by (1). As we will recall in the next section, this matching
requires an appropriate choice for the family of metrics.

Given such a family of metrics, one studies the propagation of an initial wavefunc-
tion �0 for an object of mass m and size R (assuming a spherical shape), in different
metrics (gμν)β . Inevitably, thewave function�β at a later timewill belong to a set {�β}
whose elements will differ from each other in their spatial dependence. In particular,
the phase separation between two spatial points acquires a variance when averaged
over the family, and a decoherence length scale ac (to which the wave function gets
localized) is defined as the spatial separation ac over which the phase uncertainty
becomes of the order of π . The decoherence time is given by τc ≈ ma2c /h̄.

Of great interest is the calculated dependence of the coherence length on the mass
m and the size R of the object. The results of the K-model are as follows [58]. For
an extended object of size R the localization length is calculated from a generic form
of the phase variance for a system of particles. There are two interesting cases: one
for R � ac and another for R � ac. For a micro-object of linear size R � ac, the
expression for the coherence length virtually reduces to that of an elementary particle
ofmassm and the coherence length ac overwhich decoherence effects become relevant
is given by

ac ≈ h̄2

G

1

m3 =
(
L

lp

)2

L; L = h̄

mc
. (3)

While for R � ac, the critical length can be expressed as,

ac ≈
(
h̄2

G

)1/3
R2/3

m
=

(
R

lp

)2/3

L . (4)

(Putting ac = R in Eq. (4), the two expressions coincide. Thus ac = R denotes
the transition from macro-regime to micro-regime.) Summarizing this, the following
important inferences can be drawn:

ac � R �⇒ h̄2

G
� m3R : micro-region, (5)

ac ≈ R �⇒ h̄2

G
≈ m3R : transi tion-region, (6)

ac � R �⇒ h̄2

G
� m3R : macro-region. (7)

Some estimates are of interest. From Eq. (3) it can be estimated that for a proton

ac ≈ 1025 cm, τc ≈ 1053 s. (8)
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What this means is that while according to quantum theory, an initial wave function
for the proton would continue to spread indefinitely and forever, gravity induced
decoherence causes its loss of coherence, after an enormous time of 1053 s, to a
very large length scale 1025 cm. Given these length and time scales, we are of course
completely justified in thinking of the proton as a quantummechanical object. Contrast
this with a macroscopic ball of radius R = 1 cm, having density 1 g/cm3, for which
we get

ac ≈ 10−16 cm, τc ≈ 10−4 s. (9)

Furthermore, the transition from the micro to the macro domain occurs for ac = R,
which for a density of 1 g/cm3, works out from (4) to be

atr ≈ 10−5 cm, τtr ≈ 103 s, mtr ≈ 10−14 g. (10)

Notice that the coherence length atr for transition matches with the favoured value for
rc in the collapse models. The transition mass corresponds to about 1010 amu, which
is still about five orders of magnitude higher than the largest masses (about 105 amu)
for which quantum position superposition has been observed through interferometry.

The similarity between CSL and gravity induced localization has been discussed
for instance in [49]. It is important though to emphasize that while CSL explains
localization, as well as realization of a specific random outcome upon measurement
in accordance with the Born rule, gravity models only explain localization (without
selection of one outcome). In this sense, these models should perhaps better be called
models of gravity induced decoherence, instead of gravity induced collapse.

The next model of gravity induced collapse was developed by Diósi, and in a
spirit somewhat similar to the K-model, the work begins by asking to what accuracy
a Newtonian gravitational field g can be measured by a quantum probe obeying the
uncertainty principle. It is shown that the uncertainty δg in themeasured field, averaged
over a spacetime volume VT , is bounded by

(δg̃)2 ≥ Gh̄/VT . (11)

This result is in spirit similar to the Karolyhazy bound (1) mentioned above, and later
in this paper we will discuss the relation between these two bounds. Diósi models this
uncertainty by introducing a classical stochastic potential, whose two point correlation
reflects this bound. The stochastic potential is then introduced as a source potential
in the Schrödinger equation, making the evolution of the wave function stochastic.
A deterministic Markovian master equation can be deduced for the density matrix,
and the stochastic potential is responsible for decoherence of the density matrix. The
decoherence time τc and the localization length ac (related as before by τc = ma2c /h̄)
can be calculated. For a spherical object of mass m and size R the localization length
is given in two limiting cases by

ac ∼ (h̄2/Gm3)1/4R3/4, if Rm3 � h̄2/G,

∼ (h̄2/Gm3)1/2R1/2, if Rm3 � h̄2/G . (12)
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The result in the first line, which is for the macro limit, should be compared with the
corresponding K-model result, given by Eq. (4). The two results are different, and one
would like to understand the reasons for the difference. In the subsequent sections we
compare the two models and show that while the two spacetime bounds (1) and (11)
are equivalent, they do not imply a unique two-point noise correlation for the assumed
stochastic potential. While the D-model assumes white noise, the noise correlation in
the K-model is not white, and the corresponding master equation is non-Markovian.
This confirms the earlier finding of [69] about the different noise in the two models;
however unlike [69] we suggest that the minimal spacetime bounds in the two models
are equivalent, and that the bound does not determine the noise correlation.

Quantitatively too, the two models show a major difference, even though in both
models the micro to macro transition takes place at the same value of the coherence
length: atr = R = h̄2/Gm3. In the D-model, for a proton, assumed to have a classical
radius R ≈ 10−13 cm, the localization length and the decoherence time are found to be
106 cm and 1015 s respectively, much smaller than the corresponding numbers (1025

cm and 1053 s) for the K-model. In the macro limit, the D-model gives a localization
length 10−12 cm for R = 1 cm and a density of 1 g/cm3, which is larger than the
K-model value by four orders of magnitude. Strangely enough, this corresponds to a
decoherence time of about 103 s, which is unreasonably high, in contrast to the more
plausible value 10−4 s yielded by the K-model. Considering that these numerical
values are now of interest to experimentalists in the field, it is highly desirable to try
and make unique model predictions which do not differ by many orders.

It should be emphasised that both in the K-model and in the D-model, the clas-
sical stochastic potential is postulated by way of an assumption, to represent the
quantum space-time uncertainty. Consequently, strictly speaking, the two-point corre-
lation functions associated with the corresponding stochastic fields are also postulates,
albeit ones that are motivated by certain physical and mathematical choices made in
the respective models.

The plan of this paper is as follows. In Sect. 2 we briefly review the K-model, and
argue that one can think of the family of metrics as a stochastic potential. We then
reconfirm the result of [69] on the two point noise correlation for this potential, and
show that it corresponds to non-white noise. We also write down the non-Markovian
master equation for this model. In Sect. 3 we recall the D-model, and show how can
one think of the uncertainty bounds of the two models, Eqs. (1) and (11) as being
equivalent to each other. We also argue that the methods used by the two models
for calculating the decoherence time are equivalent. In Sect. 4 we highlight that the
spacetime uncertainty bound does not uniquely determine the noise correlation, and
some additional criterion will have to be sought to obtain a unique prediction for the
localization length.

2 A Brief Review of the K-Model, and Some New Results

In the first part of this section we report some of the most important properties of the
K-model, following the derivation given in [52,53].
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As noted above, the bound (1) is modeled by introducing a family of metrics (gμν)β
which are very close to the Minkowski metric. β = 0 labels the Minkowski metric.
The proper length s = cT between two world-points x1 and x2 is defined as the mean
of the lengths sβ as measured in different members of the family

s = cT = 〈sβ〉 (13)

and the uncertainty �s in the length of the line segment is given by Eq. (2). Assuming
the particlemotion to be nonrelativistic, only the departure of the g00 metric component
from its Minkowski value is of interest, and one introduces the perturbation

(g00)β(x, t) = 1 + γβ(x, t) . (14)

Now, the idea is to select the set γβ in such a way that the length of the world line

sβ =
∫

dt

[
gβ
μν

dxμ

dt

dxν

dt

]1/2
(15)

averages to (13), and the uncertainty in length as defined by Eq. (2) matches with the
bound (1). For this purpose, the K-model assumes (since spacetime is free apart from
matter particles) that the γβ satisfy the wave equation

�γβ(x, t) = 0 . (16)

In Sect. 4 we will point out that this is not a unique choice for γβ and other choices
can also yield (1).

To proceed further, it is convenient to make a Fourier expansion of the γβ satisfying
(16) with ω = |k|c

γβ(x, t) = 1√
l3

∑

k

[
cβ(k)ei(k·x−ωt) + c · c

]
. (17)

Also, the K-model assumes cβ(k) = f (k)eiαβ(k), where α is a random phase such
that

〈cβ(k)〉 = 0, 〈c2β(k)〉 = 0, 〈cβ(k)c∗
β(k′)〉 = δk,k′( f (k))2. (18)

This is a simplifying assumption of the model; namely that the cβ(k) are independent
stochastic variables with zero mean, and a Gaussian probability distribution (see Eq.
4 of [55]). It is then shown that in order to recover (1) the function f (k) is given by

f (k) = l2/3p k−5/6. (19)

Having determined the family γβ the next task is to determine the evolution of a
given initial wave functionψ0, and find out how the evolution depends on γβ . Different
metrics will result in different evolution, thus leading to a family of wave functions
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ψβ , all of which in fact describe the same system. Decoherence results when there is
a significant difference in the evolution as β is varied: this is quantified as follows.

We start from the Klein–Gordon equation

1√−gβ

∂

∂xμ
(
√−gβg

μν
β

∂φ

∂xν
) −

(
mc

h̄

)2

φ = 0,

and takes its nonrelativistic limit to arrive at the Schrödinger equation

i h̄
∂

∂t
ψβ =

(
− h̄2

2m
�2 + Vβ

)
ψβ (20)

where the perturbing potential Vβ is given by

Vβ(x, t) = mc2γβ(x, t)
2

.

The non-relativistic limit has been arrived at by first substituting the metric form
diag(g00,−1,−1,−1) in the Klein–Gordon equation and using the perturbative

expansion (14) for g00. Then, as is conventionally done, the state φ in the Klein–
Gordon equation is written as φ ≡ ei S and the function S expanded as a power series
in c2: S = c2S0+S1+c−2S2+· · · . Substitution of this expansion in theKlein–Gordon
equation, and comparison of terms at different orders in c2 yields the non-relativistic
Schrödinger equation at order c0 after the identification ψβ ≡ ei S1/h̄ . A more detailed
discussion can be found for instance in [70].

An important remark is in order with regard to Eq. (20). Since this equation is being
treated as the non-relativistic limit of a relativistic system, semiclassical Einstein equa-
tions imply that in principle one ought to consider a contribution to the potential from
self-gravity, of the form∇2Vsel f ∝ |ψ |2. The latter self-interaction is precisely what is
considered in the Schrödinger–Newton (SN) equation; however the SN equation does
not consider the effect of spacetime uncertainty that is being studied in the K-model /
D-model. In a sense the SN equation is complimentary to the present study, although
it has its own limitations [66], and in particular does not incorporate quantum fluctua-
tions of the mean self-gravity. In our view a compete treatment should simultaneously
include both self-gravity and the effects of intrinsic spacetime uncertainty. To the best
of our knowledge this has not been done, and we hope to investigate this in the future.

Generalization of the above non-relativistic equation to the many-particle case is
achieved by replacing the potential Vβ by

Uβ({X}, t) =
∑

i

mi c2γβ(xi , t)
2

, (21)

where {X} labels a point in configuration space: {X} = (x1, x2, . . . xN). Then the
Schrödinger equation becomes:
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i h̄
∂

∂t
�β({X}, t) = (

H +Uβ({X}, t))�β. (22)

To realize decoherence one starts with an initial wave function �0({X}, 0), same
for all the metrics {gμν

β }. After evolution, different �β({X}, t) will become different.
It can be shown that, to a good approximation [55]

�β({X}, t) ≈ �0({X}, t)eiφβ({X},t), (23)

with

φβ({X}, t) = −1

h̄

∫ t

0
dt ′Uβ({X}, t). (24)

We fix an {X1} and an {X2}, and calculate the difference in phase between these two
points in configuration space for different β. The answer will depend on β and on
time. The root mean square spread in the phase (average is over β)

〈[φβ({X1}, t) − φβ({X2}, t)]2〉1/2

can be estimated as a function of {X1}, {X2} and time t . The uncertainty in the rel-
ative phase depends only on the separation between the two points in configuration
space, and for a sufficiently large separation ac can reach the value π after some time.
When that happens, decoherence and localization is said to occur, and the aforemen-
tioned results (3) and (4) are shown to hold. (The phase correlations are assumed to
be Gaussian, so that the two-point function carries the entire information about the
correlations.)

In our paper, we will attempt to recast the analysis of the K-model in a manner
which might be regarded as more conventional, and which facilitates comparison with
the D-model. Thus, there is nothing which really prevents us from thinking of the
family γβ as a stochastic potential with zero mean, and whose two point correlation
is such that when a length s = cT is measured in the presence of such a potential,
it exhibits an uncertainty given by (1). In order to avoid possible divergences due to
taking a discrete distribution of point-like particles, we rewrite Eq. (22) considering a
system with mass density given by a smooth function f (x),

i h̄
∂

∂t
ψβ(x, t) =

(
H + c2

2

∫
d3x ′ f (x′ − x) γβ(x′, t)

)
ψβ(x, t), (25)

where γβ is now a stochastic potential, and the wave function is also a stochastic
quantity, which represents the family ψβ .

We now compute the two point correlation (assuming a Gaussian probability dis-
tribution) for the stochastic potential γβ in the K-model. By means of the Fourier
expansion (17) we can write,

〈
γβ(x, t)γβ(x′, t ′)

〉= 1

l3

〈
∑

k

∑

k′

[
cβ(k)ei(k·x−ωt)+c.c

] [
cβ(k′)ei(k′·x′−ω′t ′)+c.c

]
〉

(26)
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and using relations (18) we obtain

〈
γβ(x, t)γβ(x′, t ′)

〉 = 1

l3
∑

k

[
f 2(k)eik·(x−x′)e−iω(t−t ′) + f 2(k)e−ik·(x−x′)eiω(t−t ′)

]
.

(27)
In the limit l → ∞ we can write

〈
γβ(x, t)γβ(x′, t ′)

〉= 1

(2π)3

∫
dk

[
f 2(k)eik·(x−x′)e−iω(t−t ′)

+ f 2(k)e−ik·(x−x′)eiω(t−t ′)
]

(28)

which, introducing r = |x − x′| and τ = t − t ′ becomes

〈
γβ(x, t)γβ(x′, t ′)

〉= 1

(2π)3

∫
dk

[
f 2(k)eikr cos θe−iωτ + f 2(k)e−ikr cos θeiωτ

]
.

(29)
Let us first calculate the first term:

I1 = 1

(2π)2

∫ ∞

0

∫ π

0
k2dk f 2(k) sin θdθeikr cos θe−iωτ (30)

= l4/3p

(2π)2

2

r

∫ ∞

0
k−2/3 sin(kr)e−ikcτdk.

Similarly, the second term gives,

I2 = l4/3p

(2π)2

2

r

∫ ∞

0
k−2/3 sin(kr)eikcτdk (31)

and, adding these two terms, we finally get:

〈
γβ(x, t)γβ(x′, t ′)

〉 = l4/3p

(2π)2

4

r

∫ ∞

0
k−2/3 sin(kr) cos(kcτ)dk. (32)

Upon integration, the final form of two point correlation is,

〈
γβ(x, t)γβ(x′, t ′)

〉 = l4/3p

4π2r
� (1/3)

[
1

(r + c|τ |) 1
3

+ sign(r − c|τ |)
|r − c|τ || 13

]

. (33)

This result was first reported in [69], and this is evidently not white noise, and is the
feature responsible for the difference in the results obtained for localization length
in the K-model and the D-model. However, unlike what [69] seems to suggest, we
will demonstrate in the next section that the uncertainty bounds (1) and (11) are
equivalent. Furthermore, the phase variance method used in the K-model to determine
the decoherence time will be shown to be equivalent to the more conventional method
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used in the D-model (i.e. studying the master equation for the density matrix). Thus
these are not the reasons why the two models arrive at different results.

We can also write down the non-Markovian master equation corresponding to this
non-white noise. Rewriting (25) without projecting to the position basis we have

i h̄
∂

∂t
|ψ (t)〉 =

[
H + c2

2

∫
d3x ′ f

(
x′ − q̂

)
γβ

(
x′, t

)
]

|ψ (t)〉 . (34)

It has been shown in [68], that when the noise can be treated as a perturbation, the
corresponding master equation to the lowest perturbative order in the noise is

dρ (t)

dt
= − i

h̄
[H, ρ (t)] −

(
c2

2h̄

)2 ∫
d3xd3x ′

∫ t

0
dt ′

〈
γβ(x, t)γβ(x′, t ′)

〉

× [
f (x) ,

[
f
(
x′ (t ′ − t

))
, ρ (t)

]]
, (35)

with f (x) = f
(
x′ − q̂

)
,
〈
γβ(x, t)γβ(x′, t ′)

〉
given in Eq. (33) and x′ (t ′ − t

)
the posi-

tion operator in interaction picture evolved up to the time t ′ − t . The calculation of
decoherence time from this master equation is by no means straightforward nor obvi-
ous, and the phase variance method used in the K-model is decidedly far simpler. As
we show in the next section, for the D-model, the phase variance method is equivalent
to the Markovian master equation, in so far as the calculation of the decoherence time
is concerned. We conjecture that the same equivalence is true, if that master equation
is replaced by the above non-Markovian equation of the K-model, and that this latter
equation also yields decoherence in position. However we do not have a proof for this,
or a derivation of the phase variance method from this master equation, and we hope
to address these questions in a future study.

3 A Brief Review of the D-Model, and Comparison with the K-Model

Diósi and Lukács [62] work in the framework of Newtonian QuantumGravity (NQG),
where G and h̄ appear in the analysis, but c does not. They ask: if a quantum probe
is used to measure a classical gravitational field g, what is the maximum accuracy
with which g can be measured? They assume that in a realistic measurement only an
average g̃ of g

g̃(x, t) = 1

VT

∫
g(x′, t)d3x ′dt, |x − x′| < R, |t ′ − t | <

T

2
(36)

over a space and time interval can be measured. The volume V = 4πR3/3 and the
time-interval T are properties of the probe, assumed to be a spherical object with linear
extent R.

The quantum probe, assumed to be a mass M with wave-packet of initial extent R
picks up a momentum P = M g̃T during the measurement time T . However there is a
quantum uncertainty δP ∼ h̄/R in the classical value of P , showing that there is an
inaccuracy in the measurement of g̃ given by δ(g̃) ∼ h̄/MRT . This inaccuracy can be
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decreased by increasingM , but the massM produces its own gravitational field, which
disturbs the field being measured, and has an intrinsic uncertainty δg ∼ GM/R2

because of the spread of the wave-packet. Consequently the optimal choice for M
is M ∼ √

h̄ R/GT and the final minimal uncertainty in the measurement of the
gravitational field is

δ(g̃) ∼ √
Gh̄/V T . (37)

This minimal uncertainty appears to have a universal character, and could be math-
ematically modeled, for the sake of further application, as a stochastic contribution
gst (x, t) (having zero mean) to the classical field gcl(x, t)

g(x, t) = gcl(x, t) + gst (x, t) . (38)

The minimal bound (37) can be recovered using this stochastic field, provided that,
after spacetime averaging, it satisfies

〈(g̃st )2〉 ∼ Gh̄

V T
. (39)

The spacetime average that appears on the left hand side can be written explicitly, so
that

〈g̃2st 〉 = 1

V 2T 2

∫ ∫
d3x d3x ′ dt dt ′〈gst (x, t)gst (x′, t ′)〉 . (40)

Now, as is easily verified, a possible two-point correlation on the right hand side which
will satisfy this relation is white-noise:

〈gst(x, t)gst (x′, t ′)〉 = IGh̄δ(x − x′)δ(t − t ′) (41)

The form of the correlation leads to the cancellation of a factor VT in (40), which
is what is desired. From here it can be shown that the two point correlation for the
gravitational potential φ defined by g = −∇φ is given by

〈φ(x, t)φ(x′, t ′)〉 − 〈φ(x, t)〉〈φ(x′, t ′)〉 ∼ Gh̄

|x − x′| δ(t − t ′), (42)

where 〈φ(x, t)〉 = φcl(x, t) and φcl(x, t) satisfies the Poisson equation

∇2φ(x, t) = 4πGρ(x, t). (43)

As before, the probability distribution for the stochastic potential is assumed to be
Gaussian. From here on, the analysis proceeds in a straightforward manner: one uses
the correlation function for the stochastic potential, and then constructs a Schrödinger
equation for evolution of an object in this stochastic potential. From there one can
construct a Lindblad master equation, from which the decoherence effects of the fluc-
tuating gravitational potential can be deduced. This leads to Diosi’s results mentioned
above in Eq. (12).
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Now, we notice that Eqs. (39) and (40) do not uniquely imply that the noise is white.
For instance, suppose that in Eq. (40) the correlation on the right hand side has a form

〈gst (x, t)gst (x′, t ′)〉 = IGh̄F(x − x′)G(t − t ′) (44)

with F and G functions other than delta-functions. Now it is obvious, by defining new
coordinates say, p = x − x′, q = x + x′, r = t − t ′, s = t + t ′, that the right hand
side of Eq. (40) can be written as

1

VT

∫
|det J |−1 d3 p dr F(p)G(r). (45)

Here J is the Jacobian of the transformation. This form can in principle yield (39)
with a suitable choice of the functions F and G (other than delta functions), since a
factor 1/V T has again cancelled out. Thus it seems to us that the minimal bound (39)
can also be achieved by noise which is not white, and this would make a difference
in the final quantitative conclusions one draws about decoherence and how it depends
on the mass and size of the decohering object.

(For the sake of completenesswe recall that themaster equation for theD-model has
an intrinsic divergence. To regularise this divergence a cut-off was first proposed at the
nucleon scale [64]; unfortunately such a cut-off leads to excessive heating inconsistent
with observations. It was then proposed to raise this cut-off to a much higher value rc,
the length scale of the CSL model [71]. While this solves the heating problem, it is
difficult to physically justify the inclusion of the scale rc in the D-model, one of whose
motivations was to give a parameter free description of decoherence and collapse. In
a recent paper [72], the issue of this divergence has been discussed in detail, and the
authors also consider the possibility of avoiding overheating by introducing dissipation
in the dynamics, instead of introducing a high cut-off.)

The second observation which we wish to make is the role played by spacetime
averaging. In principle, it is possible to consider an idealized quantum probe whose
spread is small enough that the gravitational field maybe assumed uniform over the
extent of the probe and over the duration of the measurement. In such a case, the
analysis leading upto Eq. (37) can be again repeated, but now without referring to
spacetime averaging, and the minimal uncertainty will be given by

δ(g) ∼ √
Gh̄/V T , (46)

where no reference to averaging is made. It is possible to relate this bound to the
spacetime bound in the K-model, as we will see in a moment. Spacetime averaging
is of course essential in the D-model, for the purpose of deducing a white noise
correlation, as is evident from Eq. (40).

If spacetime averaging is not done, and we accept the bound (46), then this can be
related to the minimal bound in the K-model, once we think of Newtonian gravity as
an approximation to general relativity. The bound (46) is equivalent to an uncertainty
in the measured gravitational potential, given by
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δ(φ) ∼ √
Gh̄/RT . (47)

If the mean value of φ is zero, then δ(φ) is of the order of the perturbing potential
which distorts a Minkowski spacetime background. Now, if one attempts to measure a
length s = cT , an uncertainty in its measurement will be induced by δ(φ), and given
as follows:

s′ = √
g00cT =

√

1 + 2φ

c2
cT ∼ cT +

√
Gh̄

c4RT
cT (48)

giving that

(�s)2 ≡ (s′ − cT )2 ∼ l2p
s

R
, (49)

which with the assumption R = �s becomes the Karolyhazy relation �s3 = l2p s.
(Equating R and �s is justified because we are looking for the minimum length
uncertainty; a smaller value of R would increase �s and a larger value of R would
imply that the actual uncertainty is R and not �s.)

Furthermore, it can be shown that the averaged potential in theD-model also implies
the K-model spacetime bound, provided the white noise correlation is assumed. We
calculate the stochastic world line length similar to sβ in K-model but now with a
spacetime averaged potential φ̃ = 1

VT

∫ ∫
φ(x, t) d3x dt :

s =
∫ T

0

√

1 + 2φ̃

c2
c dt. (50)

Note that here φ̃ is a stochastic variable and the line element s thus obtained is also
stochastic.

Hence,

s − savrg � c
∫ T

0

φ̃

c2
dt (51)

where savrg = cT .
Next we calculate �s2 = 〈(s − savrg)

2〉:

�s2 = 1

c2

〈∫ T

0
φ̃ dt ′

∫ T

0
φ̃ dt ′′

〉
.

As φ̃ has already been averaged over the measuring time T , it depends only weakly
on t and can be thought to remain almost constant within time T . Using this, we can
directly integrate over time to get

�s2 = T 2

c2
〈φ̃2〉 .

Now, we explicitly calculate 〈φ̃2〉,

〈φ̃2〉 = 1

V 2T 2

〈∫ ∫
φ(x, t) d3x dt

∫ ∫
φ(x′, t ′) d3x ′ dt ′

〉
.
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Using the two point correlation function (42) we get,

〈φ̃2〉 = h̄GT

V 2T 2

∫ ∫
1

|x − x′| d
3x d3x ′ .

We now calculate the double integral by first denoting x ≡ (x1, x2, x3) and x′ ≡
(x ′

1, x
′
2, x

′
3) and make a coordinate transformation as follows:

s = x1 − x ′
1, p = x2 − x ′

2, q = x3 − x ′
3, l = x1 + x ′

1, m = x2 + x ′
2,

n = x3 + x ′
3.

This allows us to write the integral as:

1

| det J |
∫ ∫

1
√
s2 + p2 + q2

ds dp dq dl dm dn = 1

| det J |
∫ ∫

1

r
d3r dl dm dn.

To find the limits of integration, we note that since the dimension of the probe is R,
we can say,

x1, x2, x3, x
′
1, x

′
2, x

′
3 : −R/2 → R/2, r : 0 → R

and, evaluating the integral, we get

∫ ∫
1

|x − x′| d
3x d3x ′ � R5. (52)

This is of the order V 2/R, and substituting this result back in the original equation,
we get

�s2 = l2p
R
s, (53)

where s = cT . Now R ≈ �s reproduces the K-model bound,

�s3 = l2ps . (54)

We thus see that the minimal spacetime bounds in the D-model and in the K-model are
essentially equivalent, and the difference in their final results is coming about because
in one model the noise is white, and in the other it is not.

We have seen above that in the K-model the decoherence time is estimated by
setting the phase variance to be of the order π2. On the other hand, in the D-model,
decoherence time is estimated from the master equation. We show below that in the
D-model, the phase variance method gives the same result for decoherence time, as
the master equation. This suggests that the phase variance method could well be suf-
ficiently general, and equivalent to the master equation method, for a non-Markovian
equation as well.
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The phase of a wavefunction moving in a potential Uβ(x, t) after time T is,

δβ(x, T ) = −1

h̄

∫ T

0
Uβ(x, t) dt .

In Diósi’s model, the potential for a given configuration X is given as follows [63]:

U (X, t) =
∫

vol
φ(x, t) f (x|X) d3x (55)

where f (x|X) denotes the mass density function at a point x for the configuration X.
Thus phases accumulated at time t at configuration X is

δ(X, t) = −1

h̄

∫ t

0

∫

vol
φ(x′, t ′) f (x′|X) d3x ′ dt ′ , (56)

We now evaluate the variance 〈[δ(X, t) − δ(X′, t)]2〉. We can write

〈[δ(X, t) − δ(X′, t)]2〉 = 1

h̄2

〈[∫ t

0

∫

vol
φ(x′, t ′) f (x′|X) d3x ′ dt ′

−
∫ t

0

∫

vol
φ(x′′, t ′′) f (x′′|X′) d3x ′′ dt ′′

]2〉

,

calculate term by term and take the stochastic average using Eq. (42).
The square modulus of the first term is

〈∫ T

0

∫

vol
φ(x′, t ′) f (x′|X)

∫ T

0

∫

vol
φ(x, t ′′) f (x|X) d3x d3x ′ dt ′ dt ′′

〉

= GT

h̄

∫

vol

∫

vol
f (x′|X) f (x|X)

1

|x − x′| d
3x d3x ′. (57)

Similarly evaluating the square modulus of the second term and the cross term and
summing those, we finally get,

〈[δ(X, T ) − δ(X′, T )]2〉
= GT

h̄

∫ ∫
d3x d3x ′ [ f (x|X) − f (x|X′)][ f (x′|X) − f (x′|X′)]

|x − x′| . (58)

For decoherence, we need 〈[δ(X, T ) − δ(X′, T )]2〉 ≈ π2. This gives us a decay time
scale,

τ−1
d = G

π2h̄

∫ ∫
d3x d3x ′ [ f (x|X) − f (x|X′)][ f (x′|X) − f (x′|X′)]

|x − x′| . (59)
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This is same as the decay time obtained by Diósi using the master equation apart
from some constant factors. Thus use of master equation or phase variance method
gives similar result for the decay time. This suggests that the phase variance method is
possibly a more general one which can give decay time for both white and non-white
noise.

4 Spacetime Uncertainty Bound and the Noise Correlation

We have seen that in K-model and in D-model, the correlation functions of the poten-
tials are completely different. Let us now try to find a general form of such potentials
which would satisfy the following bound:

�s3 ∼ l2ps. (60)

The most general form of the potential is,

φ(x, t) = K Fst (x, t), (61)

where K is a constant with a suitable combination of G, c and h̄. Now we will use
this form to calculate the uncertainty in the length of a line element. Then we have,

s′ =
∫ T

0

√
g00cdt =

∫ T

0

√
1 + K Fst (x, t)cdt ≈ c

∫ T

0

(
1 + 1

2
K Fst (x, t)

)
dt.

If we write s = cT , then

(s′ − s)2 = K 2c2

4

( ∫ T

0
Fst (x, t)dt

)2
. (62)

The uncertainty in the measurement of the length is obtained, as in the K-model, by
averaging Eq. (62):�s2 = 〈(s′ −s)2〉. We assume the correlation function of Fst (x, t)
to be separable in space and time, i.e.

〈Fst (x, t)Fst (x′, t ′)〉 = P(x, x′)g(t, t ′), (63)

which leads to:

�s2 = K 2c2

4
P(x, x)

∫ T

0

∫ T

0
g(t, t ′) dt dt ′ . (64)

The linear size of the object under consideration is R. At this point we impose the
following three relations:

�s3 ∼ l2ps R ∼ �s s ∼ cT .

For the above class of solutions, where we assumed that the noise correlation is sep-
arable in space and time coordinates, to obtain the Karolyhazy uncertainty relation,
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P(x, x) must be independent of x (e.g. P(x, x′) might depend on |x − x′|), but it can
be a function of R and g(t, t ′) can have a number of solutions such that the two point
correlation function is given by:

g(t, t ′) = Tmtn1 t
′n2 . (65)

We note that the form of the correlation function suggested above is neither the most
general nor motivated from symmetries. However a large number of correlation func-
tions can be constructed from the formgiven above and the linear combinations thereof.
In general, the correlation function can take other forms also (e.g. a function of (t− t ′)
as we have already shown in the previous section).

We now show below how different solutions lead to the same K-bound. Using the
two point correlation in Eq. (65), we find,

�s2 = K 2c2

4
P(x, x)

Tm+n1+n2+2

(n1 + 1)(n2 + 1)
.

The constants can be adjusted to reproduce the K-bound from the above equation for
different choices of {m, n1, n2}. Below we illustrate some examples for a simplified
version where n1 = n2 = n.

(1) P(x, x) = 1
R . In this case, we have,

�s2 ∝ 1

R
Tm+2n+2.

Now, since R ∼ �s and s ∝ T , we can write, from the above equation,

�s3 ∝ sm+2n+2

and so, we must have, m + 2n + 2 = 1 which gives m/2 + n = −1/2. For this,
we find,

〈φ2(x, t)〉 = K 2

R
Tmt2n . (66)

All such φ(x, t), for which m
2 + n = − 1

2 , are possible solutions. Note that m =
−1, n = 0 gives the form 〈φ2〉 = Gh̄

RT which we had already predicted as a possible
form of Diósi stochastic potential in Eq. (47).

(2) P(x, x) = 1. We get

�s2 ∝ sm+2n+2.

Since, according to K-bound, it must be

�s2 ∝ s2/3,
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we get the condition:

m + 2n + 2 = 2

3
.

In general, we can say that if P(x, x) has a form P(x, x) = R2 j where j is real,
then the condition it must satisfy is

1 − j = 3

2
(m + 2n + 2). (67)

Thus, we see that for different choices of j , m and n we get different potentials all
satisfying the Karolyhazy uncertainty relation. This has been shown for separable
forms only. In general, the solution can be non-separable also, as in the K-model,
where γ (x, t) cannot be separated in space and time coordinates.

We conclude that, given the uncertainty in measurement or the space-time bound,
the form of the potential cannot be uniquely determined. There is a whole class of
solutions as discussedwhich lead to the samebound. It seems that the γ inK-model and
φ in Diósi’s model are two special cases which simplify the mathematical treatment,
but they are not unique choices. We are not suggesting that the above examples given
by us are necessarily that of physically realistic noise, but rather that more work needs
to be done to uniquely determine the gravitational noise correlation.

It is important to compare our analysis with that of Diósi and Lukács (DL) [69]
who in their Eq. (8) propose that the fundamental geodesic uncertainty relation is

�s2 ≈ l2p
s

R
, (68)

which is the same as our Eqs. (49) and (53) but different from the Karolyhazy relation
(1). To our understanding, DL suggest that (68), rather than (1), is the fundamental
relation. Through their analysis leading up to their Eq. (11), which is

(�)R,T ≈ √
h̄G/RT , (69)

they relate (68) to the metric uncertainty in their Eq. (11), which is the same as our Eq.
(47). On the other hand, as we have argued below Eq. (49), one should set R ∼ �s for
optimal minimal uncertainty, in which case Eq. (68) above becomes the same as the
Karolyhazy uncertainty bound (1). In (68) above, it appears that increasing R decreases
�s, but if R > �s this does not seem physically reasonable, since the uncertainty
would be bounded from below by the probe size R. Hence R ∼ �s seems optimal.

Thus it seems to us that the main difference between the work of DL and our work
is that whereas DL suggest the spacetime bounds in the two models are different, we
have argued that the two bounds are actually equivalent to each other. Also, as we
have attempted to demonstrate, the bound does not by itself favor white noise over
colored noise, nor the other way around. It would appear that this issue is open for
further examination.
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5 Summary and Concluding Remarks

The K-model proposes a minimal spacetime uncertainty bound, namely the accuracy
with which a length interval can be measured by a quantum probe. This bound is
realized via a hypothesized coexisting family of metrics. The propagation of the wave
function in this kind of a hazy spacetime is shown to lead to loss of coherence, which
becomes relevant for macroscopic objects. We showed that this family of metrics can
equivalently be interpreted as a stochastic potential, whose two-point noise correlation
can be worked out, and shown to be non-white noise. The Schrödinger evolution takes
place in the presence of this stochastic potential, and themaster equation for the density
matrix is non-Markovian.

The D-model also proposes an, apparently different, spacetime bound, i.e. the
accuracy with which the gravitational field averaged over a spacetime region can
be measured by a quantum probe. This uncertainty in the gravitational field can be
modeled by a stochastic potential, which is assumed to have a white noise correla-
tion. The Schrödinger evolution of the wave function takes place in this stochastic
potential, making the wave function stochastic. A Markovian master equation for the
density matrix is set up, and once again decoherence in position basis for large objects
is demonstrated. The quantitative estimates for the decoherence time and localization
length are however different from those of the K-model.

We showed that the spacetime uncertainty bounds in the two models are essentially
equivalent to each other. We then argued that the difference in the quantitative results
of the two models is due to the assumed nature of the noise—white in one case,
and coloured in the other case. We also argued that the spacetime bound does not
uniquely predict the noise correlation, and many choices are possible, each of which
is likely to give different results for the decoherence time scale. White noise may be
the simplest choice, but there seems to be no physical reason why gravitational effects
must conform to white noise. Thus it would appear that additional criteria, apart
from the minimal bound, are essential to precisely define a model of gravity induced
decoherence. Nonetheless, it can be said that the role of gravity in decoherence is
fundamentally suggested, and further investigation of this problem is highly desirable.
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