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Abstract It has been a longstanding problem to show how the irreversible behaviour
of macroscopic systems can be reconciled with the time-reversal invariance of these
same systems when considered from a microscopic point of view. A result by Lanford
(Dynamical systems, theory and applications, 1975, Asterisque 40:117–137, 1976,
Physica 106A:70–76, 1981) shows that, under certain conditions, the famous Boltz-
mann equation, describing the irreversible behaviour of a dilute gas, can be obtained
from the time-reversal invariant Hamiltonian equations of motion for the hard spheres
model. Here, we examine how and in what sense Lanford’s theorem succeeds in
deriving this remarkable result. Many authors have expressed different views on the
question which of the ingredients in Lanford’s theorem is responsible for the emer-
gence of irreversibility. We claim that these interpretations miss the target. In fact, we
argue that there is no time-asymmetric ingredient at all.

Keywords Statistical mechanics · Irreversibility · Time-reversal invariance ·
Lanford

1 Introduction

The Boltzmann equation is one of the most important tools of statistical physics. It
describes the evolution of a dilute gas towards equilibrium, and serves as the key to
the derivation of further hydrodynamical equations. A striking aspect of this equation
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is that it is irreversible, i.e., it is not invariant under time reversal. Indeed, when
Boltzmann [2] presented this equation, he immediately derived from it a celebrated
theorem, now commonly known as the H -theorem, which shows that a certain quantity
H of the gas can only change monotonically in time, so that the gas displays an
evolution towards equilibrium.

Despite its long-standing legacy, the status of the H -theorem has remained contro-
versial. The reversibility objection by Loschmidt [19] questioned the validity of the
H -theorem by constructing a counterexample. Essentially, this objection raised the
problem of how an irreversible macro-evolution equation can be obtained from the
time-reversal invariant micro-evolution equations governing molecular motion. More
than twenty years later, Culverwell [10] posed the same problem and inaugurated a
famous debate in Nature with a provocative question: “Will anyone say exactly what
the H -theorem proves?”.

In his responses to the reversibility objection, [4,5] suggested an alternative
approach and reading of the H -theorem, which the [12] called the “modified for-
mulation of the H -theorem”, and which we will refer to as the statistical H -theorem.
Yet, the problem of providing a rigorous statistical counterpart of the Boltzmann equa-
tion and the H -theorem was left unsolved. It is widely believed that a theorem by Oscar
[15–17] provides the best available candidate for a rigorous derivation of the Boltz-
mann equation and the H -theorem from statistical mechanics, in the limiting case of
an infinitely diluted gas system described by the hard spheres model, at least for a very
brief time.

The proof of Lanford’s result is cast in the formalism developed by Bogolyubov,
Born, Green, Kirkwood and Yvon (BBGKY). This formalism provides, departing from
the Hamiltonian formulation of statistical mechanics, a hierarchy of equations for the
time-evolution of macroscopic systems, called the BBGKY hierarchy. On the other
hand, the Boltzmann equation itself can also be reformulated in the form of a hier-
archy (the Boltzmann hierarchy). Lanford’s theorem then shows how the Boltzmann
hierarchy can be obtained from the BBGKY hierarchy for the hard spheres model in
the Boltzmann–Grad limit under specific conditions. To be sure, the technical assump-
tions needed in this rigorous derivation present on several points severe limitations.
In particular, the convergence obtained in this Boltzmann–Grad limit holds for a very
brief time only, and the Boltzmann–Grad limit itself implies that the density of the
gas-model goes to zero, which is quite incompatible with the hydrodynamic limit
where the Boltzmann equation is actually supposed to work. These clauses of course
imply that the theorem will hardly apply to realistic circumstances.

Still, Lanford’s theorem has recently been called “maybe the most important math-
ematical result of kinetic theory” [28]. The importance of this theorem is that it claims
to show how the conceptual gap between macroscopic irreversibility and microscopic
reversibility can in principle be overcome, at least in simple cases. However, Lan-
ford’s papers suggested various answers to the question exactly how the irreversibility
embodied in the Boltzmann equation or the ensuing H -theorem arises in this rigorous
statistical mechanical setting. Later authors on Lanford’s theorem (e.g.: [8,9,18,22–
24,26]) have also expressed mutually incompatible views on this particular issue. So,
one may well ask: “Will anyone say exactly what Lanford’s theorem proves?”.
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The present paper addresses this question. We analyse the problem of how Lanford’s
theorem gives rise to the irreversible behaviour of the Boltzmann equation and show
that most previous interpretations of the emergence of irreversibility in this theorem
miss the target. In fact, we argue that there is no genuine irreversibility in Lanford’s
theorem. We begin by reviewing the Boltzmann equation and the H -theorem in the
kinetic theory of gases for the hard spheres model, along with the quest for a statistical
H -theorem (Sect. 2). Section 3 discusses the connection between the BBGKY hier-
archy for the hard spheres model and the Boltzmann hierarchy. Lanford’s theorem is
then stated in Sect. 4. We take up the issue of irreversibility in Sect. 5, and present our
conclusions in Sect. 6. To summarize, we conclude that Lanford’s theorem does not
contain any time asymmetric ingredient. In fact, we argue that all the assumptions of the
theorem are time-reversal invariant. We also show that, contrary to claims by Lanford
[15], Cercignani et al. [9] and Cercignani [8] the technical procedure of rewriting all
collision integrals in terms of an incoming representation, which is used in the proof,
does not introduce time asymmetry. In particular, while the initial conditions allowed
by the theorem allow one to derive the Boltzmann equation for positive times, they
also allow one to derive the so-called ’anti-Boltzmann equation’ (the time-reversal
transform of the Boltzmann equation) for negative times. Whereas the solutions of the
Boltzmann equation lead to an increase of entropy, solutions of the anti-Boltzmann
equation lead to a decrease of entropy. The upshot of our analysis is that Lanford’s
result is time-reversal invariant, and thus it is neutral with respect to the arrow of time.
As a consequence, there cannot be any source of irreversibility in the theorem. These
conclusions mirror observations that have been made many times concerning Boltz-
mann’s statistical H -theorem. Thus, although Lanford’s theorem does not give rise to
irreversibility, it does nevertheless provide a mathematically rigorous underpinning of
the statistical H -theorem.

2 Boltzmann’s Derivation of the Boltzmann Equation and the H-Theorem

In the kinetic theory of gases, one considers a gas as a system consisting of a very large
number N of molecules, moving in accordance with the laws of classical mechanics,
enclosed in a container � with perfectly elastic reflecting and smooth walls. In the hard
spheres model, these molecules are further idealized as rigid and impenetrable spheres
of diameter a interacting only by collisions. The instantaneous state of the gas system
at time t is represented by a distribution function ft (�q, �p), such that ft (�q, �p)d �qd �p is
supposed to give the relative number of molecules in the gas with positions between
�q and �q + d �q inside the container � and momenta between �p and �p + d �p.

Of course, the question exactly how such a smooth function ft is meant to represent
the distribution of a finite number of particles is somewhat tricky, and cannot be literally
true. We shall come back to it later (Sect. 4). For the moment, we notice that, for each
time t , ft formally defines a probability density on the so-called μ-space μ = �×R

3,
i.e.:

ft ≥ 0 and
∫

�

d �q
∫

R3
d �p ft (�q, �p) = 1, (1)
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assigning probabilities to molecular positions and momenta —which thus play the role
of stochastic variables. However, in kinetic theory, the distribution function itself is
thought to represent, in some sense, the relative number of particles over their various
possible positions and momenta in the actual microstate of the gas. The distribution
function should therefore be sharply distinguished from probability densities as they
arise from some probability measure on phase space in statistical mechanics.

In order to describe the evolution of the gas system, one needs to consider how the
distribution function ft (�q, �p) evolves in time. The crucial assumption in Boltzmann’s
heuristic derivation of this evolution equation is the Stoßzahlansatz, or “assumption
about the number of collisions”, also often referred to as the Hypothesis of Molecular
Chaos, which provides a constraint on the way in which collisions between the particles
take place. There are (at least) two distinct versions of this assumption in the literature,
which we would like to distinguish:

• Factorization
The relative number of pairs of particles, with positions within d �q1 and momenta
within d �p1, and within d �q2 and d �p2, respectively, is given by

f (2)
t (�q1, �p1; �q2, �p2)d �p1 d �q1d �p2d �q2 = ft (�q1, �p1) ft (�q2, �p2) d �p1d �q1d �p2d �q2.(2)

• Pre-collision
The relative number N (�q, �p1; �q, �p2) of pairs of particles which are about to col-
lide in a region d �q and within a time span dt is proportional to the product
ft (�q, �p1) ft (�q, �p2) and the volume dV of the “collision cylinder”, i.e. the spa-
tial region around the position q at which the particles are located when colliding,
i.e.

N (�q, �p1; �q, �p2) = N ft (�q, �p1) ft (�q, �p2) dV d �p1d �p2, (3)

where

dV = a2π �ω12 ·
( �p1 − �p2

m

)
dtd �ω12. (4)

Here, �ω12 is a unit vector pointing form the center of particle 1 to the center of particle
2 (See Fig. 1). The condition that the particles are “about to collide”can be expressed
mathematically by the condition

�ω12 · ( �p1 − �p2) ≥ 0. (5)

These two versions of the Stoßzahlansatz have an importantly different interpreta-
tion. The factorization condition (2) may be interpreted as saying that particle pairs
are uncorrelated, i.e. finding a first particle at a particular position �q1 and moving
with momentum �p1 gives no information about whether we find the second particle at
position �q2 and with momentum �p2. Note that the condition (2) cannot be literally true
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for all (�q1, �p1; �q2, �p2): due to their finite diameter, no two particles can have positions
such that ‖�q1 − �q2‖ < a. It is plausible, therefore that Boltzmann implicitly assumed
some limit in which a −→ 0.

The pre-collision condition, on the other hand, says that, when we focus on those
pairs of particles that are just about to undergo a collision, they are to be regarded as
uncorrelated. It is this condition, and not the factorization condition that is actually
used in deriving the Boltzmann equation and the H -theorem. Of course, one could
note that this condition, again, cannot be literally true for the hard-spheres model for
the same reason as mentioned before: as long as the particles have a finite diameter, no
two particles can be found at the same position �q (which would indeed raise questions
about the definition of ω12). But again, Boltzmann’s derivation of the Boltzmann
equation should be, at best, regarded as a heuristic argument, rather than a rigorous
proof.

We also note that the literature is somewhat confusing in the terminology here.
Many authors use the name “Molecular Chaos” for the factorization condition (2)
alone, rather than the pre-collision condition.

Whenever a collision occurs, molecular velocities change. If the particles have
momenta �p1, �p2 just before the collision, their outgoing momenta will be denoted
as �p ′

1 and �p ′
2 , respectively. In the hard-spheres model, these outgoing momenta are

simple functions of �p1 and �p2 and �ω12. Indeed:

�p ′
1 = �p1 − ( �ω12 · ( �p1 − �p2)) �ω12

�p ′
2 = �p2 + ( �ω12 · ( �p1 − �p2)) �ω12, (6)

which can be written more compactly in terms of a linear collision operator T�ω12 ,
defined by (6):

( �p1, �p2) −→ ( �p ′
1 , �p ′

2 ) = T�ω12( �p1, �p2). (7)

By standard arguments, one obtains from the pre-collision version of the
Stosszahlansatz the Boltzmann equation, which describes the change of the distri-
bution function in the course of time:

∂

∂t
ft (�q, �p1) + �p1

m
· ∂

∂ �q ft (�q, �p1)

= Na2
∫

R3
d �p2

∫
�ω12·( �p1− �p2)≥0

d �ω12 (
�p1 − �p2

m
)

· �ω12
[

ft (�q, �p′
1) ft (�q, �p′

2) − ft (�q, �p1) ft (�q, �p2)
]

(8)

The second term in the left-hand side of the equation accounts for the change of
the distribution function through free motion of particles, whereas the right-hand
side is the collision term. Here, the variables �p′

i are to be thought of as implicit
functions �p′

i ( �p1, �p2) given by (7). Note that the collision term is not linear in ft .
Hence, the overall Boltzmann equation is non-linear, and this is a major obstacle
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Fig. 1 Geometry of a collision
between two hard spheres 1

2

1

2
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in attempts towards solving the equation. In fact, the question whether the equa-
tion does have physically meaningful solutions for all times for some given f0 as
initial condition remains hard even today and has only been answered in special
cases.

Boltzmann circumvented this problem by showing that a general theorem could nev-
ertheless be obtained. To derive this result, now commonly known as the H -theorem,
he introduced a functional of the distribution function defined as

H [ ft ] ≡
∫

ft (�q, �p) ln ft (�q, �p) d �pd �q, (9)

and proved that, under the assumption that the Boltzmann equation holds at all times,
and ft is a solution to this equation, then this quantity cannot increase, i.e.

d H [ ft ]
dt

≤ 0 (10)

for all t . In the case that the distribution function is and remains spatially uniform, i.e.
ft (�q, �p) = f ( �p), equality obtains only for a Maxwell distribution f ( �p) = Ae− �p2/B ,
which describes the equilibrium distribution. If the negative of the H -function is asso-
ciated with the entropy of the system, Boltzmann’s result means that this entropy
increases monotonically through non-equilibrium distirbutionss until the systems
reaches equilibrium and then remains constant. Thus, the H -theorem seems to capture
the spontaneous approach to equilibrium for gas systems, at least for the hard-spheres
gas model.

However, the validity of the H -theorem was called into question soon after its
formulation. Loschmidt’s reversibility objection, as rephrased by Boltzmann [4] goes
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basically as follows. Take a non-equilibrium initial distribution of state f0 for which
the H -theorem holds and let it evolve for a certain amount of time t , so that H [ ft ] <

H [ f0]. Then, suddenly reverse the velocities of all particles. The particles will now
simply retrace all their previous motions back to their original spatial configuration
at time 2t . If at that point we reverse their velocities again the distribution of state
at time 2t will be identical to f0. But since H , as defined by (9) is invariant under a
velocity reversal, this means that under the evolution from t to 2t , H must have been
increasing. In other words, for every dynamically allowed evolution for the particles
during which H decreases, one can construct another for which H increases, but also
allowed by the dynamics.

This argument relies on the tension between the time-reversal invariance of the
dynamics governing the motion of the particles and the explicit time-reversal non-
invariance of the H -theorem. In fact, one can trace this time-reversal non-invariance
back to the Boltzmann equation from which the H -theorem has been derived. To be
explicit, the behaviour under time reversal of the Boltzmann equation may be checked
by implementing the usual transformations: (i) replace ∂/∂t by −∂/∂t ; (ii) reverse the
direction of all momenta. It is easy to verify that under these transformations, the left-
hand side of (8) changes sign, but the collision integral does not, so that the equation
is indeed not time-reversal invariant. This is shown explicitly in Proposition 1 in the
Appendix. The equation one obtains by applying a time-reversal transformation to the
Boltzmann equation is commonly called the anti-Boltzmann equation, i.e. the version
of the Boltzmann equation with an additional minus sign in front of the collision
term.

The upshot of the reversibility objection is that the irreversible time-evolution of
macroscopic systems cannot be a consequence of the laws of Hamiltonian mechanics
alone. There must be some additional non-dynamical ingredient in the H -theorem, or
indeed in the Boltzmann equation from which it follows, that picks out a preferred
direction in time. As we now know, the Stoßzahlansatz is the culprit. The pre-collision
condition introduces a time-asymmetric element, since it is assumed to hold only for
particle pairs immediately before collisions, but not for pairs immediately after they
collided. This is responsible for the failure of the Boltzmann equation to be time-
reversal invariant. Indeed, if we had supposed, instead of the pre-collision condition, a
similar condition for the momenta immediately after collision, we would, by the same
argument, have obtained the anti-Boltzmann equation, and accordingly, we would have
derived an anti-H theorem, i.e. d H [ ft ]/dt ≥ 0. Hence the irreversible behaviour in
the macro-evolution of non-equilibrium distributions towards equilibrium is due to the
preference of this pre-collision rather than a corresponding post-collision condition.
But this preference cannot be grounded in the dynamics.

Boltzmann [4] response to Loschmidt already argued that one cannot prove that
every initial distribution function should always evolve towards the equilibrium dis-
tribution function, but rather that there are infinitely many more initial states that do
evolve, in a given time, towards equilibrium than do evolve away from equilibrium,
and that even these latter states will evolve towards equilibrium after an even longer
time. However, Boltzmann did not provide proofs for these claims. A more detailed
argument can be found in [5,6]. To any microstate one can associate a curve (the H -
curve), representing the behavior of H [ ft ] in the course of time. Boltzmann claimed
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that, with the exception of certain ‘regular’ microstates, the curve exhibits the fol-
lowing properties: (i) for most of the time, H [ ft ] is very close to its minimal value
Hmin ; (ii) occasionally the H -curve rises to a peak well above the minimum value;
(iii) higher peaks are extremely less probable than lower ones. If at time t = 0 the
curve takes on a value H[ f0] much greater than Hmin , the function may evolve only
in two alternative ways. Either H [ f0] lies in the neighborhood of a peak, and hence
H [ ft ] decreases in both directions of time; or it lies on an ascending or descending
slope of the curve, and hence H [ ft ] would correspondingly decrease or increase. How-
ever, statement (iii) entails that the first case is much more probable than the second.
One would thus conclude that there is a very high probability that at time t = 0 the
entropy of the system, associated with the negative of the H -function, would increase
for positive time; likewise there is a very high probability that the entropy would
increase for negative time. It is this conclusion that is sometimes called the statistical
H-theorem.

Nevertheless, Boltzmann gave no proof of these claims, nor did he indicate whether
or how they might still depend on the Boltzmann equation, or the Stoßahlansatz. In
fact, the statistical H -theorem is hardly a theorem at all. The problem of finding an
analogue of Boltzmann’s H -theorem in statistical mechanics thus remained unsettled.
In order to make progress upon this problem, many authors have called upon Lanford’s
theorem. Indeed, this theorem is often presented as providing a rigorous derivation of
the Boltzmann equation and the associated H -theorem from statistical mechanics.

3 Lanford’s Derivation of the Boltzmann Equation from Hamiltonian
Statistical Mechanics

3.1 From the Hamiltonian Framework to the BBGKY Hierarchy

In this section we briefly describe the general form of the BBGKY hierarchy. Again,
we consider a classical mechanical system consisting of N particles, each with the
same mass m. In order to alleviate a bit the notation of the equations to follow, we will
set m = 1. The particles are contained in a vessel � ⊂ R

3 with a finite volume and
smooth wall ∂�. But we now approach this system from statistical mechanics, rather
than kinetic theory. Its 6N -dimensional phase space is given by �N = (� × R

3)N

and its evolution is governed by a Hamiltonian

HN (x) =
N∑

i=1

�pi
2 +

N∑
i< j

φ(�qi − �q j ). (11)

Here, x denotes the microstate x = (x1, . . . , xN ) = (�q1, �p1, . . . , �qN , �pN ).
Strictly speaking, the Hamiltonian should also contain a term corresponding to the

elastic wall potential, describing the interaction when individual particles collide with
the boundary ∂� of the vessel. However, there are ways to suppress this complication.
The easiest way is to suppose that each particle i undergoes specular reflection when
it hits the wall and identify the values (�qi , �pi ) just before such a collision and the
values (�qi , �p′

i ) immediately after. In this move, the phase-space �N is endowed with
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the topology of a torus, and the dynamics under wall collisions becomes smooth.
Indeed, a collision with the wall becomes indistinguishable from free motion, and
consideration of the wall potential becomes redundant.

Now, although we will eventually focus on the hard-sphere model, i.e. the special
case when

φ(�qi − �q j ) =
{∞ when‖(�qi − �q j )‖ ≤ a.

0 otherwise
(12)

We assume, for now, that φ is a smooth function obeying the Lipshitz condition.
The virtue of this assumption is that, in this case, the Hamiltonian (11) is known to
be integrable, so that there exists a smooth one-parameter group of transformations,
{Tt , t ∈ R} on �N , called the Hamiltonian flow, Tt : �N −→ �N , �N � x → xt =
Tt (x) that characterizes the dynamics.

The statistical state of the system is given by a probability measure μ over �N . We
assume that μ is absolutely continuous with respect to the Lebesgue measure on �,
so one can write

μ(A) =
∫

A
μ(x)dx, (13)

in terms of a density function μ(x) with respect to the Lebesgue measure on �.
The evolution of such a statistical state μ(x) at any instant t is defined by

μt (x) = μ(T−t x), (14)

in terms of the Hamiltonian flow or, equivalently, by means of the Liouville equation

∂μ

∂t
= {H, μ} =

N∑
i=1

∂ H

∂ �qi

∂μ

∂ �pi
− ∂ H

∂ �pi

∂μ

∂ �qi
=: HN μ. (15)

The BBGKY approach exploits the fact that the above Hamiltonian (11) is invariant
under permutation of the particles, and that, moreover, the inter-particle potential φ

only contains pair-interactions. Furthermore, we assume that μ is permutation invari-
ant as well:

μ(x1, . . . , xi . . . , x j , . . . xN ) = μ(x1, . . . , x j . . . , xi , . . . xN )

∀i, j ∈ {1, . . . , N }, i �= j. (16)

Obviously, for a permutation invariant Hamiltonian such as (11), this property of μt

will be conserved under the dynamical evolution (15).
With the above symmetry assumptions in place, it is clear that macroscopic quanti-

ties of physical interest will only depend on how many particles have certain molecular
properties, or how many pairs have certain relations to each other, etc., but not on their
particle labels. It thus becomes attractive to study the dynamics in terms of reduced
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probability densities obtained by conveniently integrating out most of the variables.
For this purpose, one defines a hierarchy of reduced or marginal probability densities:

μ1(x1) :=
∫

μ(x1, . . . xN )dx2 · · · xN ,

...

μk(x1, . . . , xk) :=
∫

μ(x)dxk+1 · · · dxN , (17)

...

μN (x1, . . . , xN ) := μ(x1, . . . , xN ).

Here, for instance, μk is the probability density that k particles occupy positions
�q1, . . . , �qk and move with momenta �p1, . . . , �pk , while the remaining N − k particles
possess arbitrary positions and momenta. Note that, although μ1(x) is thus a marginal
probability density on μ-space, just like the distribution function f (�q, �p) discussed
in Sect. 2, the conceptual status of these two density functions is very different.

With a somewhat different normalization convention, one defines rescaled reduced
probability densities:

ρk(x1, . . . , xk) = N !
(N − k)!

1

N k
μk(x1, . . . , xk). (18)

It remains, of course, to specify the time evolution of these rescaled reduced probability
densities.

Now, the N -particle Liouville operator HN in the Liouville equation (15) can be
expanded as

HN = −
N∑

i=1

�pi · ∂

∂ �qi
+

N∑
i �= j

Li j , (19)

where

Li j := ∂φ(�qi − �q j )

∂ �qi
· ∂

∂ �pi
. (20)

The evolution of ρ1 is therefore given by

∂ρ1,t (x1)

∂t
= �p1 · ∂

∂ �q1
ρ1,t (x1) + N

∫
dx2L12ρ2,t (x1, x2), (21)

and for the higher-order rescaled reduced probability densities:

∂ρk,t

∂t
= −

N∑
i=1

�pi · ∂

∂ �qi
ρk,t +

k∑
i �= j

Li jρk,t + N
k∑

i=1

∫
dxk+1

∂φ(�qi − �qk+1)

∂ �qi
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· ∂

∂ �pi
ρk+1,t . (22)

Or, in abbreviated form:

∂ρk,t

∂t
= Hkρk,t + Cφ

k,k+1ρk+1,t , k = 1, . . . , N , (23)

where the superscript on the operator C is intended to remind one that it depends on
the smooth inter-particle potential φ in (11).

These dynamical equations for the rescaled reduced densities of the statistical state
μ constitute the BBGKY hierarchy. Note that, taken together, they are strictly equiva-
lent to the Hamiltonian evolution, i.e. nothing else has been assumed yet, except for the
rather harmless permutation invariance of ρ and the specific form of the Hamiltonian
(11). As one might expect, therefore, solving these equations is just as hard as for the
original Hamiltonian equations. Indeed, to find the time-evolution of ρ1 from 21, we
need to know ρ2,t . But to solve the dynamical equation for ρ2, we need to know ρ3,t

etc. Moreover, the equations of the BBGKY hierarchy are still perfectly time-reversal
invariant.

Nevertheless, the above might already make one hopeful that a counterpart of the
Boltzmann equation can be obtained from the exact Hamiltonian dynamics. Indeed, if
we tentatively identify Boltzmann’s f function with ρ1, (21) looks somewhat similar
to the Boltzmann equation (8). Of course, much work still remains to be done: first
of all, the Boltzmann equation pertains to the hard-sphere model, whereas the Eq.
21 assumes a smooth pair-potential φ(�qi − �q j ). More importantly, we would have to
justify the tentative relationship between ρ1 and f . These tasks will be addressed in
the following subsections.

3.2 From Smooth Potentials to the Hard-spheres Gas Model

While the BBGKY hierarchy provides a generally useful format for studying the
evolution of a statistical state for a system of indistinguishable particles interacting by
smooth pair potentials, it is our purpose here to apply it to the hard-spheres potential
12.

There are several caveats when applying Hamiltonian dynamics or the BBKGY
hierarchy to the case of a hard-spheres model, in particular, because the potential 12
of this model does not obey the Lipshitz condition. First of all, we have to remove
configurations in which particles overlap, i.e. restrict our original phase space �N to:

�
(a)
N ,�= := {x ∈ (� × R

3)N : ‖�qi − �q j‖ ≥ a, i �= j, i, j ∈ {1, . . . , N } }. (24)

More importantly, the dynamical evolution of the microstate of a collection of N
hard spheres enclosed in a vessel might lead to (i) grazing collisions (ii) more than
two particles colliding simultaneously or (iii) an infinite number of collisions (either
between the particles mutually or between some particle and the wall) occurring within
a finite lapse of time. In all of these cases, the Hamiltonian equations cannot be solved,
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and the trajectory in phase space cannot be extended for all times. Fortunately, it has
been shown by Alexander [1] that the subset consisting of microstates x showing such
anomalous evolutions has a Lebesgue measure zero in �

(a)
N ,�=. Therefore, if, as we

assumed, the statistical state μ is absolutely continuous with respect to the Lebesgue
measure, these unwanted microstates make up a set of probability zero, and can be
ignored for the purpose of our analysis.

That is to say, we can either delete this unwanted set 	 of measure zero from
our phase space �

(a)
N ,�=, and in doing so guarantee that there is a Hamiltonian flow

{Tt , t ∈ R} defined on the smaller phase space �N ,�= \	, or continue with the original
space, with the provision that its Hamiltionian flow is defined only almost everywhere,
i.e. outside of the above set 	.

Thus, the hard-sphere dynamics is such that if we consider any given phase point
x = (x1, . . . xN ) (x �∈ 	) and consider how it will move under the flow in the next
sufficiently small time increment δt , then either all particles persist in free motion (or
perhaps some collide with the wall); or else some pair of particles, say i and j , collide.
In the latter case, at the moment of collision, they touch, i.e., their positions obey

�q j = �qi + a �ωi j for �ωi j = �q j − �qi , (25)

which implies that the microstate x lies on the boundary of �N ,�=, and in the collision
their momenta undergo an instantaneous transition, cf. (7):

( �pi , �p j ) −→ ( �p ′
i , �p ′

j ) = T�ωi j ( �pi , �p j ). (26)

Note that T�ω is measure preserving, and an involution, i.e. T�ω ◦T�ω = 1l. In other words,
whenever the incoming momenta before a collision between particles i, j happen to
take values ( �p ′

i , �p ′
j ), they are transformed into ( �pi , �p j ):

( �p ′
i , �p ′

j ) −→ ( �pi , �p j ) = T�ωi j ( �p ′
i , �p ′

j ). (27)

Now, although this momentum transfer during collision is clearly discontinuous,
one can nevertheless maintain the idea that the dynamics is smooth, by mimicking
a procedure already applied to deal with collisions with the wall, i.e., by adopting a
topology in which the pre-collision coordinates (�qi , �pi ; �q j , �p j ) and the post-collision
coordinates (�qi , �p ′

i ; �q j , �p ′
j ) are identified. We will discuss this procedure in greater

detail in Sect. 5.
With these caveats taken care of, we thus recover a smooth dynamics for the hard

spheres model, and indeed one can show that the Eq. (23) go over in

∂ρ
(a)
k,t

∂t
= Hkρ

(a)
k,t + C(a)

k,k+1ρ
(a)
k+1,t k ∈ {1, . . . , N }, (28)
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where now

C(a)
k,k+1ρ

(a)
k+1,t = Na2

k∑
i=1

∫
R3

d �pk+1

∫
S2

d �ωi,k+1,

( �ωi,k+1 · ( �pk+1 − �pi
))

ρ
(a)
k+1,t (x1, . . . , xk, �qi + a �ωi,k+1, �pk+1), (29)

and the superscript (a) is intended to remind one that these operators and the rescaled
probability densities refer to a hard spheres model with a sphere diameter a > 0. Of
course, for each value of k, these rescaled probability densities ρ

(a)
k are defined only

on the domains

�a
k,�= ={(x1, . . . xk)∈(�×R

3)k : ‖�qi −�q j‖ ≥ a, i �= j, i, j ∈ {1, . . . k} }. (30)

We emphasize that the resulting form (28) of the BBGKY hierarchy for the hard
sphere model is still time-reversal invariant. This is shown explicitly in Proposition 2
in the Appendix.

However, one more step is needed in order to obtain Lanford’s theorem. Let us split
the integral over the unit sphere S2 into two parts: the hemisphere �ωi,k+1 ·( �pi − �pk+1) ≥
0, and the hemisphere �ωi,k+1 · ( �pi − �pk+1) ≤ 0. In the first hemisphere, the collision
configuration (�qi , �pi ; �qi + a �ωi,k+1, �pk+1) represents a collision between particles i
and k + 1 with incoming momenta �pi , �pk+1, and we leave the integrand as it is.

In the other hemisphere, characterized by �ωi,k+1 · ( �pi − �pk+1) ≤ 0, the momenta
in the configuration (�qi , �pi ; �qi + a �ωi,k+1, �pk+1) appear as outgoing momenta. In this
hemisphere, these momenta are replaced by the corresponding incoming momenta,
which, according to (27), gives the configuration:

(�qi , �p ′
i ; �qi + a �ωi,k+1, �p ′

k+1) where ( �p ′
i , �p ′

k+1) = Tωi,k+1( �pi , �pk+1). (31)

Also, we replace the integration variable �ωi,k+1 by −�ωi,k+1. The result of these oper-
ations is that we obtain from (29) the collision term:

C(a)
k,k+1ρ

(a)
k+1,t (x1, . . . , xk) = Na2

k∑
i=1

∫
R3

d �pk+1

∫
�ωi,k+1·( �pi − �pk+1)≥0

d �ωi,k+1

( �ωi,k+1 · ( �pi − �pk+1)
) [

ρ
(a)
k+1,t (x1, . . . , �qi , �p ′

i , . . . xk, �qi − a �ωi,k+1, �p ′
k+1)

−ρ
(a)
k+1,t (x1, . . . , �qi , �pi , . . . xk, �qi + a �ωi,k+1, �pk+1)

]
(32)

Summing up Lanford’s argument so far, the general BBGKY hierarchy has been
applied to the particular case of the hard-spheres model. An Eq. (28) for the time-
evolution of the relevant reduced probability densities including the details of both
collisions and rectilinear motion of the particles is thus obtained. In the last passage
from (29) to (32) a particular step was made, namely to rewrite the integrands in terms
of pre-collision rather than the post-collision configurations. This step was accom-
panied by the argument that one may identify these configurations as representing

123



Found Phys (2015) 45:404–438 417

the same physical phase point, as Lanford himself suggested. Actually, as we shall
see in Sect. 5, this step is regarded by some authors as crucial for the emergence of
irreversibility in Lanford’s theorem, although this is disputed by others.

3.3 From the Boltzmann Equation to the Boltzmann Hierarchy

In this section, we start from the other side of the bridge that we aim to cross. That
is, we take the Boltzmann equation as given, and reformulate it in a mathematically
equivalent hierarchy of distribution functions. This idea is captured by the lemma
below, which is spelled out by Lanford [15], p. 88.

First, define a hierarchy of multi-particle distribution functions by

fk,t (x1, . . . , xk) =
k∏

i=1

ft (xi ) k ∈ N, (33)

where xi = (�qi , �pi ). Then we have:

Lemma 3.1 The following two statements are equivalent: (i): ft is a solution of the
Boltzmann equation and (ii) the functions fk,t obey the equations

∂ fk,t

∂t
= Hk fk,t + Ck,k+1 fk+1,t k ∈ N, (34)

where:

Hk :=
k∑

i=1

Li := −
k∑

i=1

�pi · ∂

∂ �qi
, (35)

and

Ck,k+1 fk+1,t (x1, . . . , xk)

= Na2
k∑

i=1

∫
�ωi,k+1·( �pi − �pk+1)≥0

d �ωi,k+1d �pk+1
( �ωi,k+1 · ( �pi − �pk+1)

)

×[
fk+1,t (x1, . . . , �qi , �p ′

i , . . . , �qi , �p ′
k+1)− fk+1,t (x1, . . . , �qi , �pi , . . . , �qi , �pk+1)

]
,

(36)

and

( �p ′
i , �p ′

k+1) = Tωi,k+1( �pi , �pk+1). (37)

In other words, the problem of solving the Boltzmann equation for a distribution
function f is equivalent to the problem of solving a hierarchy of evolution Eq. (34),
called the Boltzmann hierarchy, for the functions ( f1, f2, . . .) under the assumption
of a factorization condition (33). One can write this hierarchy more compactly by
regarding the fk as components of a vector: f = ( f1, f2, . . .). Then we can write (34)
schematically as:
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∂

∂t
f = H f + C f , (38)

where H is a diagonal matrix with diagonal elements Hk and C a matrix with elements
Ck,k+1 and zero elsewhere.

The lemma has two virtues: First, and most important is the point that while the
original non-linear Boltzmann equation is notoriously hard to solve, the Boltzmann
hierarchy (38) is linear. This contrast arises, of course, because the non-linearity is
put, so to say, in the factorization constraint (33). As a consequence, it is easier to
write down (at least formal) solutions to the Boltzmann hierarchy. A formal solution
to this hierarchy of equations is obtained by writing down an expansion familiar from
Dyson’s time-dependent perturbation theory:

f t = S(t) f 0

+
∞∑

i=1

∫ t

0
dt1

∫ t1

0
dt2 . . .

∫ ti−1

0
dtm S(t−t1)CS(t1−t2)C · · · CS(tm) f 0, (39)

where the operator S(t) represents the collisionless time evolution, i.e.:

S(t) fk(x1, . . . xk) := fk(�q1 − t �p1, �p1, �q2 − t �p2, �p2, . . . , �qN − t �pN , �pN ). (40)

Obviously, the above formal way of writing a general solution to the Boltzmann
hierarchy does not alleviate the original problems in solving the Boltzmann equation
entirely; these problems are merely transposed into a further problem of showing that
the series expansion in (39) actually converge.

The second virtue of the lemma is that it brings the Boltzmann equation in a form
which is more similar to the results from the BBGKY formalism discussed above,
which likewise take the form of a hierarchy, and this alleviates the effort to build a
rigorous bridge between them.1

As we have remarked above, the factorization condition (33), taken as a gener-
alization of Boltzmann’s condition (2), is sometimes called ‘molecular chaos’. This
is an unfortunate habit because (33) does not contain an accompanying condition to
single out the pre-collision coordinates, as a generalization of (3). Nevertheless, it is
worth noting that if the initial data of the Boltzmann hierarchy at time t = 0 take
the form (33), then this factorization is preserved through time, i.e. it holds for the
solution of (34) for all time t , with ft being a solution of the Boltzmann equation. This
important property of the Boltzmann hierarchy is commonly known as ‘propagation of
chaos’.2 We emphasize, however, that this factorization, and its preservation in time,
has nothing to do with the pre-collision condition (3) mentioned in Sect. 2 as a crucial
ingredient of the molecular chaos hypothesis Boltzmann used to obtain the Boltzmann
equation.

1 The similarity is not complete, of course. For example, the BBGKY hierarchy is finite while the Boltzmann
hierarchy is not.
2 See ([23], p. 45; [9], p. 85) for a more extensive discussion of this property.
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Finally, we stress that the Boltzmann hierarchy, being an equivalent way of express-
ing the Boltzmann equation, is just as time-reversal non-invariant as the original Boltz-
mann equation. In fact, by applying a time-reversal transformation to it, one obtains a
hierarchy of evolution equations which has the same form as (34) except for a minus
sign in front of the collision term Ck,k+1. We refer to the latter as the anti-Boltzmann
hierarchy. The ‘propagation of chaos’ property which we just noted for the Boltzmann
hierarchy is also valid for this anti-Boltzmann hierarchy. Also, notice that both the col-
lision operators and the distribution functions in (36) resemble those involved in (32),
except that they do not depend on the diameter a of the particles. The crucial point in
Lanford’s theorem is to demonstrate that all relevant terms in the BBGKY hierarchy
tend to their counterparts in the Boltzmann hierarchy in the Boltzmann–Grad limit,
whereby a −→ 0. That would establish that the Boltzmann equation can be obtained
from Hamiltonian mechanics.

4 Lanford’s Theorem

So far, we have seen how the Hamiltonian dynamics for the hard-spheres model leads,
under a relatively harmless assumption of permutation invariance, to a hierarchy of
BBGKY equations describing the evolution of reduced density functions of a statistical
state. And we have also seen how the Boltzmann equation can be reformulated as a
hierarchy of equations in close resemblance to the BBGKY hierarchy. The question
still remains how to bridge the gap between these two descriptions. Lanford’s theorem
establishes the convergence of the BBGKY hierarchy to the Boltzmann hierarchy in
the so-called Boltzmann–Grad limit.

This Boltzmann–Grad limit defines a particular limiting regime within the hard
spheres model. In this limit, one not only lets the number of particles grow to infinity,
i.e. N → ∞, but also requires that their diameter goes to zero, i.e. a → 0, while
keeping the volume |�| of the container fixed. The limit is taken in such a way that
the quantity Na2 remains constant, or at least approaches a finite non-zero value. This
guarantees that the collision term in the Boltzmann equation or Boltzmann hierarchy,
which is proportional to this quantity, does not vanish. Accordingly, the ‘mean free
path’ λ := |�|

2π Na2 , which is the typical scale-distance traveled by any particle between
two subsequent collisions in an equilibrium state, also remains of order one. The same
holds for the ‘mean free time’, i.e. the typical duration between collisions in equilib-
rium, which is of the order

√
(β/3)πa2 N/|�|, where β is the inverse temperature.

There is one final technical point we need to mention. Recall that the rescaled
probability densities ρ

(a)
k of the BBGKY hierarchy have as their domains the sets

(28). As one takes the Boltzmann–Grad limit, these sets converge to

�k,�= :=
⋃
a>0

�
(a)
k,�= ={(x1, . . . xk)∈(� × R

3)k : �qi �= �q j , i �= j, i, j ∈ {1, . . . k} }.

(41)

Obviously, we cannot expect the convergence of ρ
(a)
k −→ fk everywhere in �k :=

(� × R
3)k , but at most on �k,�=, i.e., away from the hypersurface �k,= := �k \ �k,�=
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of phase points for which two particles (now considered as point particles), coincide
in space. Actually, we need to be even a little bit more restrictive. Let

�k,�=(s) := {(x1, . . . xk) ∈ (� × R
3)k : �qi − s �pi �= �q j − s �p j ,

i �= j, i, j ∈ {1, . . . k},∀t : 0 ≤ t ≤ s }. (42)

In words, this is the set of k point particle configurations for which no particle pairs
collide at time 0, but also have not collided within a time span [−s, 0].

We are now ready to state the precise version of Lanford’s theorem, as given by
Spohn [23], Theorem 4.5. Here, when we write lima−→0, the Boltzmann–Grad limit
is understood, i.e. it is assumed that N −→ ∞ simultaneously, while keeping Na2 a
fixed non-zero constant.

LANFORD’S THEOREM
With the notation introduced in Sect. 3, take 0 < a < a0 and let ρ

(a)
k,t be a family

of functions defined on �
(a)
k,�=, and assume that for all such a, the following

conditions hold at time t = 0.
(i) There exists positive real constants z, β, M , independent of a, such that

ρ
(a)
k,0(x1, . . . , xk) ≤ Mzk

k∏
i=1

hβ( �pi ), (43)

for any k = 1, 2, . . ., where hβ( �pi ) denotes the normalized Maxwellian dis-

tribution over momenta: hβ( �pi ) = (
β

2π
)

3
2 · e− β �p2

i
2 at inverse temperature β,

and the spatial distribution is constant inside the vessel � with density z.
(ii) There exist continuous functions fk,0 on �k , for k = 1, 2 . . . such that

lim
a−→0

ess sup
(x1,...xk)∈K

|ρ(a)
k,0(x1, . . . , xk) − fk,0(x1, . . . xk)| = 0, (44)

for all compact subsets K ⊂ �k,�=(s) for some s ≥ 0.
Then, there exists a strictly positive time τ , such that for all times 0 ≤ t ≤ τ

lim
a−→0

ess sup
(x1,...,xk )∈K

|ρ(a)
k,t (x1, . . . , xk) − fk,t (x1, . . . , xk)| = 0, (45)

for any k = 1, 2, . . . and compact subset K ⊂ �k,�=(s + t).

Here, ρ
(a)
k,t are solutions of the BBGKY hierarchy with initial conditions ρ

(a)
k,0

and fk,t solutions of the Boltzmann hierarchy with initial conditions fk,0.

Let us make some comments on the theorem. Assumption (i) admits only initial
conditions for the rescaled reduced densities ρ(a)k,0 of the BBGKY hierarchy bounded
by a k-fold product of uniform spatial density z and a Maxwellian distribution over
the momenta with inverse temperature β. This assumption is described by Lanford
[16] as a regularity condition which prevents building in very strong correlations into
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the sequence of initial densities ρ
(a)
k,0 of the BBGKY hierarchy, while at the same time

preventing a significant probability for particles of very high energy. In fact, [23] has
shown that condition (i) implies that if this sequence of densities converges in the limit
a −→ 0 (as it does in the sense of assumption (ii)), it must be to a sequence of convex
combination of factorizing densities:

lim
a−→0

ρ
(a)
k,0 =

∫
L∞+

P(d f )

k∏
i=1

f0(xi ), (46)

where P denotes a probability measure on density functions. This means that, in the
limit a −→ 0, correlations are indeed severely restricted by assumption (i), since the
densities ρ

(a)
k,0 will then become conditionally independent.

By assumption (ii), the sequence of initial conditions for the BBGKY hierarchy
converge to functions fk,0 that serve as initial conditions of the Boltzmann hierarchy.
The theorem then states that this convergence is maintained through time, at least
for t ∈ [0, τ ], so that solutions ρ

(a)
k,t of the BBGKY hierarchy converge to solutions

fk,t of the Boltzmann hierarchy as a → 0 for all k, except for the phase-points
comprised in the set �k,=(s+t). The size of such exceptional sets increases in time, i.e.
�k,=(s+t) ⊂ �k,=(s+t ′) if 0 < t < t ′. It follows that the type of convergence obtained
for ρ

(a)
k,t in (45) is weaker than the convergence assumed for the initial conditions ρ

(a)
k,0

in (55). This is actually to be expected due to the fact that the BBGKY hierarchy is
time-reversal invariant, while the Boltzmann hierarchy is not. Note, however, that,
being hypersurfaces of codimension one, the exceptional sets �k,=(s + t) all have
Lebesgue measure zero for any time t , and hence they also have probability zero
for any statistical state which is absolutely continuous with respect to the Lebesgue
measure.

Now, if we add the further assumption that the functions fk,0 in equation (55)
factorize according to (33), that is

fk,0(x1, . . . , xk) =
k∏

i=1

f0(xi ), (47)

then we can infer by the Lemma of Sect. 3.3, and the propagation of chaos, that this
factorization property is maintained in time:

fk,t (x1, . . . , xk) =
k∏

i=1

ft (xi ), (48)

where ft is a solution of the Boltzmann equation. In that case, the Lanford theorem
not only obtains convergence of ρ

(a)
k to solutions of the Boltzmann hierarchy, but

also obtains convergence to solutions of the Boltzmann equation in the sense of (48),
for the duration t ∈ [0, τ ]. This completes the derivation of the Boltzmann equation
from the BBGKY hierarchy for hard spheres. Thus, under the factorization condition
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(47), Lanford’s result establishes the limiting validity of the Boltzmann equation in
the Boltzmann–Grad regime. But note that such an assumption is not actually needed
in the above theorem.

Nevertheless, even if the factorization condition (47) is not needed in the Lanford
theorem, the result by Spohn just mentioned, i.e., that the assumptions of the theorem
imply (46), show that these assumptions almost imply factorization of the limiting
densities. Moreover, since the Boltzmann hierarchy is linear and propagates chaos, it
will preserve this convex combination for later times, i.e., if the initial conditions for
the Boltzmann hierarchy take the form of the right-hand side of Eq. (46), they will
evolve in time to

fk,t (x1, . . . , xk) =
∫

L∞+
P(d f )

k∏
i=1

ft (xi ). (49)

It is worth pointing out a few limitations on the applicability and physical relevance
of Lanford’s theorem. A rather serious drawback lies in the usage of the Boltzmann–
Grad limit. Indeed, the fact that one lets the number N of particles in the gas go to
infinity, while at the same time letting their diameter a go to zero in such a way that
the quantity Na2 remains constant, implies that Na3 → 0. This means that the gas
becomes infinitely diluted in the Boltzmann–Grad limit, and hence the result would
apply just to infinitely diluted gases. So, even though it seems reasonable to impose
this limit in order to give the Boltzmann equation a fighting chance to be valid, the
theorem can hardly be relevant to real-life gases in which the density is not close to
zero. The main merit of Lanford’s theorem is therefore conceptual, in that it makes a
case that, under precise conditions on the initial data, the Boltzmann equation can be
derived from the Hamiltonian equations of motion, although just in rather idealized
circumstances.

Another issue, that is emphasized by Lanford himself and nearly all subsequent
commentators, concerns the limited time of validity of the theorem. In fact, the time
bound τ , for which the sought-after convergence of solutions of the BBGKY hierarchy
to solutions of the Boltzmann hierarchy is assured, proves extremely short. An explicit
estimate given by Spohn [23], p. 62 shows that τ ≤ 0.2

√
(β/3)πa2z, and hence the

result holds only during one-fifth of the mean free time between collisions for the
given Maxwellian. Since such a time-scale, for realistic gas systems under ordinary
circumstances, will be of the order of milliseconds, the theorem will hardly be enough
ammunition to provide a justification of the Boltzmann equation through macroscopic
time scales, or even the time scale in which equilibration sets in.3 Yet, this is not too
short to make irreversibility unobservable: in a duration of 1/5th of the mean collision

3 It is true that Illner and Pulvirenti [14], have derived a longer validity but only under much more stringent
conditions, i.e. for a gas cloud expanding into a vacuum. As a matter of fact, this repeated attention to time
scale has deluded attention from more serious problems. Indeed, Lanford already pointed out that there is
a simple, if merely technical, “fix” to the above problem: one would only need to require that assumption
(i) of the theorem holds for arbitrary times, and not just at t = 0, and Lanford’s result may be extended to
all times (see [27] for a discussion of this issue).
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time, one expects that about 20 % of the particles will have collided, and this can be
sufficient for a significant increase of entropy of the gas. As Lanford put it,

Although these results apply only to small positive times, the times involved are
large enough for Boltzmann’s H -function to decrease a strictly positive amount.
Thus our results show unambiguously that there is no contradiction between
the reversibility of molecular dynamics and irreversibility implied by the H -
theorem. [15], p. 99.

But is there really irreversibility in Lanford’s theorem? And, if so, where does it
come from? This question seems particularly pressing since this theorem does not
explicitly rely on the Stosszahlansatz or an analogous statement. We take up these
questions in the next section.

5 Irreversibility in Lanford’s Theorem

Lanford’s theorem shows how one can derive the Boltzmann equation from the Hamil-
tonian equations of motion under precise assumptions. As a statistical version of Boltz-
mann’s H -theorem, it seems to account for the approach to equilibrium for a general
class of non-equilibrium initial conditions characterized by the regularity condition
(i), at least during the time-interval [0, τ ]. The most important question is then how the
implied irreversibility of this macro-evolution arises. On this point Lanford and other
authors on his theorem made remarks that are not quite univocal. We first survey and
criticize these different views and then present our own argument on the emergence
of irreversibility.

5.1 Views on the Emergence of Irreversibility in the Literature

In the final pages of his first paper, Lanford offers a diagnosis for the emergence of
irreversibility. There, he stresses that the factorization condition cannot be the time-
asymmetric ingredient needed to derive the Boltzmann equation.

The Boltzmann hierarchy, like the Boltzmann equation is not invariant under
time reversal. That is, irreversibility appears in passing to the limit a −→ 0, not
in the assumption that the rescaled correlation functions factorize. [15], p. 110

Indeed, Lanford’s result does not require a factorization condition to get convergence
towards a solution of the Boltzmann hierarchy, but only to guarantee that the lat-
ter becomes equivalent to the Boltzmann equation. In fact, the factorization condi-
tion, at least in the version adopted by Lanford, (i.e. (47), as distinguished from the
Stoßzahlansatz) is itself time-reversal invariant. Therefore, it surely does not yield an
explanation for irreversibility. This point is fortified by the fact that, as we saw in
section 4.1, factorization is also invoked in the version of theorem holding for nega-
tive times to derive the anti-Boltzmann equation. Instead, since irreversible behaviour
already appears at the level of the Boltzmann hierarchy (or the anti-Boltzmann hier-
archy), Lanford puts the blame on the procedure to take the limit from the BBGKY
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hierarchy to the Boltzmann hierarchy. (In the above quote, the notation a −→ 0 ought
to be understood as equivalent to N −→ ∞, as the Boltzmann–Grad limit prescribes.)
We obviously agree here with [15] that any irreversibility is not due to the factoriza-
tion assumption, but should we thereby conclude that it is due to the Bolzmann-Grad
limiting procedure?

In a subsequent paper, Lanford [17] himself argues that this limiting procedure is
not sufficient for the appearance of irreversibility. He illustrated this by the Vlasov
equation. This equation describes a system in which the interaction between particles
is given by a sum of two-body potentials of the form

φ(N )(�q1 − �q2) = 1

N
φ0(�q1 − �q2), (50)

where φ0(�q1−�q2) is a fixed continuous potential, rather than the hard-spheres potential
(12). The macroscopic distribution function f (�q, �p) is in this case determined from the
microstate of the system in a similar way as in the Boltzmann–Grad limit. However, the
time-evolution of f as given by the Vlasov equation, is time-reversal invariant. Indeed,
one can show that the H -function remains constant through time for this equation,
and hence taking the limit N −→ ∞ here does not lead to irreversibility.4 The lesson
Lanford draws from this is the following:

None of this, however, really implies that irreversible behavior must occur in the
limiting regime; it merely makes this behavior plausible. For a really compelling
argument in favor of irreversibility, it seems to be necessary to rely on some
version of Boltzmann’s original proof of the H -theorem [17], p. 75.

Unfortunately, Lanford did not specify how appealing to (some version of) Boltz-
mann’s derivation of the H -theorem would provide a compelling argument in favor
of irreversibility. But it seems reasonable to suppose that he meant to go back to the
Stoßzahlansatz, and its distinction between pre- and post-collision configurations.

An explanation of what Lanford intended in the last quote may perhaps be traced
back to the analysis he develops in his 1975 work. When presenting his own re-
examination of the derivation of the Boltzmann equation from the BBGKY hierarchy,
i.e. (32) specialized to the case k = 1, Lanford comments:

We obtained [the BBGKY hierarchy for the hard spheres model with the colli-
sion term expressed by Eq. (32) in the present paper] by systematically writing
collision phase points in their incoming representations. We could have equally
well have written them in their outgoing representations; if we then assumed
factorization we would have obtained the Boltzmann collision term with its sign
reversed. It is thus essential, in order to get the Boltzmann equation, to assume

ρ2(x1, x2) = ρ1(x1)ρ1(x2), (51)

for incoming collision points (x1, x2) and not for outgoing ones. [15], p. 88

4 This can actually be seen as a counterexample to [20], who claimed that the irreversible approach to
equilibrium would follow from taking the limit for N −→ ∞.
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Here, Lanford indicates the distinction between adopting the incoming representation
for collision phase points as opposed to the outgoing representation as being respon-
sible for the sign of the collision term in the Boltzmann hierarchy. In fact, one can
derive a form of the BBGKY hierarchy in which the collision term is rewritten by
systematically replacing the configurations with incoming momenta by the outgoing
momenta, instead of vice versa as we did in (32). Let us make this point explicit. In
analogy to what we did in Sect. 3.2, going back to Eqn. (29), we again split the integral
over S2 into two hemispheres, but on the hemisphere with �ωi,k+1 · ( �pk+1 − �pi ) ≥ 0
we would leave the configuration for the pair (�qi , �pi , �qi + a �ωi,k+1, �pk+1) as it is (i.e.
outgoing). On the hemisphere characterized by �ωi,k+1 · ( �pk+1 − �pi ) ≤ 0 we replace
the coordinates (�qi , �pi , �qi +a �ωi,k+1, �pk+1) by (�qi , �p ′

i , �qi +a �ωi,k+1, �p ′
k+1) as well as

change the sign of the integration variable �ωi,k+1 so that the two hemisphere integrals
have a common domain. The result is that Eq. (29) now goes over in

C(a)
k,k+1ρ

(a)
k+1,t (x1, . . . , xk) = Na2

k∑
i=1

∫
R3

d �pk+1

∫
�ωi,k+1·( �pi − �pk+1)≥0

d �ωi,k+1

( �ωi,k+1 · ( �pi − �pk+1)
)[ρ(a)

k+1(x1, . . . , �qi , �pi , . . . xk, �qi − a �ωi,k+1, �pk+1)

−ρ
(a)
k+1(x1, . . . , �qi , �p ′

i , . . . , �qi + a �ωi,k+1, . . . �p ′
k+1)] (52)

as an alternative to (32). Notice that the primed variables now appear in the second
term in the integrand, rather than the first. It is thus natural to expect that, if one takes
the Boltzmann–Grad limit a −→ 0, this collision term for the BBGKY hierarchy
converges to the collision term −Ck,k+1 in the anti-Boltzmann hierarchy, rather than
the collision term Ck,k+1 in the Boltzmann hierarchy. So, according to the above quote
from [15], it is the preference for the incoming representation for collision points over
the outgoing representation that would yield the time-asymmetric ingredient needed
to obtain the sought-after result. This indeed seems analogous to Boltzmann’s original
derivation of the H -theorem, where the irreversibility of the Boltzmann equation was
introduced by the Pre-collision version of the Stoßzahlansatz.

What is puzzling about this view, though, is that in an earlier passage [15], p. 86 had
argued for the identification of phase points which differ only by having an incoming
collision configuration replaced by the corresponding outgoing collision configuration.
This suggests that the origin of irreversibility in the Boltzmann equation would now
lie in a conventional choice of representation of the same phase point. An obvious
objection to this view is that it is not clear at all how physical irreversibility can be due
to a conventional choice of representation. Since the question of whether we derive
d H/dt ≤ 0 or d H/dt ≥ 0 is a substantive issue, such a difference cannot be a matter
of mere convention.

Cercignani et al. [9] and Cercignani [8] have argued that there actually is a non-
conventional justification for adopting the incoming representation, and that the choice
for this representation indeed has a dynamical underpinning:

We are compelled to ask whether the representation in terms of ingoing con-
figurations is the right one, i.e. physically meaningful. As we shall later see, in
a more careful analysis of the validity problem, the representation in terms of
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ingoing configurations follows automatically from hard-spheres dynamics and
is, indeed, not a matter of an a priori choice [9], p. 74.

So, for Cercignani et al., the preference for the incoming configuration over the ongoing
one is an automatic consequence of the hard-spheres dynamics. This view might
actually seem to settle the issue in a non-conventional way. However, in Sect. 5.2
below, we will argue in detail against the claim that irreversibility is due to the adoption
of one representation rather than another.

An entirely different argument for the emergence of irreversibility is presented by
Spohn [22], [23] and Lebowitz [18]. A similar argument is also sketched by Lanford
[16]. Spohn [22], p. 596 devotes a paragraph to the question “how Lanford’s theorem
escapes the conflict between the reversible character and the irreversible character of
the Boltzmann hierarchy see also [23], p. 66. He points out how Lanford’s theorem
will not sustain the construction of a counterexample as in the original reversibility
objection to the H -theorem. Recall that in that construction we assumed an initial
distribution function f0(x) that evolves in accordance with the Boltzmann equation
from the initial time 0 to some positive time t , when the distribution function is ft (x),
and then suddenly reverse all the velocities of all particles. Due to the time-reversal
invariance of the microdynamics, H [ f ] would have to increase during the interval
[t, 2t]. Spohn discusses what happens if we try to run this same argument on the
basis of Lanford’s theorem (a more elaborate version of his reasoning is given by
Lebowitz [18]). The crucial point in his analysis is that the set �k,=(s + t) of phase
points for which the convergence need not hold increases with time. Hence, if we
consider the rescaled densities ρ

(a)
k,t at time t , with 0 < t < τ , and then reverse the

velocities, the ensuing evolution of these functions will no longer be guaranteed by
Lanford’s result: in fact, for the theorem to be applicable at the new initial time t
after the velocity-reversal, the convergence of solutions of the BBGKY hierarchy to
solutions of the Boltzmann hierarchy would have be assured again over the domain
of convergence �k,�=(s) as demanded by the convergence condition (ii). Yet, from
the result of Lanford’s theorem from the evolution during [0, t], we would only have
convergence on �k,�=(s + t). Given that �k,�=(s) ⊃ �k,�=(s + t), we cannot apply
Lanford’s theorem (after velocity-reversal) to obtain an evolution during the time
[t, 2t] convergent to a solution of the Boltzmann equation with increasing H on the
same domain of rescaled density functions as we started out with. An argument along
the lines of the reversibility objection against Lanford’s theorem is thereby blocked.

This suggests a very different view on the emergence of irreversibility than the
previous ones. The time-asymmetric ingredient in the theorem is now identified in
its assumptions, specifically in the convergence condition (ii). Indeed, the prescribed
domain of convergence is not invariant under time reversal in the sense that �k,�=(s) �=
�k,�=(−s). Therefore, according to such an interpretation, the source of irreversibility
would lie in time-asymmetric assumptions of Lanford’s theorem.

To summarize the different views on the emergence of irreversibility in Lanford’s
theorem available in the literature: Lanford first identified the Boltzmann–Grad limit
as the source of irreversibility, but later he mitigated this claim; a next argument
of Lanford is that irreversibility arises by adopting the incoming representation for
collision points, instead of the outgoing representation. We have argued against this
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view that it would make the appearance of irreversibility seem to be a matter of
mere conventional choice of representation; Cercignani et al. claimed that a privileged
role of the incoming representation follows from the hard-spheres dynamics; Spohn
and Lebowitz instead pointed out a time-asymmetric ingredient in the domain of
assumption (ii) of the theorem. Below, we argue that all these views fail to provide a
satisfactory account of the status of irreversibility in Lanford’s result. Moreover, we
will argue that, in our opinion, there is no genuine irreversibility in the theorem.

5.2 Is there Really Irreversibility Embodied in Lanford’s Theorem?

Let us begin by discussing the notion of the incoming representation, as opposed to
the outgoing representation, of a collision point. As [15], p. 87 puts it “[T]hese two are
really just different representations of the same phase point.” Even [18], p. 8 argues
similarly when he writes about the incoming and outgoing momenta as being “just two
different representations of the same phase point.” However, this very identification
of the two configurations as representations of the same phase point seems to make
the distinction between incoming and outgoing collisions, which is allegedly at the
heart of the issue of irreversibility—at least according to some of the quotes we have
just discussed—quite hard to maintain.

Recall that the appeal to a topology identifying the pre-collision and the post-
collision coordinates was introduced in order to assure the technical point that the hard-
sphere dynamics becomes smooth. This point may perhaps be elucidated by consider-
ing what happens if one takes a series of smooth spherically symmetrical pair potentials
φ in (11) that approaches the hard-spheres model (12). In such a case, whenever a col-
lision between two particles, say i and j , occurs, the momenta of the particles do not
change instantaneously from incoming values ( �pi , �p j ) to outgoing values ( �p ′

i , �p ′
j ) as

given by 6, but by some smooth trajectory in a non-zero time span (cf. Fig. 2). When we
take the hard-sphere limit for such a collision (i.e., if we let the pair potentialφ approach
the hard-sphere potential (12), this interval goes to zero, and the trajectory would jump
instantaneously from xin to xout. Now, we can then still regard this hard-sphere collision
as a continuous process by adopting a topology on �

(a)
�= in which the holes in this phase

space are, so to say, stitched up, so that incoming collision coordinates and the out-
going collision coordinates become, as it were, adjacent to each other in phase space,
and a trajectory that jumps from xin = (x1, . . . , xi−1, �qi , �pi , . . . , �q j , �p j , x j+1, . . . xn)

to xout = (x1, . . . , xi−1, �qi , �p ′
i , . . . , �q j , �p ′

j , x j+1, . . . xn) is regarded as continuous
(Fig. 3). One may express this procedure colloquially as an “identification” of these
two points.

Yet, taking this way of speaking too literally may expose one to the risk of a mis-
leading interpretation of the theorem. Indeed, we are free in adopting any topology
we like on the boundary of �

(a)
�= (as long as it extends the Euclidean topology on its

interior), and in particular we can choose a topology to make an instantaneous transi-
tion from xin to xout appear as a smooth trajectory. Such a choice of topology entails
that every metric, or distance function, d on �

(a)
N �=, compatible with it would have the

property that d(xin, xout) = 0, and hence (by the usual definition of a metric) it would
follow that xin = xout, i.e. those points are identified. But, when choosing a topology,
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we are not forced to introduce a metric. Moreover, the topological identification of
phase-space coordinates ought not to be granted physical significance. Even if we
identify the incoming and outgoing points xin and xout for the purpose of topological
or metrical considerations, it does not follow that they thereby are physically identi-
cal. Indeed, that would overlook the distinctive and physically relevant fact that the
momenta are quite different in these two points. Furthermore, if the diameter a of the
particles is not null, as it happens in real physical situations described by the hard
spheres model, their positions are also necessarily distinct, even if they are colliding.
In other words, all that this choice of topology enforces is that a trajectory connecting
points like xin and xout becomes smooth, but not that these points are physically one
and the same. In fact, the very use of the terminology “representation” appears quite
inappropriate in this context. We shall therefore use the term “configuration” instead.

Moreover, Spohn [25] has argued that one can also obtain the smoothness of the
dynamics for solutions of the BBGKY hierarchy for hard spheres without assuming
the identification of the phase points representing the pre-collision and post-collision
configurations. In its stead, Spohn adopts a weaker condition which we refer to as
continuity across collisions: Denote the phase point in which two particles, say i and
k + 1, are touching each other, i.e., (x1, . . . , xi−1, �qi , �pi , xi+1, . . . xk, �qi + a �ω, �pk+1)

Fig. 2 A region of the phase
space �a

N ,�= showing a “hole”
(gray area) due to the forbidden
overlap of hard spheres i and j .
The points xin and xout represent
the microstate immediately
before and after the collision
between particles i and j . The
dashed curve between them
denotes the continuous trajectory
connecting these points in a
smooth potential approximation
to the hard spheres potential

xin

xout

Fig. 3 The same region of the
phase space �a

N ,�= with the hole
sown up, and the points xpre and
xout identified. The phase space
trajectory is now smooth even
during the hard spheres collision

xin
xout
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by the abbreviation (�qi , �pi ; �qi + a �ωi,k+1, �pk+1). Continuity across collisions then
requires that, if �ωi,k+1 · ( �pi − �pk+1) ≥ 0, then

ρ
(a)
k+1(�qi , �pi ; �qi + a �ωi,k+1, �pk+1) = ρ

(a)
k+1(�qi , �p ′

i ; �qi + a �ωi,k+1, �p ′
k+1), (53)

for all points (�qi , �pi ; �qi + a �ωi,k+1, �pk+1) in �
(a)
N ,�=. In other words, when any pair

of particles labeled by i and k + 1, respectively, undergo a mutual collision, the
values of the rescaled reduced density functions at the pre-collision point (�qi , �pi ; �qi +
a �ωi,k+1, �pk+1) should be equal to the values of those same functions at the post-
collision point (�qi , �p ′

i ; �qi + a �ωi,k+1, �p ′
k+1). One can easily verify that this continuity

condition allows one to obtain the collision term in the form (32) of the BBGKY
hierarchy in essentially the same way as it was shown in Sect. 3.2. (and likewise one
obtains expression for the collision term (52) in section 4.1), and thus it is sufficient
for the purpose of deriving Lanford’s theorem. Hence, one does not really need to
appeal to a literal identification of pre-collision and post-collision phase points; it is
sufficient that the functions ρ

(a)
k+1 take the same value at each such pairs of points. Note

that even if one would adopt the view that the pre- and post-collision points ought to
be identified, one would still need to rely on condition (53) to be fulfilled to make
ρ

(a)
k+1 continuous and obtain a smooth dynamics for the BBGKY hierarchy.

The claim we wish to argue against here is that the choice of the incoming con-
figuration over the outgoing configuration could be the source of irreversibility in
Lanford’s theorem. The basis for our argument rests on two main points. On the one
hand, as we have just seen, these two configurations are in fact different from each
other in a physically relevant sense. On the other hand, to counter the claim of Cer-
cigiani et al., we argue that the hard-spheres dynamics will not provide a preference
for writing the collision term of the BBGKY hierarchy in the incoming configuration
rather than the outgoing configuration. Indeed, Proposition 3 in the Appendix shows
that, if (53) holds, then the BBGKY hierarchy with the collision term expressed by
(32) and the BBGKY hierarchy with the collision term expressed by (52) are perfectly
equivalent. Thus, the choice of either one of the two collision configurations does not
make any difference at the level of the BBGKY hierarchy. In particular, one can derive
the Boltzmann hierarchy, as well as the anti-Boltzmann hierarchy, from the BBGKY
hierarchy rewritten in terms of either the incoming or the outgoing configurations
without having to choose the “right” one.

Furthermore, Proposition 3 proves that continuity across collisions is sufficient to
guarantee the time-reversal invariance of the BBGKY hierarchy with the collision
term expressed by (32), or equivalently by (52). In other words, this choice is neutral
with respect to the direction of time. This indicates that the source of irreversibility
in Lanford’s theorem does not lie in the adoption of either one between the incoming
and the outgoing configurations of collision points.

Let us emphasize that continuity across collisions is a peculiar condition on the
BBGKY hierarchy for hard spheres, which does not carry over when we take the
Boltzmann–Grad limit, at least if one wishes to derive a genuinely irreversible behav-
iour. In fact, such a condition would have no analogue for the Boltzmann hierarchy,
or the anti-Boltzmann hierarchy. For, let us restrict to the simple case of two par-
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ticles, i.e. k = 1, in order to not overburden the notation. Suppose that the solu-
tion of the Boltzmann hierarchy ρ2(�q1, �p1; �q1, �p2) to which ρ

(a)
2 converges at the

pre-collision point (�q1, �p1; �q1 + a �ω1,2, �p2) is equal to the solution of the Boltz-
mann hierarchy ρ2(�q1, �p ′

1 ; �q1, �p ′
2 ) to which ρ

(a)
2 converges at the post-collision point

(�q1, �p ′
1 ; �q1 + a �ω1,2, �p ′

2 ), as an analogue of (53) for the Boltzmann hierarchy would
presumably require. Then, since the factorization condition holds for solutions of the
Boltzmann hierarchy at all phase points, one would obtain

ρ1(�q1, �p1)ρ1(�q1, �p2) = ρ1(�q1, �p ′
1 )ρ1(�q1, �p ′

2 ). (54)

However, that can only be true if the gas is already at equilibrium.5 An obvious
lesson one should draw from this argument is that, for an irreversible approach to
equilibrium to obtain, the continuity at collisions condition, which maintains time-
reversal invariance of the BBGKY hierarchy written in any collision configuration,
has no analogue in the Boltzmann–Grad limit.

We now turn to the view offered by Spohn and Lebowitz. In our opinion, they
convincingly showed that the reversibility objection cannot be run against Lanford’s
theorem in the same way as is it was used by Loschmidt and Culverwell against
Boltzmann’s original presentation of the H -theorem. However, we believe that it is
one thing to show how the reversibility objection is evaded, but it is quite another
thing to explain the emergence of irreversibility in Lanford’s theorem. And although
the Spohn-Lebowitz argument is successful in the first objective, we feel it does little
to offer the sought-after explanation. In particular, the suggestion that the source of
irreversibility is to be traced back to time-asymmetric initial conditions employed in
the theorem seems unconvincing. First of all, Lanford’s theorem holds also if one sets
s = 0 in assumption (ii). That is actually how [15] first formulated his theorem. The
domain of convergence �k,�=(0) in condition (ii) then corresponds to the largest set of
initial configurations one can admit. The key point is to recognize that this domain is
clearly invariant under velocity-reversal, and thus condition (ii) is now time-reversal
invariant too.6 Yet, the theorem still implies the irreversible Boltzmann hierarchy for
positive times, as well as the irreversible anti-Boltzmann hierarchy for negative times.
The problem concerning the emergence of irreversibility thus still presents itself, even
when the time-reversal non-invariance of assumption (ii) is avoided by choosing s = 0.

Secondly, even if we choose s > 0 in conditions (ii) and (ii’), recall that the set of
exceptional states �k,=(s + t) ∩ �k,�=(s), comprising those microstates in the initial

domain of convergence �k,�=(s) for which the solution ρ
(a)
k,t of the BBGKY hierarchy

for hard spheres may not converge to a solution fk,t of the Boltzmann hierarchy, has
Lebesgue measure zero for all times t . Now, in the spirit in which Lanford’s theorem
has been formulated, Lebesgue mejasure zero sets in phase-space are not held to be
physically significant, and we have already neglected several such measure-zero sets
from the outset. Thus, it would seem that the sets of exceptional states, even if they are

5 This argument is really an adaptation to the present context of a discussion of the notion of pre-collisional
chaos contained in [28], p.35.
6 In fact, in this case, that is when s = 0, the condition coincides with its time-reversal.

123



Found Phys (2015) 45:404–438 431

not invariant under time-reversal, ought to be neglected as physically irrelevant too.
However, in order to obtain an emergence of irreversibility, one would like to see that
the overwhelming majority of initial phase space points will evolve in the course of
time in such a way to obtain the Boltzmann hierarchy, rather than the anti-Boltzmann
hierarchy. Considerations of the time-reversal non-invariance of measure zero sets will
not be helpful in this regard.

So far, we have criticized the available views on the emergence of irreversibility
in Lanford’s theorem. None of them, in our opinion, really succeeds in identifying an
ingredient responsible for the irreversible behaviour of the Boltzmann equation. The
claim we wish to make now is that there is no such a time-asymmetric ingredient at
all.

In order to substantiate this claim, let us stress that Lanford’s theorem can be
proven also for negative times. In fact, while the statement of the theorem in Sect. (4)
is formulated for positive times, one can derive an analogous result for negative times
−τ < t < 0, as shown by Lanford [15], p. 109–110, and more explicitly by Lebowitz
[18], p. 9–10. For this purpose, one ought to take the time-reversal of the assumptions
of the theorem and verify that one obtains the time-reversal of the conclusion. The
regularity assumption (i) is time-independent, and as such it is time-reversal invariant.
Therefore, one leaves it in the same form. Assumption (ii), instead, makes an explicit
reference to time in the domain of convergence �k,�=(s). Hence, if one keeps s ≥ 0,
one can rewrite it as

(ii′) There exist continuous functions fk,0 on �k , for k = 1, 2 . . . such that

lim
a−→0

ess sup
(x1,...xk )∈K

|ρ(a)
k,0(x1, . . . , xk) − fk,0(x1, . . . xk)| = 0, (55)

for all compact subsets K ⊂ �k,�=(−s) for some s ≥ 0.
One can then prove7 that there exists a strictly positive time τ , such that equation

(45) holds for any k = 1, 2, . . . and compact subset K ⊂ �k,�=(−s − t) during the time

interval t ∈ [τ, 0], where now the solutions ρ
(a)
k,t of the BBGKY hierarchy with initial

conditions ρ
(a)
k,0 are taken to converge to solutions fk,t of the anti-Boltzmann hierarchy

with initial conditions fk,0. Since the domain of convergence �k,�=(−s − t) is the
time-reversal of �k,�=(s + t) and the anti-Boltzmann hierarchy is the time-reversal of
the Boltzmann hierarchy, this conclusion is just the time-reversal of the conclusion
of the theorem as stated for positive times. Further, if one additionally assumes the
factorization condition (46), one would derive a solution ft of the anti-Boltzmann
equation.

As a consequence, if we consider a time t such that −τ ≤ t ≤ τ , Lanford’s theorem
is clearly neutral with respect to time reversal: that is, for positive times we obtain
convergence to solutions of the Boltzmann equation, and hence a decrease of H , just
as the H -theorem requires, but for negative times we obtain convergence towards a

7 The proof of this result proceeds in the same way as that for the theorem for positive times, except that
here one explicitly appeals to the outgoing configuration instead of the incoming one. However, in light of
Proposition 3 establishing the equivalence of the BBGKY hierarchy written in terms of each configuration,
the latter step is not an independent ingredient.
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solution of the anti-Boltzmann equation, and hence an increase of H . This is analogous
to Boltzmann’s 1897 argument based on the H -curve. Indeed, in this understanding,
the theorem proves that for most initial microstates the H -function lies at a local peak
of the H -function. So, at the initial time instant t = 0, H [ ft ] is expected to decrease
in both directions of time. This offers a mathematical formalization of Boltzmann’s
claim that, apart from equilibrium, the most probable case is that the H -function is at
a maximum of the curve. As such, Lanford’s result provides a rigorous version of the
statistical H -theorem sketched by Boltzmann. More importantly, with respect to the
issue of emergence of irreversibility, the thus-established time-reversal invariance of
the theorem does supply evidence that there is no time-asymmetric ingredient in the
theorem.

On the other hand, though, one should notice that the behavior of the rescaled
probability densities ρ

(a)
k,t implied by the theorem for negative times has a serious

drawback. In fact, this behavior conflicts with the expectation from thermodynamics
that entropy of an isolated gas system should increase rather than decrease even during
the interval [−τ, 0]. This issue has already been discussed many times in the literature
cf. [21], Feynman et al. 1964, [24], [11] and [27].

6 Conclusion

We discussed the problem of the emergence of irreversibility in Lanford’s theorem.
We argued that all the different views on the issue presented in the literature miss
the target, in that they fail to identify a time-asymmetric ingredient that, added to the
Hamiltonian equations of motion, would obtain the Boltzmann equation. More to the
point, we argued that there is no such an ingredient at all, as one can infer from the
fact that the theorem is indeed time-reversal invariant.
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7 Appendix

In this appendix we consider in more detail the issue of time-reversal invariance for the
Boltzmann equation and two versions of the BBGKY hierarchy equations and prove
the claims concerning this issue in the body of the paper. The commonly accepted
criterium for judging time-reversal invariance of such evolution equations, describing
a density function (either f or ρk) over particle configurations is as follows: the
equation determines a class S of allowed solutions, where each solution can be seen as
a ‘history’ of the density function, either H := { ft , t ∈ R} ∈ S or H := {ρk,t , t ∈ R},
carving out, so to say, a trajectory in their respective spaces of all density functions
that solve the evolution equation.

Now consider the time-reversal of such a history, defined as T H := { f̃t t ∈ R} or
T H := {ρ̃k,t t ∈ R} , where f̃t (�q, �p) = f−t (�q,− �p) and ρ̃k,t (�q1, �p1; . . . ; �qk, �pk) =
ρk,−t (�q1,− �p1; . . . ; �qk,− �pk) are obtained from ft and ρk,t by reversing t and the
momenta in their arguments. The question is then whether such a time-reversed history
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T H is a solution of the equation too, whenever H is a solution of the equation in
question. In other words: Is T H ∈ S whenever T ∈ S? If the answer is yes, the
equation is time-reversal invariant, otherwise not.

Our strategy will be the same in all three cases. We consider an arbitrary solution of
the equation and construct from this a time-reversed history, and derive the equation it
obeys. If the resulting equation is equivalent to the original equation we have proved
that the original equation is time-reversal invariant. But if it is not, the original equation
is not time-reversal invariant. To be sure, our first two propositions below are not
surprising: every author in the field recognizes that the Boltzmann equation is not
time-reversal invariant, whereas the BBGKY hierarchy is, even if detailed proofs of
these assertions are hard to find. We have added these proofs mainly to show that that
by the same standard of rigour, one can obtain Proposition 3, which we believe to be
of more interest.

Proposition 1 The Boltzmann equation (8) is not time-reversal invariant.

Proof Since nothing interesting happens to the position variables in the Boltzmann
equation (8) we will suppress them in the notation below, and also put the mass
m = 1. Note that �p1 is the only independent momentum variable in the equation: �p2
appears only in the right-hand side as a mere integration variable and the outgoing
momenta variables �p ′

1 , �p ′
2 in the collision integral are functions of �pi : that is, �p ′

i =
�p ′

i ( �p1, �p2) = Tω12( �p1, �p2), where Tω12 is defined by (7). So, let ft (�q, �p), t ∈ R, by an
arbitrary solution of the Boltzmann equation (8), and consider the joint transformation
of t −→ −t and �p1 −→ − �p1. Applying this transformation to the left-hand side of
(8) leads to:

− ∂

∂t
f−t (− �p1) − �p1 · ∂

∂ �q f−t (− �p1) = ∂

∂t
f̃t ( �p1) + �p1 · ∂

∂ �q f̃t ( �p1), (56)

while the right-hand side of (8) becomes

Na2
∫

d �p2

∫
�ω12·( �p1+ �p2)�0

d �ω12 (− �p1 − �p2) · �ω12

[
f−t ( �p′

1) f−t ( �p′
2) − f−t (− �p1) f−t ( �p2)

]
(57)

Here, the notation �p ′′
i is used to indicate that these momenta have to be thought of

as functions of (− �p1, �p2): ( �p ′′
1 , �p ′′

2 ) = Tω12(− �p1, �p2).
If we now perform an additional (cosmetic) transformation of the integration vari-

ables �p2 −→ − �p2 and �ω12 −→ −�ω12, (57) can also be written as

Na2
∫

d �p2

∫
�ω12·( �p1− �p2)�0

d �ω12 ( �p1 − �p2) · �ω12

[
ft ( �p ′′′

1 ) ft ( �p ′′′
2 ) − ft (− �p1) ft (− �p2)

]
, (58)

where ( �p ′′′
1 , �p ′′′

2 ) := Tω12(− �p1,− �p2). But Tω12 is a linear operator, and therefore
�p ′′′

i = − �p ′
i . If we now substitute f−t (− �p) = f̃t ( �p) in (58) and equate the transformed
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left-hand side (55) of (8) to the transformed right-hand side (58) of (8), we find that
f̃t satisfies the equation

∂

∂t
f̃t ( �p1) + �p1 · ∂

∂ �q f̃t ( �p1) =

−Na2
∫

d �p2

∫
�ω12·( �p1− �p2)�0

d �ω12 ( �p1 − �p2) · �ω12

[
f̃t ( �p′

1) f̃t ( �p′
2)− f̃t ( �p1) f̃t ( �p2)

]
,

(59)

also known as the anti-Boltzmann equation. We conclude: whenever the solution
{ ft , t ∈ R} satisfies the Boltzmann equation, the time reversed solution { f̄−t , t ∈
R} solves the (inequivalent) anti-Boltzmann equation, and therefore, the Boltzmann
equation is not time-reversal invariant. ��

Proposition 2 The BBGKY hierarchy with the collision term given by (29) is time-
reversal invariant.

Proof Recall that the BBGKY hierarchy has the form, for k = 1, . . . N :

∂ρ
(a)
k,t (x1, . . . , xk)

∂t
− Hkρ

(a)
k,t (x1, . . . , xk) =

(
C(a)

k,k+1ρ
(a)
k+1,t

)
(x1, . . . , xk). (60)

In this equation, we deal with k particles (the momentum of the k + 1th particle
appears in (29) only as an integration variable). If we reverse sign of the momenta
�p1, . . . �pk and the sign of t , it is easy to see the the left hand side of (66) changes sign.
But here, the right-hand side (29) clearly changes sign too when we change sign of
all momenta �p1, . . . , �pk+1, due to the fact that the integration over the antisymmetric
factor

( �ωi,k+1 · ( �pk+1 − �pi
))

in the integrand is extended over the entire surface of
theunit sphere. More explicitly, if we use the notation x̄i = (�qi ,− �pi ) along xi =
(�qi , �pi ), the transformed version of the left-hand side of Eq. (60) is

− ∂

∂t
ρ

(a)
k,−t (x̄1, . . . , x̄k) + Hkρ

(a)
k,−t (x̄1, . . . , x̄k) = − ∂

∂t
ρ̃

(a)
k,t (x1, . . . , xk)

+Hk ρ̃
(a)
k,t (x1, . . . , xk), (61)

while the right-hand side transforms into:

(
C(a)

k,k+1ρ
(a)
k+1,−t

)
(x̄1, . . . x̄k) = Na2

k∑
i=1

∫
R3

d �pk+1

∫
S2

d �ωi,k+1

( �ωi,k+1 · ( �pk+1 + �pi
))

ρ
(a)
k+1,−t (x̄1, . . . , x̄k, �qi + a �ωi,k+1, �pk+1). (62)
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Hence, if we rewrite the integration variable �pk+1 as − �pk+1, we obtain from (62):

(
C(a)

k,k+1ρ
(a)
k+1,−t

)
(x̄1, . . . , x̄k) =

−Na2
k∑

i=1

∫
R3

d �pk+1

∫
S2
d �ωi,k+1

( �ωi,k+1 · ( �pk+1 − �pi
))

ρ
(a)
k+1,−t (x̄1, . . . , x̄k, �qi

+ a �ωi,k+1,− �pk+1) =

−Na2
k∑

i=1

∫
R3

d �pk+1

∫
S2
d �ωi,k+1

( �ωi,k+1 · ( �pk+1 − �pi
))

ρ̃
(a)
k+1,−t (x1, . . . , xk, �qi

+ a �ωi,k+1, �pk+1). (63)

Comparing this with (29), we conclude

(
C(a)

k,k+1ρ
(a)
k+1,−t

)
(x̄1, . . . x̄k) = −(C(a)

k,k+1ρ̃
(a)
k+1,t )(x1, . . . , xk). (64)

Putting (61) and (64) together, we see that the time-reversed version ρ̃
(a)
k,t of an arbitrary

solution ρ
(a)
k,t of (60) obeys the equivalent equation

− ∂

∂t
ρ̃

(a)
k,t + Hk ρ̃

(a)
k,t = −C(a)

k,k+1ρ̃
(a)
k+1,t . (65)

This shows that if {ρ(a)
k+1,t , t ∈ R} solves Eq. (60), then {ρ̃(a)

k+1,t , t ∈ R} is a solution
of the same equation, so that we can conclude that (60) is time-reversal invariant. ��
Proposition 3 Let the continuity across collisions condition (53) hold. Then, the
BBGKY hierarchy with the collision term expressed by (32) is equal to the BBGKY
hierarchy with the collision term expressed by (52). Furthermore, it is time-reversal
invariant.

Proof Recall that, after adopting the incoming configuration for collision points, the
BBGKY hierarchy takes the form

∂ρ
(a)
k,t (x1, . . . , xk)

∂t
− Hkρ

(a)
k,t (x1, . . . , xk) =

(
C(a)

k,k+1ρ
(a)
k+1,t

)
(x1, . . . , xk), (66)

where the left-hand side is the same as in (60), but the collision operator is now
expressed by (32). On the other hand, when adopting the outgoing configuration for
collision points, the collision operator is expressed by (52).

We first show that the BBGKY hierarchy with the collision term expressed by (32)
is equal to the BBGKY hierarchy with the collision term expressed by (52). Since the
only apparent difference between these hierarchies lies in the collision term, one just
needs to show that the operator (32) is the same as (52). Let us focus on the former.
Notice that the phase point (x1, . . . , xi−1, �qi , �p ′

i , xi+1, . . . xk, �qi − a �ωi,k+1, �p ′
k+1) as
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well as the phase point (x1, . . . , xi−1, �qi , �pi , xi+1, . . . xk, �qi +a �ωi,k+1, �pk+1) are pre-
collision coordinates in the hemisphere �ωi,k+1 · ( �pi − �pk+1) � 0. Therefore, if the
continuity at collisions condition holds, it follows that (32) can be written as

(
C(a)

k,k+1ρ
(a)
k+1,t

)
(x1, . . . , xk)

= Na2
k∑

i=1

∫
R3

d �pk+1

∫
�ωi,k+1·( �pi − �pk+1)�0

d �ωi,k+1 �ωi,k+1 · ( �pi − �pk+1)

×[
ρ

(a)
k+1,t (x1, . . . , xi−1, �qi , �pi , xi+1, . . . xk, �qi − a �ωi,k+1, �pk+1)

−ρ
(a)
k+1,t (x1, . . . , xi−1, �qi , �p ′

i , xi+1, . . . xk, �qi + a �ωi,k+1, �p ′
k+1)

]
, (67)

which is just equal to the collision term (52).
Next, we demonstrate that the BBGKY hierarchy with the collision term expressed

by (32) is time-reversal invariant. Here, we are again dealing with k particles, but
in this case both incoming and outgoing momenta appear in the same formula, just
as in the Boltzmann equation. And just as in the Boltzmann equation, one ought to
take the outgoing momenta variables here as (implicit) functions of the incoming
momenta: ( �p ′

i , �p ′
k+1) = Tωi,k+1( �pi , �pk+1). We now apply a combination of the argu-

ments we used above to judge the time-reversal invariance of the Boltzmann equation
and the BBGKY hierarchy in the version (60): we replace t by −t and (x1, . . . , xk)

by (x̄1, . . . , x̄k). Since the left-hand side is the same as in (60), we draw the same
conclusion: this side transforms into (61). But we have to scrutinize the behaviour of
the right-hand side in more detail. This side transforms to:

(
C(a)

k,k+1ρ
(a)
k+1,−t

)
(x̄1, . . . , x̄k)

= d �pk+1d �ωi,k+1 �ωi,k+1 · ( �pi + �pk+1)

×[
ρ

(a)
k+1,−t (x̄1, . . . , x̄i−1, �qi , �p ′

i , x̄i+1, . . . x̄k, �qi − a �ωi,k+1, �p ′
k+1)

−ρ
(a)
k+1,−t (x̄1, . . . , x̄i−1, �qi ,− �pi , x̄i+1, . . . x̄k, �qi + a �ωi,k+1,− �pk+1)

]
, (68)

where, as before, the variables ( �p ′
i , �p ′

k+1) are defined as ( �p ′
i ,

�p ′
k+1) = Tωi,k+1(− �pi , �pk+1). Repeating a similar step of our first argument, we per-

form a conventional transformation on the integration variables �pk+1 −→ − �pk+1 and
�ωi ,k+1 −→ −�ωi,k+1 and use that the primed momenta transform as ( �p ′

i , �p ′
k+1) −→

Tωi,k+1(− �pi ,− �pk+1) = (− �p ′
i ,− �p ′

k+1) to rewrite the integral (68) as

(
C(a)

k,k+1ρ
(a)
k+1,−t

)
(x̄1, . . . , x̄k)

= Na2
k∑

i=1

∫
R3

d �pk+1

∫
�ωi,k+1·( �pi − �pk+1)�0

d �ωi,k+1 �ωi,k+1 · ( �pi − �pk+1)

×[
ρ

(a)
k+1,−t (x̄1, . . . , x̄i−1, �qi ,− �p ′

i , x̄i+1, . . . x̄k, �qi + a �ωi,k+1,− �p ′
k+1)

−ρ
(a)
k+1,−t (x̄1, . . . , x̄i−1, �qi ,− �pi , x̄i+1, . . . x̄k, �qi − a �ωi,k+1,− �pk+1)

]
. (69)
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Now, in analogy to the previous case (cf. Eqn. (64)), we must show that

(
C(a)

k,k+1ρ
(a)
k+1,−t

)
(x̄1, . . . , x̄k) = −

(
C(a)

k,k+1ρ̃
(a)
k+1,t

)
(x1, . . . , xk). (70)

For this purpose, notice that the phase point (x̄1, . . . , x̄i−1, �qi ,− �p ′
i , x̄i+1, . . . x̄k, �qi

+a �ωi,k+1,− �p ′
k+1) as well as the phase point (x̄1, . . . , x̄i−1, �qi ,− �pi , x̄i+1, . . . x̄k, �qi +

a �ωi,k+1,− �pk+1) are pre-collision coordinates in the hemisphere �ωi,k+1 · ( �pi − �pk+1)

� 0, and thus one can apply the continuity at collisions condition (53) to both such
points. The collision term in (67) can thus be written as

(
C(a)

k,k+1ρ
(a)
k+1,−t

)
(x̄1, . . . , x̄k)

= Na2
k∑

i=1

∫
R3

d �pk+1

∫
�ωi,k+1·( �pi − �pk+1)�0

d �ωi,k+1 �ωi,k+1 · ( �pi − �pk+1)

×[
ρ

(a)
k+1,−t (x̄1, . . . , x̄i−1, �qi ,− �pi , x̄i+1, . . . x̄k, �qi + a �ωi,k+1,− �pk+1)

−ρ
(a)
k+1,−t (x̄1, . . . , x̄i−1, �qi ,− �p ′

i , x̄i+1, . . . x̄k, �qi − a �ωi,k+1,− �p ′
k+1)

]
. (71)

If one then performs the (cosmetic) transformation of the integration variable �ωi,k+1
into −�ωi,k+1, one obtains

(
C(a)

k,k+1ρ
(a)
k+1,−t

)
(x̄1, . . . , x̄k)

= Na2
k∑

i=1

∫
R3

d �pk+1

∫
�ωi,k+1·( �pi − �pk+1)�0

d �ωi,k+1 �ωi,k+1 · ( �pi − �pk+1)

×[
ρ

(a)
k+1,−t (x̄1, . . . , x̄i−1, �qi ,− �pi , x̄i+1, . . . x̄k, �qi − a �ωi,k+1,− �pk+1)

−ρ
(a)
k+1,−t (x̄1, . . . , x̄i−1, �qi ,− �p ′

i , x̄i+1, . . . x̄k, �qi + a �ωi,k+1,− �p ′
k+1)

]
, (72)

which is equal to −
(
C(a)

k,k+1ρ
(a)
k+1,−t

)
(x̄1, . . . , x̄k), as one can see by contrasting the

above equation with (67). By recalling the definition of ρ̃
(a)
k,t , we conclude that

(
C(a)

k,k+1ρ
(a)
k+1,−t

)
(x̄1, . . . , x̄k) = −

(
C(a)

k,k+1ρ̃
(a)
k+1,t

)
(x1, . . . , xk). (73)

It has thus been shown that the BBGKY hierarchy with the collision term expressed by
(32) is time-reversal invariant. Equivalently, the BBGKY hierarchy with the collision
term expressed by (52) is time-reversal invariant too. ��
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