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Abstract We show that exactly the same intuitively plausible definitions of state,
observable, symmetry, dynamics, and compound systems of the classical Boolean
structure of intrinsic properties of systems lead, when applied to the structure of extrin-
sic, relational quantum properties, to the standard quantum formalism, including the
Schrödinger equation and the von Neumann–Lüders Projection Rule. This approach is
then applied to resolving the paradoxes and difficulties of the orthodox interpretation.
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1 Introduction

Almost a century after the mathematical formulation of quantum mechanics, there is
still no consensus on the interpretation of the theory. This may be because quantum
mechanics is full of predictions which contradict our everyday experiences, but then
so is another, older theory, namely special relativity.

Although the Lorentz transformations initially gave rise to different interpretations,
when Einstein’s 1905 paper appeared it soon led to a nearly universal acceptance of
Einstein’s interpretation. Why was this? Einstein began with the new conceptual prin-
ciple that time and simultaneity are relative to the inertial frame, dropping the classical
assumption that they are absolute. By then using the linearity of transformations due
to the local nature of special relativity and the experimental fact that the speed of light
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is constant, Einstein was able to derive the Lorentz transformations. Furthermore, by
introducing the natural classical notions of state, observable, and symmetry in the
new setting, Einstein derived the new dynamical equations to replace the Newtonian
equations. This manifestly consistent derivation allowed for a resolution of the appar-
ent paradoxes which confounded the older ether theory, and led to the adoption of
Einstein’s interpretation by physicists.

In this paper, we shall endeavor to use Einstein’s approach as a model for deriving
and interpreting quantum mechanics. We also start with a new conceptual precept
which replaces a classical premise. It is a basic assumption of classical physics that
experiments measure pre-existing inherent observables and properties of systems, and
any disturbance due to the interaction with the apparatus can be minimized or incor-
porated into its effect on the observables. By contrast, when we measure a particle’s
component of spin in a particular direction in a Stern–Gerlach experiment, it is the
general belief that we are not measuring a pre-existing property. Rather, it is the inter-
action of the particle with the magnetic field, which is inhomogeneous in that direction,
that creates the value of the spin. We shall say that such properties are relational or
extrinsic, as opposed to the intrinsic properties of classical physics.

That quantum observables and properties take values only upon suitable interactions
is, of course, not new to physicists. Bohr, the founder of the Copenhagen interpreta-
tion, wrote in [5]: “The whole situation in atomic physics deprives of all meaning
such inherent attributes as the idealization of classical physics would ascribe to such
objects.” This is a radically new consequence of quantum physics that controverts one
of the main conceptual assumptions of classical physics, that properties of a physical
system are intrinsic.

The aim of this paper is to show that a mathematical formulation of this princi-
ple allows us to reconstruct the formalism of quantum mechanics. Let us give the
basic idea in defining the structure of extrinsic properties, given in Sect. 2. Every
experiment yields a σ -algebra of measured properties. For instance, in measuring an
quantum observable with spectral decomposition

∑
ai Pi , the σ -algebra is generated

by the projections Pi . It is shown in Sect. 2 that for quantum experiments the dif-
ferent measured σ -algebras cannot all be imbedded into a single σ -algebra. In the
case of classical physics, on the other hand, the measured σ -algebras all sit inside
the σ -algebra B(�) of intrinsic properties of the system, consisting of the σ -algebra
generated by the open sets of the phase space � of the system.

To mathematically treat the extrinsic properties of quantum mechanics, we replace
the encompassing σ -algebra B(�) of properties by a σ -complex Q, consisting of the
union of all the σ -algebras of the system elicited by different decoherent interactions,
such as measurements.

This change allows us to define in a uniform and natural manner the concepts of state,
observable, symmetry, and dynamics, which reduce to the classical notions when Q is
a Boolean σ -algebra, and to the standard quantum notions when Q is the σ -complex
Q(H) of projections of Hilbert space H. Moreover, we use this approach to derive
both the Schrödinger equation and the von Neumann–Lüders Projection Postulate. We
also show on the basis of interferometry experiments why Q has the form Q(H).

The most noteworthy feature of this reconstruction of quantum mechanics is that
the classical definitions of the key physical concepts such as state, observable, sym-
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metry, dynamics, and the combining of systems take on precisely the same form in
the quantum case when they are applied to extrinsic properties.

In the standard formulation, these concepts take on a strikingly different form
from the classical one. In particular, the definition of state as a complex function
and the complex form of the Schrödinger equation, as opposed to the intuitive, real
definitions of classical physics, led Bohr to speak of this formalism as only a symbolic
representation of reality.

One purpose of this approach is to show that once the relational character of proper-
ties is accepted, the definitions of the basic concepts of quantum mechanics are as real
and intuitive as is the case for classical mechanics. Of course, it is not our intention
to dispense with the linear complex Hilbert space in treating problems in physics.
The linearity of the Schrödinger equation is crucial for solving atomic problems. Our
purpose in showing that our intuitive definitions of the notions are equivalent to the
standard complex ones is rather to reduce the use of the complex Hilbert space to
a technical computational tool, similar to the use of complex methods in classical
electromagnetism and fluid mechanics.

At first sight the structure of a σ -complex Q is unusual. Operations between ele-
ments of Q are not defined unless they lie in the same Boolean σ -algebra within Q.
That however is the whole point of this structure. Operations are only defined when
they make physical sense. This points to the main difference of this approach to
that initiated by Birkhoff and von Neumann [3], and carried forward by Mackey
[18], and Piron [19], among others. They define the logic of quantum mechan-
ics to be a certain kind of lattice, consisting of the set of projection operators of
Hilbert space. However, Birkhoff and von Neumann [3] already raised the ques-
tion:

“What experimental meaning can one attach to the meet and join of two given
experimental propositions?”

That question has never been adequately answered. Varadarajan, in his book [22] on
the lattice approach to quantum mechanics, written some thirty years after the Birkhoff
and von Neumann paper, writes:

“The only thing that may be open to serious question in this is [the] assumption
. . . which forces any two elements of L to have a lattice sum, . . . We can offer
no really convincing phenomenological argument to support this.”

Replacing the structure of a complex Hilbert space by an equally mysterious struc-
ture of a lattice does not achieve the goal of a transparent foundation for quantum
mechanics. What is perhaps surprising is that the far weaker structure of a σ -complex
suffices to reconstruct the formalism of quantum mechanics. Our approach has nev-
ertheless benefited from the lattice approach, especially as delineated in Varadarajan
[22], since theorems using lattices turned out often to have proofs using the weaker
σ -complex structure.

One of the aims of a consistent, logical reconstruction of quantum mechanics is to
resolve problematic questions and inconsistencies in the orthodox interpretation, such
as the Measurement Problem, the Einstein–Podolsky–Rosen paradox, the Kochen–
Specker paradox, the problem of reduction and the von Neumann–Lüders Projection
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Rule, and wave-particle duality. We discuss a resolution of these questions in the
context of this reconstruction as they arise in this paper.

At various points in the paper we consider properties of systems as they are mea-
sured by experiments. We are not however espousing an operational view of quantum
mechanics. We believe quantum mechanics describes general interactions in the world,
independently of a classical macroscopic apparatus and observer. We do not subscribe
to the Bohrian view that classical physics is needed to give meaning to quantum phe-
nomena. The interactions we describe using a macroscopic apparatus could apply
equally well to appropriate decoherent interactions between two systems in general.
(See the discussion in Sect. 2). Nevertheless, we refer for the most part to experi-
ments rather than general interactions in order to emphasize that the postulates have
operational content and meaning. This has the merit of allowing those who prefer the
operational approach to make sense of this reconstruction.

Another point is that since the properties that constitute a σ -complex correspond
to the results of possible measurements, they refer to what in the orthodox interpre-
tation are the properties that may hold as a result of reduction. We do not attempt
to discuss the conditions under which reduction or decoherence occurs. There are
discussions in the literature on the conditions under which reduction can occur.
For instance, Bohm [4] analyzes the strength of the inhomogeneity of the magnetic
field for a successful reduction to occur in the Stern–Gerlach experiment. We con-
sider these as interesting pragmatic questions which lie outside the purview of this
paper.

We have not given a new axiomatization of quantum physics. In fact, there are
no axioms in this paper, only definitions of the basic concepts, definitions which
are identical with the classical ones. Rather, we have presented a framework that is
common to all physical theories. It is the aim of every theory to predict the probabilities
of the outcomes of interactions between systems. Experiments are particular instances
of such interactions. An experiment gives rise to a Boolean σ -algebra of events which
reflects an isomorphic σ -algebra of properties of the system. The different possible
experiments yield a family of σ -algebras, reflecting a family of σ -algebras properties
of the system, whose union we call a σ -complex. This σ -complex helps determine the
underlying theory, and conversely, a given theory determines the kind of σ -complex of
perperties that arises, but the general structure of a σ -complex as a union of σ -algebras
is independent of any particular theory.

The main aim of the paper is to derive elementary quantum mechanics by apply-
ing the natural classical definitions of the physical concepts to extrinsic properties,
and then use this derivation to resolve the standard paradoxes and problematic ques-
tions. We shall accordingly give only outlines of the proofs of the requisite theorems.
To show that we have accomplished the goal of reconstructing the formalism, we
shall use the textbook by Arno Bohn [4]. This book has the advantage of explic-
itly introducing five postulates which suffice to treat the standard topics in quan-
tum theory. We shall specify each of the Bohm postulates as we derive them in the
paper.

To avoid repetition, we shall make the blanket assumption that the Hilbert space
H that we deal with is a separable complex Hilbert space. The Appendix has a table
which summarizes the reconstruction.
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2 Properties

Scientific theories predict the probabilities of outcomes of experiments. We recall
from probability theory that the individual outcomes of an experiment on a system
form the sample space S. For instance, a Stern–Gerlach experiment which measures
the z-components of spin for a spin 1 system has the sample space S = {s−1, s0, s1}
corresponding to the three possible spots labeled s−1, s0, s1 on the screen. An exper-
iment to measure the temperature of water by a thermometer has (an interval of) the
real line as sample space.

Out of the elementary outcomes, one forms an algebra of more complex out-
comes, called events, consisting of a Boolean algebra B of subsets of the space S.
The operations of B consist of union a ∨ b, and complementation a⊥ , and all other
Boolean operations, such as intersection a ∧ b, which are definable from them. If
S is finite, then B consists of all subsets of S. If S is infinite, then the operation of
countable union

∨
ai of elements ai of B, is added, and B is called a (Boolean) σ -

algebra. (For the definition of and details about Boolean algebras see Koppellberg
[17]).

The algebra B of events, i.e. sets of outcomes, reflects the corresponding structure
of properties of the system. For instance, in the above Stern–Gerlach experiment, the
sets {s−1}, {s0}, and {s1} correspond to the properties Sz = −1, Sz = 0, and Sz = 1;
the set {s−1, s1} corresponds to the property Sz = −1∨Sz = 1 (where ∨ denotes ‘or’),
or equivalently, the property ¬(Sz = 0) (where ¬ denotes ‘not’), and so on. In this
case, the Boolean algebra is clearly the eight element algebra. In the case of the above
temperature measurement of the water, the elementary outcomes are open intervals of
the real line, and the algebra of events is the σ -algebra of (Borel) sets generated by
the intervals by complement and countable intersection.

Thus, for both classical and quantum physics, every experiment on a given system
S elicits a σ -algebra of properties of S, which are true or false, i.e. have a truth value,
for the system.

We come now to a crucial difference between the two theories. In classical physics,
we assume that the measured properties of the system already exist prior to the mea-
surement. It may be true that the interaction of the system with the apparatus disturbs
the system, but this disturbance can be discounted or minimized. For instance, the ther-
mometer may change the temperature of the water being measured, but this change
can be accounted for, and there is no doubt that the water had a temperature prior to
the measurement which is approximated by the measured value. The basic assumption
is that systems have intrinsic properties, and the experiment measures the values of
some them.

The family of intrinsic properties of a system form a Boolean algebra, and in the
infinite case a σ -algebra. For classical physics, one introduces the phase (or state)
space, with a canonical structure. The open sets of � generate a σ -algebra B(�) of
Borel sets by complement and countable intersection. The algebra B(�) constitutes
the σ -algebra of intrinsic properties of the system. Since the σ -algebras of measured
properties are aspects of all the intrinsic properties of the system, these different σ -
algebras must all be part of the σ -algebra B(�). Hence, the union ∪B of all the
σ -algebras arising from possible measurements is embeddable in B(�). In fact, if we
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assume that every property of the system is, in principle, experimentally measurable
then the union ∪B itself forms a σ -algebra.

In quantum mechanics, for measurements such as the Stern–Gerlach experiment,
physicists do not believe that the value of the spin component Sz exists prior to the
measurement. On the contrary, it is the interaction with the magnetic field, inhomoge-
neous in the z-direction, that results in a definite spot, say s1, on the screen, reflecting
the value, Sz = 1 of the spin of the particle.

This general conviction is, in fact, supported by a theorem, called the Kochen–
Specker Paradox. This result showed that the spin component Sz cannot be an intrinsic
property of a spin 1 particle. We recall that this result shows that there exist a small
number of directions in space (33 suffice) such that any prior assignment of values
to the squares of the components of spin in these directions contradicts the condition
that S2

x + S2
y + S2

z = 2, for an orthogonal triple (x, y, z). Since the squares of the
components of spin in orthogonal directions commute for a spin 1 system, we may
measure them simultaneously for the triple (x, y, z). For instance, the measurement
of the observable S2

x − S2
y , with eigenvalues 1,−1, 0 gives us the value 0 for S2

x , S2
y ,

or S2
z , respectively, and 1 for the other two. We shall call such an experiment a triple

experiment on the frame (x, y, z).
The operators S2

x , S2
y , S2

z generate an eight element Boolean algebra:

Bxyz = {0, 1, S2
x , S2

y , S2
z , 1 − S2

x , 1 − S2
y , 1 − S2

z }.

The 33 directions give rise to 40 orthogonal triples, and hence 40 Boolean algebras.
It is important to note that the Boolean algebras have common sub-algebras. For
instance, the algebra Bx ′ y′z of the triple experiment on (x ′, y′, z) has the Boolean
algebra Bz = (0, 1, S2

z , 1 − S2
z ) in common with Bxyz .

The 40 Boolean algebras, and hence their union ∪Bxyz , cannot be embedded into
a single Boolean algebra. We may see this directly from the fact that every Boolean
algebra has truth values, i.e. a homomorphism onto the Boolean algebra {0, 1}, so
that such an embedding would assign values to all the 40 Boolean algebras simul-
taneously, and hence to the 40 triples S2

x , S2
y , S2

z , contradicting the Kochen–Specker
theorem. (For a proof of this theorem, with the 40 triples, see Conway and Kochen
[7]).

The conclusion is that, in general, quantum mechanical properties are not intrinsic
to the system, but have truth values created by interactions with other systems. We
shall call such interactive or relational properties extrinsic. The question now is: what
mathematical structure captures the concept of extrinsic properties, to replace the
Boolean σ -algebras that characterize intrinsic properties?

Such a structure must contain all the σ -algebras that are elicited by experiments.
The minimal structure is then clearly the union ∪B, where B ranges over all the
σ -algebras that arise in experiments. Intuitively, we may obtain such a structure by
gluing together the σ -algebras at the “faces,” i.e. the common sub-σ -algebras. This
structure is the minimal one which contains all the σ -algebras arising from different
experiments. We shall adopt it as embodying the idea of extrinsic properties. We now
give the formal definition of this notion.
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Definition Let F be a family of σ -algebras. The σ -complex QF based on F is the
union ∪B of all σ -algebras B lying in F .1

We shall generally leave the family F implicit, and simply refer to a σ -complex
Q. We shall usually deal with σ -complexes that are closed under the formation of
sub-σ -algebras. We can, in any case, always close a σ -complex by adding all its
sub-σ -algebras.

The term σ -complex is based on the notion of a simplicial complex in topology.
A simplicial complex is obtained by taking a family of simplices, which is closed
under sub-simplices, and gluing together common simplicial faces. σ -complexes are
not just analogous to simplicial complexes, but have a close correspondence, as we
now outline. First recall that an atom of a Boolean algebra is an element x such that
y ≤ x (i.e. x ∧ y = y) implies y = 0 or y = x . The atoms of a Boolean algebra
in a closed Boolean complex define the vertices of a simplex, and the union of these
simplices yield a simplicial complex. We may conversely define a Boolean complex
from a simplicial complex. The graphs called K-S diagrams in the literature define
simplicial complexes of the cooresponding Boolean complexes. Strictly speaking, a
simplicial complex is the family of simplices, and their union is called the carrier,
so we should really call F the σ -complex. However, we shall find it convenient and
harmless to conflate the two notions of σ -complex and its carrier.

Let H be a Hilbert space. Every set of pair-wise commuting projection operators
closed under the operation of orthogonal complement P⊥(= 1 − P) and countable
intersection

∧
Pi forms a σ -algebra. We form the family of all such σ -algebras, and

name their union, the σ -complex based on this family, Q(H). The σ -complex Q(H)
is the structure in quantum mechanics that replaces the σ -algebra B(�) of Borel sets
of the phase space � in classical mechanics.

We now summarize this discussion of properties in a form that will serve as a
template for each of the other concepts we introduce in the later sections. We first give
the classical form of the concept in terms of theσ -algebra B(�); then we generalize the
concept by simply replacing the σ -algebra by a σ -complex Q; finally, we specialize to
quantum mechanics by taking Q to be the σ -complex Q(H). It then requires a theorem
to show that the resulting concept is equivalent to the standard quantum definition on
H. Some of the classical concepts are defined in terms of the phase space �, rather
than the σ -algebra B(�). We must then give an equivalent definition of the concept
in terms of B(�}.
Classical Mechanics

The properties of a system form the σ -algebra B(�) of Borel sets of the phase
space � of the system.

General Theory
The properties of a system form a σ -complex Q.

1 A Boolean σ -complex is a closely connected generalization of a partial Boolean algebra (introduced in
Kochen and Specker [14], and further studied in [15,16]).
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Quantum Mechanics
The properties of a system form the σ -complex Q(H) of projections of the Hilbert

space H of the system.
For a system S with a σ -complex Q, an appropriate interaction with another system,

such as a measurement, or, more generally, a decoherent interaction, will elicit a σ -
algebra B in Q of properties that have truth values. We shall call B the (current)
interaction algebra for the system S in the interaction.

For instance, Bxyz is the interaction algebra in the triple experiment with the frame
(x, y, z). Thus, a measurement of the observable S2

x − S2
y has the interaction algebra

Bxyz . We may also consider an experiment for which the interaction algebra is Bz =
{0, 1, S2

z , 1 − S2
z }. For instance, a variant of the Stern–Gerlach experiment with the

magnetic field replaced by an inhomogeneous electric field measures the absolute
value |Sz | of Sz , since the electric field vector is a polar vector. For a spin 1 system
this amounts to measuring S2

z . Such an experiment is described in Wrede [23].
In general, a measurement of the observable with discrete spectral decomposition∑
ai Pi has as interaction algebra the σ -algebra generated by the Pi ’s. The general

case, where the observable contains a continuous spectrum, is described in Sect. 4.
In the triple experiment, the interaction algebra Bxyz of the measured system is

reflected in the isomorphic eight element algebra of events consisting of the subsets
of the three spots on the detection screen.

This isomorphism is, as we have seen, a general feature of a measurement, but it is
also true for any appropriate decoherent interaction. If the state of the combined two
interacting systems is

∑
aiφi ⊗ ψi at the end of the interaction, then the interaction

algebras of the systems are the two σ -algebras generated by the Pφi and the Pψi , which
are isomorphic. It is important to note that the macroscopic nature of the apparatus
plays no role in the classical nature of the interaction algebras as Boolean σ -algebras.
It simply follows from the nature that we attributed to extrinsic properties, that in every
appropriate interaction they have the classical structure of a σ -algebra. As a conse-
quence, we have no need to (and do not) subscribe to the Copenhagen interpretation,
especially espoused by Bohr, that it is necessary to presuppose a classical physical
description of the world in order explicate the quantum world. Quantum properties
are not intrinsic, but the appropriate interaction elicits an interaction algebra with the
classical structure of a σ -algebra.

3 States

3.1 Probability Measures

The theory of probability (following Kolmogorov) is based on a probability measure,
a countably additive, [0,1]-valued measure, i.e. a function

p : B → [0, 1]

with domain B a σ -algebra, such that p(1) = 1, and

p
(∨

ai

)
=

∑
p(ai ) for pair-wise disjoint elements a1, a2, . . . in B.
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In the case of a measurement on a system S, the probability function p gives the
probabilities of the σ -algebra of events, or equally of the measured properties of S.
A physical theory predicts the probabilities of outcomes of any possible experiment,
given the present state. This leads to the following concept of a state.

Classical Mechanics: σ -Algebra B(�)
A state of a system with phase space � is a probability measure on the σ -algebra

B(�).

General Theory: σ -Complex Q
A state of a system with a σ -complex of properties Q is a map p : Q → [0, 1]

such that the restriction p|B of p to any σ -algebra B in Q is a probability measure on
B.

Quantum Mechanics: σ -Complex Q = Q(H)
Assume that H has dimension greater than two. There is a one-one correspondence

between states p on Q(H) and density operators (i.e. positive Hermitean operators of
trace 1) w on H such that

p(x) = tr(wx) for all x ∈ Q(H).
That a density operator w defines a probability measure p on Q(H) is an easy

computation. The converse, that a state p defines a unique density operator w on H,
follows from a theorem of Gleason [12]. Gleason’s theorem is the affirmative answere
to a question of Mackey [18], in which Mackey asked whether a state on the lattice
of projections on H defines a unique density operator. A careful check of Gleason’s
proof of the theorem shows that, in fact, the stronger theorem stated above is true, and
that the lattice operations on non-commuting projections are not needed for the proof.

As this result shows, the intuitive and plausible definition of classical states leads,
with the change from intrinsic to extrinsic properties, to a similar characterization of
quantum states.

3.2 Pure and Mixed States

The set of states on a σ -complex is closed under the formation of convex linear
combinations: if p1, p2, . . . are states then so is

∑
ci pi , for positive ci , with

∑
ci = 1.

The above one-one correspondence between states of Q(H) and density operators is
convexity-preserving. The extreme points of the convex set of states of a system are
those that cannot be written as a non-trivial convex combination of states of the system.

Classical Mechanics: σ -Algebra B(�)
A pure state of a system is an extreme point of the convex set of all states of the

system.

For B(�), a pure state p has the form p(s) =
{

1 if ω ∈ s
0 if ω /∈ s

. In other words, the

classical pure states correspond to the points in �. Thus, the phase space � consists
of the pure states, and so is also called the state space.
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Thus, in the classical case all the properties of the system in a pure state are either
true or false. As we would expect for intrinsic properties, measurements simply find
out which measured properties are the case. The general states as mixtures of the pure
states can then be interpreted as giving the probabilities of the properties which are
true. These may be termed epistemic probabilities, based on the knowledge of the
actual pure state that subsists.

General Theory: σ -Complex Q
A pure state of a system is an extreme point of the convex set of states of the system.

Quantum Mechanics: σ -Complex Q = Q(H)
There is a one-one correspondence between the pure states of a system and rays

[ψ] of unit vectors ψ in H, such that p(x) = 〈ψ, xψ〉.
For it is easily seen that the pure states correspond to one-dimensional projections

Pψ (with ψ in the image of Pψ ) and p(x) = tr(Pψ x) = 〈ψ, xψ〉. As in the clas-
sical case, the state space of the system consists of the pure states, and in this case
corresponds to the projective Hilbert space of the rays of H.

In the quantum case, even the pure states predict probabilities that are not 0 or 1,
and so these are not the probabilities of properties that already subsist. This is, of
course, what we should expect of extrinsic properties. A pure state simply predicts the
probabilities of properties in possible future interactions, such as measurements. Mixed
states are, as in the classical case, mixtures of the pure states. However, in this case there
is no unique decomposition of a mixed case into pure states. This has led to a traditional
difficulty in interpreting quantum mixed states. We shall postpone a discussion of our
interpretation of mixed states until we have treated conditional probabilities in Sect. 8.

4 Observables

Some classical concepts such as observables are defined using the phase space� rather
than the σ -algebra B(�). We can, in general, restate these definitions in terms of B(�).
The reason for this is that the Stone Duality Theorem between Boolean algebras and
spaces (and its extension by Loomis to σ -algebras) assures us that constructions on
the algebras have their counterparts on the spaces and vice versa.

A classical observable is defined as a real-valued function f : � → R on the phase
space� of the system. To avoid pathological, non-measurable functions, f is assumed
to be a Borel function, i.e. a function such that f −1(s) ∈ B(�), for every set s in the
σ -algebra B(R) of Borel sets generated by the open intervals of R.

The inverse function f −1 : B(R) → B(�) is easily seen to preserve the Boolean
σ operations, i.e. to be a homomorphism. Moreover, as we see below, any such homo-
morphism allows us to recover the function f .

For our purposes, the advantage of using the inverse function is that it involves
only the σ -algebra B(�) instead of the phase space �, allowing us to generalize the
definition to a σ -complex.

Classical Mechanics: σ -Algebra B(�)
An observable of a system with phase space � is a homomorphism u : B(R) →

B(�), i.e. a map u satisfying
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u(s⊥) = u(s)⊥,

u
(∨

si

)
=

∨
u(si ),

for all s, s1, s2, . . . inB(R).
There is a one-to-one correspondence between observables u and Borel functions

f : � → R such that u = f −1.
For given the map u we may define the Borel function f by the equation

f (x) = inf{y | y ∈ Q, x ∈ u((−∞, y])}.

The proof that f has the requisite properties is direct, using the denumerability of the
rationals Q to apply the countable additivity of u. (See Varadarajan [22, Theorem 14]).

General Theory: σ -Complex Q
An observable of a system with σ -complex Q is a homomorphism

u : B(R) → Q.

Note that the image of u lies in a single σ -algebra in Q.

Quantum Mechanics: σ -Complex Q = Q(H)
There is a one-one correspondence between observables u : B(R) → Q(H)

and Hermitean operators A on H, such that, given u, A = ∫
λd Pλ, where Pλ =

u((−∞, λ]).

Conversely, given a Hermitean operator A on H, the spectral decomposition A =∫
λd Pλ defines the observable u as the spectral measure u(s) = ∫

s d Pλ, for s ∈ B(R).
This establishes the one-one correspondence.

It follows easily that if u : B(R) → Q(�) is an observable with corresponding
Hermitean operator A, then, for the state p with corresponding density operator w,
the expectation of u

Expp(u) = tr(Aw).

(See Postulates I and II of Bohm [4]).
The theorem shows the close connection between the measurement of an observable

and the interaction algebra of measured properties. For instance, for the case of a
discrete operator A, the spectral decomposition A = ∑

ai Pi defines the interaction
algebra of measured properties generated by the Pi . Conversely, given the interaction
algebra of measured properties, its atoms Pi allow us to define, for each sequence
of real numbers ai , the Hermitean operator

∑
ai Pi which is thereby measured. In

particular, we may in this way associate an observable with values 0 and 1 with every
property in Q(H). If A is a non-degenerate observable with eigenvalue λ belonging
to eigenstate φ, we shall often speak of the property A = λ to mean the projection Pφ
which has image the ray of φ.
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5 Combined Systems

An essential part of the formalism of physics is the mathematical description of the
physical union of two systems. In this section we answer the question: what is the
σ -complex of the union S1 + S2 of two systems with given σ -complexes Q1 and Q2?

In classical physics, given two systems S1 and S2 with the phase spaces�1 and�2,
the phase space of the combined system S1 + S2 is the direct product space�1 ×�2,
whereas for quantum systems with Hilbert spaces H1 and H2, the Hilbert space of
S1+S2 is the tensor product H1⊗H2. The direct and tensor products are very different
constructions. The dimension of the direct product space is the sum of the dimensions
of the two factor spaces, whereas the dimension of the tensor product is the product
of the dimensions of the factor spaces. It is this difference that lies behind the promise
of quantum computers.

We have nevertheless to combine these two operations via a single construction on
the σ -complex Q. When Q = B(�), we may get a clue to the construction by means
of Stone duality for Boolean algebras and Boolean spaces. The dual of the direct prod-
uct of two Boolean spaces is the direct sum B1 ⊕ B2 (also called the free product or
co-product) of Boolean algebras. (See Koppelberg [17, Chapter 4]). A similar duality
extends to σ -algebras. (See [17, Chapter 5]). We now use our general principle of
defining a concept on a σ -complex by reducing it to the corresponding concept on its
σ -algebras.

Classical Mechanics: σ -Algebra B(�)
Given two systems S1 and S2 with σ -algebras B(�1) and B(�2), the combined

system S1 + S2 has the σ -algebra B(�1)⊕ B(�2). There is a unique space �1 ×�2
such that B(�1)⊕ B(�2) ∼= B(�1 ×�2).

The isomorphism is a well-known part of Stone Duality. For a proof see Koppelberg
[17, Chapters 4 and 5].

General Theory: σ -Complex Q
Given two systems S1 and S2 with σ -complexes Q1 and Q2, the combined system

S1 + S2 has the σ -complex Q1 ⊕ Q2, consisting of the closure (i.e. all the sub-σ -
algebras) of the direct sums B1⊕ B2 of all pairs of σ -algebras B1 and B2 in Q1 and Q2.

Quantum Mechanics: σ -Complex Q = Q(H)
Given the combined system S1 + S2 with the σ -complex Q(H1) ⊕ Q(H2), there

is a unique Hilbert space H1 ⊗ H2 such that Q(H1)⊕ Q(H2) ∼= Q(H1 ⊗ H2).
(See Postulate IVa of Bohm [4]).
We give an outline of the proof when H1 and H2 have finite dimensions. It suffices

to show that every element of Q(H1 ⊗ H2) lies in Q(H1) ⊕ Q(H2). The elements
of Q(H1) ⊕ Q(H2) are generated by the one-dimensional projections Pφ⊗ψ , where
φ ∈ H1and ψ ∈ H2. We must show that if � is an arbitrary unit vector in H1 ⊗ H2,
then P� lies in Q(H1) ⊕ Q(H2). One definition of the tensor product allows us to
think of � as a conjugate-linear map from H2 to H1. (See Jauch [13], for example).
The proof proceeds by induction on the rank of � as such a map. The maps of rank 1
are of the form Pφ⊗ψ , so the basis of the induction is true.

Now suppose � has rank n.
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The proof is greatly simplified by choosing suitable orthonormal bases in H1 and
H2 in which to expand �. We can construct bases {φi } and {ψi } in H1 and H2 such
that � = ∑

ciφi ⊗ψi , with the ci real. (Briefly, ��∗ and �∗� have common strictly
positive eigenvalues, say ai , and respective eigenvectors φi and ψi ; it follows that
� = ∑√

aiφi ⊗ ψi . See Jauch [13], for example).
Let

	 =
{

−c2φ1 ⊗ ψ1 + c1φ2 ⊗ ψ2, for n = 2

c1φ3 ⊗ ψ1 + c2φ2 ⊗ ψ3 + c3φ1 ⊗ ψ3 + ∑
i>3 ciφi ⊗ ψ1, for n > 2


 = c1φ2 ⊗ ψ1 + c2φ1 ⊗ ψ2 +
∑

i≥3

ciφi ⊗ ψ2

Then �,	, and 
 are pairwise orthogonal unit vectors. Hence, P�, P
, and P	
mutually commute, and P� = (P� ∨ P	) ∧ (P� ∨ P
).

For n = 2, let x+ = c2�+ c1	 and x− = c1�− c2	. For n > 2, let x± = �±	.
Also, let y± = � ± 
. Then it is easily checked that the four vectors x± and y±
are of rank n − 1, and x+ and x− are orthogonal, as are y+ and y−. It follows that
[Px+ , Px−] = [Py+ , Py−] = 0. Moreover, P� ∨ P	 = Px+ ∨ Px− and P� ∨ P
 =
Py+ ∨ Py− . Hence, P� = (Px+ ∨ Px−) ∧ (Py+ ∨ Py−). Since Px+ , Px− , Py+ , and
Py− inductively lie in Q(H1)⊕ Q(H2) and each of the pairs (Px+ , Px−), (Py+ , Py−),
and (Px+ ∨ Px− , Py+ ∨ Py−) lie in a common σ -algebra, it follows that P� lies in
Q(H1)⊕ Q(H2). The proof provides an algorithm for constructing x± and y±.

The uniqueness (up to isomorphism) is a routine consequence of the fact that Q1 ⊕
Q2 is categorically a co-product (see Koppellberg [17] for a proof in the σ -algebra
case).

The infinite dimensional case is discussed in Sect. 9.
As an illustration we consider the simplest case of the tensor product H1 ⊗ H2 of

two-dimensional Hilbert spaces, which we may take to represent two spin 1
2 particles.

Each element of Q(H1) (resp. Q(H2)) corresponds to the property sz ⊗ I = 1
2 (resp.

I ⊗ sz = 1
2 ) for some direction z. For � in H1 ⊗ H2 we shall identify Px+ , Px− , Py+ ,

and Py− .
We write the vector � in the diagonal form c1φ1 ⊗ ψ1 + c2φ2 ⊗ ψ2. Hence,

x− = φ1 ⊗ ψ1, x+ = φ2 ⊗ ψ2

y+ = (φ1 + φ2)⊗ (c1ψ1 + c2ψ2), y− = (φ1 − φ2)⊗ (c1ψ1 − c2ψ2)

Now φ1 defines sz ⊗ I = 1
2 for a direction z, andψ1 defines 1⊗sw = − 1

2 in a direction
w. Thus, φ1 ± φ2 defines sx ⊗ I = ± 1

2 for a direction x orthogonal to z. Also, if we
write c1 = cos(μ/2), then c1ψ1 +c2ψ2 defines I ⊗ su = 1

2 in a direction u at an angle
μ from the w direction, and c1ψ1 − c2ψ2 defines I ⊗ sv = 1

2 in a direcion v at angle
−μ from the w direction. It follows that
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P� = (Px+ ∨ Px−) ∧ (Py+ ∨ Py−)

=
(

sz ⊗ I = 1

2
↔ I ⊗ sw = −1

2

)

∧
[(

I ⊗ su = 1

2
→ sx ⊗ I = 1

2

)

∧
(

sx ⊗ I = 1

2
→ I ⊗ sv = 1

2

)]

In this manner every state in a combined system can be interpreted as a compound
proposition about the factors.

A particularly interesting case is the singleton state� =
√

1
2 (φ

+
z ⊗ψ−

z −φ−
z ⊗ψ+

z ),

(with szφ
±
z = ± 1

2φ
±
z and sxψ

±
z = 1

2ψ
±
z ) where

P = (P� ∨ P	) ∧ (P� ∨ P
)

= (Sz = 0) ∧ (Sx = 0)

= (Px+ ∨ Px−) ∧ (Py+ ∨ Py−)

=
(

sz ⊗ I = 1

2
↔ I ⊗ sz = −1

2

)

∧
(

sx ⊗ I = 1

2
↔ I ⊗ sx = −1

2

)

.

In Sect. 11(iv) we shall apply this result to the EPR experiment.
This construction of the direct sum generalizes in an obvious way to the direct sum

of an arbitrary number of σ -complexes, representing the union of several systems.
The above theorems then generalize to:

B(�1)⊕ B(�2)⊕ · · · ∼= B(�1 ×�2 × · · · )
Q(H1)⊕ Q(H2)⊕ · · · ∼= Q(H1 ⊗ H2 ⊗ · · · ).

These general sums are needed in discussing statistical mechanics. It is now routine to
define symmetric and anti-symmetric direct sums of σ -complexes, yielding the cor-
responding symmetric and anti-symmetric tensor products of Hilbert spaces, needed
to deal with identical particles. (See Postulate IVb of Bohm [4]. The spin-statistics
connection that Bohm adds can also be added here).

6 Symmetries

As Noether, Weyl, and Wigner showed, observables such as position, momentum,
angular momentum, and energy arise from global symmetries of space and time, and
the conservation laws for them arise from the corresponding symmetries of interac-
tions. Other observables arise from local symmetries. In classical physics the sym-
metries appear as canonical transformations of phase space, and in quantum physics
they appear as unitary or anti-unitary transformations of Hilbert space. For us they
naturally appear as symmetries of a σ -complex.

123



Found Phys (2015) 45:557–590 571

Definition An automorphism of a σ -complex Q is a one-one transformation σ : Q →
Q of Q onto Q such that for every σ -algebra B in Q and all a, a1, a2, . . . in B

σ(a⊥) = σ(a)⊥ and σ
(∨

ai

)
=

∨
σ(ai ).

General Theory: σ -Complex Q
A symmetry of a system with σ -complex Q is given by an automorphism of Q.
A symmetry σ defines a natural convexity-preserving map p → pσ on the states

of Q by letting pσ = p ◦ σ−1, i.e. pσ (x) = p(σ−1(x)), for all x ∈ Q.

Quantum Mechanics: σ -Complex Q = Q(H)
There is a one-one correspondence between symmetries σ : Q(H) → Q(H) and

unitary or anti-unitary operators u on H such that σ(x) = uxu−1, for all x ∈ Q(H).
If a state p corresponds to the density operator w, then

pσ (x) = p(σ−1(x)) = tr(wu−1xu) = tr(uwu−1x),

so that the state pσ corresponds to the density operator uwu−1.
It is easy to check that unitary and anti-unitary operators define a symmetry on

Q(H). For the converse we use a well-known theorem of Wigner. (See Bargmann
[1]). The original theorem of Wigner posits a one-one map of the set of rays of H
onto itself which preserves the inner product. Uhlhorn [21] was able to weaken this
to preserving the orthogonality of rays. As Bargmann states in [1], the proof he gives
of Wigner’s theorem may be easily modified to prove Uhlhorn’s result. (For a proof
see Varadarjan [22]).

Now assume that σ is a symmetry of Q(H). Then σ is a one-one map of the
set of atoms, i.e. one-dimensional projections Pψ , of Q(H) onto atoms of Q(H). In
other words, rays [ψ] of H are one-to-one mapped onto rays of H. Moreover, since
σ -algebras are mapped by σ to σ -algebras, the orthogonality of rays is preserved.
The Uhlhorn version of Wigner’s theorem then shows there is a unique (up to a
multiplicative constant) unitary or anti-unitary map u on H such that σ(x) = uxu−1.

In the case of classical physics, with Q = B(�), a symmetry is defined by a
canonical transformation of the manifold. Every such transformation defines an auto-
morphism of theσ -algebra B(�). However, the converse is not true. Although the auto-
morphism still defines a continuous map from� to itself, the structure of a σ -algebra
is too weak to recover the canonical structure. It is remarkable that the σ -complex
structure is sufficient to allow one to define the symmetries of the Hilbert space. In
that sense, quantum physics allows a more satisfactory reconstruction than classical
physics. As Sect. 9 suggests, we may recover the classical canonical structure from
the quantum structure in the limit of an increasing number of particles.

7 Dynamics

Now that we have shown that the symmetries of Q(H) are implemented by symmetries
of H, we may use time symmetry to introduce a dynamics for systems.
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To define dynamical evolution, we consider systems that are invariant under time
translation. For such systems, there is no absolute time, only time differences. The
change from time 0 to time t is given by a symmetry σt : Q → Q, since the structure
of the system of properties is indistinguishable at two values of time. We assume that
if the state evolves first for a time t and then the resulting state for a time t ′, then
this yields the same result as the original state evolving for a time t + t ′. Moreover,
we assume that evolution over a small time period results in small changes in the
probability of properties occurring.

The passage of time is thus given by a continuous representation of the additive
group R of real numbers into the group Aut(Q) of automorphisms of Q under com-
position:
i.e. a map σ : R → Aut(Q), such that

σt+t ′ = σt ◦ σt ′

and pσt (x) is a continuous function of t .2

The image of σ is then a continuous one-parameter group of automorphisms on Q.
We have seen that an automorphism σ corresponds to a unitary or anti-unitary oper-

ator. Anti-unitary operators actually occur as symmetries, for instance in time reversal.
However, for the above representation only unitary operators ut corresponding to the
symmetry σt can occur, since ut = u2

t/2, which is unitary.3

It follows that the evolving state pσt corresponds to the density operator wt =
utwu−1

t . By Stone’s Theorem,

ut = e− i
h̄ Ht ,

where h̄ is a constant to be determined by experiment; so

wt = e− i
h̄ Htw e

i
h̄ Ht .

Differentiating,

∂twt = − i

h̄
[H, wt ].

This is the Liouville-von Neumann Equation.
Conversely, this equation yields a continuous representation of R into Aut(Q(H)).

For w = Pψ , a pure state, wt = Pψ(t) and this equation reduces to the Schrödinger
Equation:

2 The group Aut(Q) may, in fact, be construed as a topological group by defining, for each ε > 0, an
ε-neighborhood of the identity to be {σ | |pσ (x)− p(x)| < ε for all x and p}. We may then directly speak
of the continuity of the map σ , in place of the condition that pσt (x) is continuous in t .
3 More precisely, we have a projective unitary representation of R, but such a representation of R is
equivalent to a vector representation. (See, e.g., Varadarajan [22]).

123



Found Phys (2015) 45:557–590 573

∂tψ(t) = − i

h̄
Hψ(t).

(See Postulate Va of Bohm [4]. Postulate Vb is the Heisenberg form of the equation,
and follows similarly).

We stop here without specifying any further the form of the Hamiltonian H . This
form depends upon calculating the linear and angular momentum observables as oper-
ators from the homogeneity and isotropy of space, using the corresponding unitary
representations that we have used for time homogeneity. This a well-known part of
quantum mechanics and need not be explored further here. (See Jauch [13], for exam-
ple). We have treated the non-relativistic dynamical equation. The connection between
automorphisms of Q(H) and unitary operators given above allows to us to treat the
relativistic dynamical equations in a similar manner, following Wigner’s work. (See
Varadrajan [22]).

8 Reduction and Conditional Probability

8.1 Conditional States

With these results, which cover four of Bohm’s five postulates, we can now recover
much of quantum theory. So far however, we will never predict interference. The
states we introduced are probability measures on Q, which for any experiment is a
classical probability measure on the σ -algebra of properties being measured. In fact,
the probability must be classical, since it is mirrored in the probability measure on
the experiment’s σ -algebra of events, which are generated by macroscopic spots on a
screen.

How then does interference enter the picture? In dealing with experiments, we have
omitted a key ingredient that is usually referred to as “the preparation of state.” To
calculate the probability p(x) of a property holding at the end of an experiment, we
need to know both the property x and the state p. In general, when we are presented
with a particle to be measured, we do not know its state. One way to know the state is
to prepare it by means of a prior interaction.

For instance, the book [9] by Feynman, Leighton, Sands introduces quantum
mechanics via a spin 1 system by discussing the probability of, for instance, going to
state Sx = 1, given that it is in state Sz = 0. The particle is prepared in state Sz = 0 by
sending it through a Stern–Gerlach field in the z direction, and then filtering it through
a one-slit screen to allow only the central beam through. If the system is not detected
as hitting the filtering screen, then it is reduced to the state Sz = 0. This is a reduction
by preparation of the original, possible unknown, state to the state Sz = 0. If allowed
to hit a final detection screen it is certain to register the central spot. But we are free to
send it through another Stern–Gerlach field in the x direction to measure Sx = 1, say.

Some physicists think that reduction is a phenomenon unique to quantum mechanics
that has no counterpart in classical mechanics, but this not the case. Consider a one
slit experiment with bullets. If we shoot at a target, we get a probability distribution on
the target that defines a mixed state for the bullet. Since the target screen can be placed
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anywhere from the gun to any distant point, the probability distribution is a function of
time that gives a time evolution of this state, satisfying the classical Liouville equation
for mixed states. If we now interpose a one-slit screen between the gun and the target
screen, we find that after the evolution of the state p up to the one-slit screen, the bullet
either has hit this screen, or if not, has passed through with a new state p( · | y), where
y is the property that it has not hit the screen. This is classically called conditionalizing
the state p to y. The new state p( · | y) is defined by p(x | y) = p(x ∧ y)/p(y),
as the frequency definition of probability can verify. This filtering to a new state is
entirely similar to the filtering of a spin 1 system described earlier, and is the classical
equivalent of reduction.

Now that we have the classical form of reduction as conditionalization, we can
follow our prescription by generalizing from a σ -algebra to a σ -complex.

Classcal Mechanics: σ -Algebra B(�)
Let p be a state on the σ -algebra B(�) and y ∈ B(�) such that p(y) �= 0. By a

state conditionalized on y we mean a state p( · | y) such that for every x in B(�),

p(x | y) = p(x ∧ y)/p(y).

General Theory: σ -Complex Q
Let p be state on a σ -complex Q and y ∈ Q such that p(y) �= 0. By a state

conditionalized on y we mean a state p( · | y) such that for every σ -algebra B in Q
containing y and every x ∈ B,

p(x | y) = p(x ∧ y)/p(y).

In the literature, there exist generalizations of probability measures and conditional
probability to non-commutative algebras, and, in particular, to lattices of projections.
(See Beltrametti and Cassinelli [2]). In general, it is by no means clear that such a state
p( · | y) either exists or is unique, as is obviously the case for classical mechanics.
However, for the quantum σ -complex Q(H) this can be proved:

Quantum Mechanics: σ -Complex Q = Q(H)
If p is a state on Q(H) and y ∈ Q(H) such that p(y) �= 0, then there exists a

unique state p( · | y) conditionalized on y. If w is the density operator corresponding
to p, then ywy/tr(ywy) is the density operator corresponding to the state p( · | y).

To see that the operator ywy/tr(ywy) corresponds to the state p( · | y), note that if
x lies in the same σ -algebra as y, then x and y commute, so

tr(ywyx)/tr(ywy) = tr(wxy)/tr(wy) = p(x ∧ y)/p(y) = p(x | y).

For uniqueness, it suffices to consider the case when x ∈ B(H) is a one-dimensional
projection. Let p(· | y) be a state conditionalized on y, and let v be the corresponding
density operator. Let φ be a unit vector in the image of x . We can write φ = yφ+ y⊥φ.
Then
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p(x | y) = tr(vx) = 〈φ, vφ〉
= 〈yφ, vyφ〉 +

〈
yφ, vy⊥φ

〉
+

〈
y⊥φ, vyφ

〉
+

〈
y⊥φ, vy⊥φ

〉
.

Now, tr(vy⊥) = p(y⊥ | y) = p(y⊥ ∧ y)/p(y) = 0, so vy⊥φ = 0. Hence,

p(x | y) = 〈yφ, vyφ〉 = ‖yφ‖2tr(vPyφ) = ‖yφ‖2 p(Pyφ)/p(y),

since Pyφ ≤ y. If p′( · | y} is another state conditionalized on y, then

p′(x | y) = ‖yφ‖2 p(Pyφ)/p(y) = p(x | y),

proving uniqueness.
The change from w to ywy/tr(wy) in state preparation or measurement is the

general formula for the reduction of state given by the von Neumann–Lüders Projection
Rule. In the orthodox interpretation this rule is an additional principle that is appended
to quantum mechanics. Here it appears as the unique answer to conditionalizing a state
to a given property. (See Postulate IIIa of Bohm [4]).

The natural definition of applying a symmetry σ to a conditionalized state p( · | y)
is given by

pσ (x | y) = p(σ−1(x) | σ−1(y)).

8.2 Classical and Quantum Conditional Probability

In the well-known paper [10], Feynman writes that the basic change from classical
to quantum mechanics lies in the revision in the probability rule called the Law of
Alternatives,
p(a | c) = ∑

i p(a | bi )p(bi | c) for disjoint bi , to the quantum law that 〈α | β〉 =∑
i 〈α | βi 〉 〈βi | γ 〉, giving an additional interference term.
We agree that this is an important difference in the two theories. However, we shall

derive it from what we consider the more basic difference, that between intrinsic and
extrinsic properties.

Let y1, y2, . . . lie in a σ -algebra with yi ∧ y j = 0 for i �= j , and let y = ∨
yi .

Then

Classical Mechanics:

p(x | y) = p
(∨

(x ∧ yi )
)
/p(y)

=
∑

(p(x ∧ yi )/p(yi )) · (p(yi )/p(y))

=
∑

p(x | yi )p(yi | y),

The Law of Alternatives in classical probability theory.
On the other hand, by Sect. 8(i), we have
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Quantum Mechanics:

p(x | y) = tr(ywyx)/tr(wy)

= tr
(∨

i, j
yiwy j x

)
/tr(wy)

=
∑

tr(yiwyi x)/tr(wy)+
∑

i �= j

tr(yiwy j x)/tr(wy)

=
∑

p(x | yi )p(yi | y)+
∑

i �= j

tr(yiwy j x)/tr(wy).

This shows that in condionalizing for the extrinsic properties of quantum mechanics
an interference term must be added to the classical law of alternatives.

8.3 Conditionalizing on Several Properties

There is a different kind of preparation of state, one which leads to a mixed state.
This occurs when, instead of all but one of the beams being blocked, as in Sect. 8(i),
the beams are allowed to pass through the filter, while being registered. For instance,
[9] describes a version of the two-slit experiment in which the particle scatters high
frequency photons that register which slit the particle passed through. In this case, the
property y1 of passing through slit 1 is true or the property y2 of passing through slit
2 is true, so that the state of the particle is either the conditional state p( · | y1) or the
state p( · | y2).

If we consider an ensemble of particles, then each of the particles in the ensemble
will be in the state p( · | yi ) with probability p(yi ), for i = 1, 2, so that the ensemble
is in the mixed state p(y1)p( · | y1)+ p(y2)p( · | y2). Thus, by registering the results
of passage through each of the two slits, we restore the classical Law of Alternatives.

For a single particle, the same mixed state describes its predicted state upon passage
through the registering two-slit screen. However, upon actual passage through the
registered slits, the state is either p( · | y1) or p( · | y2). We may say that even after
the passage, the state of the particle for an experimenter who is not aware of the
registered result the state remains the mixed state. In this regard, the mixture has
a similar interpretation as in the classical case, viz., the ignorance interpretation of
mixtures.

A measurement of an observable is the most familiar example of conditionaliz-
ing with respect to several properties. If the observable has a spectral decomposition∑

ai Pi , then measuring the observable amounts to registering the values of the prop-
erties given by the Pi . The interaction algebra B is the σ -algebra generated by the
Pi .

We now formulate this notion of conditioning with respect to several conditions.
Given a system with σ -complex Q and disjoint elements y1, y2, . . . in a common
σ -algebra Q, with

∨
yi = 1, and a state p, we define the state conditionalized on

y1, y2, . . . to be p( · | y1, y2, . . . ) = ∑
p(yi )p( · | yi ). We shall also write this more
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succinctly as p( · | B), the state conditionalized on the interaction algebra B, the
σ -algebra generated by the yi .

For quantum mechanics, with Q = Q(H), if w is the density operator correspond-
ing to the state p:

p( · | B) =
∑

tr(wyi )(yiwyi/tr(wyi )) =
∑

yiwyi ,

so that for each x the probability p(x | B) = ∑
tr(yiwyi x). This gives the state of an

ensemble without selection. (See Postulate IIIb of Bohm [4]).
The natural definition for applying a symmetry to the conditioned state is given by

pσ (x | B) = p(σ−1(x) | σ−1 B).

Note that the non-uniqueness of the decomposition of a degenerate density operator
into pure states causes no problems in this interpretation. This is because mixed states
arise as mixtures of given pure states in the conditionalization from an experiment or
the evolution of the mixture. The σ -algebra B generated by the y1, y2, . . . is simply
the current interaction algebra of the σ -complex, and is always given to us as part of
the interaction.

The fact that degenerate density operators do not have a unique decomposition into
pure states has led some to put mixed and pure states on an equal footing, and to
deny them the role as mixtures. This puts the cart before the horse, and ignores the
historical development of the concept of mixed states. Mixtures of pure states were in
long use in quantum mechanics (as well as in classical statistical mechanics) when von
Neumann introduced the invariant formulation of a mixed state as a density operator.
The use of the density operator has the advantage of allowing the introduction of the
abstract notion of mixed state, without requiring the explicit mention of any basis of
pure states, which could be recovered in the non-degenerate case. For us, however,
in any interaction (and subsequent evolution) the interaction algebra is always given,
which yields a unique decomposition of the mixed state as a mixture of pure states
even in the degenerate case.

9 Reconstructing the σ -Complex Q(H)

We saw in Sect. 2 that if we restrict ourselves to classical experiments, then the σ -
complex of interaction algebras can be imbedded into a σ -algebra. On the other hand,
the 40 quantum triple experiments yield a σ -complex that cannot be so imbedded.
Thus, increasing the set of experiments has changed the structure of the σ -complexes
of systems. It may then be possible that a sufficiently comprehensive family of exper-
iments may force the structure of the σ -complex Q to be isomorphic to Q(H). In this
section we shall see that this is indeed the case.

The result is based on the paper Reck et al. [20]. The interactions arise from a
composition of interferometers. First, Mach–Zender interferometers together with
beam splitters allow one to construct Q(H2), where H2 is a two-dimensional Hilbert
space. A standard theorem, which allows one to decompose n-dimensional unitary
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operators as a product of two-dimensional ones, is then used to treat the σ -complex
of higher dimensional Hilbert spaces.

We outline the construction in [20] (from which the diagrams below are copied).
The experimental realization of a general two-dimensional unitary matrix is obtained
by a Mach–Zender interferometer consisting of two mirrors, two 50–50 beam splitters,
an ω-phase shifter, and a φ-phase shifter at one output port:

2 2

1 1
ω φ

This device transforms the input state with modes (k1, k2) into the output state with
modes (k′

1, k′
2), which are related by the unitary matrix:

(
k′

1
k′

2

)

=
(

eiφ sinω eiφ cosω
cosω − sinω

)(
k1
k2

)

.

We can then realize all 2-dimensional unitary matrices by varying the phase shifters.
To treat n × n unitary matrices, the authors in [20] show how to eliminate the off-

diagonal element u jk of a unitary matrix U by multiplying U by the matrix Tjk which is
obtained from the n×n identity matrix I by replacing the ( j j), ( jk), (k j), (kk) entries
by the entries of a matrix of the above 2-dimensional unitary form. This inductively
results in the product

U Tnn−1Tnn−2 · · · T32T31T21 = D

where D is a diagonal unitary matrix with diagonal entries of modulus 1. Hence

U = DT †
21T †

31T †
32 · · · T †

n1T †
n2 · · · T †

nn−1.

We now combine copies of the above interferometers so that the outputs of one
are the inputs of the succeeding one, corresponding to the above product of the T †

jk
matrices, followed by n phase shifters to account for the matrix D. The result is a
device which realizes the matrix U . For instance, for n = 3, we have:

T †
32 T †

31

T †
21

−α1

−α2

−α3

D

(Each box represents an interferometer of the above type).
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To realize an n-dimensional Hermitean matrix A, we use additional beam splitters
to superpose those beams that correspond to the same eigenspace of A, and then add
detectors for the resulting beams. The use of beam splitters to superpose beams is
well-known. (See e.g. Zukoowski et al. [24]).

This is a précis of the construction in [20]. It allows us to realize every element
of Q(H), where H is an n-dimensional complex Hilbert space. What is significant
is that we can also realize the σ -complex structure of Q(H). To see this it suffices
to consider the two Boolean operations of complementation x⊥ and join x ∨ y. The
output for a projection x consists of two beams, labeled the 1-beam and the 0-beam
according to the eigenvalues of x . The operation of complementation x⊥ requires only
a transposition of the 1 and 0 labels. The join x ∨ y of two projections corresponds to
superposing the two 1-beams of x and y . These two operations suffice to define all the
Boolean operations, and therefore the σ -complex structure of Q(H). Note that this
realization of the σ -complex of properties via the different σ -algebras generated by
the outcomes of interferometer experiments follows the general prescription given in
Sect. 2 for defining the σ -complex of properties of a system by means of the different
σ -algebras of events defined by the experimental outcomes.

It is instructive to contrast the simple experimental counterparts to the σ -complex
structure with the lattice structure of the set of projections. We know of no correspond-
ing experimental realization to the lattice join (or meet) of two non-commuting pro-
jections. This is due to the difficulty of relating the eigenspaces of two non-commuting
operators to the eigenspaces of their sum (or, for projections, to their union), while
for commuting operators there is a simple relation. It is this difficulty that is alluded
to in our earlier quotations from Varadarajan [22] and Birkhoff and von Neumann [3]
in the introduction.

We have seen that if we can in principle form arbitrarily large networks of inter-
ferometers, then we can realize the σ -complex Q(H) for Hilbert spaces of all finite
dimensions. The single minimal space H for which Q(H) realizes all the interferome-
ter experiments, and hence contains all finite dimensional Hilbert spaces, is an infinite
dimensional separable pre-Hilbert space, i.e. an inner product space H, whose com-
pletion forms a separable Hilbert space Hω. To see this note that H may be construed
as the space of all complex sequences {ai } that are non-zero for only finite many i,
with inner product 〈{ai }, {bi }〉 = ∑

ai bi .

Thus in the infinite dimensional case we must add ideal elements which are limits of
sequences of realized elements. We cannot expect to realize Q(Hω) via experiments
without adding limits since the world itself may be finite. This is similar to the use
of probability in physics as an ideal limit of relative frequency for longer and longer
sequences of experiments. Of course, even the above realization of Q(H) in the finite
dimensional case is an idealization, since it requires ω-phase shifters for arbitrary real
ω, in the interval [0, 2π ].

We may now extend the result Q(H1)⊕ Q(H2) � Q(H1 ⊗ H2) of Sect. 5 to the
infinite dimensional case.

The fact that H is the minimal space such that Q(H) is realized by the above
interferometry experiments highlights the open-ended nature of our reconstruction. If
we restrict ourselves to experiments of classical physics, then the σ -complex reduces
to a σ -algebra, and the concepts lead to classical physics. If we add the forty triple
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experiments, the resultingσ -complex cannot be imbedded into aσ -algebra. If we allow
for the interferometry experiments of this section, then Q must take the form Q(H).
It thus suffices to consider these interferometry experiments to realize the structure
of quantum physics. We may then apply the resulting theory to general interactions.4

As we have emphasized throughout the paper, the special nature of experiments, with
the macroscopic apparatus, plays no role in the theory. Any appropriate decoherent
interaction gives rise to isomorphic σ -algebras for the two systems. Experiments do
play the pragmatic role of allowing us to become cognizant of a sufficient number of
interactions to help deteremine the theory.

It is possible that other experiments may require a different realization of the σ -
complexes. For instance, if we consider systems which satisfy superselection rules
(see e.g. [2]), then the σ -complex Q has a non-trivial σ -algebra which is common to
all the σ -algebras B in Q. In this case Q is not of the form Q(H), but is a sub-σ -
complex of Q(H). H takes the form of a direct sum ⊕Hi of Hilbert spaces with the
pure states forced to lie in a factor Hi .

10 From Quantum Physics to Classical Physics

With the description in Sect. 5 of the σ -complex of combined systems, it is possible to
treat the statistics of a large number of particles such as macroscopic bodies. This is, of
course, a major subject in quantum statistics, and we shall not venture there. However,
we wish to say a few words on how the σ -complex of quantum mechanics tends to a
classical σ -algebra with an increasing number of particles, so that the quantum system
becomes effectively classical.

We shall adapt a remark in Finkelstein [11] for this purpose. Let S be an ensemble
of n non-interacting copies of a system Si , i = 1, 2, . . . , n, with σ -complex Q(Hi ).
Then S has the σ -complex

Q(Hi )⊕ Q(H2)⊕ · · · ⊕ Q(Hn) � Q(H1 ⊗ H2 ⊗ · · · ⊗ Hn).

Suppose each Si is in the pure state φ. Then S is in the state � = φ ⊗ φ ⊗ · · · ⊗ φ.
Consider the observable A of S which is the average of the same observable A of each
Si :

A = (A ⊗ I ⊗ · · · ⊗ I + I ⊗ A ⊗ · · · ⊗ I + · · · + I ⊗ I ⊗ · · · ⊗ A)/n.

We recall that the the uncertainty
R of an operator R is the square root of the variance:
(
R)2 = Exp((R − ExpR)2). Hence,

4 Historically, of course, it was not such interferometry experiments, but rather spectroscopic experiments
that lead Schrödinger to his equation.
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(
A)2 = 〈�, (A − ExpA)�〉
= (1 − 1/n) 〈φ, (A − ExpA)φ〉2 + (1/n)

〈
φ, (A − ExpA)2φ

〉

= (
A)2/n.

Hence, if

B = (B ⊗ I ⊗ · · · ⊗ I + I ⊗ B ⊗ · · · I + · · · + I ⊗ I ⊗ · · · ⊗ B)/n

is another such averaged observable, then for the commutator [A, B] we have


[A,B] = 
[A, B]/n.

Thus, limn→∞
[A,B] = 0. It follows that the averaged observables of S all commute
in the limit, and so the σ -complex of S becomes essentially a σ -algebra for very large
n, as in a macroscopic body.

This calculation was made under the assumption that S is an ensemble of non-
interacting replicas of one particle. In a real body the states and observables need not
be identical. Without going into details, it is possible to give conditions on the allowed
variation of the the states of the particles and the averaged observables so that
[A,B]
still tends to zero with increasing n. In any case, the result is at least suggestive that
in a real body, the σ -complex of S will be very close to a σ -algebra.

The change in dynamics accompanying the move from the Hilbert space H to the
phase space � has been well-studied. In essence, the quantum bracket i

h̄ [X,Y ] is
replaced by the Poisson bracket {X,Y }, so that the von Neumann–Liouville equation
∂twt = − i

h̄ [H, wt ] is replaced by the classical Liouville equation ∂t ft = −{H, ft }.
(See Faddeev and Yakubovskii [8], for example). We saw in Sects. 6 and 7 that the lack
of sufficient structure of a σ -algebra did not allow us to derive the classical dynamics
from the automorphisms of B(�), whereas we could do so in the quantum case Q(H).
We can see now how it is possible to recover the classical dynamical equation by an
excursion into the quantum structure Q(H).

11 Interpreting and Resolving Quantum Paradoxes

11.1 The K–S Paradox and the Projection Rule

We have already applied this reconstruction to treat several issues in the interpretation
of the formalism. One of these, the Kochen–Specker Paradox, which showed that the
assumption that all properties are intrinsic leads to a contradiction, was the motivation
for introducing the σ -complex of extrinsic properties. Conversely, assuming the rela-
tional nature of properties resolves this paradox. Another issue, discussed in Sect. 8,
is the nature of reduction and the von Neumann–Lüders Projection Rule, which here
appears as the counterpart to classical conditionalizing, not as an ad hoc addition to
quantum theory. We now consider a number of other controversial questions from the
literature.
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11.2 Wave-Particle Duality

We discuss wave-particle duality in the context of the two-slit experiment. Let y1 and
y2 be the projections of position in the regions of the two slits δ1 and δ2. Then y1 ∨ y2
is the projection of position for the union δ1 ∪ δ2. Let x be the property of position in
a local region 
 on the detection screen.

If passage through each of the two slits is registered, then the Law of Alternatives
of Sect. 8(ii) tells us that p(x |y1 ∨ y2) = p(x |y1)p(y1|y1 ∨ y2)+ p(x |y2)p(y2|y1 ∨
y2),which, in the case of symmetrical positioned slits, is propotional to the sum
p(x |y1) + p(x |y2) of the probabilities of passage through the individual slits, just
as in the classical case.

In the case where the passage through the two slits by the quantum particle is
not registered, we have shown in Sect. 8(ii) that there is an additonal interference
term

[tr(y1wy2)x)+ tr(y2wy1x)]/tr(w(y1 ∨ y2)).

Note that if x and y1 and y2 commute, this interference term vanishes. This hap-
pens if the detector is right next to the two-slit screen. If the detector is a distance
from the two-slit screen, then the particle undergoes free flight evolution σt , so
σt (yi ) = ut yi u

−1
t no longer commutes with x , giving rise to the non-zero interference

term.
An explanation of the interference effect that is often given is that the particle

is, or acts as, a pair of waves emanating from the slits, which exhibit constructive
and destructive interference effects. This was, of course, the explanation for Young’s
original experiment with the classical electromagnetic field. For individual quantum
particles however, it leads to the paradoxical effect that the wave suddenly collapses
to a local region at the detection screen.

The explanation given here is a different one. A system forms a localized par-
ticle if there is a position operator for the system, so that a measurement of posi-
tion detects the system at a localized region in space. Until the position is measured
the position has no value, since position in a region is an extrinsic property. We
may view the two-slit screen as a preparation of state for the particle, for which
the position is conditionalized, or reduced, to the region δ1 ∪ δ2. This reduction is
not a position measurement, since δ1 ∪ δ2 is not a localized region (as it would
be for a single-slit screen). It is only at the detection screen, where the particle, in
interaction with the screen, is reduced to the local region 
, that its position has a
value.

The question of why the particle shows the interference effects of a wave is answered
in Sect. 7, where the evolution of the quantum particle was defined by a trajectory in
the space Aut(Q). This yielded the Schrödinger equation, which is a wave equation.
On the other hand, a trajectory in the phase space of a classical particle passing through
a two-slit screen is governed by the classical Liouville equation, without any wave
properties. Thereby, the wave-like properties of a quantum particle are explained by
the extrinsic character of of its properties.
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11.3 The Measurement Problem

The Measurement Problem refers to an inconsistency in the orthodox interpretation of
quantum measurement. The interpretation assumes that an isolated system undergoes
unitary evolution via Schrödinger’s equation. We quote from Bohm [4, Chapter XII]:

“If time evolution is a symmetry transformation, then the mathematical structure
(in particular the algebraic relations) of the algebra of observables does not
change in time; this means that the physical structure is indistinguishable at two
different points in time. Our experience shows that there are physical systems
that have this property and in fact it is this property that defines the isolated
systems. Thus isolated physical systems do not age, an absolute value of time
has no meaning for these systems, and only time differences are accessible
to measurement. Irreversible processes do not take place in isolated physical
systems defined as above.”

Accordingly, in the orthodox interpretation, for a measurement of an observable A of
a system S by an apparatus T , the total system S + T , which is assumed to be isolated,
undergoes unitary evolution.

We outline the standard description of an ideal measurement. Suppose the spectral
decomposition of an observable is A = ∑

ai Pi , where each Pi is a one-dimensional
projection with eigenstate φi . The apparatus is assumed to be sensitive to the different
eigenstates of A. Hence, if the initial state of S is φk and the apparatus T is in a neutral
state ψ0, so that the state of S + T is φk ⊗ ψ0, then the system evolves into the state
φk ⊗ψk , where the ψi are the states of the apparatus co-ordinate corresponding to the
states φi of the system. By linearity, if S is in the initial state φ = ∑

aiφi , then S + T
evolves into the state � = ∑

aiφi ⊗ ψi . The intractable problem for the orthodox
interpretation is that the completed measurement gives a particular apparatus stateψk ,
indicating that the state of S is φk , so that the state of the total system is φk ⊗ ψk , in
contradiction to the evolved state

∑
aiφi ⊗ ψi . We may also see the reduction from

the viewpoint of the conditionalization of the states. If the state p of S + T just prior
to measurement is P�, then after the measurement it is the conditionalized state

p( · |Pφk ⊗ I ∧ I ⊗ Pψk ) = (Pφk ⊗ I ∧ I ⊗ Pψk )P�(Pφk ⊗ I ∧ I ⊗ Pψk )/tr

((Pφk ⊗ I ∧ I ⊗ Pψk )P�)) = Pφk⊗ψk .

Hence, the new conditionalized state of S + T is the reduced state φk ⊗ ψk .

The orthodox interpretation then has to reconcile the unitary evolution of S + T
with the measured reduced states of S and T . The present interpretation stands the
orthodox interpretation on its head. We do not begin with the unitary development of
an isolated system, but rather with the results of a measurement, or, more generally,
of a decoherent interaction. In fact, the original motivation for forming a σ -complex
of properties was via the set of measured, and hence reduced, properties which form
the current interaction algebra. For us, it is the conditions under which dynamical
evolution occurs that is to be investigated, rather than the reduced state. We cannot take
for granted what is assumed in the orthodox interpretation, as in the above quotation,
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that an isolated system evolves unitarily. So we must answer the question whether in a
measurement the σ -complex structure of S +T undergoes a symmetry transformation
at different times of the process. As Sect. 7 showed, this is formalized as the condition
for the existence of a representation σ : R → Aut(Q).

It is easy to see, however, that in the process of a completed measurement or a
state preparation there are two distinct elements of Q(H)(= Q(H1 ⊗ H2)) at initial
time 0 which end up being mapped to the same element at a later time t . We have
seen that an initial state φ ⊗ ψ0 results in a state φk ⊗ ψk , for some k. However,
φk ⊗ψ0 also results in the state φk ⊗ψk . If we choose the state φ to be distinct from
φk , then the two elements Pφ⊗ψ0 and Pφk⊗ψ0 of Q(H) both map to the same element
Pφk⊗ψk . However, any automorphism σt is certainly a one-to-one map on Q, so the
measurement process cannot be described by a representation σ : R → Aut(Q), and
hence a unitary evolution.

In our interpretation, the Measurement Problem is thus resolved in favor of reduction
rather than unitary evolution. The point can be made intuitively that points of absolute
time do exist in a measurement and also in state preparation, namely the point (or,
better, small interval) of time at which reduction takes place. If for instance, we consider
a Stern–Gerlach experiment with a state preparation in which a filter registers the
passage of a particle through one of several slits, before the particle reaches a detection
screen, then the interval of time of passage through the slit, in which the state of the
particle is reduced, is such an absolute point of time: the state after passing through
the slit is the conditionalized state, whereas before it is not.

Time and its passage is a problematic concept in physics, so to reinforce the point
we shall give another example, in which time homogeneity is tied to spatial sym-
metry. Consider a particle resulting, say, from decay in which its state has spherical
symmetry. Assume that the particle is initially at the center of a spherical detector
system. During the passage of the particle until it hits the detector, the combined sys-
tem of particle and detector is spherically symmetric and time homogeneous. At the
moment of registering the impact on a local region ofthe detector, the system loses
both its isotropy in space and its time symmetry. If it is difficult to argue against
this breaking of space symmetry in favor of a particular direction, it seems to us to be
equally hard to gainsay the breaking of time symmetry at the moment this non-isotropy
occurs.

For a composite system it is not only outside forces that can break symmetry, but
internal interactions. As opposed to the quotation of Bohm [4] above, we believe
that symmetry-breaking processes do take place in isolated compound systems with
internal decoherent interactions during reduction of state. To argue that nevertheless
symmetry has not been broken for the combined system is to favor the theoretical
formalism ahead of the facts on the ground. It is notable that with this interpretation the
system consisting of the universe as a whole, for which there are no external systems,
acquires reduced or, as we say, conditionalized states as a result of the interactions of
component systems.

Note that our alternative term interactive property is more appropriate here than
extrinsic property. The reduction of the state to φk ⊗ ψk happens for the composite
system S1 + S2 because of the interaction of the component systems S1 and S2 which
are internal to S1 + S2 rather than an interaction of S1 + S2 with an external system.
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11.4 The Einstein–Podolsky–Rosen Experiment

We shall discuss the EPR phenomenon in the Bohm form of two spin 1
2 particles in

the combined singlet state � of total spin 0. Suppose that in that state the two particles
are separated and the spin component sz of particle 1 is measured in some direction
z. That means that the observable sz ⊗ I of the combined system is being measured.

Let P±
z = 1

2 I ± sz . We have the spectral decomposition

sz ⊗ I = 1

2
P+

z ⊗ I +
(

−1

2

)

P−
z ⊗ I,

so the interaction algebra B = {0, 1, P+
z ⊗ I, P−

z ⊗ I }. We expand the singlet state

� =
√

1

2
(φ+

z ⊗ ψ−
z − φ−

z ⊗ ψ+
z ),

where P±
z φ

±
z = φ±

z and P±
z ψ

±
z = ψ±

z . Thus, if particle 1 has spin up, the state
p( · | P+

z ⊗ I ) of the system is, by Sect. 8(i), given by

p( · | P+
z ⊗ I ) = (P+

z ⊗ I )P�(P
+
z ⊗ I )/tr((P+

z ⊗ I )P�) = Pφ+
z ⊗ψ−

z
.

This is, of course, equivalent to projecting the vector � into the image of P+
z ⊗ I :

P+
z ⊗ I (�) =

√
1

2
(φ+

z ⊗ ψ−
z ).

Similarly, if particle 1 has spin down the state p( · | P−
z ⊗ I ) is given by the vector

P−
z ⊗ I (�) =

√
1

2
(φ−

z ⊗ ψ+
z ).

This shows that if sz is measured for particle 2, it is certain to have opposite value
of sz for particle 1. It does not mean that after sz is measured for particle 1, then sz has
a value for particle 2. The properties I ⊗ P+

z and I ⊗ P−
z do not lie in the interaction

algebra B = {P+
z ⊗ I, P−

z ⊗ I, 0, 1}, and so have no value. The spin components are
extrinsic properties of each particle, which do not have values until the appropriate
interaction. To claim otherwise is to revert to the classical notion of intrinsic properties.

This is a necessary consequence of our interpretation, but it also follows from a
careful application of standard quantum mechanical principles. For after the mea-
surement of sz on particle 1 gives a value of 1

2 , the state of the combined system is
φ+

z ⊗ψ−
z , which is an eigenstate of I ⊗ sz . Born’s Rule implies that an eigenstate of

an observable will yield the corresponding eigenvalue as value only if and when that
observable is measured.

The situation is entirely similar to the unproblematic triple experiment. A triple
experiment on the frame (x, y, z) yields the interaction algebra Bxyz . If S2

z = 0, then
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S2
x = S2

y = 1. If (x ′, y′, z) is another frame, then it is also the case that p(S2
x ′ =

1|S2
z = 0) = 1, so that S2

x ′ is certain to have the value 1 if the triple experiment on
the frame (x ′, y′, z) is performed. But S2

x ′ does not have a value unless and until that
experiment is carried out since S2

x ′ = 1 does not lie in the interaction algebra Bxyz .
We have not in this discussion mentioned a word about special relativity. Indeed, the

spin EPR phenomenon has nothing to do with position or motion and is independent of
relativistic questions. However, EPR with space-like separated particles has been used
to put in question the full Lorentz invariance of quantum mechanics. This is replaced
by a weaker notion that EPR correlations cannot be used for faster than light signaling.
We believe that Lorentz invariance is a fundamental symmetry principle, which gives
rise to basic observables, and is not simply an artifact of signaling messages between
agents.

The relativistically invariant description of the EPR experiment is that if experi-
menters A1 and A2 measure particles 1 and 2, and the directions of spin in which they
are measured are the same, then an experimenter B in the common part of the future
light cones of A1 and A2 will find that the spins are in opposite directions.

Now that we have studied what EPR actually says, we shall treat the question of
how correlations can exist between the different directions of spins of two particles
when such spins cannot simultaneously have values.

To set the stage for EPR, we again first consider the triple experiment. For a spin 1
particle the proposition S2

z = 1 defines the same projection in Q(H) as the proposition

S2
x = 0 ↔ S2

y = 1 (1)

If we perform the (x, y, z) triple experiment with interaction algebra Bxyz and find
that S2

z = 1, then we can check that either S2
x = 0 and S2

y = 1 or S2
x = 1 and S2

y = 0,
so that (1) is true. However, for the orthogonal triple (x ′, y′, z)

S2
x ′ = 0 ↔ S2

y′ = 1 (2)

is the same projection as (1) and so is also true. But S2
x ′ and S2

y′ do not lie in the
interaction algebra Bxyz, and so have no truth value unless and until the (x ′, y′, z)
triple experiment is performed. Thus, the correlation (2) is true without its component
properties S2

x ′ and S2
y′ having truth values.

Now consider the EPR experiment. We have seen in Sect. 5 tha S = 0 is the same
projection as (Sz = 0) ∧ (Sx = 0), and Sz = 0 and Sx = 0 are in turn respectively
the same projections as

sz ⊗ I = 1

2
↔ I ⊗ sz = −1

2
(3)

and

sx ⊗ I = 1

2
↔ I ⊗ sx = −1

2
. (4)

If the projections Sz = 0 and Sx = 0 are true, then so are the correlations (3) and (4)
since they define the same projections. As in the triple experiments, we see that these
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correlations subsist simultaneously, even though the spins sz and sx for each parti-
cle cannot have values simultanously. Thus, the existence of seemingly paradoxical
EPR correlations in different directions can be understood via the logic of extrinisic
properties.

In summary, the extrinsic properties of a σ -complex may have relations subsisting
among its elements because of general laws of physics, such as conservation laws,
which are timeless and independent of particular interactions. Theσ -complex structure
accommodates such relations in the form of compound formulas such as (3) and (4),
which are true, even when the constituent parts do not have truth values. This fact
allows us to interpret the EPR phenomenon in a fully relativistically invariant way.
For extrinsic properties a compound property may have truth values even when the
component parts do not.

12 On the Logic of Quantum Mechanics

As we have stressed thoughout this paper, the major transformation from classical to
quantum physics in this approach lies not in modifying the basic classical concepts
such as state, observable, symmetry, dynamics, combining systems, or the notion of
probability, but rather in the shift from intrinsic to extrinsic properties.

Now properties, whether considered as predicates or propositions, are the domain of
logic. Boolean algebras correspond to propositional logic and σ -algebras to predicate
logic. Hence the change to a σ -complex of exrinsic properties should entail a new logic
of properties. At first sight however, it would appear that the logic of extrinsic properties
as elements of a σ -complex Q is no different than classical propositional logic, since
these elements can only be compounded when they lie in the same σ -algebra in Q.
This is far from the case; in fact, the difference in logic plays an important role in
resolving some of the quantum paradoxes. The underlying reason is that a compound
property such as x ∨ y may be lie in an interaction algebra and so have a truth value,
even though neither x nor y lie in the algebra, and have no truth value.

The logic of extrinsic properties has been sysematically studied in Kochen and
Specker [15,16], where a complete axiomatization of the propositional calculus of
extrinsic properties is given. Here we shall confine ourselves to pointing out some
uses of this logic that appeared in this paper.

1. The simplest such case is x ∨ x⊥,which equals 1 in Q, and so is always true, even
though x may have no truth value.5 Thus, for a spin 1

2 particle, sz = 1
2 ∨ sz = − 1

2
is true simultaneously for all directions z, though sz may have no value.

2. In the two-slit experiment (Sect. 11(ii)), we saw that it is this lack of truth value
that leads to the interference pattern at the detector screen. The source of the inter-
ference pattern is not some non-classical probability, but rather the applications
of classical Kolmogorov axioms of probability to the logic of extrinsic propeties.
The conditional probability p(x |y) is the probability of x given that y has hap-

5 This is reminiscent of Aristotle’s famous sea battle in De Interpretatione: “A sea battle must either take
place tomorrow or not, but it is not necessary that it should take place tomorrow neither is it necessary that
it should not take place, yet it is necessary that it either should or should not take place tomorrow.”
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pened and so has a truth value. Therefore the probability p(x |y1 ∨ y2) implies that
y1 ∨ y2 is true. However, neither y1 nor y2 has happened. We should not expect
the classical Law of Alternatives connecting p(x |y1 ∨ y2) to p(x |y1) and p(x |y2)

to be valid unless y1 and y2 are events that have happened. In that case the Law of
Alternatives is in fact valid in quantum mechanics.

3. In the EPR experiment, the singleton state S = 0 implies that sz ⊗ I = 1
2 ↔

I ⊗ sz = − 1
2 is true for any direction z. In fact, as shown in Sect. 5 the element

S = 0 equals

(

sz ⊗ I = 1

2
↔ I ⊗ sz = −1

2

)

∧
(

sx ⊗ I = 1

2
↔ I ⊗ sx = −1

2

)

.

Thus, the correlation exists in both the z and x directions even though the spins
cannot simultaneously have values in these directions. Section 5 shows how general
superpositions of states of combined systems may be reformulated as compound
statements of this quantum logic.

4. The K–S Paradox in Sect. 2 can be stated as a proposition that is classically true
but false in quantum mechanics. To see this, let + denote exclusive disjunction
Then x + y + z + x ∧ y ∧ z is true if and only if exactly one of x, y, and z is true.

The statement
∨

i≤40(xi + yi + zi + xi ∧ yi ∧ zi )
⊥, where (xi , yi , zi ) range over the

orthogonal triples of the 40 triple experiments of Sect. 2 is classically true, but false
under a substitutions xi �→ S2

xi
, yi �→ S2

yi
, zi �→ S2

zi
.

For two spin 1
2 particles there is a K-S Paradox which yields a much simpler such

proposition in four dimensional Hilbert space:

[(x ↔ y) ↔ (z ↔ w)] ↔ [(x ↔ z) ↔ (y ↔ w)].

This classically true proposition is false under the substitution

x �→ sz ⊗ I = 1

2
, y �→ I ⊗ sz = 1

2
, w �→ sx ⊗ I = 1

2
, z �→ I ⊗ sx = 1

2
.

For details, see Conway and Kochen [6]. Kochen and Specker [14] Theorem 4 shows
that every K–S Paradox corresponds to a classically true proposition which is false
under a substitution of quantum properties.
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General mechanics Classical mechanics Quantum mechanics

Properties σ -Complex σ -Algebra σ -Complex
Q = ∪B, with B a σ -algebra B(�) Q(H}

States p : Q → [0, 1] p : B(�) → [0, 1] w : H → H
p | B, a probability measure a probability measure Density operator

p(x) = tr(wx)
Pure states Extreme point 1 dim operator

of convex set ω ∈ � i.e. unit φ ∈ H
p(x) = 〈x, xφ〉

Observables u : B(R) → Q f : � → R A : H → H
homomorphism Borel function Hermitean operator

Symmetries σ : Q → Q h : � → � u : H → H
automorphism canonical unitary or

transformation anti-unitary operator
σ(x) = uxu−1

Dynamics σ : R → Aut(Q) Liouville equation von Neumann
representation ∂tρ = −[H, ρ] –Liouville equation

∂twt = − i
h̄ [H, wt ]

Conditionalized p(x) → p(x | y) p(x) → p(x | y) w → ywy/tr(wy)
states for x, y ∈ B in Q = p(x ∧ y)/p(y) von Neumann

p(x | y) = p(x | y)/p(y) –Lüders Rule
Combined Q1 ⊕ Q2 �1 ×�2 H1 ⊗ H2

systems direct sum of direct product of tensor product of
σ -complexes phase spaces Hilbert spaces
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