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Abstract Thenotion of conditional entropy is extended to noncomposite systems. The
q-deformed entropic inequalities, which usually are associated with correlations of the
subsystem degrees of freedom in bipartite systems, are found for the noncomposite
systems. New entropic inequalities for quantum tomograms of qudit states including
the single qudit states are obtained. The Araki–Lieb inequality is found for systems
without subsystems.
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1 Introduction

The probability distribution is characterized by Shannon entropy [1]. The q-
entropies [2,3] containing an extra parameter q provide extra information on the
probability distributions. The Tsallis q-entropy [3] can be expressed in terms of Renyi
q-entropy [2]. Both q-entropies for the parameter q = 1 coincide with the Shannon
entropy. The states of quantum systems, identifiedwith densitymatrices [4,5] are char-
acterized by von Neumann entropy. The q-entropies also characterize the properties of
quantum states. At complete order in a classical system, the Shannon entropy is equal
to zero. For composite classical and quantum systems, there exist some inequalities
related to entropies of the system and its subsystems [6–8].
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There exist the entropic and information inequalities, e.g., the subadditivity condi-
tion, which is the inequality for von Neumann entropies of the bipartite-system state
and its two subsystem states [9]. For three-partite systems, there exists the strong
subadditivity condition, which is the inequality for the von Neumann entropies of the
composite system and its subsystems [10]. The nonnegativity of the Shannon mutual
information and quantummutual information follows from the subadditivity condition
valid for composite systems.

Recently [11–13], it was observed that all entropic inequalities known for composite
classical and quantum systems with two or several random variables like, e.g., the
subadditivity condition, can be found also for the noncomposite system with only one
random observable.

It is known (see, e.g., a recent review [14]) that the states of quantum systems can be
described in terms of fair probability distributions, called quantum tomograms, which
contain complete information on the state density matrices.

The tomographic probability representation of quantum mechanics was suggested
in [15]. The tomographic probability representation of classical mechanics was sug-
gested in [16].Within the framework of this representation, both classical and quantum
states are described by the same objects—tomograms: the quantum states are deter-
mined by tomographic fair probability distributions, the states of classical systems are
determined by classical tomograms. The analogous description of quantum spin states
by the probability distributions (spin tomograms) was suggested in [17,18]. In the
tomographic probability representation, the standard formulae for classical probabil-
ity distributions can be easily applied and compared with the corresponding quantum
ones [19,20].

The classical randomvariables are describedwithin the frameworkof classical prob-
ability theory [21]. Themodel of quantummechanics based on the classical probability
distributions is elaborated in [22–24]. Based on this fact and on the tomographic-
probability representation of quantum mechanics, one may use the apparatus of
classical probability theory to consider quantum correlations and the entanglement
phenomenon in quantum systems. For example, a specific map of the classical proba-
bility distribution called the qubit portrait of qudit states was introduced to study the
entanglement phenomenon in [25,26]. The quantum correlations were studied within
the framework of tomographic probability representation of quantum states [27,28].

There exist different entropic inequalities for composite quantumsystems [9,10,29–
35]. Using the approach based on the portrait method it was observed in [11,36,37]
that the entropic inequalities valid for composite systems can be extended to arbitrary
systems including the systems without subsystems. In [31–35], some inequalities
associated with positive operators acting in the Hilbert space, which has the structure
of tensor product of Hilbert spaces, were studied.

In [38], new entropic inequalities for single qudit states were obtained employing
known properties of relative entropy of composite systems. In [39], a new entropic
inequality for states of the system of n ≥ 1 qudits was derived, and a general statement
on the existence of the subbaditivity condition for an arbitrary probability distribution
and an arbitrary qudit-system tomogramwas formulated. In [40], the entropic inequal-
ities and uncertainty relations for q-derformed entropy were studied for noncomposite
quantum systems realized by superconducting circuits with the Josephson junction,
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and possible realizations of various quantum logic gates of noncomposite quantum
systems were discussed.

The aim of our work is to obtain new matrix inequalities for density matrices of
qudit states of noncomposite quantum systems which do not depend on the tensor-
product structure of the Hilbert space. The other goal of this paper is to extend the
notion of conditional entropy to the case of noncomposite systems and to obtain the
Araki–Lieb inequality for the single-qudit state, as well as to obrain new inequalities
for q-deformed entropy in the case of noncomposite systems. Also we obtain a new
chain relation for a single qudit state.

This paper is organized as follows.
In the second section, we review the probability distributions and the conditional

entropies for one randomvariable. In the third section,we obtain new entropic relations
for qudit-state tomograms. In the fourth section we find an analog of the Araki–Lieb
inequality for an arbitrary density matrix ρ and consider an example of the matrix of a
single-qudit state. In the fifth section, we discuss the deformed subadditivity condition
in the classical and quantum cases and study quantum correlations expressed in terms
of the deformed information depending on global unitary transform. In conclusion,
we list our main results.

2 The Probability Distributions and Conditional Entropies for One
Random Variable

The conditional entropy is the notion related to the properties of the joint probability
distribution P( j, k), ( j = 1, 2, . . . , n, k = 1, 2, . . .m) of two random variables,
where the first random variable describes the degrees of freedom of a system A and
the second random variable describes the degrees of freedom of a system B. The joint
probability distribution P( j, k), determines the conditional probability distributions,
in view of Bayes rule,

P( j |k) = P( j, k)
∑n

j=1 P( j, k)
. (1)

The marginal probability distributions for the first and second random variables read

P1( j) =
m∑

k=1

P( j, k), P2(k) =
n∑

j=1

P( j, k). (2)

The Shannon entropies associated to the probability distributions P( j, k), P1( j), and
P2(k), as well as to the conditional probability distribution P( j |k) are

H(A, B) = −
n∑

j=1

m∑

k=1

P( j, k) ln P( j, k), H(A) = −
n∑

j=1

P1( j) lnP1( j),

H(B) = −
m∑

k=1

P2(k) lnP2(k) (3)
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and

H(A|k) = −
n∑

j=1

P( j |k) ln P( j |k). (4)

The conditional entropy H(A|B) is given by the average entropy

H(A|B) =
m∑

k=1

P2(k)H(A|k) = H(A, B) − H(B) (5)

Thus one has the equality

H(A, B) = H(A|B) + H(B), (6)

which is called the chain relation.
On the other hand, one canobtain an analogous relation for only one randomvariable

described by the probability distribution P(s), s = 1, 2, . . . N , where the integer
N = nm. To show this possibility, following the approach [11], we use the map of
integers 1 ↔ 11, 2 ↔ 12, . . . ,m ↔ 1m, m + 1 ↔ 21, m + 2 ↔ 22, . . . , N − 1 ↔
nm − 1, N ↔ nm; this means that the index s in P(s) is considered as double index
jk where j = 1, 2, . . . n and k = 1, 2, . . .m. Thus probability distribution for one
random variable is mapped onto the table P( j, k) of nonnegative numbers, which
satisfies the normalisation condition

N∑

s=1

P(s) =
n∑

j=1

m∑

k=1

P( j, k) = 1. (7)

Since all Eqs. (1)–(7) are formally the relations between the N = nm nonnegative
numbers given by the table P( j, k), the relations do not depend on the interpretation
of these numbers, say, as connected with a joint probability distribution. They are
valid also for the numbers P(s) considered as the probabilities describing one random
variable but organized as the table of numbers P( j, k).

We give an example of P(s) for four nonnegative numbers p1, p2, p3, p4, such
that

∑4
s=1 ps = 4. One can introduce the notation P(1, 1) ≡ p1, P(1, 2) ≡

p2, P(2, 1) ≡ p3, P(2, 2) ≡ p4. Then one has analogs of all the probabilities given
by (1) and (2) as

P1(1) = p1 + p2, P1(2) = p3 + p4, (8)

P2(1) = p1 + p3, P2(2) = p2 + p4. (9)

Let us introduce two artificial subsystems A and B corresponding to indices j and k
in the table P( j, k). Then we introduce the analogs of conditional probability distri-
butions. For example, all the numbers

PA(1|1) = p1
p1 + p3

, PA(2|1) = p3
p1 + p3

(10)
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and
PA(1|2) = p2

p2 + p4
, PA(2|2) = p4

p2 + p4
, (11)

can be considered as conditional probability distributions for subsystem A.
These formulae provide the nonlinear maps of the probability four-vector �p =

(p1, p2, p3, p4) onto two probability two-vectors, which are

�p → �PA(1) = 1

p1 + p3

(
p1
p3

)

, �p → �PA(2) = 1

p2 + p4

(
p2
p4

)

. (12)

The Shannon entropies associated with the probability vectors (12) read

H A(1) = − p1
p1 + p3

ln
p1

p1 + p3
− p3

p1 + p3
ln

p3
p1 + p3

, (13)

H A(2) = − p2
p2 + p4

ln
p2

p2 + p4
− p4

p2 + p4
ln

p4
p2 + p4

, (14)

and the Shannon entropy associated with the four-vector �p provides the known chain
relation for the joint probability distribution, e.g., (6), where we use the standard
notation

H(A, B) = −p1 ln p1 − p2 ln p2 − p3 ln p3 − p4 ln p4,

and the conditional entropy H(A|B) reads

H(A|B) = (p1 + p3)H
A(1) + (p2 + p4)H

B(2); (15)

also
H(B) = −P2(1) lnP2(1) − P2(2) lnP2(2). (16)

The Tsallis q-entropy of a bipartite system defined as

Hq(A, B) = −
n∑

j=1

m∑

k=1

Pq( j, k)
P1−q( j, k) − 1

1 − q
, (17)

for q → 1, has the limit H1(A, B) = H(A, B).
The Tsallis q-entropy Hq(B) is defined as

Hq(B) = 1

q − 1

m∑

j=1

{(
P( j, k)

∑m
k′=1 P( j, k′)

)q
[(

P( j, k)
∑m

k′′=1 P( j, k′′)

)1−q

− 1

]}

. (18)

The conditional q-entropy Hq(A|B) is the difference

Hq(A|B) = Hq(A, B) − Hq(B). (19)
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Thus, we arrive at the chain relation [7,8,41]

Hq(A, B) = Hq(A|B) + Hq(B). (20)

One can write analogous relations using all permutations of numbers ps .
The Renyi q-entropy is the function of Tsallis q-entropy, i.e.

HR(A, B) = 1

1 − q
ln

[
(1 − q)Hq(A, B) + 1

]
.

Thus the relations obtained for the Tsallis entropy can be expressed in terms of rela-
tions for Renyi q-entropy. From the consideration of the conditional entropies for the
probability distribution of one random variable P(s) follows that the deformed chain
relation is valid for constructed ‘artificial’ subsystems A and B, e.g., described by the
probability distributions given by (8) and (9).

3 Entropic Relations for Qudit Tomograms

Now we consider the qudit state tomograms. The tomograms are fair probability
distributions, which determine the density matrices of quantum states. In view of this
fact, the entropic relations for the tomograms correspond to quantum properties of the
qudits, in particular, to the quantum correlations in multipartite system states but also
to the quantum correlations in noncomposite system states. The tomograms can be
introduced for an arbitrary Hermitian nonnegative matrix ρ with Tr ρ = 1.

The tomogram associated with the matrix ρ reads

w(s, u) = (uρu+)ss . (21)

Here s = 1, 2, 3, . . . , N = nm is an index characterising the basis in the linear space
where the density matrix is given. The tomogram is the standard probability distribu-
tion depending on the unitary matrix u and it satisfies the normalization condition

N∑

s=1

w(s, u) = 1. (22)

One can introduce the deformed Shannon entropy for the tomogram, which is the
tomographic Tsallis entropy [3]

Hq(u) = −
N∑

s=1

w(s, u)
wq−1(s, u) − 1

q − 1
. (23)

For the joint probability distribution P( j, k), there exists the deformed subadditivity
condition [8], which we apply to the tomogram.

The deformed inequality which is a characteristics of the classical probability N -
vector �w(u) with components w(s, u) can be written in the form (q > 1)
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−
N∑

s=1

w(s, u)
wq−1(s, u) − 1

q − 1
≤ −

n∑

j=1

w1( j, u)
w

q−1
1 ( j, u) − 1

q − 1

−
m∑

k=1

w2(k, u)
w

q−1
2 (k, u) − 1

q − 1
, (24)

where we have two probability vectors �w1(u) and �w2(u). The components of these
probability vectors are given as marginal probabilities obtained from the table P( j, k),
where j = 1, 2, . . . , n and k = 1, 2, . . . ,m. In this case, the table P( j, k) is con-
structed from the tomographic-probability distributionw(s, u), s = 1, 2, . . . , N , using
the same tool, which was used in the second section while considering the probability
distribution of one random variable P(s) as the joint probability distribution P( j, k)
of two artificial subsystems A and B. This means that instead of the probability dis-
tribution P(s) we use the tomographic-probability distribution w(s, u), where the
probabilities depend on unitary N × N - matrix u. The new quantum inequality (24)
is valid for different systems.

We present the examples with two qubits and qudit with j = 3/2.
The density matrix for two qubits is written in the basis | m1m2〉, where m1,m2 =

±1/2 in the Hilbert space H = H1 ⊗ H2, which is the tensor product of two
Hilbert spaces H1 and H2 corresponding to the states of the qubits. The matrix ele-
ments ρm1m2,m′

1m
′
2
provide the tomogram, which is the joint probability distribution

w(m1,m2, u); thus, the index s = 1, 2, 3, 4 in the probability vectorw(s, u) ismapped
onto pairs 1/2 1/2, 1/2 − 1/2,−1/2 1/2,−1/2 − 1/2.

Then the quantum inequality (24) for Tsallis q-entropy of the two-qubit state reads

−
1/2∑

m1m2=−1/2

w(m1,m2, u)
wq−1(m1,m2, u) − 1

q − 1

≤−
1/2∑

m1=−1/2

w1(m1, u)
w

q−1
1 (m1, u) − 1

q − 1
−

1/2∑

m2=−1/2

w2(m2, u)
w

q−1
2 (m2, u) − 1

q − 1
,

(25)

where marginals w1(m1, u) = −∑1/2
m2=−1/2 w(m1,m2, u) and w2(m2, u) =

−∑1/2
m1=−1/2 w(m1,m2, u) are the tomograms for qubits, if the unitary 4×4-matrix u

is taken as the tensor product u = u1 × u2 of local unitary transforms.
In the case of two qubits, one can get the chain rule for the entropies of two

subsystems given by Eq. (6), where the entropy reads

H(A, B) = −
1/2∑

m1m2=−1/2

w(m1,m2, u) lnw(m1,m2, u), (26)
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and the entropy for the second qubit H(B) is

H(B) = −
1/2∑

m2=−1/2

w2(m2, u) lnw2(m2, u). (27)

The conditional tomographic entropy H(A|B) is given by Eq. (5).
The second example under consideration is qudit with j = 3/2; it provides the same

entropic inequalities, which are new for this system. We employ the map of indices
in the tomogram w(s, u) interpreting index s = 1, 2, 3, 4 as the spin projection m =
−3/2,−1/2, 1/2, 3/2. This means that the tomogram w(s, u) ≡ w(m, u) satisfies
the inequality

−
3/2∑

m=−3/2

w(m, u)
wq−1(m, u) − 1

q − 1

≤ −
2∑

j=1

�1( j, u)
�

q−1
1 ( j, u) − 1

q − 1
−

2∑

k=1

�2(k, u)
�

q−1
2 (k, u) − 1

q − 1
, (28)

where the probability distributions �1( j, u) and �2(k, u), with j, k = 1, 2, are
expressed in terms of the qudit tomograms according to Eqs. (8) and (9) as

�1(1, u) = w(−3/2, u) + w(−1/2, u), �1(2, u) = w(1/2, u) + w(3/2, u),

(29)

�2(1, u) = w(−3/2, u) + w(1/2, u), �2(2, u) = w(−1/2, u) + w(3/2, u).

(30)

Inequality (28) is a new entropic inequality for the single qudit state with j = 3/2; it
can be checked experimentally.

The realization of the qudit state can be provided either by the four-level atomic
state or by the Josephson-junction state in the quantum-circuit experiments.

In the limit q → 1, inequalities (25) and (28) become the subadditivity conditions
for Shannon entropies determined by the tomograms. Inequality (25) provides the
standard subadditivity condition for bipartite system, and inequality (28) determines
the new subadditivity condition for a single random variable.

Now we introduce the conditional entropy for the tomogram of the qudit state with
j = 3/2. To do this, wewrite the q-entropy for the qudit statewith j = 3/2 determined
by the state tomogram as follows:

H (3/2)
q (u) = −

{

wq (3/2, u)
w1−q (3/2, u) − 1

1 − q
+ wq (1/2, u)

w1−q (1/2, u) − 1

1 − q

+wq (−1/2, u)
w1−q (−1/2, u) − 1

1 − q
+ wq (−3/2, u)

w1−q (−3/2, u) − 1

1 − q

}

.

(31)
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This expression for the q-entropy is equivalent to the left-hand side of inequality (28).
The q-entropy related to the probability to obtain positive and negative spin projec-

tions�1(+, u) = w(1/2, u)+w(3/2, u) and�2(−, u) = w(−3/2, u)+w(−1/2, u)

reads

HB
q = −�

q
1(+, u)

�
1−q
1 (+, u) − 1

1 − q
− �

q
1(−, u)

�
1−q
1 (−, u) − 1

1 − q
. (32)

Thus, we interpret an “artificial” subsystem B as a set of events where one has
either only positive or only negative values of the spin projections for the system
with spin j = 3/2 (qudit). The other “artificial” subsystem A is considered as a set of
events where the modulus of the sum of the spin projections is equal to unity. Quantum
correlations of these two subsystems correspond to the correlations of the different
spin projections, which play the role of different qubits in the qubit bipartite system.

We introduce the conditional entropy and the chain relation for the tomogram of
the qudit state with j = 3/2 taking

Hq (A|B) = �
q
1 (+, u)

�
1−q
1 (+, u) − 1

1 − q
+ �

q
1 (−, u)

�
1−q
1 (−, u) − 1

1 − q

−
{

wq (3/2, u)
w1−q (3/2, u) − 1

1 − q
+ wq (1/2, u)

w1−q (1/2, u) − 1

1 − q

+wq (−1/2, u)
w1−q (−1/2, u) − 1

1 − q
+ wq (−3/2, u)

w1−q (−3/2, u) − 1

1 − q

}

.

(33)

Thus, one has the chain relation (20) for the single qudit state with j = 3/2.
Analogous chain relations can be constructed for the other single qudits.
The physical meaning of ambiguity in the partition of the noncomposite systems

like qudit with j = N−1
2 reflects the different kinds of correlations of degrees of

freedom in the systems.
In the limit q → 1, the chain relations become the entropic relations for conditional

tomographic Shannon entropies for the systems without subsystems.
One can obtain some relations replacing the tomograms by other quasidistributions

because the quasidistributions are expressed in terms of the tomograms. It is straight-
forward to do for nonnegative and normalized quasidistributions like Husimi function
since it has formal properties of the classical probability distribution.

4 Araki–Lieb Inequality for the Single Qudit State

The subadditivity condition for the von Neumann entropy of the two-qudit state with
the density matrix ρ(1, 2) and the entropies for each qudit states with the density
matrices ρ(1) = Tr2 ρ(1, 2) and ρ(2) = Tr1 ρ(1, 2), respectively, can be written in a
form of the matrix inequality [11]. In fact, the first qudit state with j = (n − 1)/2 and
the second qudit state with j = (m − 1)/2 are described by the density matrix ρ(1, 2)
of a block form
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ρ(1, 2) =

⎛

⎜
⎜
⎝

R11 R12 . . . R1n
R21 R22 . . . R2n
. . . . . . . . . . . .

Rn1 Rn2 . . . Rnn

⎞

⎟
⎟
⎠ , (34)

where blocks Rkl (k, l = 1, 2, . . . , n) are m ×m-matrices and ρ(1, 2) is the N × N -
matrix with N = nm. Then the density n × n-matrix of the first qudit state ρ(1)
reads

ρ(1) =

⎛

⎜
⎜
⎝

TrR11 TrR12 . . . TrR1n
TrR21 TrR22 . . . TrR2n
. . . . . . . . . . . .

TrRn1 TrRn2 . . . TrRnn

⎞

⎟
⎟
⎠ , (35)

and the density m × m matrix ρ(2) is expressed in terms of blocks Rkl as

ρ(2) =
n∑

k=1

Rkk . (36)

The subadditivity condition means that

−Tr

⎛

⎜
⎜
⎝

R11 R12 . . . R1n
R21 R22 . . . R2n
. . . . . . . . . . . .

Rn1 Rn2 . . . Rnn

⎞

⎟
⎟
⎠ ln

⎛

⎜
⎜
⎝

R11 R12 . . . R1n
R21 R22 . . . R2n
. . . . . . . . . . . .

Rn1 Rn2 . . . Rnn

⎞

⎟
⎟
⎠

≤ −Tr

⎛

⎜
⎜
⎝

TrR11 TrR12 . . . TrR1n
TrR21 TrR22 . . . TrR2n
. . . . . . . . . . . .

TrRn1 TrRn2 . . . TrRnn

⎞

⎟
⎟
⎠ ln

⎛

⎜
⎜
⎝

TrR11 TrR12 . . . TrR1n
TrR21 TrR22 . . . TrR2n
. . . . . . . . . . . .

TrRn1 TrRn2 . . . TrRnn

⎞

⎟
⎟
⎠

−Tr

(
n∑

k=1

Rkk

)

ln

(
n∑

k=1

Rkk

)

. (37)

For the bipartite system state, the Araki–Lieb inequality provides a bound for the
difference of two subsystem quantum entropies; it reads

− Tr [ρ(1, 2) ln ρ(1, 2)] ≥ | − Tr [ρ(1) ln ρ(1)] + Tr [ρ(2) ln ρ(2)] |. (38)

The inequality can be rewritten in the matrix form as follows:

−Tr

⎛

⎜
⎜
⎝

R11 R12 . . . R1n
R21 R22 . . . R2n
. . . . . . . . . . . .

Rn1 Rn2 . . . Rnn

⎞

⎟
⎟
⎠ ln

⎛

⎜
⎜
⎝

R11 R12 . . . R1n
R21 R22 . . . R2n
. . . . . . . . . . . .

Rn1 Rn2 . . . Rnn

⎞

⎟
⎟
⎠

≥

∣
∣
∣
∣
∣
∣
∣
∣

−Tr

⎛

⎜
⎜
⎝

TrR11 TrR12 . . . TrR1n
TrR21 TrR22 . . . TrR2n
. . . . . . . . . . . .

TrRn1 TrRn2 . . . TrRnn

⎞

⎟
⎟
⎠ ln

⎛

⎜
⎜
⎝

TrR11 TrR12 . . . TrR1n
TrR21 TrR22 . . . TrR2n
. . . . . . . . . . . .

TrRn1 TrRn2 . . . TrRnn

⎞

⎟
⎟
⎠
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+Tr

(
n∑

k=1

Rkk

)

ln

(
n∑

k=1

Rkk

)
∣
∣
∣
∣
∣
∣
∣
∣

. (39)

The Araki–Lieb entropic inequality written in the matrix form (39) is valid for an
arbitrary matrix ρ given in the form (34), which is a nonnegative Hermitian matrix
with the unit trace. In viewof this fact,we obtain an analog of theAraki–Lieb inequality
for an arbitrary matrix ρ of the form (34), including the matrix of the single qudit state.

For example, for a qutrit state (or the spin state with j = 1) with the density matrix

ρ =
⎛

⎝
ρ11 ρ10 ρ1−1
ρ01 ρ00 ρ0−1
ρ−11 ρ−10 ρ−1−1

⎞

⎠ , (40)

the subadditivity condition reads [36]

−Tr

⎛

⎝
ρ11 ρ10 ρ1−1
ρ01 ρ00 ρ0−1
ρ−11 ρ−10 ρ−1−1

⎞

⎠ ln

⎛

⎝
ρ11 ρ10 ρ1−1
ρ01 ρ00 ρ0−1
ρ−11 ρ−10 ρ−1−1

⎞

⎠

≤ −Tr

(
ρ11 + ρ−1−1 ρ10

ρ01 ρ00

)

ln

(
ρ11 + ρ−1−1 ρ10

ρ01 ρ00

)

−Tr

(
ρ11 + ρ00 ρ1−1

ρ−11 ρ−1−1

)

ln

(
ρ11 + ρ00 ρ1−1

ρ−11 ρ−1−1

)

. (41)

But for the qutrit state, one has the Araki–Lieb inequality

−Tr

⎛

⎝
ρ11 ρ10 ρ1−1
ρ01 ρ00 ρ0−1
ρ−11 ρ−10 ρ−1−1

⎞

⎠ ln

⎛

⎝
ρ11 ρ10 ρ1−1
ρ01 ρ00 ρ0−1
ρ−11 ρ−10 ρ−1−1

⎞

⎠

≥
∣
∣
∣
∣−Tr

(
ρ11 + ρ−1−1 ρ10

ρ01 ρ00

)

ln

(
ρ11 + ρ−1−1 ρ10

ρ01 ρ00

)

+Tr

(
ρ11 + ρ00 ρ1−1

ρ−11 ρ−1−1

)

ln

(
ρ11 + ρ00 ρ1−1

ρ−11 ρ−1−1

)∣
∣
∣
∣ . (42)

A qutrit is a system without subsystems. The Araki–Lieb inequality was known for a
systemwith two subsystems. Thus, we obtained a new entropic inequality of a form of
the Araki–Lieb inequality, which can be checked in the experiments where the density
matrix of qutrit is measured.

5 Deformed Subadditivity Condition Classical and Quantum

For any density matrix ρ, the quantum deformed entropy Sq(ρ) reads (see, e.g. [8])

Sq(ρ) = −Tr

[

ρ

(
ρq−1 − 1

q − 1

)]

. (43)
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In the limit q → 1, the deformed entropy is equal to the von Neumann entropy

lim
q→1

Sq(ρ) = −Tr [ρ ln ρ] . (44)

For a bipartite system with subsystems 1 and 2 and the density matrix ρ(1, 2), one has
the inequality, which is deformed subadditivity condition; it reads

− Tr

[

ρ(1, 2)
ρq−1(1, 2) − 1

q − 1

]

≤ −Tr

[

ρ(1)
ρq−1(1) − 1

q − 1

]

− Tr

[

ρ(2)
ρq−1(2) − 1

q − 1

]

,

(45)

where the density matrices of the subsystem states ρ(1) and ρ(2) are

ρ(1) = Tr2ρ(1, 2), ρ(2) = Tr1ρ(1, 2). (46)

For q → 1, inequality (45) is the subadditivity conditions for the von Neumann
entropy

− Tr [ρ(1, 2) ln ρ(1, 2)] ≤ −Tr [ρ(1) ln ρ(1)] − Tr [ρ(2) ln ρ(2)] . (47)

For any nonnegative N × N -matrix ρ with N = nm given in block form (34), where
R jk are m × m-matrices, one has the inequality

− Tr

[

ρ
ρq−1 − 1

q − 1

]

≤ −Tr

[

R1
Rq−1
1 − 1

q − 1

]

− Tr

[

R2
Rq−1
2 − 1

q − 1

]

, (48)

where the n × n-matrix R1 has the form (35), and the m × m-matrix R2 has the
form (36).

Thus one has an analog of the deformed subadditivity condition for the single qudit
state with j = (N − 1)/2. The N × N -matrix ρ can be considered as a part of
the Ñ × Ñ -matrix ρ̃, if one uses the appropriate number of extra zero columns and

rows, i.e., ρ̃ =
(

ρ 0
0 0

)

. In view of this, one has the general inequality for the matrix

elements of the matrix ρ considering different product forms of the integer Ñ = ñm̃.
This means that we can derive several different entropic inequalities starting from the
Ñ × Ñ -matrix ρ̃ and considering different matrices R̃1 and R̃2 based on the block
form of the matrix ρ̃.

The density matrix ρ can be transformed, using unitary matrix u, to become

ρ → ρu = uρu+. (49)

The matrix ρu which has the form (34) also satisfies the subadditivity condition (48),
where the matrices R1 and R2 are replaced by the matrices R1(u) and R2(u). The
matrices R1(u) and R2(u) are given by formulae (35) and (36), where the blocks
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R jk are replaced by the blocks R jk(u) obtained from the matrix ρu . Then one has a
transformed inequality (48)

− Tr

[

ρ
ρq−1 − 1

q − 1

]

≤ −Tr

[

R1(u)
Rq−1
1 (u) − 1

q − 1

]

− Tr

[

R2(u)
Rq−1
2 (u) − 1

q − 1

]

,

(50)
where the left-hand side of the inequality contains the matrix ρ, but in right-hand side
the matrices R1(u) and R2(u) depend on the unitary matrix u.

In the limit q = 1, one has the inequality

− Tr [ρ ln ρ] ≤ −Tr [R1(u) ln R1(u)] − Tr [R2(u) ln R2(u)] . (51)

This inequality is valid for an arbitrary unitarymatrixu. One can introduce the quantum
information, which depends on global unitary transform

I (u) = Tr [ρ ln ρ] − Tr [R1(u) ln R1(u)] − Tr [R2(u) ln R2(u)] ≥ 0. (52)

The minimum value of the sum of entropies

�(u0) = −Tr [R1(u0) ln R1(u0)] − Tr [R2(u0) ln R2(u0)] (53)

provides the minimum value of information

I (u0) = �(u0) − S, (54)

where S = −Tr [ρ ln ρ].
If the matrix ρ is the density matrix of a bipartite system ρ(1, 2), and R1 and R2

are the density matrices of the first and second subsystems, respectively, the quantum
information is

Iq = −Tr [R1(u10) ln R1(u10)] − Tr [R2(u20) ln R2(u20)] + Tr [ρ ln ρ] , (55)

where R1(u10) and R2(u20) are the diagonalized density matrices R1 and R2, and
u10 and u20 are local transforms such that u = u10 × u20. Thus, the difference of
information �(u0) − Iq provides a characteristic of the correlations related to global
and local transforms u0 and u10 × u20. Analogous characteristics can be introduced
using deformed information and the deformed subadditivity condition.

6 Conclusions

Concluding, we list our main results obtained in this paper.
We obtained new classical and quantum entropic inequalities for the systems with-

out subsystems. The new inequalities have the same form as known inequalities for
composite systems. For example, the Araki–Lieb inequality provides the relation of
the von Neumann entropy of the quantum state of a bipartite system to the difference
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of the entropies of the subsystem states. We found an analogous inequality given by
Eq. (42) for the single qudit state, e.g., we found the inequality for the qutrit state;
this inequality can be checked experimentally. Other new inequalities are given by
Eqs. (37), (39) and (52).

We formulated new entropic inequalities for quantum system tomograms, which
use the properties of tomograms to be fair probability distributions. In view of the
facts mentioned above, the information and entropic relations, which are known for
classical probability distributions are also valid for quantum system states described
by the tomographic probability distributions, including the q-entropic inequalities.

We obtained new q-entropic inequalities for tomograms of single qudit states, e.g.,
for j = 3/2. One can do the partition of the single system into more that two parts and
get also new entropic inequalities, e. g. to obtain strong subadditivity condition for
single qudit state [28]. The physical meaning of the entropic inequalities we obtained
is related to the fact that they describe the properties of quantum correlations in the
single qudit state connected with quantum fluctuations of the degrees of freedom like
different spin projections in the same system in contrast to bipartite systems where
the inequalities are related to the properties of quantum correlations of the degrees of
freedom of different subsystems.

The existence of quantum correlations in a single system formally is completely
analogous to the correlations in multipartite systems, that is demonstrated by the
existence of the entropic inequalities found here. The inequalities can be used to
elaborate the quantum resource for applications in quantum technologies. Such a
resource is usually considered as the resource of quantum correlations in multipartite
systems. In our study, we showed that a resource is available in the systems without
subsystems due to quantum correlations of their degrees of freedom. This possibility
was mentioned in [13]; it will be studied in a future publication.

Acknowledgments O.V.M. thanks the Organizers of the Conference ”Quantum Theory: from Problems
to Advances” and especially Prof. A. Khrennikov for invitation and kind hospitality.
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