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Abstract In a bipartite quantum system, quantum states are classified as classically
correlated (CC) and quantum correlated (QC) states, the later are important resources
of quantum information and computation protocols. Since correlations of quantum
states may vary under a quantum channel, it is necessary to explore the influence of
quantum channels on correlations of quantum states. In this paper, we discuss CC-
preserving, QC-breaking and strongly CC-preserving local quantum channels of the
form �1 ⊗�2 and obtain the structures of these three types of local quantum channels.
Moreover, we obtain a necessary and sufficient condition for a quantum state to be
transformed into a CC state by a specific local channel �1⊗�2 in terms of the structure
of the input quantum state. Lastly, as applications of the obtained results, we present
a classification of local quantum channels �1 ⊗ �2 and describe the quantum states
which are transformed as CC ones by the corresponding local quantum channel.
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1 Introduction and Preliminaries

Luo introduced in [1] a quantum-classical dichotomy in order to classify correlations
in bipartite states, in which a state ρ in a bipartite system C

n ⊗ C
m is said to be

classical correlated (shortly, CC) if there exist von Neumann measurements {�a
i } and

{�b
j } consisting of rank-one orthogonal projections on C

n and C
m , respectively, such

that

�(ρ) :=
∑

i, j

(�a
i ⊗ �b

j )ρ(�a
i ⊗ �b

j ) = ρ,

and ρ is said to be quantum correlated (QC) if it is not CC. It was proved in [1] that a
state ρ is CC if and only if it can be represented as

ρ =
n∑

i=1

m∑

j=1

pi j |ei 〉〈ei | ⊗ | f j 〉〈 f j |,

where {pi j } is a probability distribution, {|ei 〉} and {| f j 〉} are some orthonormal bases
for C

n and C
m , respectively.

Representation above of a CC state shows that every CC state is separable and
therefore every entangled state must be a QC state. Thus, quantum correlations are
more general than entanglement and then become important resources for a num-
ber of quantum information applications without entanglement and then have drawn
much attentions [2–11]. Quantum correlation is an intrinsic aspect of quantum theory
that enables the manifestation of several interesting phenomena beyond the realms of
the classical world. The practical realization of quantum information and computa-
tion protocols by using quantum systems is severely challenged due to decoherence
caused by the interaction of the system with the environment. Such interactions create
undesirable quantum correlations between the system and the environment leading to
information being scattered in the intractable Hilbert space of the environment. There-
fore, the dynamics of quantum correlations makes us understand generation, breaking
and preservation of quantum correlations in a composite quantum system. From a
theoretical point of view, in order to characterize the dynamics, one has to study the
behavior of quantum correlations under noisy channels (described by trace-preserving
completely positive maps). Equivalently, we have to discuss what quantum channels
can preserve, create or break quantum correlations.

In this direction, Streltsov et al. proved in [12] that a quantum channel � acting on a
single qubit in a two-qubit system can create quantum correlations from some initially
classically correlated states if and only if � is neither semiclassical (i.e., measurement
map) nor unital. In other words, there exist some classically correlated states in a
two-qubit system which are transformed by � ⊗ 1 into QC states if and only if � is
neither semiclassical nor unital. Consequently, for the qubit case, � ⊗ 1 is classical
correlation-preserving (CC-preserving) if and only if� is either semiclassical or unital.
Furthermore, for higher-dimensional systems, they claimed that even unital channels
may increase the amount of quantum correlations, for example, a local decoherence

123



Found Phys (2015) 45:355–369 357

channel can generate quantum correlations. Gessner et al. proved in [13] that the
states of nonzero discord can be created from zero discord states only by a single local
operation and the set of these states has measure zero. In [14], Hu et al. proved that
a local quantum channel 1 ⊗ � can create quantum correlations if and only if � is
not a commutativity preserving channel. It was also proved in [14] that for a qubit
system, a commutativity preserving channel is either a completely decohering channel
or a mixing channel, and for a qutrit system, a commutativity preserving channel is
either a completely decohering channel or an isotropic channel. Furthermore, for
any finite dimensional system, Guo and Hou in [15] proposed an explicit form of a
commutativity preserving channel and presented a necessary and sufficient condition
for the local creation of quantum discord, which improves the result proposed by
Streltsov et al. in [12] for the qubit case. Based on Luo’s definition in [1], Guo and
Cao in [16] considered general local quantum channels �1 ⊗ �2 preserving classical
correlations, and proved that �1 ⊗�2 is CC-preserving if and only if either one of �1
and �2 is trace-type (i.e., it maps any state to the same one), or they are commutativity
preserving. Also, the specific structure of a CC-preserving channel �1 ⊗ �2 was
obtained in [16] for a two-qubit system. Thus, it is necessary to proceed with the
structures of CC-preserving channels for higher-dimensional case. This leads to the
following question:

Question 1 Which types of local quantum channels �1 ⊗ �2 preserve classical cor-
relations?

Furthermore, according to [17], a quantum channel � is said to be a quantum-
correlation breaking channel (or a QC-type channel) if the quantum channel 1 ⊗ �

turns any bipartite state into a quantum-classical state, and it was proved that a quan-
tum channel � is a QC-type channel if and only if its Choi-Jamiołkowski state is a
quantum-classical state if and only if it is a quantum-to-classical measurement map.
However, for a general local quantum channel �1 ⊗ �2, we need to study whether it
can fully break quantum correlations, i.e. it turns every bipartite state into a CC state.
If so, then we say that �1 ⊗�2 is QC-breaking. Clearly, if 1⊗� is QC-breaking, then
� is a QC-type channel. The inverse is not valid. This leads to the following question:

Question 2 Which types of local quantum channels �1 ⊗ �2 break quantum corre-
lations?

Besides, we say that a CC-preserving local quantum channel �1 ⊗ �2 is strongly
CC-preserving if the final state is a CC state implies that the initial state is a CC one. It
is easy to see that a strongly CC-preserving local quantum channel is CC-preserving
in both directions. Equivalently, a strongly CC-preserving local quantum channel can
preserve quantum correlations in both directions. As our acknowledge, so far there
does not exist any results on strongly CC-preserving local quantum channels. This
leads to the following question:

Question 3 Which types of local quantum channels �1 ⊗ �2 preserve classical cor-
relations in both directions?

In addition, the authors in [17] discussed a characterization of quantum channels from
a different perspective by defining a set CC(�) of those bipartite states ρ which are
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mapped to a CC state by 1 ⊗�, but it was not yet a complete answer there. This leads
to the following question:

Question 4 Which states can be transformed in the same way as CC ones by a given
local quantum channel �1 ⊗ �2?

The goal of this paper is to give the answers to these questions by establishing the struc-
tures of classical correlation-preserving, quantum correlation-breaking and strongly
classical correlation-preserving local quantum channels, from which we will com-
pletely characterize the behavior of quantum correlations under the influence of a
general local noisy channel �1 ⊗ �2.

To begin our discussion, let us recall some notations and concepts. As usual, the
C∗-algebra of all k×k complex matrices is denoted by Mk , which is identified with the
C∗-algebra B(Ck) of all bounded linear operators on the Hilbert space C

k . A positive
semi-definite matrix of trace 1 in Mk is called a state on the system C

k . The set of all
states on C

k is denoted by D(Ck). Throughout this paper, we denote by In the n × n
identity matrix. Moreover, a quantum channel � on Mn is said to be a measurement
map [4] if �(A) = ∑

i tr(Mi A)|i〉〈i | for all A ∈ Mn , where {Mi } is a POVM and
{|i〉} is an orthonormal basis for C

n . Note that a measurement map was also called
a QC channel in [18], which is an entanglement-breaking channel. Such a channel
is realized by complete decoherence, after which every density matrix becomes a
diagonal matrix. If there exists a state σ ∈ D(Cn) such that �(A) = tr(A)σ for all
A ∈ Mn , then we say that � is trace-type [16]. It is easy to prove that a measurement
map is trace-type if and only if its component POVM {Mi } satisfies Mi = λi In for
some probability distribution {λi }. Moreover, � is called an isotropic channel if it has
the form �(A) = t�(A) + (1 − t)tr(A) In

n ,∀A ∈ Mn, where � is either a unitary
operation A �→ U AU † and − 1

n−1 ≤ t ≤ 1 or a map which is unitarily equivalent to

a transpose A �→ U AT U † and − 1
n−1 ≤ t ≤ 1

n+1 . An isotropic channel � is said to
be nontrivial if the parameter t is not zero. A depolarizing channel [19] on a system
Mn is a special isotropic channel, which is defined as a convex combination Dε of the
identity map on Mn and the totally depolarizing channel given by �(A) = tr(A) In

n :

Dε(A) = (1 − ε)tr(A)
In

n
+ εA,∀ρ ∈ Mn,

where ε ∈ [0, 1]. Clearly, a depolarizing channel Dε is an example of nontrivial
isotropic channels when ε ∈ (0, 1], and the totally depolarizing channel D0 is an exam-
ple of trace-type channels. Moreover, a channel � is called a completely decohering
channel if �(Mn) is commutative. A map � on Mn is said to be commutativity pre-
serving if it satisfies A, B ∈ Mn, [A, B] := AB − B A = 0 ⇒ [�(A),�(B)] = 0,

and it is said to be commutativity preserving in both directions if it satisfies [A, B] =
0 ⇔ [�(A),�(B)] = 0.

The paper is organized as follows. In Sect. 2, we give the structures of quantum
channels that can preserve commutativity and then obtain structures of CC-preserving
local quantum channels. In Sect. 3, we obtain the structures of QC-breaking local
channels. In Sect. 4, we establish the structures of strongly CC-preserving local chan-
nels. Sect. 5 is devoted to the characterization of the sets of all quantum states being
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mapped to classical correlated ones by a specific local quantum channel. Summary
and conclusions are given in Sect. 6. Moreover, the proofs of lemmas are given in
Appendix.

2 Structures of CC-Preserving Local Quantum Channels

In this section, we give structures of CC-preserving local quantum channels. The
authors in [16] discussed local quantum channels that preserve classical correlations
and proved that if one of �1 and �2 is trace-type, then �1 ⊗ �2 is CC-preserving
since it maps any state to a product state. When �1 and �2 are two quantum channels
which are not trace-type, the following lemma gives a qualitative characterization of
a CC-preserving channel.

Lemma 2.1 [16, Theorem 3.2] Let �1 and �2 be two quantum channels which are
not trace-type. Then �1 ⊗ �2 is CC-preserving if and only if �i is commutativity
preserving on states for i = 1, 2.

By Lemma 2.1, it is necessary to discuss firstly quantum channels that preserve com-
mutativity but not trace-type. For a qubit system, the structure of a commutativity
preserving quantum channel is characterized as follows.

Lemma 2.2 [16, Lemma 3.3] Let � be a quantum channel on M2 but not trace-type.
Then the following are equivalent.

(i) � is commutativity preserving.
(ii) Either � is unital, that is, �(I2) = I2, or �(I2) = I2 and there exist two †-linear

functionals f, g on M2 such that �(A) = f (A)I2 + g(A)�(I2), ∀A ∈ M2.

(iii) � is unital or a measurement map with �(I2) = I2.

Lemma 2.1 and 2.2 allow us to state the following, which gives the structure of a
CC-preserving local quantum channel �1 ⊗ �2 on M2 ⊗ M2.

Theorem 2.1 Let �1,�2 : M2 → M2 be two quantum channels which are not
trace-type. Then �1⊗�2 is CC-preserving if and only if �i is unital or a measurement
map with �i (I2) = I2 for i = 1, 2.

Let us continue the above analysis and study the case where n ≥ 3. Recently, Guo
and Hou in [15, Theorem 1] proved that � on Mn(n ≥ 3) preserves commutativity if
and only if � is either a completely decohering channel or a nontrivial isotropic one.
The following lemma shows that a completely decohering channel coincides with a
measurement map, and then gives the structure of a completely decohering channel.

Lemma 2.3 Let � be a quantum channel on Mn. Then the following statements are
equivalent.

(1) � is a completely decohering channel.
(2) � is a measurement map.
(3) [�(σ1),�(σ2)] = 0 for all σ1, σ2 ∈ D(Cn).

From [15, Theorem 1] and Lemma 2.3, we obtain the following corollary, which gives
the structure of a commutativity preserving quantum channel.
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Corollary 2.1 A quantum channel � on Mn(n ≥ 3) is a commutativity preserving
quantum channel if and only if it has one of the following forms:

(a) �(A) = ∑
k tr(Mk A)|k〉〈k| for all A ∈ Mn, where {Mk} is a POVM and Mk is

not scalar multiplication for some k;
(b) �(A) = tU AU † + 1−t

n tr(A)In for all A ∈ Mn where U is unitary and − 1
n−1 ≤

t ≤ 1 and t = 0;
(c) �(A) = tU AT U † + 1−t

n tr(A)In for all A ∈ Mn, where U is unitary and
− 1

n−1 ≤ t ≤ 1
n+1 and t = 0.

(d) �(A) = tr(A)σ for all A ∈ Mn and some σ ∈ D(Cn).

Combining Corollary 2.1 with Lemma 2.3 yields the following result, which gives the
structure of a CC-preserving local quantum channel �1 ⊗ �2 on Mn ⊗ Mm for the
case where n, m ≥ 3.

Theorem 2.2 Let n, m ≥ 3, �1 and �2 be quantum channels on Mn and Mm,
respectively, which are not trace-type. Then �1 ⊗ �2 is CC-preserving if and only if
�i has one of the forms (a), (b) and (c) for each i = 1, 2.

For example, when �1 is a depolarizing channel and �2 is a complete decoherence
channel, �1 ⊗ �2 is CC-preserving.

3 Structures of QC-Breaking Local Quantum channels

In this section, we give the structures of QC-breaking local quantum channels. We
first present the following two lemmas, which will be used in the proof of Theorem
3.1.

Lemma 3.1 [7, Remark] Let ρ = ρ1 ⊗ ρ2 and σ = σ1 ⊗ σ2. Then ρλ := λρ +
(1 − λ)σ(λ ∈ (0, 1)) is CC if and only if at least one of the following cases holds: (i)
[ρ1, σ1] = 0 and [ρ2, σ2] = 0; (ii) ρ1 = σ1; (iii) ρ2 = σ2.

Lemma 3.2 [16, Theorem 2.1] A state ρ ∈ D(Cn ⊗C
m) is CC if and only if ρ admits

a representation ρ = ∑s
i=1 Ai ⊗ Bi , where {Ai }, {Bi } are both commuting families

of normal operators.

Based on these lemmas, we obtain the following, which gives the structure of a
QC-breaking local quantum channel �1 ⊗ �2.

Theorem 3.1 Let �1 and �2 be quantum channels on Mn and Mm, respectively.
Then �1 ⊗ �2 is QC-breaking if and only if either one of �1 and �2 is trace-type or
both �1 and �2 are measurement maps.

Proof Necessity Suppose that �1 ⊗ �2 is QC-breaking, then (�1 ⊗ �2)(ρ) is a CC
state for every state ρ in D(Cn ⊗ C

m). Assume that �1 and �2 are not trace-type.
Then we have to prove that both �1 and �2 are measurement maps. Suppose that �1
is not a measurement map. Then by Lemma 2.3 we can find two states σ1, σ2 ∈ D(Cn)

such that [�1(σ1),�1(σ2)] = 0. Take any states ρ1, ρ2 ∈ D(Cm) and put

X = 1

2
σ1 ⊗ ρ1 + 1

2
σ2 ⊗ ρ2.
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Then X ∈ D(Cn ⊗ C
m) and

(�1 ⊗ �2)(X) = 1

2
�1(σ1) ⊗ �2(ρ1) + 1

2
�1(σ2) ⊗ �2(ρ2),

which is CC since �1 ⊗ �2 is QC-breaking. By Lemma 3.1, we see that �2(ρ1) =
�2(ρ2).This concludes that�2 is trace-type, which contradicts the assumption. Hence,
�1 is a measurement map. Similarly, �2 is also a measurement map.

Sufficiency Suppose that one of �1 and �2 is trace-type, then (�1 ⊗ �2)(X) is a
product state for any state X ∈ D(Cn ⊗C

m) and therefore a CC state. Thus, �1⊗�2 is
QC-breaking. Suppose that both �1 and �2 are measurement maps, then for any state
ρ = ∑

i Ai ⊗ Bi ∈ D(Cn ⊗ C
m), (�1 ⊗ �2)(ρ) = ∑

i �1(Ai ) ⊗ �2(Bi ). Lemma
2.3 yields that {�1(Ai )} and {�2(Bi )} are commuting families of normal operators
since �k is †-preserving. It follows from Lemma 3.2 that (�1 ⊗ �2)(ρ) is CC. This
shows that �1 ⊗ �2 is QC-breaking. ��

For example, when �1 and �2 are complete decoherence channels or one of �1
and �2 is the totally depolarizing channel, �1 ⊗ �2 is QC-breaking.

4 Structures of Strongly CC-Preserving Local Quantum Channels

To get the structure of a strongly CC-preserving local quantum channel, we need to
prove the following lemmas.

Lemma 4.1 A nontrivial isotropic channel � on Mn is a linear bijection.

Lemma 4.2 Let {Xi }k
i=1 ⊂ Mn be a linearly independent family and {Yi }k

i=1 ⊂ Mm.

Then
∑k

i=1 Xi ⊗ Yi = 0 if and only if Yi = 0(i = 1, 2, . . . , k).

Lemma 4.3 If �1 and �2 are linear bijections on Mn and Mm, respectively, then
�1 ⊗ �2 is a linear bijection on Mn ⊗ Mm.

Based on these lemmas, we can prove the following lemma, which gives a qualitative
characterization of a strongly CC-preserving channel �1 ⊗�2 and will be used in the
proof of Theorem 4.1.

Lemma 4.4 Let �1 and �2 be quantum channels on Mn and Mm, respectively.
Then �1 ⊗ �2 is strongly CC-preserving if and only if �1 and �2 are commutativity
preserving in both directions.

With these lemmas, we give the structure of a strongly CC-preserving local quantum
channel as follows.

Theorem 4.1 Let n, m ≥ 3 and let �1 and �2 be quantum channels on Mn and
Mm, respectively. Then �1 ⊗ �2 is strongly CC-preserving if and only if �1 and �2
are nontrivial isotropic channels.
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Proof Necessity Suppose that �1 ⊗ �2 is strongly CC-preserving. Then we see from
Lemma 4.4 that �1 and �2 are commutativity preserving in both directions. Suppose
that �1 is not an nontrivial isotropic channel, then we see from Corollary 2.1 that �2
is a measurement map and so ran(�1) is commutative. Thus, �1 is not commutativity
preserving in both directions, a contradiction. Similarly, one can show that �2 is
an nontrivial isotropic channel. Therefore, both �1 and �2 are nontrivial isotropic
channels.

Sufficiency Suppose that �1 and �2 are nontrivial isotropic channels on Mn and
Mm , respectively. It is easy to check that both �1 and �2 are commutativity preserving
in both directions. It follows from Lemma 4.4 that �1 ⊗�2 is strongly CC-preserving.

��
For example, when �1 and �2 are depolarizing channels but not totally depolariz-

ing, �1 ⊗ �2 is strongly CC-preserving.

5 Characterization of the CC-Set of a Local Quantum Channel

In this section, let us consider the properties of the CC-set CC(�1 ⊗ �2) of a given
local quantum channel �1 ⊗ �2, which is defined as the set of all states that are
transformed into CC ones by �1 ⊗ �2. By definition, we see that �1 ⊗ �2 is CC-
preserving if and only if CC(�1 ⊗ �2) ⊃ CC(Cn ⊗ C

m), the set of all CC states on
C

n ⊗ C
m ; it is strongly CC-preserving if and only if CC(�1 ⊗�2) = CC(Cn ⊗ C

m)

and it is QC-breaking if and only if CC(�1 ⊗ �2) = D(Cn ⊗ C
m). Now, we discuss

the case where �1 ⊗�2 is CC-preserving but neither strongly CC-preserving nor QC-
breaking. Combining Theorem 2.2, 3.1 and 4.1, we only need consider the case that
one of �1 and �2 is a nontrivial isotropic channel and the other is a measurement map.

Obviously, for any channels �1,�2 and any state ρ ∈ D(Cn ⊗ C
m), we have

(�1 ⊗�2)(ρ) = (�1 ⊗1m)((1n ⊗�2)(ρ)). When �1 is a nontrivial isotropic channel
on Mn , we see that 1m and �1 are commutativity preserving in both directions and it
follows from Lemma 4.4 that (�1 ⊗ �2)(ρ) is CC if and only if (1n ⊗ �2)(ρ) is CC.
Therefore, CC(�1 ⊗ �2) = CC(1n ⊗ �2) provided that �1 is a nontrivial isotropic
channel. Similarly, CC(�1 ⊗ �2) = CC(�1 ⊗ 1m) provided that �2 is a nontrivial
isotropic channel.

With these observations, suppose that �1 is a nontrivial isotropic channel and �2
is a measurement map, we will give a characterization of CC(�1 ⊗ �2). Firstly, we
introduce some notations. For any ρ ∈ D(Cn ⊗ C

m), and any orthonormal bases
e := {|ei 〉}, f := {| fk〉} for C

n and C
m , respectively, we have

ρ =
∑

k


Ak
(ρ) ⊗ | fk〉〈 f
| =
∑

i j

|ei 〉〈e j | ⊗ Bi j (ρ),

where

Ak
(ρ) =
∑

i j

〈ei |〈 fk |ρ|e j 〉| f
〉 · |ei 〉〈e j |, Bi j (ρ) =
∑

k


〈ei |〈 fk |ρ|e j 〉| f
〉 · | fk〉〈 f
|,

called the component operators of ρ.
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With these notations, it was proved in [7, Corollary 2.1] that ρ ∈ D(Cn ⊗ C
m) is

CC if and only if {Ak
(ρ)} and {Bi j (ρ)} are commuting families of normal operators.
Since ρ is hermitian, we observe that 〈ei |〈 fk |ρ|e j 〉| f
〉 = 〈e j |〈 f
|ρ|ei 〉| fk〉 and so

(Ak
(ρ))† =
∑

i j

〈ei |〈 fk |ρ|e j 〉| f
〉 · |e j 〉〈ei |

=
∑

i j

〈e j |〈 f
|ρ|ei 〉| fk〉 · |e j 〉〈ei | = A
k(ρ),

and
(
Bi j (ρ)

)† = B ji (ρ), similarly. Thus, when {Ak
(ρ)} is a commuting family,
the operators Ak
(ρ) are all normal and when {Bi j (ρ)} is a commuting family, the
operators Bi j (ρ) are normal. Hence, {Ak
(ρ)} and {Bi j (ρ)} are commuting families if
and only if {Ak
(ρ)} and {Bi j (ρ)} are commuting families of normal operators if and
only if ρ is CC. From this observation, we obtain the following lemma, which will be
used in the proof of Theorem 5.1 below.

Lemma 5.1 Let e = {|ei 〉} and f = {| fk〉} be any orthonormal bases for C
n and C

m,
respectively. Then ρ ∈ D(Cn ⊗ C

m) is CC if and only if {Ak
(ρ)} and {Bi j (ρ)} are
commuting families.

With this lemma, we have the following theorem, which gives a necessary and sufficient
condition for a state ρ and P+ to be transformed into a CC state under a local quantum
channel �1 ⊗ �2, respectively.

Theorem 5.1 Let �1 be a nontrivial isotropic channel on Mn and �2 a measurement
map on Mm with �2(X) = ∑

k tr(Mk X) · |ek〉〈ek |, ∀X ∈ Mm.

(i) Let ρ = ∑
i j Di j (ρ) ⊗ Ei j ∈ D(Cn ⊗ C

n) with Ei j = |ei 〉〈e j |. Then ρ ∈
CC(�1 ⊗ �2) if and only if {Ak(ρ)} is a commuting family, where Ak(ρ) =∑

i, j tr(Mk Ei j ) · Ai j .

(ii) When m = n, let |β〉 = 1√
n

∑
i |ei 〉|ei 〉 be a maximally entangled state in C

n ⊗C
n

and P+ = |β〉〈β| = 1
n

∑
i, j Ei j ⊗ Ei j . Then P+ ∈ CC(�1 ⊗ �2) if and only if

P+ ∈ CC(�2 ⊗ �1) if and only if {Mk} is a commuting family.

Proof (i) Directly computing shows that ρ′ := (1n ⊗�2)(ρ) = ∑
k Ak(ρ)⊗|ek〉〈ek |.

So, the component operators Ak
(ρ
′) and Bi j (ρ

′) of ρ′ satisfy

Ak
(ρ
′) = δk,
 Ak(ρ),

Bi j (ρ
′) =

∑

k,


〈ei |〈ek |ρ′|e j 〉|e
〉 · |ek〉〈e
|

=
∑

k

〈ei |〈ek |ρ′|e j 〉|ek〉 · |ek〉〈ek |,

this implies that {Bi j (ρ
′)} is clearly a commuting family. Thus, we see from Lemma

5.1 that ρ′ is a CC state if and only if {Ak
(ρ
′)} is a commuting family if and only

if {Ak(ρ)} is a commuting family.
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(ii) First, by using the fact that the swap operation � : X ⊗ Y �→ Y ⊗ X is CC-
preserving in both directions with �(P+) = P+, we see that (�1 ⊗ �2)(P+) is
CC if and only if (�2 ⊗�1)(P+) is CC. Next, let us use conclusion (i) to complete
the proof of (ii). To do this, by an easy computation, we have

(1n ⊗ �2)(P+) = 1

n

∑

k

(∑

i, j

tr(Mk Ei j )Ei j

)
⊗ |ek〉〈ek | = 1

n

∑

k

MT
k ⊗ |ek〉〈ek |.

Therefore, (1n ⊗ �2)(P+) is CC if and only if {Mk} is a commuting family. ��
Remark 1 Let �1 be any quantum channel on Mn and �2 a measurement map on
Mm with �2(X) = ∑

k tr(Mk X)|ek〉〈ek |. For any state ρ = ∑
i j Di j (ρ) ⊗ Ei j ∈

D(Cn ⊗ C
n) with Ei j = |ei 〉〈e j |, we define Ak(ρ) = ∑

i, j tr(Mk Ei j )Di j (ρ) and let
G(�1⊗�2) be the set of all states ρ = ∑

i j Di j (ρ)⊗Ei j such that [Ak(ρ), A j (ρ)] = 0
for all k, j . Then Theorem 5.1 (i) tells us that when �1 is a nontrivial isotropic channel
on Mn and �2 is a measurement map on Mm , we have CC(�1⊗�2) = G(�1⊗�2).

Remark 2 From Theorem 5.1 (ii), P+ ∈ CC(�1 ⊗ �2) if and only if {Mk} is a
commuting family. However, the commutativity of the family {Mi } does not imply
that �1 ⊗�2 is QC-breaking. For example, let {|0〉, |1〉} be the canonical orthonormal
basis for C

2 and M0 = 1
2 |0〉〈0| + 1

3 |1〉〈1|, M1 = 1
2 |0〉〈0| + 2

3 |1〉〈1|. Define �2(X) =∑1
i=0 tr(Mi X)|i〉〈i |,∀X ∈ M2, then we get a measurement map �2 on M2. Put

ρ = 1

2
A ⊗ |0〉〈0| + 1

2
B ⊗ |1〉〈1| ∈ D(C3 ⊗ C

2)

where A, B ∈ D(C3) with [A, B] = 0. We know from Lemma 3.1 that ρ is not CC.
We compute that the matrices Di j (ρ) and Ak(ρ) in Theorem 5.1 (i) are as follows:

D00(ρ) = 1

2
A, D11(ρ) = 1

2
B, D01(ρ) = D10(ρ) = 0,

A0(ρ) = 1

4
A + 1

6
B, A1(ρ) = 1

4
A + 1

3
B.

Since [A0(ρ), A1(ρ)] = 1
24 [A, B] = 0, it follows from Theorem 5.1 (i) that ρ /∈

CC(13 ⊗ �2). This shows that id3 ⊗ �2 is not QC-breaking, while {M0, M1} is a
commuting family and so P+ ∈ G(13 ⊗ �2).

Combining the results in Sects. 2–4 with Theorem 5.1 and Remark 5.1, we get a
classification (Case 1 and Case 2 below) of local quantum channels and find out the
corresponding CC-set CC(�1 ⊗ �2) of �1 ⊗ �2 for the case where m, n ≥ 3 as
follows.

Case 1. Both of �1 and �2 are commutativity preserving (CP). In this case, �1⊗�2
has just the following sixteen types: (x) ⊗ (y) where x, y ∈ {a, b, c, d} (please refer
to Corollary 2.1). See Table 1 below.

Case 2. One of �1 and �2 is not commutativity preserving (NCP). In this case,
�1 ⊗ �2 has just the following five types: NCP ⊗ NCP, NCP ⊗ (d), NCP ⊗ Not(d),
(d) ⊗ NCP and Not(d) ⊗ NCP. See Table 2 below.
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Table 1 The types of �1 ⊗ �2 and the corresponding CC-set CC(�1 ⊗ �2)

CC(�1 ⊗ �2) �1

(a) (b) (c) (d)

�2 (a) D(Cn ⊗ C
m ) G(�1 ⊗ �2) G(�1 ⊗ �2) D(Cn ⊗ C

m )

(b) G(�1 ⊗ �2) CC(Cn ⊗ C
m ) CC(Cn ⊗ C

m ) D(Cn ⊗ C
m )

(c) G(�1 ⊗ �2) CC(Cn ⊗ C
m ) CC(Cn ⊗ C

m ) D(Cn ⊗ C
m )

(d) D(Cn ⊗ C
m ) D(Cn ⊗ C

m ) D(Cn ⊗ C
m ) D(Cn ⊗ C

m )

Table 2 The types of �1 ⊗ �2 and the corresponding CC-set CC(�1 ⊗ �2)

CC(�1 ⊗ �2) �1

NCP CP

(d) Not(d)

�2 NCP Unknown D(Cn ⊗ C
m ) Unknown

CP (d) D(Cn ⊗ C
m ) Impossible Impossible

Not(d) Unknown Impossible Impossible

6 Summary and Conclusions

Motivated by the fact that correlations of quantum states may change under local
quantum channels, depending on the type of channels and the type of input states, we
have considered three types of general local quantum channels in the form of �1 ⊗
�2-(i) the CC-preserving channels, which preserve classical correlations by turning
a classically correlated state into a classically correlated one, (ii) the QC-breaking
channels, which fully break quantum correlations by turning any state into a classically
correlated one and (iii) the strongly CC-preserving channels, which preserve classical
correlations in both directions. For any n ⊗ m systems, we have shown that when
n, m ≥ 3, �1 ⊗�2 is CC-preserving if and only if �i is a nontrivial isotropic channel
or measurement map for each i = 1, 2 (e.g., �1 is a depolarizing channel and �2
is a complete decoherence channel); equivalently, it can create quantum correlations
from an input CC state if and only if one of �1 and �2 is neither a nontrivial isotropic
channel nor measurement map. We have also proved that �1 ⊗ �2 is QC-breaking
if and only if either one of �1 and �2 is trace-type (i.e., mapping any state to the
same one), or both �1 and �2 are measurement maps, in that case, �1 ⊗ �2 can
not create quantum correlations from any initial state (e.g., �1 and �2 are complete
decoherence channels or one of �1 and �2 is the totally depolarizing channel). We
have further proved that �1 ⊗ �2 is strongly CC-preserving if and only if both �1
and �2 are nontrivial isotropic channels, in that case, �1 ⊗ �2 preserves quantum
correlations in both directions, and so �1 ⊗ �2 can create quantum correlations from
only a quantum correlated state (e.g., �1 and �2 are depolarizing channels but not
totally depolarizing). According to these results, we have presented that a classification

123



366 Found Phys (2015) 45:355–369

of local quantum channels based on the influence on commutativity of �1 and �2, and
obtained the corresponding set of bipartite states that are mapped into the classically
correlated form by �1 ⊗ �2.

It is remarkable to point out that our findings also apply to the situation where one
wants to perform local operations on a composite quantum system with the aim of
creating or preserving quantum (classical) correlations. We believe that our results are
useful for the storage, preparation and generation of quantum correlations in practical
applications.

Lastly, our discussion in Sect. 5 leads to an interesting question for further study:
when one of �1 and �2 is not commutativity preserving and the other is not trace-
type, how to characterize the set of all states which are transformed into CC states by
�1 ⊗ �2 ?
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Appendix: Proofs of Lemmas

Proof of Lemma 2.3 (1) ⇒ (2) : Suppose that �(Mn) is commutative, then the
operators in �(Mn) are all normal and pairwise commute. Assume that �(Mn) =
span{A1, A2, . . . , Am}, m = dim(�(Mn)), where [Ai , A j ] = 0 for i = j , then
there exists an orthonormal basis {|k〉}n

k=1 for C
n such that A j = ∑n

k=1 λk j |k〉〈k| for
all j = 1, 2, . . . , m. For any A ∈ Mn , there exists a unique sequence {c j (A)}m

j=1 of
complex numbers such that

�(A) =
m∑

j=1

c j (A)A j =
n∑

k=1

m∑

j=1

c j (A)λk j |k〉〈k| =
n∑

k=1

fk(A)|k〉〈k|,

where fk(A) = ∑m
j=1 c j (A)λk j for all k. Clearly, fk(A) = 〈k|�(A)|k〉 =

tr(�†(|k〉〈k|)A), where �† denotes the dual map of � with respect to the Hilbert-
Schmidt inner product on Mn . Thus,

�(A) =
n∑

k=1

tr(�†(|k〉〈k|)A)|k〉〈k|, ∀A ∈ Mn .

It is easy to see that {�†(|k〉〈k|)} is a POVM for C
n . This shows that � is a measurement

map.
(2) ⇒ (1) and (1) ⇒ (3): Evidently.
(3) ⇒ (1) : Let (3) hold. Then [�(σ1),�(σ2)] = 0 for all positive operators σ1, σ2

on C
n . By using the spectral theorem we see that [�(σ1),�(σ2)] = 0 for all Hermitian

operators σ1, σ2 on C
n . So, [�(σ1),�(σ2)] = 0 for all operators σ1, σ2 on C

n . ��
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Proof of Lemma 4.1 To show this, without loss of generality, we may assume that
�(A) = tU AU † + 1−t

n tr(A)In for all A ∈ Mn where U is a unitary matrix, − 1
n−1 ≤

t ≤ 1 and t = 0. Clearly, for any Y ∈ Mn , the matrix X = 1
t (U

†YU − 1−t
n tr(Y )In)

satisfies �(X) = Y . This implies that � is surjective. On the other hand, let �(A) =
�(B), that is, tU (A − B)U † + 1−t

n tr(A − B)In = 0. Then we have A − B =
t−1
tn tr(A − B)In since t = 0. Now we take trace operation and get that (t − 1)tr(A −

B) = t · tr(A − B). This shows that tr(A − B) = 0 and thus tr(A) = tr(B). Since
�(A) = �(B), we get that tU AU † = tU BU † and so A = B. Hence, � is injective.

��
Proof of Lemma 4.2 The “if part” is clear. We only need to prove the “only if part”.
Let

∑k
i=1 Xi ⊗ Yi = 0. Then for any pure states |c〉, |d〉 ∈ C

m we have

tr2

((
k∑

i=1

Xi ⊗ Yi

)
(In ⊗ |d〉〈c|)

)
=

k∑

i=1

〈c|Yi |d〉Xi = 0.

Since {Xi }k
i=1 is a linearly independent family, 〈c|Yi |d〉 = 0 for all i and all |c〉, |d〉 ∈

C
m . That is, Yi = 0 for all i ∈ {1, 2, . . . , k}. ��

Proof of Lemma 4.3 For any ρ = ∑
i Ai ⊗ Bi , there exist Ci , Di such that �1(Ci ) =

Ai and �2(Di ) = Bi for all i . Put σ = ∑
i Ci ⊗ Di , then (�1 ⊗ �2)(σ ) = ρ and

thus �1 ⊗ �2 is surjective. On the other hand, for any σ1, σ2 in Mn ⊗ Mm , we
write σ1 = ∑

i, j Ei j ⊗ Ai j , σ2 = ∑
i, j Ei j ⊗ Bi j , where Ei j = |i〉〈 j | and {|i〉} is an

orthonormal basis for C
n . Suppose that (�1 ⊗ �2)(σ1) = (�1 ⊗ �2)(σ2), then

∑

i, j

�1(Ei j ) ⊗ [�2(Ai j ) − �2(Bi j )] = 0.

Since {Ei j } is a Hamel basis for Mn and �1 is a linear isomorphism, {�1(Ei j )} is
a linearly independent set. By Lemma 4.2, we have �2(Ai j ) − �2(Bi j ) = 0 for all
i, j , so Ai j = Bi j for all i, j since �2 is also a bijection. Therefore, σ1 = σ2. Thus,
�1 ⊗ �2 is a linear bijection. ��
Proof of Lemma 4.4 Necessity Suppose that �1⊗�2 is strongly CC-preserving. Then
�1 and �2 are commutativity preserving on states and then commutativity preserving.
Assume that �2 is not commutativity preserving in both directions. Then there exist
ρ2, σ2 ∈ D(Cm) such that [ρ2, σ2] = 0 but [�2(ρ2),�2(σ2)] = 0. Choose ρ1, σ1 ∈
D(Cn) such that ρ1 = σ1 and [ρ1, σ1] = 0, and let ρ = 1

2ρ1 ⊗ ρ2 + 1
2σ1 ⊗ σ2. Then

ρ is not a CC state (Lemma 3.1) and

(�1 ⊗ �2)(ρ) = 1

2
�1(ρ1) ⊗ �2(ρ2) + 1

2
�1(σ1) ⊗ �2(σ2).

Since [�1(ρ1),�1(σ1)] = 0 and [�2(ρ2),�2(σ2)] = 0, it follows from Lemma 3.1
that (�1 ⊗ �2)(ρ) is a CC state, while ρ is not a CC state, a contradiction. Thus,
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�2 is commutativity preserving in both directions. Similarly, one can show that �1 is
commutativity preserving in both directions.

Sufficiency. Suppose that �1 and �2 are commutativity preserving in both direc-
tions. First, let us check that both �1 and �2 are bijective. To do this, we assume that
�1(X) = 0. Then [�1(X),�1(A)] = 0 for all A ∈ Mn . Since �1 is commutativity
preserving in both directions, we conclude that X = cIn . Because that �1 is trace-
preserving, we see that c = 0 and then X = 0. This shows that �1 is injective and so
bijective since dim Mn = n2 < ∞. Similarly, �2 is bijective. Let ρ ∈ CC(Cn ⊗C

m).
Then by using Lemma 3.2, we can find two commuting families of normal operators
{Ci } and {Di } such that ρ = ∑

i Ci ⊗Di . Thus, (�1⊗�2)(ρ) = ∑
i �1(Ci )⊗�2(Di ).

Since �1 and �2 are commutativity preserving and †-preserving, we see that {�1(Ci )}
and {�2(Di )} are commuting families of normal operators. By using Lemma 3.2 again,
we conclude that (�1 ⊗�2)(ρ) is a CC state. Let ρ ∈ D(Cn ⊗C

m) and (�1 ⊗�2)(ρ)

be a CC state. It follows from Lemma 3.2 that (�1 ⊗ �2)(ρ) = ∑
i Ai ⊗ Bi for

some commuting families {Ai } and {Bi } of normal operators. Since �1 and �2 are
bijective (Lemma 4.1) and commutativity preserving in both directions, we can find
two commuting families of normal operators {Ci } and {Di } such that �1(Ci ) = Ai

and �2(Di ) = Bi for all i . Therefore, (�1 ⊗ �2)(
∑

i Ci ⊗ Di ) = ∑
i Ai ⊗ Bi and

thus ρ = ∑
i Ci ⊗ Di since �1 ⊗�2 are injective. Hence, ρ ∈ CC(Cn ⊗C

m) (Lemma
3.2). Thus, �1 ⊗ �2 is strongly CC-preserving. ��
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